Nitrogen and Sulfur Co‐Doped Hierarchically Porous Carbon Nanotubes for Fast Potassium Ion Storage
Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co‐doped carbon nanotubes (NS‐CNTs). The as...
Saved in:
Published in | Small Vol. 18; no. 42; pp. e2203545 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley
01.10.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202203545 |
Cover
Loading…
Abstract | Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co‐doped carbon nanotubes (NS‐CNTs). The as‐designed NS‐CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g−1 at 1 A g−1 and a remarkable rate performance with a capacity of 151 mA h g−1 even at 5 A g−1. Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g−1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge–discharge process. Although the kinetics studies reveal the capacitive‐dominated process for potassium storage, density functional theory calculations provide evidence that N, S co‐doping contributes to expanding the interlayer space to promote the K‐ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K‐ion adsorption.
Unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space in N, S co‐doped carbon nanotubes are achieved by the strategic engineering of surface and structure. Based on density functional theory calculations, N, S co‐doping contributes to superior capacity as anode materials in a K‐ion battery by enhancing the K‐ion adsorption. |
---|---|
AbstractList | Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co‐doped carbon nanotubes (NS‐CNTs). The as‐designed NS‐CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g−1 at 1 A g−1 and a remarkable rate performance with a capacity of 151 mA h g−1 even at 5 A g−1. Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g−1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge–discharge process. Although the kinetics studies reveal the capacitive‐dominated process for potassium storage, density functional theory calculations provide evidence that N, S co‐doping contributes to expanding the interlayer space to promote the K‐ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K‐ion adsorption. Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co-doped carbon nanotubes (NS-CNTs). The as-designed NS-CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g-1 at 1 A g-1 and a remarkable rate performance with a capacity of 151 mA h g-1 even at 5 A g-1 . Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g-1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge-discharge process. Although the kinetics studies reveal the capacitive-dominated process for potassium storage, density functional theory calculations provide evidence that N, S co-doping contributes to expanding the interlayer space to promote the K-ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K-ion adsorption.Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co-doped carbon nanotubes (NS-CNTs). The as-designed NS-CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g-1 at 1 A g-1 and a remarkable rate performance with a capacity of 151 mA h g-1 even at 5 A g-1 . Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g-1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge-discharge process. Although the kinetics studies reveal the capacitive-dominated process for potassium storage, density functional theory calculations provide evidence that N, S co-doping contributes to expanding the interlayer space to promote the K-ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K-ion adsorption. Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co‐doped carbon nanotubes (NS‐CNTs). The as‐designed NS‐CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g−1 at 1 A g−1 and a remarkable rate performance with a capacity of 151 mA h g−1 even at 5 A g−1. Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g−1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge–discharge process. Although the kinetics studies reveal the capacitive‐dominated process for potassium storage, density functional theory calculations provide evidence that N, S co‐doping contributes to expanding the interlayer space to promote the K‐ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K‐ion adsorption. Unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space in N, S co‐doped carbon nanotubes are achieved by the strategic engineering of surface and structure. Based on density functional theory calculations, N, S co‐doping contributes to superior capacity as anode materials in a K‐ion battery by enhancing the K‐ion adsorption. Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co‐doped carbon nanotubes (NS‐CNTs). The as‐designed NS‐CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g −1 at 1 A g −1 and a remarkable rate performance with a capacity of 151 mA h g −1 even at 5 A g −1 . Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g −1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge–discharge process. Although the kinetics studies reveal the capacitive‐dominated process for potassium storage, density functional theory calculations provide evidence that N, S co‐doping contributes to expanding the interlayer space to promote the K‐ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K‐ion adsorption. |
Author | Xin Jin Minjun Kim Xingyun Li Huanhuan Xie Wei Huang Yalan Liu Min Cao Xianbao Wang Ashok Kumar Nanjundan Shantang Liu Yusuke Yamauchi Brian Yuliarto Xianfen Wang |
Author_xml | – sequence: 1 givenname: Xin surname: Jin fullname: Jin, Xin organization: Qingdao University – sequence: 2 givenname: Xianfen surname: Wang fullname: Wang, Xianfen organization: Qingdao University – sequence: 3 givenname: Yalan surname: Liu fullname: Liu, Yalan organization: Wuhan Institute of Technology – sequence: 4 givenname: Minjun surname: Kim fullname: Kim, Minjun organization: The University of Queensland – sequence: 5 givenname: Min surname: Cao fullname: Cao, Min organization: Qingdao University – sequence: 6 givenname: Huanhuan surname: Xie fullname: Xie, Huanhuan email: xiehh17@pku.edu.cn organization: Shanxi Normal University – sequence: 7 givenname: Shantang surname: Liu fullname: Liu, Shantang organization: Wuhan Institute of Technology – sequence: 8 givenname: Xianbao surname: Wang fullname: Wang, Xianbao organization: Hubei University – sequence: 9 givenname: Wei surname: Huang fullname: Huang, Wei organization: Taiyuan University of Technology – sequence: 10 givenname: Ashok Kumar surname: Nanjundan fullname: Nanjundan, Ashok Kumar organization: The University of Queensland – sequence: 11 givenname: Brian surname: Yuliarto fullname: Yuliarto, Brian organization: Institute of Technology Bandung – sequence: 12 givenname: Xingyun surname: Li fullname: Li, Xingyun email: xingyun_2008@sina.cn organization: Qingdao University – sequence: 13 givenname: Yusuke orcidid: 0000-0001-7854-927X surname: Yamauchi fullname: Yamauchi, Yusuke email: yamauchi.yusuke@nims.go.jp organization: National Institute for Materials Science (NIMS) |
BackLink | https://cir.nii.ac.jp/crid/1872272492629870720$$DView record in CiNii |
BookMark | eNqFkM1qVDEYhoNUsNZuXQd04WbG_J4kSxlbWxirMLo-fOecpEYyyZjkILPzErzGXkkzjBQpiJskhOfJ9-Z9jk5iihahl5QsKSHsbdmGsGSEMcKlkE_QKe0oX3SamZOHMyXP0HkpfiBUca2E0adouvE1p1sbMcQJb-bg5oxX6e7X7_dpZyd85W2GPH7zI4Swx59TTnPBK8hDivgGYqrzYAt2KeNLKLUBFdqIeYuvG7CpKcOtfYGeOgjFnv_Zz9DXy4svq6vF-tOH69W79WIUWsqFYCAMM4PSE2HTNEgwWoOjREyj7ojtjBKu3ZNBOtFxxQdOnFSjAO20UpyfoTfHd3c5_Zhtqf3Wl9GGANG22D1TVHVGMHlAXz1Cv6c5x5auUayjklOqGyWO1JhTKdm6fvQVqk-xZvChp6Q_tN8f2u8f2m_a8pG2y34Lef9vwRyFnz7Y_X_ofvNxvf7bfX10o_ct3mGlWrH2i1Zmx4xWRDX0Hj77pKo |
CitedBy_id | crossref_primary_10_1016_j_mattod_2025_02_014 crossref_primary_10_1038_s41598_022_25943_3 crossref_primary_10_1016_j_diamond_2025_111990 crossref_primary_10_1016_j_jallcom_2023_171218 crossref_primary_10_1002_smll_202401478 crossref_primary_10_1016_j_jcat_2023_06_013 crossref_primary_10_3390_surfaces6030023 crossref_primary_10_1016_j_jelechem_2023_117591 crossref_primary_10_1016_j_ijhydene_2023_01_022 crossref_primary_10_1016_j_ijhydene_2023_09_204 crossref_primary_10_1016_j_seppur_2023_125312 crossref_primary_10_1016_j_cej_2024_152647 crossref_primary_10_1016_j_jcis_2023_05_083 crossref_primary_10_1016_j_colsurfa_2023_131228 crossref_primary_10_1016_j_heliyon_2024_e39068 crossref_primary_10_1002_apj_2950 crossref_primary_10_1021_acssuschemeng_4c08392 crossref_primary_10_1021_acsomega_3c02017 crossref_primary_10_1016_j_fuel_2023_129476 crossref_primary_10_1016_j_apsusc_2024_159771 crossref_primary_10_1016_j_jallcom_2023_169127 crossref_primary_10_1039_D2QI02393H crossref_primary_10_1039_D3TA04468H crossref_primary_10_1007_s11356_023_27222_8 crossref_primary_10_1021_acsami_3c11057 crossref_primary_10_1021_acs_nanolett_4c01912 crossref_primary_10_1016_j_fuel_2023_129833 crossref_primary_10_1039_D4GC00863D crossref_primary_10_1002_smtd_202301355 crossref_primary_10_1002_cctc_202201357 crossref_primary_10_1016_j_est_2024_113691 crossref_primary_10_1016_j_jcis_2024_01_012 crossref_primary_10_1016_j_carbon_2024_119143 crossref_primary_10_1016_j_cej_2024_153646 crossref_primary_10_1039_D3NA00695F crossref_primary_10_1007_s12598_023_02418_6 crossref_primary_10_1039_D3DT00151B crossref_primary_10_1002_chem_202304157 crossref_primary_10_3390_molecules28031484 crossref_primary_10_1021_acsanm_3c02185 crossref_primary_10_1039_D3NJ02615A crossref_primary_10_1016_j_mcat_2023_113447 crossref_primary_10_1021_acsanm_4c00014 crossref_primary_10_1021_acs_iecr_4c01477 crossref_primary_10_1016_j_mcat_2023_113126 crossref_primary_10_1016_j_fuel_2023_127686 crossref_primary_10_1021_acs_est_3c01459 crossref_primary_10_1016_j_ijhydene_2023_04_099 crossref_primary_10_1016_j_micromeso_2023_112836 crossref_primary_10_1002_smll_202300605 crossref_primary_10_1016_j_jallcom_2024_174238 crossref_primary_10_1016_j_jmrt_2023_07_010 crossref_primary_10_1016_j_est_2024_113380 crossref_primary_10_1016_j_jallcom_2024_177221 crossref_primary_10_1039_D4NR03347G crossref_primary_10_3390_nano14110907 crossref_primary_10_1002_ange_202304510 crossref_primary_10_1016_j_jcis_2023_08_148 crossref_primary_10_1021_acs_energyfuels_3c02468 crossref_primary_10_3390_en15207745 crossref_primary_10_1016_j_cej_2023_146801 crossref_primary_10_1016_j_ijhydene_2024_09_362 crossref_primary_10_3390_molecules29245906 crossref_primary_10_1016_j_elecom_2024_107702 crossref_primary_10_1016_j_jpowsour_2023_233164 crossref_primary_10_1021_acsanm_3c03148 crossref_primary_10_1016_j_jcis_2023_08_141 crossref_primary_10_1002_smll_202303946 crossref_primary_10_1016_j_jcis_2024_04_099 crossref_primary_10_1016_j_apenergy_2023_121567 crossref_primary_10_1016_j_fuel_2024_131995 crossref_primary_10_1002_anie_202304510 crossref_primary_10_1016_j_jallcom_2023_172384 crossref_primary_10_1016_j_apsusc_2024_159308 |
Cites_doi | 10.1016/j.cej.2019.122352 10.1039/C6SC04903F 10.1039/C9SC02340B 10.1016/j.apsusc.2021.152404 10.1002/eem2.12148 10.1039/D1QM00065A 10.1016/j.cej.2020.127383 10.1021/acsaem.8b01690 10.1002/smll.202001607 10.1016/j.jpowsour.2020.228415 10.1002/jcc.20495 10.1021/acs.chemrev.9b00535 10.1016/j.apcatb.2020.119833 10.1016/j.jallcom.2018.10.224 10.1021/acsenergylett.0c00413 10.1002/advs.201800241 10.1002/anie.201803511 10.1002/adma.201604108 10.1016/j.ensm.2019.04.008 10.1016/j.chempr.2020.08.012 10.1021/acsami.9b07657 10.1039/C8TA04694H 10.1002/aenm.201901663 10.1016/j.cej.2022.136344 10.1039/D1CC05298E 10.1039/C6CC03649J 10.1016/j.cej.2019.122641 10.1103/PhysRevB.54.11169 10.1021/acsnano.9b05284 10.1039/C6RA27212F 10.1016/j.apsusc.2020.147635 10.1103/PhysRevLett.77.3865 10.1016/j.jpowsour.2018.12.002 10.1103/PhysRevB.59.1758 10.1002/cssc.201701759 10.1039/D0TA04513F 10.1016/j.ensm.2021.01.005 10.1002/adfm.201801989 10.1016/j.cej.2021.128490 10.1002/adma.201700104 10.1021/acsami.0c07467 10.1021/acsami.1c09107 10.1002/aenm.201901533 10.1039/C9TA12997A 10.1016/j.jpowsour.2021.229941 10.1016/j.jpowsour.2019.227514 10.1002/adfm.202002629 10.1002/adfm.201908755 10.1016/j.isci.2021.103494 10.1016/j.jallcom.2020.154133 10.1021/acsami.8b15940 10.1002/advs.201700880 10.1002/aenm.202003215 10.1002/aenm.201702384 10.1002/adfm.201906126 10.1002/aenm.201800171 10.1039/C9CC08439H |
ContentType | Journal Article |
Copyright | 2022 The Authors. Small published by Wiley‐VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Authors. Small published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 The Authors. Small published by Wiley‐VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Authors. Small published by Wiley-VCH GmbH. |
DBID | RYH 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202203545 |
DatabaseName | CiNii Complete Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202203545 SMLL202203545 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Foundation of China funderid: 22072069; 51902170 – fundername: Natural Science Foundation of Shandong Province, China funderid: ZR2019YQ08 – fundername: Key Laboratory of Coal Science and Technology, Education Ministry and Shanxi Province, Taiyuan University of Technology funderid: MKX202005 – fundername: Institut Teknologi Bandung (ITB) International Collaboration Research funderid: 2022 – fundername: JST‐ERATO Yamauchi Materials Space‐Tectonics Project funderid: JPMJER2003 – fundername: Open Project of Key Laboratory of Green Chemical Engineering Process of the Ministry of Education funderid: GCP20200204 – fundername: ARC‐Linkage funderid: LP180100429 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYH RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 24P A00 AEUQT AFPWT P4E RWI WYJ 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4855-42a4929b78d02ddb5a988af104dc860e6974fddb0b5f46373b30f57c4a8f87733 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 22:52:41 EDT 2025 Fri Jul 25 12:17:25 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Tue Jul 01 02:54:18 EDT 2025 Wed Jan 22 16:23:49 EST 2025 Thu Jun 26 22:20:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4855-42a4929b78d02ddb5a988af104dc860e6974fddb0b5f46373b30f57c4a8f87733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7854-927X 0000-0001-6502-0844 0000-0002-3292-9039 0000-0001-9962-6561 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202203545 |
PQID | 2726153118 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2717694253 proquest_journals_2726153118 crossref_citationtrail_10_1002_smll_202203545 crossref_primary_10_1002_smll_202203545 wiley_primary_10_1002_smll_202203545_SMLL202203545 nii_cinii_1872272492629870720 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 24 2021; 409 2017; 7 2017; 8 2020; 120 2019; 55 2019; 11 2019; 10 2019; 13 2020; 16 2021; 285 2020; 12 2020; 449 1996; 77 2021; 36 2020; 8 2018; 6 2020; 6 2018; 8 2020; 5 2018; 5 2018; 1 2006; 27 2019; 23 1999; 59 2020; 534 2020; 379 2019; 29 2018; 30 2022; 445 2019; 9 2018; 28 2021; 5 2021; 4 2020; 381 2016; 52 2020; 469 2017; 29 1996; 54 2020; 826 2021; 13 2022; 582 2021; 11 2020; 30 2021; 499 2021; 411 2019; 775 2019; 412 2022; 58 2018; 11 2018; 10 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 534 year: 2020 publication-title: Appl. Surf. Sci. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 469 year: 2020 publication-title: J. Power Sources – volume: 36 start-page: 309 year: 2021 publication-title: Energy Storage Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 411 year: 2021 publication-title: Chem. Eng. J. – volume: 4 start-page: 638 year: 2021 publication-title: Energy Environ. Mater. – volume: 8 start-page: 3538 year: 2017 publication-title: Chem. Sci. – volume: 11 start-page: 202 year: 2018 publication-title: ChemSusChem – volume: 449 year: 2020 publication-title: J. Power Sources – volume: 5 start-page: 1653 year: 2020 publication-title: ACS Energy Lett. – volume: 775 start-page: 776 year: 2019 publication-title: J. Alloys Compd. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 23 start-page: 522 year: 2019 publication-title: Energy Storage Mater. – volume: 5 start-page: 3216 year: 2021 publication-title: Mater. Chem. Front. – volume: 16 year: 2020 publication-title: Small – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 24 year: 2021 publication-title: iScience – volume: 120 start-page: 7020 year: 2020 publication-title: Chem. Rev. – volume: 8 start-page: 2836 year: 2020 publication-title: J. Mater. Chem. A – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 7695 year: 2019 publication-title: Chem. Sci. – volume: 499 year: 2021 publication-title: J. Power Sources – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 412 start-page: 606 year: 2019 publication-title: J. Power Sources – volume: 381 year: 2020 publication-title: Chem. Eng. J. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 57 start-page: 8540 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 1 start-page: 6638 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 7 start-page: 5519 year: 2017 publication-title: RSC Adv. – volume: 58 start-page: 863 year: 2022 publication-title: Chem. Commun. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 6 start-page: 2442 year: 2020 publication-title: Chem – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 379 year: 2020 publication-title: Chem. Eng. J. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 445 year: 2022 publication-title: Chem. Eng. J. – volume: 52 start-page: 9279 year: 2016 publication-title: Chem. Commun. – volume: 582 year: 2022 publication-title: Appl. Surf. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 1787 year: 2006 publication-title: J. Comput. Chem. – volume: 826 year: 2020 publication-title: J. Alloys Compd. – volume: 409 year: 2021 publication-title: Chem. Eng. J. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 285 year: 2021 publication-title: Appl. Catal., B – ident: e_1_2_8_44_1 doi: 10.1016/j.cej.2019.122352 – ident: e_1_2_8_24_1 doi: 10.1039/C6SC04903F – ident: e_1_2_8_48_1 doi: 10.1039/C9SC02340B – ident: e_1_2_8_4_1 doi: 10.1016/j.apsusc.2021.152404 – ident: e_1_2_8_9_1 doi: 10.1002/eem2.12148 – ident: e_1_2_8_8_1 doi: 10.1039/D1QM00065A – ident: e_1_2_8_17_1 doi: 10.1016/j.cej.2020.127383 – ident: e_1_2_8_39_1 doi: 10.1021/acsaem.8b01690 – ident: e_1_2_8_47_1 doi: 10.1002/smll.202001607 – ident: e_1_2_8_51_1 doi: 10.1016/j.jpowsour.2020.228415 – ident: e_1_2_8_57_1 doi: 10.1002/jcc.20495 – ident: e_1_2_8_1_1 doi: 10.1021/acs.chemrev.9b00535 – ident: e_1_2_8_3_1 doi: 10.1016/j.apcatb.2020.119833 – ident: e_1_2_8_5_1 doi: 10.1016/j.jallcom.2018.10.224 – ident: e_1_2_8_45_1 doi: 10.1021/acsenergylett.0c00413 – ident: e_1_2_8_33_1 doi: 10.1002/advs.201800241 – ident: e_1_2_8_13_1 doi: 10.1002/anie.201803511 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201604108 – ident: e_1_2_8_37_1 doi: 10.1016/j.ensm.2019.04.008 – ident: e_1_2_8_11_1 doi: 10.1016/j.chempr.2020.08.012 – ident: e_1_2_8_38_1 doi: 10.1021/acsami.9b07657 – ident: e_1_2_8_16_1 doi: 10.1039/C8TA04694H – ident: e_1_2_8_36_1 doi: 10.1002/aenm.201901663 – ident: e_1_2_8_26_1 doi: 10.1016/j.cej.2022.136344 – ident: e_1_2_8_28_1 doi: 10.1039/D1CC05298E – ident: e_1_2_8_53_1 doi: 10.1039/C6CC03649J – ident: e_1_2_8_6_1 doi: 10.1016/j.cej.2019.122641 – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_43_1 doi: 10.1021/acsnano.9b05284 – ident: e_1_2_8_25_1 doi: 10.1039/C6RA27212F – ident: e_1_2_8_21_1 doi: 10.1016/j.apsusc.2020.147635 – ident: e_1_2_8_56_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_34_1 doi: 10.1016/j.jpowsour.2018.12.002 – ident: e_1_2_8_55_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_52_1 doi: 10.1002/cssc.201701759 – ident: e_1_2_8_20_1 doi: 10.1039/D0TA04513F – ident: e_1_2_8_15_1 doi: 10.1016/j.ensm.2021.01.005 – ident: e_1_2_8_42_1 doi: 10.1002/adfm.201801989 – ident: e_1_2_8_18_1 doi: 10.1016/j.cej.2021.128490 – ident: e_1_2_8_41_1 doi: 10.1002/adma.201700104 – ident: e_1_2_8_31_1 doi: 10.1021/acsami.0c07467 – ident: e_1_2_8_30_1 doi: 10.1021/acsami.1c09107 – ident: e_1_2_8_49_1 doi: 10.1002/aenm.201901533 – ident: e_1_2_8_23_1 doi: 10.1039/C9TA12997A – ident: e_1_2_8_2_1 doi: 10.1016/j.jpowsour.2021.229941 – ident: e_1_2_8_29_1 doi: 10.1016/j.jpowsour.2019.227514 – ident: e_1_2_8_7_1 doi: 10.1002/adfm.202002629 – ident: e_1_2_8_46_1 doi: 10.1002/adfm.201908755 – ident: e_1_2_8_14_1 doi: 10.1016/j.isci.2021.103494 – ident: e_1_2_8_27_1 doi: 10.1016/j.jallcom.2020.154133 – ident: e_1_2_8_32_1 doi: 10.1021/acsami.8b15940 – ident: e_1_2_8_40_1 doi: 10.1002/advs.201700880 – ident: e_1_2_8_12_1 doi: 10.1002/aenm.202003215 – ident: e_1_2_8_10_1 doi: 10.1002/aenm.201702384 – ident: e_1_2_8_50_1 doi: 10.1002/adfm.201906126 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201800171 – ident: e_1_2_8_22_1 doi: 10.1039/C9CC08439H |
SSID | ssib017387498 ssib004908756 ssj0031247 ssib030664022 ssib022722846 |
Score | 2.6251857 |
Snippet | Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a... |
SourceID | proquest crossref wiley nii |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2203545 |
SubjectTerms | Anodes Carbon Carbon nanotubes Density functional theory Electrode materials fast kinetics Interlayers Ion adsorption Ion storage Kinetics N and S co-doping Nanotechnology Nitrogen Potassium potassium ion storage Raman spectroscopy Storage capacity Structural stability |
Title | Nitrogen and Sulfur Co‐Doped Hierarchically Porous Carbon Nanotubes for Fast Potassium Ion Storage |
URI | https://cir.nii.ac.jp/crid/1872272492629870720 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202203545 https://www.proquest.com/docview/2726153118 https://www.proquest.com/docview/2717694253 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RnuAA5SUCbWUkJE5pE8eJnSPadrWgtqpYKvUW2bEtRU2TKo8DnPgJ_EZ-CeNkN91FQkhwifKYRH7NzDex_Q3Au0Aqq4zI_TCVGKAYwXwhotx3RDBprIUS2m1OPr9IFlfs03V8vbGLf-SHmH64Oc0Y7LVTcKna43vS0Pa2dFMHlAYRogA0wm7BlkNFnyf-qAid15BdBX2W74i31qyNAT3efn3LK-1URbEFODdh6-B35k9Arks8Lje5Oeo7dZR_-43M8X-qtAePV6CUfBhH0VN4YKpn8GiDqvA56Iuia2ocbURWmiz70vYNmdU_v_84qe-MJovC7WQeEquU5VdyWTd135KZbFRdETThddcr0xKEyGQu2w4FOoTtRX9LPqLAEiN_NGwv4Gp--mW28FcZGvzckcr4jEqG-EpxoQOqtYplKoS0GOLpXCSBSTBasXg_ULFlScQjFQU25jmTwgrOo-gl7FZ1ZV4B0ZTzJGU8ZjphNkykEKGxiTRSca6Y8cBf91CWr-jLXRaNMhuJl2nmWi-bWs-D95P83Ujc8UfJA-xw_Kg7hoJTykcaxRRtGaeBB_vroZCtFLzNUMZBZQzPPHg7PUbVdPMtsjLYxigTuirROPKADv3-l5Jky_Ozs-nq9b-89AYeuvNxueE-7HZNbw4QNnXqEHYouzwcFOQXTa0OIA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcgAOvBGBFoyExClt4jixc0QLqy3srhDbStwiO3akiDSp8ji0J34Cv5FfwjjZhC4SQoJLpDjjyK8Zf-PHNwCvPakyZUTq-rFEB8UI5goRpK4lgolDLZTQ9nLyah0tztiHL-F4mtDehRn4IaYFN6sZvb22Cm4XpI9_sYY254XdO6DUCxAG7MFNG9a796o-TwxSAU5ffXwVnLVcS7018jZ69Hg3_868tFfm-Q7kvA5c-5lnfg_UWObhwMnXo65VR-nVb3SO_1Wp-3B3i0vJ22EgPYAbpnwId66xFT4Cvc7busIBR2SpyaYrsq4ms-rHt-_vqgujySK3l5n72CpFcUk-VXXVNWQma1WVBK141XbKNARRMpnLpkWBFpF73p2TExTYoPOPtu0xnM3fn84W7jZIg5taXhmXUckQYikutEe1VqGMhZAZenk6FZFnInRYMkz3VJixKOCBCrws5CmTIhOcB8ET2C-r0jwFoinnUcx4yHTEMj-SQvgmi6SRinPFjAPu2EVJumUwt4E0imTgXqaJbb1kaj0H3kzyFwN3xx8lD7HH8af26QtOKR-YFGM0Z5x6DhyMYyHZ6niToIxFy-ihOfBq-ozaabdcZGmwjVHGt1WiYeAA7Tv-LyVJNqvlcnp79i-ZXsKtxelqmSxP1h-fw22bPpw-PID9tu7MIaKoVr3o9eQn1AIRZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7uCqIP3sXqrkYQfOpumqZN-igzDrM6OyyOC_tWkiaBYrcdennQJ3-Cv9Ff4kk7U2cEEfSl0Pak5HIu32mSLwi9JlJZZUTmB4mEBMUI5gsRZr4jgkkiLZTQbnPy-TKeX7L3V9HVzi7-gR9i_OHmLKP3187A19qe_iINba4LN3VAKQkBBRygmywmwun19ONIIBVC9OqPV4Gg5TvmrS1tI6Gn--X3wtJBmed7iHMXt_aBZ3YPyW2Vh_Umn0-6Vp1kX39jc_yfNt1HdzeoFL8d1OgBumHKh-jODlfhI6SXeVtXoG5YlhqvusJ2NZ5UP759n1Zro_E8d1uZ-5NViuILvqjqqmvwRNaqKjH48KrtlGkwYGQ8k00LAi3g9ry7xmcgsILUHzzbY3Q5e_dpMvc3RzT4mWOV8RmVDACW4kITqrWKZCKEtJDj6UzExMSQrlh4TlRkWRzyUIXERjxjUljBeRg-QYdlVZqnCGvKeZwwHjEdMxvEUojA2FgaqThXzHjI345Qmm34y90xGkU6MC_T1PVeOvaeh96M8uuBueOPkscw4PBRdw0Ep5QPPIoJODNOiYeOtqqQbiy8SUHGYWXIzzz0anwNtukmXGRpoI9BJnBNolHoIdqP-19qkq7OF4vx7tm_FHqJbl1MZ-nibPnhObrtHg9LD4_QYVt35hggVKte9FbyE6PEEBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+and+Sulfur+Co%E2%80%90Doped+Hierarchically+Porous+Carbon+Nanotubes+for+Fast+Potassium+Ion+Storage&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jin%2C+Xin&rft.au=Wang%2C+Xianfen&rft.au=Liu%2C+Yalan&rft.au=Kim%2C+Minjun&rft.date=2022-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202203545&rft.externalDBID=10.1002%252Fsmll.202203545&rft.externalDocID=SMLL202203545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |