Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal c...
Saved in:
Published in | Global change biology Vol. 23; no. 1; pp. 406 - 420 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures. |
---|---|
AbstractList | Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures. Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures. Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTC s) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures. |
Author | Haugwitz, Merian S. Christiansen, Casper T. Michelsen, Anders Grogan, Paul Blok, Daan Elberling, Bo Priemé, Anders Nielsen, Cecilie S. |
Author_xml | – sequence: 1 givenname: Casper T. surname: Christiansen fullname: Christiansen, Casper T. email: ctc@science.ku.dk organization: University of Copenhagen – sequence: 2 givenname: Merian S. orcidid: 0000-0001-5112-0094 surname: Haugwitz fullname: Haugwitz, Merian S. organization: University of Copenhagen – sequence: 3 givenname: Anders surname: Priemé fullname: Priemé, Anders organization: University of Copenhagen – sequence: 4 givenname: Cecilie S. surname: Nielsen fullname: Nielsen, Cecilie S. organization: University of Copenhagen – sequence: 5 givenname: Bo surname: Elberling fullname: Elberling, Bo organization: University of Copenhagen – sequence: 6 givenname: Anders surname: Michelsen fullname: Michelsen, Anders organization: University of Copenhagen – sequence: 7 givenname: Paul surname: Grogan fullname: Grogan, Paul organization: University of Copenhagen – sequence: 8 givenname: Daan surname: Blok fullname: Blok, Daan organization: University of Copenhagen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27197084$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2PFCEQholZ437owT9gSLzooXcL6AbmqJN1NdnEi547NF09sumGEWjH_vfSzuphEz8oQlXIUy8B3nNy4oNHQp4zuGRlXO1sd8mEkPwROWNCNhWvtTxZ66auGDBxSs5TugMAwUE-IadcsY0CXZ-R79f-i_EWe5rmacJIDyZOzu9oxH62mOgw-50ZaY82TPuQCtG7bxiTyws1vqejy7lsTiYlOoayTCEiTTkGvxsX6jzt40JzOWStD5hpnn0fzVPyeDBjwmf3-YJ8fnf9afu-uv1482H75raytW54ZSWTA0dsUOhe1XydYDRaadhmaFChAmlUZ4W2XYe6xm4jrR6AoQFgRlyQV0fdfQxfZ0y5nVyyOI7GY5hTy4GD1qC4_ifKdNOAUhLq_0C5lFpwIQv68gF6F-boy50LVZcAqVbBF_fU3E3Yt_voJhOX9tdPFeD1EbCxvHLE4TfCoF1d0BYXtD9dUNirB6x12WQXfI7GjX_rOLgRlz9Ltzfbt8eOH1eWwo0 |
CitedBy_id | crossref_primary_10_1016_j_agee_2025_109557 crossref_primary_10_1111_mec_14227 crossref_primary_10_1016_j_scitotenv_2024_175648 crossref_primary_10_1016_j_soilbio_2017_01_008 crossref_primary_10_1186_s40793_019_0344_4 crossref_primary_10_1016_j_geoderma_2023_116632 crossref_primary_10_1111_gcb_15456 crossref_primary_10_1111_gcb_15852 crossref_primary_10_1016_j_geoderma_2020_114691 crossref_primary_10_1007_s11104_018_3889_x crossref_primary_10_1007_s00300_023_03209_6 crossref_primary_10_1016_j_soilbio_2021_108419 crossref_primary_10_1016_j_scitotenv_2018_07_014 crossref_primary_10_1139_as_2020_0058 crossref_primary_10_1007_s11104_017_3392_9 crossref_primary_10_1038_s41586_024_07274_7 crossref_primary_10_1111_nph_17623 crossref_primary_10_1016_j_scitotenv_2020_138304 crossref_primary_10_1139_as_2020_0053 crossref_primary_10_1038_s41597_021_01005_7 crossref_primary_10_1007_s11104_025_07247_3 crossref_primary_10_59717_j_xinn_geo_2024_100117 crossref_primary_10_1111_1365_2435_13531 crossref_primary_10_1111_mec_16319 crossref_primary_10_1007_s11104_022_05642_8 crossref_primary_10_1016_j_scitotenv_2019_05_222 crossref_primary_10_1016_j_scitotenv_2021_150990 crossref_primary_10_1016_j_scitotenv_2024_169896 crossref_primary_10_1007_s11104_020_04675_1 crossref_primary_10_1016_j_scitotenv_2019_01_122 crossref_primary_10_1111_1365_2745_13617 crossref_primary_10_1111_njb_04062 crossref_primary_10_1038_s41586_018_0563_7 crossref_primary_10_1038_s41467_018_05824_y crossref_primary_10_1016_j_scitotenv_2020_142306 crossref_primary_10_1016_j_agee_2020_107119 crossref_primary_10_5194_bg_15_3591_2018 crossref_primary_10_1111_jvs_12752 crossref_primary_10_3389_fmicb_2022_1050372 crossref_primary_10_1016_j_scitotenv_2022_160485 crossref_primary_10_1007_s00442_017_3830_7 crossref_primary_10_1007_s11104_020_04431_5 crossref_primary_10_1038_s41396_020_00844_3 crossref_primary_10_3390_f13010037 crossref_primary_10_1002_ecs2_3777 crossref_primary_10_3390_jof9060691 crossref_primary_10_1016_j_funbio_2023_12_003 crossref_primary_10_1016_j_scitotenv_2019_06_318 crossref_primary_10_3390_f15122151 crossref_primary_10_1016_j_scitotenv_2024_177569 crossref_primary_10_1139_as_2022_0041 crossref_primary_10_3390_f14020431 crossref_primary_10_1016_j_geoderma_2024_117108 crossref_primary_10_1016_j_scitotenv_2021_145452 crossref_primary_10_1111_gcb_14744 crossref_primary_10_1098_rspb_2023_0613 crossref_primary_10_1111_mec_15773 crossref_primary_10_1016_j_bjm_2017_08_004 crossref_primary_10_1016_j_apsoil_2020_103635 crossref_primary_10_1016_j_soilbio_2024_109402 crossref_primary_10_3390_f14101957 crossref_primary_10_1002_ldr_4522 crossref_primary_10_1016_j_soilbio_2019_107569 crossref_primary_10_1016_j_soilbio_2021_108278 crossref_primary_10_1016_j_geoderma_2022_116139 crossref_primary_10_1007_s10021_018_0240_6 crossref_primary_10_1016_j_soilbio_2021_108356 crossref_primary_10_1007_s00035_018_0215_4 crossref_primary_10_1111_gcb_14017 crossref_primary_10_1016_j_apsoil_2018_06_014 crossref_primary_10_3390_w13223296 crossref_primary_10_1016_j_soilbio_2019_01_001 crossref_primary_10_1016_j_soilbio_2023_109013 crossref_primary_10_1016_j_soilbio_2019_107579 crossref_primary_10_1007_s00248_019_01373_z |
Cites_doi | 10.1016/j.soilbio.2010.10.013 10.1111/nph.13426 10.1016/S0038-0717(02)00168-2 10.1111/j.1469-8137.2009.03160.x 10.1111/j.1365-2486.2009.01898.x 10.1111/gcb.12913 10.1007/s10021-007-9033-z 10.1046/j.1365-2486.1998.00128.x 10.2307/2963492 10.1016/j.soilbio.2003.09.008 10.1038/ismej.2012.11 10.5194/bg-11-6573-2014 10.1126/science.1231923 10.1023/A:1005555012742 10.1111/j.1365-2486.2008.01716.x 10.1007/s10021-008-9128-1 10.1111/j.1365-2486.2010.02318.x 10.1016/j.soilbio.2013.06.012 10.1007/s00442-015-3543-8 10.1038/nature03891 10.1037/1082-989X.11.4.386 10.1890/11-1958.1 10.1111/j.1461-0248.2007.01051.x 10.1111/j.1461-0248.2008.01219.x 10.1046/j.1365-2486.1997.d01-133.x 10.1111/j.1365-2745.2006.01142.x 10.1890/08-2025.1 10.1016/S0038-0717(98)00182-5 10.1111/j.1461-0248.2011.01651.x 10.1093/femsec/fiv095 10.1007/s10533-003-0855-2 10.1111/j.1461-0248.2012.01837.x 10.1111/j.1365-2486.2008.01674.x 10.1111/j.1469-8137.2006.01778.x 10.1111/j.1574-6941.2012.01350.x 10.1016/S0038-0717(02)00258-4 10.1038/nmeth.f.303 10.1111/j.1574-6941.2012.01437.x 10.1007/s11284-007-0390-z 10.1016/j.soilbio.2010.04.018 10.1093/bioinformatics/btq461 10.1007/s10533-015-0082-7 10.1128/AEM.00062-07 10.1007/s00442-012-2330-z 10.1007/s10021-008-9186-4 10.2307/1552009 10.1111/j.1365-2486.2010.02303.x 10.1037/0033-2909.112.1.155 10.1111/mec.12743 10.1111/j.1461-0248.2006.00965.x 10.1016/B978-0-12-372180-8.50042-1 10.1016/j.soilbio.2007.07.017 10.1007/s10021-015-9924-3 10.1038/ngeo2520 10.1111/j.1654-1103.2005.tb02365.x 10.1080/01904168309363161 10.1890/06-0219 10.1007/s10584-005-9017-y 10.1890/13-2221.1 10.1016/j.soilbio.2012.07.022 10.1111/j.1749-8198.2011.00420.x 10.1111/gcb.12716 10.1038/nclimate1951 10.1038/nclimate1465 10.1023/B:PLSO.0000037044.63113.fe 10.1111/mec.13045 10.2307/3545996 10.1111/j.1365-2486.1997.gcb136.x 10.1890/11-0026.1 10.1038/srep01556 10.2307/2937210 10.1890/09-0654.1 10.1002/jgrg.20089 10.1038/nrmicro1341 10.1029/2010GB003813 10.1007/s10533-015-0079-2 10.1126/science.1256688 10.1038/nclimate2697 |
ContentType | Journal Article |
Copyright | 2016 John Wiley & Sons Ltd 2016 John Wiley & Sons Ltd. Copyright © 2017 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2016 John Wiley & Sons Ltd – notice: 2016 John Wiley & Sons Ltd. – notice: Copyright © 2017 John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 M7N 7S9 L.6 |
DOI | 10.1111/gcb.13362 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 420 |
ExternalDocumentID | 4277496141 27197084 10_1111_gcb_13362 GCB13362 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Greenland, Disko I PN, Arctic AN, Greenland Arctic region Greenland |
GeographicLocations_xml | – name: AN, Greenland – name: Greenland, Disko I – name: PN, Arctic – name: Arctic region – name: Greenland |
GrantInformation_xml | – fundername: Danish National Research Foundation funderid: CENPERM DNRF 100 – fundername: Government of the Northwest Territories – fundername: Ontario Ministry of Training, Colleges and Universities – fundername: NSERC |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H97 L.G 7X8 M7N 7S9 L.6 |
ID | FETCH-LOGICAL-c4852-c616f2ee5e38d74274270a8ec6a19f5e7e706a7bc38cbbe84eb96c8f01ea001a3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Fri Jul 11 18:26:04 EDT 2025 Thu Jul 10 19:55:51 EDT 2025 Fri Jul 11 15:45:50 EDT 2025 Fri Jul 25 10:50:13 EDT 2025 Wed Feb 19 02:41:31 EST 2025 Tue Jul 01 03:52:55 EDT 2025 Thu Apr 24 22:52:05 EDT 2025 Wed Jan 22 17:09:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Ascomycota fungi climate warming litter moisture litter decomposition Betula glandulosa deepened snow Arctic Basidiomycota |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4852-c616f2ee5e38d74274270a8ec6a19f5e7e706a7bc38cbbe84eb96c8f01ea001a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5112-0094 |
PMID | 27197084 |
PQID | 1848480674 |
PQPubID | 30327 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2020880728 proquest_miscellaneous_1855077604 proquest_miscellaneous_1826683236 proquest_journals_1848480674 pubmed_primary_27197084 crossref_primary_10_1111_gcb_13362 crossref_citationtrail_10_1111_gcb_13362 wiley_primary_10_1111_gcb_13362_GCB13362 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2017 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1995; 74 2013; 3 2013; 65 2006; 76 1983; 6 2000; 44 2010; 186 2007; 73 2006; 171 2011; 14 2012; 15 2011; 17 2016; 181 1997; 3 2014; 23 2010; 26 2004; 70 1990 2013; 57 1992; 112 2004; 36 2013; 94 2012; 170 2013; 118 2006; 440 2015; 91 2011; 25 2014; 95 2007; 22 2010; 7 2014; 11 2009; 15 1996; 66 2012; 82 2015; 5 2006; 94 2016; 19 2015; 124 2006; 11 2002; 34 2004; 262 1991; 72 2006; 9 2005; 436 2008; 14 2003; 35 2008; 11 2006; 4 2015; 207 2007; 10 2015; 8 2011; 5 2015; 24 2009; 79 2010; 42 2012; 2 2013; 339 2011; 93 2015; 21 2011; 43 1999; 31 2015 2013 1998; 30 2012; 6 2008; 40 2010; 91 2005; 16 2007; 88 1998; 4 2014; 346 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Clarke KR (e_1_2_6_16_1) 2015 Hartmann DL (e_1_2_6_34_1) 2013 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 Collins M (e_1_2_6_20_1) 2013 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 5 start-page: 887 year: 2015 end-page: 891 article-title: Climate sensitivity of shrub growth across the tundra biome publication-title: Nature Climate Change – volume: 16 start-page: 267 year: 2005 end-page: 282 article-title: The circumpolar Arctic vegetation map publication-title: Journal of Vegetation Science – volume: 440 start-page: 165 year: 2006 end-page: 173 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 6 start-page: 989 year: 1983 end-page: 1011 article-title: Extraction and analysis of nitrogen, phosphorus and carbon fractions in plant material publication-title: Journal of Plant Nutrition – volume: 25 year: 2011 end-page: GB3018 article-title: Is the northern high‐latitude land‐based CO sink weakening? publication-title: Global Biogeochemical Cycles – volume: 26 start-page: 2460 year: 2010 end-page: 2461 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics – volume: 42 start-page: 1396 year: 2010 end-page: 1407 article-title: Unfrozen water content moderates temperature dependence of sub‐zero microbial respiration publication-title: Soil Biology & Biochemistry – volume: 6 start-page: 1749 year: 2012 end-page: 1762 article-title: Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions publication-title: The ISME Journal – volume: 171 start-page: 391 year: 2006 end-page: 404 article-title: Increased ectomycorrhizal fungal abundance after long‐term fertilization and warming of two arctic tundra ecosystems publication-title: New Phytologist – volume: 3 year: 2013 end-page: 1556 article-title: The changing seasonal climate in the Arctic publication-title: Scientific Reports – volume: 10 start-page: 619 year: 2007 end-page: 627 article-title: Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes publication-title: Ecology Letters – volume: 65 start-page: 338 year: 2013 end-page: 347 article-title: The seasonal pattern of soil microbial community structure in mesic low arctic tundra publication-title: Soil Biology & Biochemistry – volume: 8 start-page: 776 year: 2015 end-page: 779 article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss publication-title: Nature Geoscience – volume: 11 start-page: 1157 year: 2008 end-page: 1167 article-title: Fungal taxa target different carbon sources in forest soil publication-title: Ecosystems – volume: 88 start-page: 1386 year: 2007 end-page: 1394 article-title: Microbial stress‐response physiology and its implications for ecosystem function publication-title: Ecology – volume: 91 year: 2015 article-title: Long‐term warming alters richness and composition of taxonomic and functional groups of arctic fungi publication-title: Fems Microbiology Ecology – volume: 22 start-page: 955 year: 2007 end-page: 974 article-title: Ecology of ligninolytic fungi associated with leaf litter decomposition publication-title: Ecological Research – volume: 23 start-page: 3258 year: 2014 end-page: 3272 article-title: Rich and cold: diversity, distribution and drivers of fungal communities in patterned‐ground ecosystems of the North American Arctic publication-title: Molecular Ecology – volume: 3 start-page: 20 year: 1997 end-page: 32 article-title: Open‐top designs for manipulating field temperature in high‐latitude ecosystems publication-title: Global Change Biology – volume: 21 start-page: 959 year: 2015 end-page: 972 article-title: Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska publication-title: Global Change Biology – volume: 70 start-page: 315 year: 2004 end-page: 330 article-title: Moisture effects on temperature sensitivity of CO exchange in a subarctic heath ecosystem publication-title: Biogeochemistry – volume: 124 start-page: 27 year: 2015 end-page: 44 article-title: A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition publication-title: Biogeochemistry – volume: 5 start-page: 682 year: 2011 end-page: 699 article-title: Carbon and nitrogen cycling in snow‐covered environments publication-title: Geography Compass – volume: 31 start-page: 831 year: 1999 end-page: 838 article-title: Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga publication-title: Soil Biology and Biochemistry – volume: 74 start-page: 503 year: 1995 end-page: 512 article-title: Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi‐desert and a subarctic dwarf shrub heath publication-title: Oikos – volume: 3 start-page: 37 year: 1997 end-page: 49 article-title: Elevated atmospheric CO affects decomposition of (L) Sm litter and roots in experiments simulating environmental change in two contrasting arctic ecosystems publication-title: Global Change Biology – volume: 72 start-page: 709 year: 1991 end-page: 715 article-title: Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves publication-title: Ecology – volume: 36 start-page: 217 year: 2004 end-page: 227 article-title: Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities publication-title: Soil Biology & Biochemistry – volume: 94 start-page: 94 year: 2013 end-page: 105 article-title: Nutrient‐specific solubility patterns of leaf litter across 41 lowland tropical woody species publication-title: Ecology – volume: 4 start-page: 217 year: 1998 end-page: 227 article-title: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest publication-title: Global Change Biology – volume: 43 start-page: 287 year: 2011 end-page: 295 article-title: A cross‐seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling publication-title: Soil Biology & Biochemistry – volume: 207 start-page: 1145 year: 2015 end-page: 1158 article-title: Changes in fungal communities along a boreal forest soil fertility gradient publication-title: New Phytologist – volume: 14 start-page: 2898 year: 2008 end-page: 2909 article-title: Warming and drying suppress microbial activity and carbon cycling in boreal forest soils publication-title: Global Change Biology – volume: 21 start-page: 2410 year: 2015 end-page: 2423 article-title: Winter warming as an important co‐driver for growth in western Greenland during the past century publication-title: Global Change Biology – volume: 73 start-page: 5261 year: 2007 end-page: 5267 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Applied and Environmental Microbiology – volume: 170 start-page: 809 year: 2012 end-page: 819 article-title: Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub‐arctic bog species publication-title: Oecologia – year: 2015 – volume: 14 start-page: 852 year: 2011 end-page: 862 article-title: Nutrient co‐limitation of primary producer communities publication-title: Ecology Letters – volume: 11 start-page: 6573 year: 2014 end-page: 6593 article-title: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps publication-title: Biogeosciences – volume: 181 start-page: 287 year: 2016 end-page: 297 article-title: Coupled long‐term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra publication-title: Oecologia – volume: 44 start-page: 139 year: 2000 end-page: 150 article-title: Annual CO flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth publication-title: Climatic Change – start-page: 315 year: 1990 end-page: 322 – volume: 17 start-page: 1625 year: 2011 end-page: 1636 article-title: Long‐term experimental manipulation of climate alters the ectomycorrhizal community of in Arctic tundra publication-title: Global Change Biology – volume: 24 start-page: 424 year: 2015 end-page: 437 article-title: Long‐term experimental warming alters community composition of ascomycetes in Alaskan moist and dry Arctic tundra publication-title: Molecular Ecology – volume: 82 start-page: 303 year: 2012 end-page: 315 article-title: Long‐term warming alters the composition of Arctic soil microbial communities publication-title: Fems Microbiology Ecology – volume: 79 start-page: 523 year: 2009 end-page: 555 article-title: Sensitivity of the carbon cycle in the Arctic to climate change publication-title: Ecological Monographs – volume: 186 start-page: 281 year: 2010 end-page: 285 article-title: The UNITE database for molecular identification of fungi – recent updates and future perspectives publication-title: New Phytologist – volume: 124 start-page: 81 year: 2015 end-page: 94 article-title: Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra publication-title: Biogeochemistry – volume: 11 start-page: 386 year: 2006 article-title: When effect sizes disagree: the case of r and d publication-title: Psychological Methods – volume: 436 start-page: 1157 year: 2005 end-page: 1160 article-title: The contribution of species richness and composition to bacterial services publication-title: Nature – volume: 11 start-page: 377 year: 2008 end-page: 396 article-title: Landscape and ecosystem‐level controls on net carbon dioxide exchange along a natural moisture gradient in Canadian low arctic tundra publication-title: Ecosystems – volume: 3 start-page: 909 year: 2013 end-page: 912 article-title: Global soil carbon projections are improved by modelling microbial processes publication-title: Nature Climate Change – volume: 30 start-page: 373 year: 1998 end-page: 380 article-title: Carbon dioxide fluxes in moist and dry Arctic tundra during season: responses to increases in summer temperature and winter snow accumulation publication-title: Arctic and Alpine Research – volume: 262 start-page: 215 year: 2004 end-page: 227 article-title: Decomposition of mountain birch leaf litter at the forest‐tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions publication-title: Plant and Soil – start-page: 1029 year: 2013 end-page: 1136 – volume: 14 start-page: 2636 year: 2008 end-page: 2660 article-title: Simple three‐pool model accurately describes patterns of long‐term litter decomposition in diverse climates publication-title: Global Change Biology – volume: 95 start-page: 1861 year: 2014 end-page: 1875 article-title: Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition publication-title: Ecology – volume: 19 start-page: 155 year: 2016 end-page: 169 article-title: Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming publication-title: Ecosystems – volume: 15 start-page: 1180 year: 2012 end-page: 1188 article-title: The origin of litter chemical complexity during decomposition publication-title: Ecology Letters – volume: 339 start-page: 1615 year: 2013 end-page: 1618 article-title: Roots and associated fungi drive long‐term carbon sequestration in boreal forest publication-title: Science – volume: 346 start-page: 1078 year: 2014 article-title: Global diversity and geography of soil fungi publication-title: Science – volume: 112 start-page: 155 year: 1992 article-title: A power primer publication-title: Psychological Bulletin – volume: 34 start-page: 1785 year: 2002 end-page: 1795 article-title: Temperature controls of microbial respiration in arctic tundra soils above and below freezing publication-title: Soil Biology & Biochemistry – volume: 82 start-page: 666 year: 2012 end-page: 677 article-title: New primers to amplify the fungal ITS2 region ‐ evaluation by 454‐sequencing of artificial and natural communities publication-title: Fems Microbiology Ecology – volume: 94 start-page: 713 year: 2006 end-page: 724 article-title: The freezer defrosting: global warming and litter decomposition rates in cold biomes publication-title: Journal of Ecology – volume: 93 start-page: 930 year: 2011 end-page: 938 article-title: Responses of soil microbial communities to water stress: results from a meta‐analysis publication-title: Ecology – volume: 15 start-page: 2715 year: 2009 end-page: 2722 article-title: Water availability controls microbial temperature responses in frozen soil CO production publication-title: Global Change Biology – volume: 35 start-page: 263 year: 2003 end-page: 272 article-title: Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling publication-title: Soil Biology & Biochemistry – volume: 66 start-page: 503 year: 1996 end-page: 522 article-title: Temperature and plant species control over litter decomposition in Alaskan tundra publication-title: Ecological Monographs – volume: 17 start-page: 1394 year: 2011 end-page: 1407 article-title: Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra publication-title: Global Change Biology – volume: 2 start-page: 453 year: 2012 end-page: 457 article-title: Plot‐scale evidence of tundra vegetation change and links to recent summer warming publication-title: Nature Climate Change – volume: 10 start-page: 419 year: 2007 end-page: 431 article-title: Deeper snow enhances winter respiration from both plant‐associated and bulk soil carbon pools in birch hummock tundra publication-title: Ecosystems – volume: 40 start-page: 266 year: 2008 end-page: 268 article-title: Temporal variation in soil microbial communities in Alpine tundra publication-title: Soil Biology and Biochemistry – volume: 57 start-page: 217 year: 2013 end-page: 227 article-title: Sensitivity of soil respiration and microbial communities to altered snowfall publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 1127 year: 2006 end-page: 1135 article-title: Resource availability controls fungal diversity across a plant diversity gradient publication-title: Ecology Letters – volume: 7 start-page: 335 year: 2010 end-page: 336 article-title: QIIME allows analysis of high‐throughput community sequencing data publication-title: Nature Methods – start-page: 159 year: 2013 end-page: 254 – volume: 118 start-page: 1133 year: 2013 end-page: 1143 article-title: Moisture drives surface decomposition in thawing tundra publication-title: Journal of Geophysical Research: Biogeosciences – volume: 4 start-page: 102 year: 2006 end-page: 112 article-title: Microbial biogeography: putting microorganisms on the map publication-title: Nature Reviews Microbiology – volume: 91 start-page: 2324 year: 2010 end-page: 2332 article-title: Functional diversity in resource use by fungi publication-title: Ecology – volume: 76 start-page: 241 year: 2006 end-page: 264 article-title: The arctic amplification debate publication-title: Climatic Change – ident: e_1_2_6_51_1 doi: 10.1016/j.soilbio.2010.10.013 – ident: e_1_2_6_72_1 doi: 10.1111/nph.13426 – ident: e_1_2_6_52_1 doi: 10.1016/S0038-0717(02)00168-2 – ident: e_1_2_6_3_1 doi: 10.1111/j.1469-8137.2009.03160.x – ident: e_1_2_6_58_1 doi: 10.1111/j.1365-2486.2009.01898.x – ident: e_1_2_6_38_1 doi: 10.1111/gcb.12913 – ident: e_1_2_6_56_1 doi: 10.1007/s10021-007-9033-z – ident: e_1_2_6_24_1 doi: 10.1046/j.1365-2486.1998.00128.x – ident: e_1_2_6_37_1 doi: 10.2307/2963492 – ident: e_1_2_6_63_1 doi: 10.1016/j.soilbio.2003.09.008 – ident: e_1_2_6_65_1 doi: 10.1038/ismej.2012.11 – ident: e_1_2_6_39_1 doi: 10.5194/bg-11-6573-2014 – ident: e_1_2_6_18_1 doi: 10.1126/science.1231923 – ident: e_1_2_6_79_1 doi: 10.1023/A:1005555012742 – ident: e_1_2_6_7_1 doi: 10.1111/j.1365-2486.2008.01716.x – start-page: 159 volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_6_34_1 – ident: e_1_2_6_57_1 doi: 10.1007/s10021-008-9128-1 – ident: e_1_2_6_26_1 doi: 10.1111/j.1365-2486.2010.02318.x – ident: e_1_2_6_13_1 doi: 10.1016/j.soilbio.2013.06.012 – ident: e_1_2_6_44_1 doi: 10.1007/s00442-015-3543-8 – ident: e_1_2_6_8_1 doi: 10.1038/nature03891 – ident: e_1_2_6_48_1 doi: 10.1037/1082-989X.11.4.386 – ident: e_1_2_6_66_1 doi: 10.1890/11-1958.1 – ident: e_1_2_6_21_1 doi: 10.1111/j.1461-0248.2007.01051.x – ident: e_1_2_6_23_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_6_61_1 doi: 10.1046/j.1365-2486.1997.d01-133.x – ident: e_1_2_6_5_1 doi: 10.1111/j.1365-2745.2006.01142.x – ident: e_1_2_6_49_1 doi: 10.1890/08-2025.1 – ident: e_1_2_6_62_1 doi: 10.1016/S0038-0717(98)00182-5 – ident: e_1_2_6_33_1 doi: 10.1111/j.1461-0248.2011.01651.x – ident: e_1_2_6_31_1 doi: 10.1093/femsec/fiv095 – ident: e_1_2_6_41_1 doi: 10.1007/s10533-003-0855-2 – ident: e_1_2_6_81_1 doi: 10.1111/j.1461-0248.2012.01837.x – ident: e_1_2_6_4_1 doi: 10.1111/j.1365-2486.2008.01674.x – ident: e_1_2_6_17_1 doi: 10.1111/j.1469-8137.2006.01778.x – ident: e_1_2_6_27_1 doi: 10.1111/j.1574-6941.2012.01350.x – ident: e_1_2_6_29_1 doi: 10.1016/S0038-0717(02)00258-4 – ident: e_1_2_6_14_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_6_40_1 doi: 10.1111/j.1574-6941.2012.01437.x – ident: e_1_2_6_59_1 doi: 10.1007/s11284-007-0390-z – ident: e_1_2_6_74_1 doi: 10.1016/j.soilbio.2010.04.018 – ident: e_1_2_6_28_1 doi: 10.1093/bioinformatics/btq461 – ident: e_1_2_6_67_1 doi: 10.1007/s10533-015-0082-7 – ident: e_1_2_6_78_1 doi: 10.1128/AEM.00062-07 – ident: e_1_2_6_6_1 doi: 10.1007/s00442-012-2330-z – ident: e_1_2_6_32_1 doi: 10.1007/s10021-008-9186-4 – ident: e_1_2_6_42_1 doi: 10.2307/1552009 – ident: e_1_2_6_55_1 doi: 10.1111/j.1365-2486.2010.02303.x – ident: e_1_2_6_19_1 doi: 10.1037/0033-2909.112.1.155 – ident: e_1_2_6_75_1 doi: 10.1111/mec.12743 – ident: e_1_2_6_76_1 doi: 10.1111/j.1461-0248.2006.00965.x – ident: e_1_2_6_80_1 doi: 10.1016/B978-0-12-372180-8.50042-1 – ident: e_1_2_6_10_1 doi: 10.1016/j.soilbio.2007.07.017 – ident: e_1_2_6_11_1 doi: 10.1007/s10021-015-9924-3 – ident: e_1_2_6_22_1 doi: 10.1038/ngeo2520 – ident: e_1_2_6_77_1 doi: 10.1111/j.1654-1103.2005.tb02365.x – start-page: 1029 volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_6_20_1 – ident: e_1_2_6_43_1 doi: 10.1080/01904168309363161 – ident: e_1_2_6_64_1 doi: 10.1890/06-0219 – ident: e_1_2_6_69_1 doi: 10.1007/s10584-005-9017-y – ident: e_1_2_6_25_1 doi: 10.1890/13-2221.1 – ident: e_1_2_6_2_1 doi: 10.1016/j.soilbio.2012.07.022 – ident: e_1_2_6_12_1 doi: 10.1111/j.1749-8198.2011.00420.x – ident: e_1_2_6_53_1 doi: 10.1111/gcb.12716 – ident: e_1_2_6_82_1 doi: 10.1038/nclimate1951 – ident: e_1_2_6_30_1 doi: 10.1038/nclimate1465 – volume-title: PRIMER v7: User Manual/Tutorial year: 2015 ident: e_1_2_6_16_1 – ident: e_1_2_6_70_1 doi: 10.1023/B:PLSO.0000037044.63113.fe – ident: e_1_2_6_68_1 doi: 10.1111/mec.13045 – ident: e_1_2_6_60_1 doi: 10.2307/3545996 – ident: e_1_2_6_46_1 doi: 10.1111/j.1365-2486.1997.gcb136.x – ident: e_1_2_6_45_1 doi: 10.1890/11-0026.1 – ident: e_1_2_6_9_1 doi: 10.1038/srep01556 – ident: e_1_2_6_15_1 doi: 10.2307/2937210 – ident: e_1_2_6_50_1 doi: 10.1890/09-0654.1 – ident: e_1_2_6_36_1 doi: 10.1002/jgrg.20089 – ident: e_1_2_6_47_1 doi: 10.1038/nrmicro1341 – ident: e_1_2_6_35_1 doi: 10.1029/2010GB003813 – ident: e_1_2_6_71_1 doi: 10.1007/s10533-015-0079-2 – ident: e_1_2_6_73_1 doi: 10.1126/science.1256688 – ident: e_1_2_6_54_1 doi: 10.1038/nclimate2697 |
SSID | ssj0003206 |
Score | 2.49748 |
Snippet | Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 406 |
SubjectTerms | Air temperature Arctic Arctic region Arctic Regions Arctic zone Ascomycota Basidiomycota Betula Betula glandulosa biogeochemical cycles buried soils carbon Climate change climate warming Community composition community structure Decomposition deepened snow drying Ecosystem ecosystems Evapotranspiration fungal communities Fungi Fungi - growth & development Global warming Greenland Leaf litter litter decomposition litter moisture Moisture content Nutrient cycles Organic matter phylotype Plant Leaves plant litter saprophytes Seasons shrubs Snow snow fences Soil Microbiology Soil moisture Soil organic matter soil water regimes Summer Taiga & tundra Temperature Tundra water content winter |
Title | Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13362 https://www.ncbi.nlm.nih.gov/pubmed/27197084 https://www.proquest.com/docview/1848480674 https://www.proquest.com/docview/1826683236 https://www.proquest.com/docview/1855077604 https://www.proquest.com/docview/2020880728 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KQfDFy2p1tcpRRPqSJZkkkwk-6bK1CPVBLPRBCHPLtrhmJclS11_vOZNLrZcisvuQsCdhMjmX78ye-Q5jLxKtbMZ1FCgn8iDRSY42F6WBKaVObEm7IWmD8_F7cXSSvDtNT3fYq2EvTMcPMS64kWV4f00GrnTzk5EvjZ5hguX9L9VqESD6cEkdFXPfVzOK0wRdTRT3rEJUxTNeeTUW_QYwr-JVH3AOb7NPw1C7OpPPs02rZ-b7LyyO__ksd9itHojC605z7rIdV03Yja415XbC9haXO-BQrHcBzYRNjxFmr2svBi9hvjpHzOvP7rFvi-rMVxQA6ber4UJRqc0SaiKIdQ1gFMWIBNZRJfsatR_sUBcCqrKAOQG-Z_iCiB5WOGVAZcDQ0HL9crWF8wpsvQVa7afjC9dCu6lsre6zk8PFx_lR0Ld2CEwiUx4YEYmSO5e6WFrMzukbKumMUFFepi5zWShUpk0sjdZOJk7nwsgyjJzCwKriPbZbrSv3kAEXUpRCm1IlRK6oNC9tHOYOM19b5mE4ZQfDSy5Mz3tO7TdWxZD_4OwXfvan7Pko-rUj-_iT0P6gKUVv702BeTJ-MPInU_Zs_Bktlf5-UZVbb0gGwRA60FhcJ0P8cpkIr7kPp76qMsy4nLIHnaaOo-VZlGehxKsPvL79_TGKt_M3_uDRv4s-Zjc5oRq_ArXPdtt6454gJmv1U298PwA6tDOp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRQguPAIFQ4EFIdSLI3u9Xq8lLhClBGh6QK3UC7L25VARHOQkKuHXM7N-lPKoEEoOjjKO7PU8vpnMfkPIc66VzZiOQ-VEHnLNc7C5OA1NKTW3Je6GxA3O00MxOebvTtKTLfKy2wvT8EP0BTe0DO-v0cCxIP2Tlc-MHkKGhQ74Ck709gnVh3PyqIT5yZpxknJwNnHS8gphH09_6sVo9BvEvIhYfcjZv0k-dhfbdJp8Hq5Xemi-_8Lj-L93c4vcaLEofdUoz22y5aoBudpMp9wMyM74fBMciLVeYDkgwRSQ9qL2YvQFHc1PAfb6T3fIt3H1yTcVUFRxV9Mzhd02M1ojR6xbUgikEJSoddjMvgADoLZrDaGqshTSAnjU9AuAejqHNaPYCUyXWLGfzTf0tKK23lAs-OPxmVvR1bqytbpLjvfHR6NJ2E53CA2XKQuNiEXJnEtdIi0k6PiOlHRGqDgvU5e5LBIq0yaRRmsnudO5MLKMYqcgtqpkh2xXi8rdJ5QJKUqhTak48isqzUqbRLmD5NeWeRQFZK97yoVpqc9xAse86FIgWP3Cr35AnvWiXxu-jz8J7XaqUrQmvywgVYYXBH8ekKf912Cs-A-MqtxijTKAh8CHJuIyGaSYy0R0ye8wHK0qo4zJgNxrVLW_WpbFeRZJOHvPK9zfb6N4M3rtDx78u-gTcm1yND0oDt4evn9IrjMEOb4gtUu2V_XaPQKIttKPvSX-AE9DN8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5VRSBeOAIFQ4EFIdQXR2t7vV6LJ0gTytEKISr1Acnay6EiOJXjqIRfz8zaTilHhVDyYCtja72e45vN7DeEPOVa2SzWUaicyEOueQ42F6WhKaXmtsTdkLjBef9A7B3yN0fp0QZ53u-Fafkh1gtuaBneX6OBn9jyJyOfGj2EBAv97yUumESV3v1wxh2VxL6xZpSkHHxNlHS0QljGs770fDD6DWGeB6w-4kyuk0_9WNtCky_DZaOH5vsvNI7_-TA3yLUOidIXrercJBuuGpDLbW_K1YBsjc-2wIFY5wMWAxLsA86e116MPqOj2TGAXn92i3wbV599SQFFBXc1PVVYazOlNTLEugWFMAohiVqHpexzUH9q-8IQqipLISmAF02_AqSnM5gyinXAdIHr9dPZih5X1NYrisv9eHzqGtosK1ur2-RwMv442gu73g6h4TKNQyMiUcbOpS6RFtJz_DIlnREqysvUZS5jQmXaJNJo7SR3OhdGlixyCiKrSrbIZjWv3F1CYyFFKbQpFUd2RaXj0iYsd5D62jJnLCA7_UsuTEd8jv03ZkWfAMHsF372A_JkLXrSsn38SWi715SiM_hFAYkyfCD084A8Xv8Mpor_v6jKzZcoA2gIPGgiLpJBgrlMsAvuE2NjVcmyWAbkTqup69HGWZRnTMLVO17f_v4YxavRS39w799FH5Er73cnxbvXB2_vk6sxIhy_GrVNNpt66R4APmv0Q2-HPwChOjZ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+summer+warming+reduces+fungal+decomposer+diversity+and+litter+mass+loss+more+strongly+in+dry+than+in+wet+tundra&rft.jtitle=Global+change+biology&rft.au=Christiansen%2C+Casper+T&rft.au=Haugwitz%2C+Merian+S&rft.au=Priem%C3%A9%2C+Anders&rft.au=Nielsen%2C+Cecilie+S&rft.date=2017-01-01&rft.eissn=1365-2486&rft.volume=23&rft.issue=1&rft.spage=406&rft_id=info:doi/10.1111%2Fgcb.13362&rft_id=info%3Apmid%2F27197084&rft.externalDocID=27197084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |