Nitrogen and Sulfur Co‐Doped Hierarchically Porous Carbon Nanotubes for Fast Potassium Ion Storage

Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co‐doped carbon nanotubes (NS‐CNTs). The as...

Full description

Saved in:
Bibliographic Details
Published inSmall Vol. 18; no. 42; pp. e2203545 - n/a
Main Authors Jin, Xin, Wang, Xianfen, Liu, Yalan, Kim, Minjun, Cao, Min, Xie, Huanhuan, Liu, Shantang, Wang, Xianbao, Huang, Wei, Nanjundan, Ashok Kumar, Yuliarto, Brian, Li, Xingyun, Yamauchi, Yusuke
Format Journal Article
LanguageEnglish
Published Weinheim Wiley 01.10.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202203545

Cover

Loading…
Abstract Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co‐doped carbon nanotubes (NS‐CNTs). The as‐designed NS‐CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g−1 at 1 A g−1 and a remarkable rate performance with a capacity of 151 mA h g−1 even at 5 A g−1. Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g−1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge–discharge process. Although the kinetics studies reveal the capacitive‐dominated process for potassium storage, density functional theory calculations provide evidence that N, S co‐doping contributes to expanding the interlayer space to promote the K‐ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K‐ion adsorption. Unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space in N, S co‐doped carbon nanotubes are achieved by the strategic engineering of surface and structure. Based on density functional theory calculations, N, S co‐doping contributes to superior capacity as anode materials in a K‐ion battery by enhancing the K‐ion adsorption.
AbstractList Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co‐doped carbon nanotubes (NS‐CNTs). The as‐designed NS‐CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g−1 at 1 A g−1 and a remarkable rate performance with a capacity of 151 mA h g−1 even at 5 A g−1. Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g−1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge–discharge process. Although the kinetics studies reveal the capacitive‐dominated process for potassium storage, density functional theory calculations provide evidence that N, S co‐doping contributes to expanding the interlayer space to promote the K‐ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K‐ion adsorption.
Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co-doped carbon nanotubes (NS-CNTs). The as-designed NS-CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g-1 at 1 A g-1 and a remarkable rate performance with a capacity of 151 mA h g-1 even at 5 A g-1 . Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g-1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge-discharge process. Although the kinetics studies reveal the capacitive-dominated process for potassium storage, density functional theory calculations provide evidence that N, S co-doping contributes to expanding the interlayer space to promote the K-ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K-ion adsorption.Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co-doped carbon nanotubes (NS-CNTs). The as-designed NS-CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g-1 at 1 A g-1 and a remarkable rate performance with a capacity of 151 mA h g-1 even at 5 A g-1 . Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g-1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge-discharge process. Although the kinetics studies reveal the capacitive-dominated process for potassium storage, density functional theory calculations provide evidence that N, S co-doping contributes to expanding the interlayer space to promote the K-ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K-ion adsorption.
Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co‐doped carbon nanotubes (NS‐CNTs). The as‐designed NS‐CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g−1 at 1 A g−1 and a remarkable rate performance with a capacity of 151 mA h g−1 even at 5 A g−1. Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g−1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge–discharge process. Although the kinetics studies reveal the capacitive‐dominated process for potassium storage, density functional theory calculations provide evidence that N, S co‐doping contributes to expanding the interlayer space to promote the K‐ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K‐ion adsorption. Unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space in N, S co‐doped carbon nanotubes are achieved by the strategic engineering of surface and structure. Based on density functional theory calculations, N, S co‐doping contributes to superior capacity as anode materials in a K‐ion battery by enhancing the K‐ion adsorption.
Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co‐doped carbon nanotubes (NS‐CNTs). The as‐designed NS‐CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g −1 at 1 A g −1 and a remarkable rate performance with a capacity of 151 mA h g −1 even at 5 A g −1 . Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g −1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge–discharge process. Although the kinetics studies reveal the capacitive‐dominated process for potassium storage, density functional theory calculations provide evidence that N, S co‐doping contributes to expanding the interlayer space to promote the K‐ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K‐ion adsorption.
Author Xin Jin
Minjun Kim
Xingyun Li
Huanhuan Xie
Wei Huang
Yalan Liu
Min Cao
Xianbao Wang
Ashok Kumar Nanjundan
Shantang Liu
Yusuke Yamauchi
Brian Yuliarto
Xianfen Wang
Author_xml – sequence: 1
  givenname: Xin
  surname: Jin
  fullname: Jin, Xin
  organization: Qingdao University
– sequence: 2
  givenname: Xianfen
  surname: Wang
  fullname: Wang, Xianfen
  organization: Qingdao University
– sequence: 3
  givenname: Yalan
  surname: Liu
  fullname: Liu, Yalan
  organization: Wuhan Institute of Technology
– sequence: 4
  givenname: Minjun
  surname: Kim
  fullname: Kim, Minjun
  organization: The University of Queensland
– sequence: 5
  givenname: Min
  surname: Cao
  fullname: Cao, Min
  organization: Qingdao University
– sequence: 6
  givenname: Huanhuan
  surname: Xie
  fullname: Xie, Huanhuan
  email: xiehh17@pku.edu.cn
  organization: Shanxi Normal University
– sequence: 7
  givenname: Shantang
  surname: Liu
  fullname: Liu, Shantang
  organization: Wuhan Institute of Technology
– sequence: 8
  givenname: Xianbao
  surname: Wang
  fullname: Wang, Xianbao
  organization: Hubei University
– sequence: 9
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: Taiyuan University of Technology
– sequence: 10
  givenname: Ashok Kumar
  surname: Nanjundan
  fullname: Nanjundan, Ashok Kumar
  organization: The University of Queensland
– sequence: 11
  givenname: Brian
  surname: Yuliarto
  fullname: Yuliarto, Brian
  organization: Institute of Technology Bandung
– sequence: 12
  givenname: Xingyun
  surname: Li
  fullname: Li, Xingyun
  email: xingyun_2008@sina.cn
  organization: Qingdao University
– sequence: 13
  givenname: Yusuke
  orcidid: 0000-0001-7854-927X
  surname: Yamauchi
  fullname: Yamauchi, Yusuke
  email: yamauchi.yusuke@nims.go.jp
  organization: National Institute for Materials Science (NIMS)
BackLink https://cir.nii.ac.jp/crid/1872272492629870720$$DView record in CiNii
BookMark eNqFkM1qVDEYhoNUsNZuXQd04WbG_J4kSxlbWxirMLo-fOecpEYyyZjkILPzErzGXkkzjBQpiJskhOfJ9-Z9jk5iihahl5QsKSHsbdmGsGSEMcKlkE_QKe0oX3SamZOHMyXP0HkpfiBUca2E0adouvE1p1sbMcQJb-bg5oxX6e7X7_dpZyd85W2GPH7zI4Swx59TTnPBK8hDivgGYqrzYAt2KeNLKLUBFdqIeYuvG7CpKcOtfYGeOgjFnv_Zz9DXy4svq6vF-tOH69W79WIUWsqFYCAMM4PSE2HTNEgwWoOjREyj7ojtjBKu3ZNBOtFxxQdOnFSjAO20UpyfoTfHd3c5_Zhtqf3Wl9GGANG22D1TVHVGMHlAXz1Cv6c5x5auUayjklOqGyWO1JhTKdm6fvQVqk-xZvChp6Q_tN8f2u8f2m_a8pG2y34Lef9vwRyFnz7Y_X_ofvNxvf7bfX10o_ct3mGlWrH2i1Zmx4xWRDX0Hj77pKo
CitedBy_id crossref_primary_10_1016_j_mattod_2025_02_014
crossref_primary_10_1038_s41598_022_25943_3
crossref_primary_10_1016_j_diamond_2025_111990
crossref_primary_10_1016_j_jallcom_2023_171218
crossref_primary_10_1002_smll_202401478
crossref_primary_10_1016_j_jcat_2023_06_013
crossref_primary_10_3390_surfaces6030023
crossref_primary_10_1016_j_jelechem_2023_117591
crossref_primary_10_1016_j_ijhydene_2023_01_022
crossref_primary_10_1016_j_ijhydene_2023_09_204
crossref_primary_10_1016_j_seppur_2023_125312
crossref_primary_10_1016_j_cej_2024_152647
crossref_primary_10_1016_j_jcis_2023_05_083
crossref_primary_10_1016_j_colsurfa_2023_131228
crossref_primary_10_1016_j_heliyon_2024_e39068
crossref_primary_10_1002_apj_2950
crossref_primary_10_1021_acssuschemeng_4c08392
crossref_primary_10_1021_acsomega_3c02017
crossref_primary_10_1016_j_fuel_2023_129476
crossref_primary_10_1016_j_apsusc_2024_159771
crossref_primary_10_1016_j_jallcom_2023_169127
crossref_primary_10_1039_D2QI02393H
crossref_primary_10_1039_D3TA04468H
crossref_primary_10_1007_s11356_023_27222_8
crossref_primary_10_1021_acsami_3c11057
crossref_primary_10_1021_acs_nanolett_4c01912
crossref_primary_10_1016_j_fuel_2023_129833
crossref_primary_10_1039_D4GC00863D
crossref_primary_10_1002_smtd_202301355
crossref_primary_10_1002_cctc_202201357
crossref_primary_10_1016_j_est_2024_113691
crossref_primary_10_1016_j_jcis_2024_01_012
crossref_primary_10_1016_j_carbon_2024_119143
crossref_primary_10_1016_j_cej_2024_153646
crossref_primary_10_1039_D3NA00695F
crossref_primary_10_1007_s12598_023_02418_6
crossref_primary_10_1039_D3DT00151B
crossref_primary_10_1002_chem_202304157
crossref_primary_10_3390_molecules28031484
crossref_primary_10_1021_acsanm_3c02185
crossref_primary_10_1039_D3NJ02615A
crossref_primary_10_1016_j_mcat_2023_113447
crossref_primary_10_1021_acsanm_4c00014
crossref_primary_10_1021_acs_iecr_4c01477
crossref_primary_10_1016_j_mcat_2023_113126
crossref_primary_10_1016_j_fuel_2023_127686
crossref_primary_10_1021_acs_est_3c01459
crossref_primary_10_1016_j_ijhydene_2023_04_099
crossref_primary_10_1016_j_micromeso_2023_112836
crossref_primary_10_1002_smll_202300605
crossref_primary_10_1016_j_jallcom_2024_174238
crossref_primary_10_1016_j_jmrt_2023_07_010
crossref_primary_10_1016_j_est_2024_113380
crossref_primary_10_1016_j_jallcom_2024_177221
crossref_primary_10_1039_D4NR03347G
crossref_primary_10_3390_nano14110907
crossref_primary_10_1002_ange_202304510
crossref_primary_10_1016_j_jcis_2023_08_148
crossref_primary_10_1021_acs_energyfuels_3c02468
crossref_primary_10_3390_en15207745
crossref_primary_10_1016_j_cej_2023_146801
crossref_primary_10_1016_j_ijhydene_2024_09_362
crossref_primary_10_3390_molecules29245906
crossref_primary_10_1016_j_elecom_2024_107702
crossref_primary_10_1016_j_jpowsour_2023_233164
crossref_primary_10_1021_acsanm_3c03148
crossref_primary_10_1016_j_jcis_2023_08_141
crossref_primary_10_1002_smll_202303946
crossref_primary_10_1016_j_jcis_2024_04_099
crossref_primary_10_1016_j_apenergy_2023_121567
crossref_primary_10_1016_j_fuel_2024_131995
crossref_primary_10_1002_anie_202304510
crossref_primary_10_1016_j_jallcom_2023_172384
crossref_primary_10_1016_j_apsusc_2024_159308
Cites_doi 10.1016/j.cej.2019.122352
10.1039/C6SC04903F
10.1039/C9SC02340B
10.1016/j.apsusc.2021.152404
10.1002/eem2.12148
10.1039/D1QM00065A
10.1016/j.cej.2020.127383
10.1021/acsaem.8b01690
10.1002/smll.202001607
10.1016/j.jpowsour.2020.228415
10.1002/jcc.20495
10.1021/acs.chemrev.9b00535
10.1016/j.apcatb.2020.119833
10.1016/j.jallcom.2018.10.224
10.1021/acsenergylett.0c00413
10.1002/advs.201800241
10.1002/anie.201803511
10.1002/adma.201604108
10.1016/j.ensm.2019.04.008
10.1016/j.chempr.2020.08.012
10.1021/acsami.9b07657
10.1039/C8TA04694H
10.1002/aenm.201901663
10.1016/j.cej.2022.136344
10.1039/D1CC05298E
10.1039/C6CC03649J
10.1016/j.cej.2019.122641
10.1103/PhysRevB.54.11169
10.1021/acsnano.9b05284
10.1039/C6RA27212F
10.1016/j.apsusc.2020.147635
10.1103/PhysRevLett.77.3865
10.1016/j.jpowsour.2018.12.002
10.1103/PhysRevB.59.1758
10.1002/cssc.201701759
10.1039/D0TA04513F
10.1016/j.ensm.2021.01.005
10.1002/adfm.201801989
10.1016/j.cej.2021.128490
10.1002/adma.201700104
10.1021/acsami.0c07467
10.1021/acsami.1c09107
10.1002/aenm.201901533
10.1039/C9TA12997A
10.1016/j.jpowsour.2021.229941
10.1016/j.jpowsour.2019.227514
10.1002/adfm.202002629
10.1002/adfm.201908755
10.1016/j.isci.2021.103494
10.1016/j.jallcom.2020.154133
10.1021/acsami.8b15940
10.1002/advs.201700880
10.1002/aenm.202003215
10.1002/aenm.201702384
10.1002/adfm.201906126
10.1002/aenm.201800171
10.1039/C9CC08439H
ContentType Journal Article
Copyright 2022 The Authors. Small published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Authors. Small published by Wiley-VCH GmbH.
Copyright_xml – notice: 2022 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Authors. Small published by Wiley-VCH GmbH.
DBID RYH
24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202203545
DatabaseName CiNii Complete
Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202203545
SMLL202203545
Genre article
GrantInformation_xml – fundername: National Natural Foundation of China
  funderid: 22072069; 51902170
– fundername: Natural Science Foundation of Shandong Province, China
  funderid: ZR2019YQ08
– fundername: Key Laboratory of Coal Science and Technology, Education Ministry and Shanxi Province, Taiyuan University of Technology
  funderid: MKX202005
– fundername: Institut Teknologi Bandung (ITB) International Collaboration Research
  funderid: 2022
– fundername: JST‐ERATO Yamauchi Materials Space‐Tectonics Project
  funderid: JPMJER2003
– fundername: Open Project of Key Laboratory of Green Chemical Engineering Process of the Ministry of Education
  funderid: GCP20200204
– fundername: ARC‐Linkage
  funderid: LP180100429
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYH
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
24P
A00
AEUQT
AFPWT
P4E
RWI
WYJ
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4855-42a4929b78d02ddb5a988af104dc860e6974fddb0b5f46373b30f57c4a8f87733
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 22:52:41 EDT 2025
Fri Jul 25 12:17:25 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
Tue Jul 01 02:54:18 EDT 2025
Wed Jan 22 16:23:49 EST 2025
Thu Jun 26 22:20:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4855-42a4929b78d02ddb5a988af104dc860e6974fddb0b5f46373b30f57c4a8f87733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7854-927X
0000-0001-6502-0844
0000-0002-3292-9039
0000-0001-9962-6561
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202203545
PQID 2726153118
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2717694253
proquest_journals_2726153118
crossref_citationtrail_10_1002_smll_202203545
crossref_primary_10_1002_smll_202203545
wiley_primary_10_1002_smll_202203545_SMLL202203545
nii_cinii_1872272492629870720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 24
2021; 409
2017; 7
2017; 8
2020; 120
2019; 55
2019; 11
2019; 10
2019; 13
2020; 16
2021; 285
2020; 12
2020; 449
1996; 77
2021; 36
2020; 8
2018; 6
2020; 6
2018; 8
2020; 5
2018; 5
2018; 1
2006; 27
2019; 23
1999; 59
2020; 534
2020; 379
2019; 29
2018; 30
2022; 445
2019; 9
2018; 28
2021; 5
2021; 4
2020; 381
2016; 52
2020; 469
2017; 29
1996; 54
2020; 826
2021; 13
2022; 582
2021; 11
2020; 30
2021; 499
2021; 411
2019; 775
2019; 412
2022; 58
2018; 11
2018; 10
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 534
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 469
  year: 2020
  publication-title: J. Power Sources
– volume: 36
  start-page: 309
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 411
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 638
  year: 2021
  publication-title: Energy Environ. Mater.
– volume: 8
  start-page: 3538
  year: 2017
  publication-title: Chem. Sci.
– volume: 11
  start-page: 202
  year: 2018
  publication-title: ChemSusChem
– volume: 449
  year: 2020
  publication-title: J. Power Sources
– volume: 5
  start-page: 1653
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 775
  start-page: 776
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 522
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 3216
  year: 2021
  publication-title: Mater. Chem. Front.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 120
  start-page: 7020
  year: 2020
  publication-title: Chem. Rev.
– volume: 8
  start-page: 2836
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 7695
  year: 2019
  publication-title: Chem. Sci.
– volume: 499
  year: 2021
  publication-title: J. Power Sources
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 412
  start-page: 606
  year: 2019
  publication-title: J. Power Sources
– volume: 381
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 57
  start-page: 8540
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 1
  start-page: 6638
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  start-page: 5519
  year: 2017
  publication-title: RSC Adv.
– volume: 58
  start-page: 863
  year: 2022
  publication-title: Chem. Commun.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 6
  start-page: 2442
  year: 2020
  publication-title: Chem
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 379
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 445
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 9279
  year: 2016
  publication-title: Chem. Commun.
– volume: 582
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1787
  year: 2006
  publication-title: J. Comput. Chem.
– volume: 826
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 409
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 285
  year: 2021
  publication-title: Appl. Catal., B
– ident: e_1_2_8_44_1
  doi: 10.1016/j.cej.2019.122352
– ident: e_1_2_8_24_1
  doi: 10.1039/C6SC04903F
– ident: e_1_2_8_48_1
  doi: 10.1039/C9SC02340B
– ident: e_1_2_8_4_1
  doi: 10.1016/j.apsusc.2021.152404
– ident: e_1_2_8_9_1
  doi: 10.1002/eem2.12148
– ident: e_1_2_8_8_1
  doi: 10.1039/D1QM00065A
– ident: e_1_2_8_17_1
  doi: 10.1016/j.cej.2020.127383
– ident: e_1_2_8_39_1
  doi: 10.1021/acsaem.8b01690
– ident: e_1_2_8_47_1
  doi: 10.1002/smll.202001607
– ident: e_1_2_8_51_1
  doi: 10.1016/j.jpowsour.2020.228415
– ident: e_1_2_8_57_1
  doi: 10.1002/jcc.20495
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.chemrev.9b00535
– ident: e_1_2_8_3_1
  doi: 10.1016/j.apcatb.2020.119833
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jallcom.2018.10.224
– ident: e_1_2_8_45_1
  doi: 10.1021/acsenergylett.0c00413
– ident: e_1_2_8_33_1
  doi: 10.1002/advs.201800241
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.201803511
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201604108
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ensm.2019.04.008
– ident: e_1_2_8_11_1
  doi: 10.1016/j.chempr.2020.08.012
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.9b07657
– ident: e_1_2_8_16_1
  doi: 10.1039/C8TA04694H
– ident: e_1_2_8_36_1
  doi: 10.1002/aenm.201901663
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cej.2022.136344
– ident: e_1_2_8_28_1
  doi: 10.1039/D1CC05298E
– ident: e_1_2_8_53_1
  doi: 10.1039/C6CC03649J
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cej.2019.122641
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_43_1
  doi: 10.1021/acsnano.9b05284
– ident: e_1_2_8_25_1
  doi: 10.1039/C6RA27212F
– ident: e_1_2_8_21_1
  doi: 10.1016/j.apsusc.2020.147635
– ident: e_1_2_8_56_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jpowsour.2018.12.002
– ident: e_1_2_8_55_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_52_1
  doi: 10.1002/cssc.201701759
– ident: e_1_2_8_20_1
  doi: 10.1039/D0TA04513F
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ensm.2021.01.005
– ident: e_1_2_8_42_1
  doi: 10.1002/adfm.201801989
– ident: e_1_2_8_18_1
  doi: 10.1016/j.cej.2021.128490
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.201700104
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.0c07467
– ident: e_1_2_8_30_1
  doi: 10.1021/acsami.1c09107
– ident: e_1_2_8_49_1
  doi: 10.1002/aenm.201901533
– ident: e_1_2_8_23_1
  doi: 10.1039/C9TA12997A
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jpowsour.2021.229941
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jpowsour.2019.227514
– ident: e_1_2_8_7_1
  doi: 10.1002/adfm.202002629
– ident: e_1_2_8_46_1
  doi: 10.1002/adfm.201908755
– ident: e_1_2_8_14_1
  doi: 10.1016/j.isci.2021.103494
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jallcom.2020.154133
– ident: e_1_2_8_32_1
  doi: 10.1021/acsami.8b15940
– ident: e_1_2_8_40_1
  doi: 10.1002/advs.201700880
– ident: e_1_2_8_12_1
  doi: 10.1002/aenm.202003215
– ident: e_1_2_8_10_1
  doi: 10.1002/aenm.201702384
– ident: e_1_2_8_50_1
  doi: 10.1002/adfm.201906126
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201800171
– ident: e_1_2_8_22_1
  doi: 10.1039/C9CC08439H
SSID ssib017387498
ssib004908756
ssj0031247
ssib030664022
ssib022722846
Score 2.6251857
Snippet Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a...
SourceID proquest
crossref
wiley
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2203545
SubjectTerms Anodes
Carbon
Carbon nanotubes
Density functional theory
Electrode materials
fast kinetics
Interlayers
Ion adsorption
Ion storage
Kinetics
N and S co-doping
Nanotechnology
Nitrogen
Potassium
potassium ion storage
Raman spectroscopy
Storage capacity
Structural stability
Title Nitrogen and Sulfur Co‐Doped Hierarchically Porous Carbon Nanotubes for Fast Potassium Ion Storage
URI https://cir.nii.ac.jp/crid/1872272492629870720
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202203545
https://www.proquest.com/docview/2726153118
https://www.proquest.com/docview/2717694253
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RnuAA5SUCbWUkJE5pE8eJnSPadrWgtqpYKvUW2bEtRU2TKo8DnPgJ_EZ-CeNkN91FQkhwifKYRH7NzDex_Q3Au0Aqq4zI_TCVGKAYwXwhotx3RDBprIUS2m1OPr9IFlfs03V8vbGLf-SHmH64Oc0Y7LVTcKna43vS0Pa2dFMHlAYRogA0wm7BlkNFnyf-qAid15BdBX2W74i31qyNAT3efn3LK-1URbEFODdh6-B35k9Arks8Lje5Oeo7dZR_-43M8X-qtAePV6CUfBhH0VN4YKpn8GiDqvA56Iuia2ocbURWmiz70vYNmdU_v_84qe-MJovC7WQeEquU5VdyWTd135KZbFRdETThddcr0xKEyGQu2w4FOoTtRX9LPqLAEiN_NGwv4Gp--mW28FcZGvzckcr4jEqG-EpxoQOqtYplKoS0GOLpXCSBSTBasXg_ULFlScQjFQU25jmTwgrOo-gl7FZ1ZV4B0ZTzJGU8ZjphNkykEKGxiTRSca6Y8cBf91CWr-jLXRaNMhuJl2nmWi-bWs-D95P83Ujc8UfJA-xw_Kg7hoJTykcaxRRtGaeBB_vroZCtFLzNUMZBZQzPPHg7PUbVdPMtsjLYxigTuirROPKADv3-l5Jky_Ozs-nq9b-89AYeuvNxueE-7HZNbw4QNnXqEHYouzwcFOQXTa0OIA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcgAOvBGBFoyExClt4jixc0QLqy3srhDbStwiO3akiDSp8ji0J34Cv5FfwjjZhC4SQoJLpDjjyK8Zf-PHNwCvPakyZUTq-rFEB8UI5goRpK4lgolDLZTQ9nLyah0tztiHL-F4mtDehRn4IaYFN6sZvb22Cm4XpI9_sYY254XdO6DUCxAG7MFNG9a796o-TwxSAU5ffXwVnLVcS7018jZ69Hg3_868tFfm-Q7kvA5c-5lnfg_UWObhwMnXo65VR-nVb3SO_1Wp-3B3i0vJ22EgPYAbpnwId66xFT4Cvc7busIBR2SpyaYrsq4ms-rHt-_vqgujySK3l5n72CpFcUk-VXXVNWQma1WVBK141XbKNARRMpnLpkWBFpF73p2TExTYoPOPtu0xnM3fn84W7jZIg5taXhmXUckQYikutEe1VqGMhZAZenk6FZFnInRYMkz3VJixKOCBCrws5CmTIhOcB8ET2C-r0jwFoinnUcx4yHTEMj-SQvgmi6SRinPFjAPu2EVJumUwt4E0imTgXqaJbb1kaj0H3kzyFwN3xx8lD7HH8af26QtOKR-YFGM0Z5x6DhyMYyHZ6niToIxFy-ihOfBq-ozaabdcZGmwjVHGt1WiYeAA7Tv-LyVJNqvlcnp79i-ZXsKtxelqmSxP1h-fw22bPpw-PID9tu7MIaKoVr3o9eQn1AIRZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7uCqIP3sXqrkYQfOpumqZN-igzDrM6OyyOC_tWkiaBYrcdennQJ3-Cv9Ff4kk7U2cEEfSl0Pak5HIu32mSLwi9JlJZZUTmB4mEBMUI5gsRZr4jgkkiLZTQbnPy-TKeX7L3V9HVzi7-gR9i_OHmLKP3187A19qe_iINba4LN3VAKQkBBRygmywmwun19ONIIBVC9OqPV4Gg5TvmrS1tI6Gn--X3wtJBmed7iHMXt_aBZ3YPyW2Vh_Umn0-6Vp1kX39jc_yfNt1HdzeoFL8d1OgBumHKh-jODlfhI6SXeVtXoG5YlhqvusJ2NZ5UP759n1Zro_E8d1uZ-5NViuILvqjqqmvwRNaqKjH48KrtlGkwYGQ8k00LAi3g9ry7xmcgsILUHzzbY3Q5e_dpMvc3RzT4mWOV8RmVDACW4kITqrWKZCKEtJDj6UzExMSQrlh4TlRkWRzyUIXERjxjUljBeRg-QYdlVZqnCGvKeZwwHjEdMxvEUojA2FgaqThXzHjI345Qmm34y90xGkU6MC_T1PVeOvaeh96M8uuBueOPkscw4PBRdw0Ep5QPPIoJODNOiYeOtqqQbiy8SUHGYWXIzzz0anwNtukmXGRpoI9BJnBNolHoIdqP-19qkq7OF4vx7tm_FHqJbl1MZ-nibPnhObrtHg9LD4_QYVt35hggVKte9FbyE6PEEBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+and+Sulfur+Co%E2%80%90Doped+Hierarchically+Porous+Carbon+Nanotubes+for+Fast+Potassium+Ion+Storage&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jin%2C+Xin&rft.au=Wang%2C+Xianfen&rft.au=Liu%2C+Yalan&rft.au=Kim%2C+Minjun&rft.date=2022-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202203545&rft.externalDBID=10.1002%252Fsmll.202203545&rft.externalDocID=SMLL202203545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon