Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra

Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal c...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 23; no. 1; pp. 406 - 420
Main Authors Christiansen, Casper T., Haugwitz, Merian S., Priemé, Anders, Nielsen, Cecilie S., Elberling, Bo, Michelsen, Anders, Grogan, Paul, Blok, Daan
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.
AbstractList Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTC s) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.
Author Haugwitz, Merian S.
Christiansen, Casper T.
Michelsen, Anders
Grogan, Paul
Blok, Daan
Elberling, Bo
Priemé, Anders
Nielsen, Cecilie S.
Author_xml – sequence: 1
  givenname: Casper T.
  surname: Christiansen
  fullname: Christiansen, Casper T.
  email: ctc@science.ku.dk
  organization: University of Copenhagen
– sequence: 2
  givenname: Merian S.
  orcidid: 0000-0001-5112-0094
  surname: Haugwitz
  fullname: Haugwitz, Merian S.
  organization: University of Copenhagen
– sequence: 3
  givenname: Anders
  surname: Priemé
  fullname: Priemé, Anders
  organization: University of Copenhagen
– sequence: 4
  givenname: Cecilie S.
  surname: Nielsen
  fullname: Nielsen, Cecilie S.
  organization: University of Copenhagen
– sequence: 5
  givenname: Bo
  surname: Elberling
  fullname: Elberling, Bo
  organization: University of Copenhagen
– sequence: 6
  givenname: Anders
  surname: Michelsen
  fullname: Michelsen, Anders
  organization: University of Copenhagen
– sequence: 7
  givenname: Paul
  surname: Grogan
  fullname: Grogan, Paul
  organization: University of Copenhagen
– sequence: 8
  givenname: Daan
  surname: Blok
  fullname: Blok, Daan
  organization: University of Copenhagen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27197084$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2PFCEQholZ437owT9gSLzooXcL6AbmqJN1NdnEi547NF09sumGEWjH_vfSzuphEz8oQlXIUy8B3nNy4oNHQp4zuGRlXO1sd8mEkPwROWNCNhWvtTxZ66auGDBxSs5TugMAwUE-IadcsY0CXZ-R79f-i_EWe5rmacJIDyZOzu9oxH62mOgw-50ZaY82TPuQCtG7bxiTyws1vqejy7lsTiYlOoayTCEiTTkGvxsX6jzt40JzOWStD5hpnn0fzVPyeDBjwmf3-YJ8fnf9afu-uv1482H75raytW54ZSWTA0dsUOhe1XydYDRaadhmaFChAmlUZ4W2XYe6xm4jrR6AoQFgRlyQV0fdfQxfZ0y5nVyyOI7GY5hTy4GD1qC4_ifKdNOAUhLq_0C5lFpwIQv68gF6F-boy50LVZcAqVbBF_fU3E3Yt_voJhOX9tdPFeD1EbCxvHLE4TfCoF1d0BYXtD9dUNirB6x12WQXfI7GjX_rOLgRlz9Ltzfbt8eOH1eWwo0
CitedBy_id crossref_primary_10_1016_j_agee_2025_109557
crossref_primary_10_1111_mec_14227
crossref_primary_10_1016_j_scitotenv_2024_175648
crossref_primary_10_1016_j_soilbio_2017_01_008
crossref_primary_10_1186_s40793_019_0344_4
crossref_primary_10_1016_j_geoderma_2023_116632
crossref_primary_10_1111_gcb_15456
crossref_primary_10_1111_gcb_15852
crossref_primary_10_1016_j_geoderma_2020_114691
crossref_primary_10_1007_s11104_018_3889_x
crossref_primary_10_1007_s00300_023_03209_6
crossref_primary_10_1016_j_soilbio_2021_108419
crossref_primary_10_1016_j_scitotenv_2018_07_014
crossref_primary_10_1139_as_2020_0058
crossref_primary_10_1007_s11104_017_3392_9
crossref_primary_10_1038_s41586_024_07274_7
crossref_primary_10_1111_nph_17623
crossref_primary_10_1016_j_scitotenv_2020_138304
crossref_primary_10_1139_as_2020_0053
crossref_primary_10_1038_s41597_021_01005_7
crossref_primary_10_1007_s11104_025_07247_3
crossref_primary_10_59717_j_xinn_geo_2024_100117
crossref_primary_10_1111_1365_2435_13531
crossref_primary_10_1111_mec_16319
crossref_primary_10_1007_s11104_022_05642_8
crossref_primary_10_1016_j_scitotenv_2019_05_222
crossref_primary_10_1016_j_scitotenv_2021_150990
crossref_primary_10_1016_j_scitotenv_2024_169896
crossref_primary_10_1007_s11104_020_04675_1
crossref_primary_10_1016_j_scitotenv_2019_01_122
crossref_primary_10_1111_1365_2745_13617
crossref_primary_10_1111_njb_04062
crossref_primary_10_1038_s41586_018_0563_7
crossref_primary_10_1038_s41467_018_05824_y
crossref_primary_10_1016_j_scitotenv_2020_142306
crossref_primary_10_1016_j_agee_2020_107119
crossref_primary_10_5194_bg_15_3591_2018
crossref_primary_10_1111_jvs_12752
crossref_primary_10_3389_fmicb_2022_1050372
crossref_primary_10_1016_j_scitotenv_2022_160485
crossref_primary_10_1007_s00442_017_3830_7
crossref_primary_10_1007_s11104_020_04431_5
crossref_primary_10_1038_s41396_020_00844_3
crossref_primary_10_3390_f13010037
crossref_primary_10_1002_ecs2_3777
crossref_primary_10_3390_jof9060691
crossref_primary_10_1016_j_funbio_2023_12_003
crossref_primary_10_1016_j_scitotenv_2019_06_318
crossref_primary_10_3390_f15122151
crossref_primary_10_1016_j_scitotenv_2024_177569
crossref_primary_10_1139_as_2022_0041
crossref_primary_10_3390_f14020431
crossref_primary_10_1016_j_geoderma_2024_117108
crossref_primary_10_1016_j_scitotenv_2021_145452
crossref_primary_10_1111_gcb_14744
crossref_primary_10_1098_rspb_2023_0613
crossref_primary_10_1111_mec_15773
crossref_primary_10_1016_j_bjm_2017_08_004
crossref_primary_10_1016_j_apsoil_2020_103635
crossref_primary_10_1016_j_soilbio_2024_109402
crossref_primary_10_3390_f14101957
crossref_primary_10_1002_ldr_4522
crossref_primary_10_1016_j_soilbio_2019_107569
crossref_primary_10_1016_j_soilbio_2021_108278
crossref_primary_10_1016_j_geoderma_2022_116139
crossref_primary_10_1007_s10021_018_0240_6
crossref_primary_10_1016_j_soilbio_2021_108356
crossref_primary_10_1007_s00035_018_0215_4
crossref_primary_10_1111_gcb_14017
crossref_primary_10_1016_j_apsoil_2018_06_014
crossref_primary_10_3390_w13223296
crossref_primary_10_1016_j_soilbio_2019_01_001
crossref_primary_10_1016_j_soilbio_2023_109013
crossref_primary_10_1016_j_soilbio_2019_107579
crossref_primary_10_1007_s00248_019_01373_z
Cites_doi 10.1016/j.soilbio.2010.10.013
10.1111/nph.13426
10.1016/S0038-0717(02)00168-2
10.1111/j.1469-8137.2009.03160.x
10.1111/j.1365-2486.2009.01898.x
10.1111/gcb.12913
10.1007/s10021-007-9033-z
10.1046/j.1365-2486.1998.00128.x
10.2307/2963492
10.1016/j.soilbio.2003.09.008
10.1038/ismej.2012.11
10.5194/bg-11-6573-2014
10.1126/science.1231923
10.1023/A:1005555012742
10.1111/j.1365-2486.2008.01716.x
10.1007/s10021-008-9128-1
10.1111/j.1365-2486.2010.02318.x
10.1016/j.soilbio.2013.06.012
10.1007/s00442-015-3543-8
10.1038/nature03891
10.1037/1082-989X.11.4.386
10.1890/11-1958.1
10.1111/j.1461-0248.2007.01051.x
10.1111/j.1461-0248.2008.01219.x
10.1046/j.1365-2486.1997.d01-133.x
10.1111/j.1365-2745.2006.01142.x
10.1890/08-2025.1
10.1016/S0038-0717(98)00182-5
10.1111/j.1461-0248.2011.01651.x
10.1093/femsec/fiv095
10.1007/s10533-003-0855-2
10.1111/j.1461-0248.2012.01837.x
10.1111/j.1365-2486.2008.01674.x
10.1111/j.1469-8137.2006.01778.x
10.1111/j.1574-6941.2012.01350.x
10.1016/S0038-0717(02)00258-4
10.1038/nmeth.f.303
10.1111/j.1574-6941.2012.01437.x
10.1007/s11284-007-0390-z
10.1016/j.soilbio.2010.04.018
10.1093/bioinformatics/btq461
10.1007/s10533-015-0082-7
10.1128/AEM.00062-07
10.1007/s00442-012-2330-z
10.1007/s10021-008-9186-4
10.2307/1552009
10.1111/j.1365-2486.2010.02303.x
10.1037/0033-2909.112.1.155
10.1111/mec.12743
10.1111/j.1461-0248.2006.00965.x
10.1016/B978-0-12-372180-8.50042-1
10.1016/j.soilbio.2007.07.017
10.1007/s10021-015-9924-3
10.1038/ngeo2520
10.1111/j.1654-1103.2005.tb02365.x
10.1080/01904168309363161
10.1890/06-0219
10.1007/s10584-005-9017-y
10.1890/13-2221.1
10.1016/j.soilbio.2012.07.022
10.1111/j.1749-8198.2011.00420.x
10.1111/gcb.12716
10.1038/nclimate1951
10.1038/nclimate1465
10.1023/B:PLSO.0000037044.63113.fe
10.1111/mec.13045
10.2307/3545996
10.1111/j.1365-2486.1997.gcb136.x
10.1890/11-0026.1
10.1038/srep01556
10.2307/2937210
10.1890/09-0654.1
10.1002/jgrg.20089
10.1038/nrmicro1341
10.1029/2010GB003813
10.1007/s10533-015-0079-2
10.1126/science.1256688
10.1038/nclimate2697
ContentType Journal Article
Copyright 2016 John Wiley & Sons Ltd
2016 John Wiley & Sons Ltd.
Copyright © 2017 John Wiley & Sons Ltd
Copyright_xml – notice: 2016 John Wiley & Sons Ltd
– notice: 2016 John Wiley & Sons Ltd.
– notice: Copyright © 2017 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
M7N
7S9
L.6
DOI 10.1111/gcb.13362
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 420
ExternalDocumentID 4277496141
27197084
10_1111_gcb_13362
GCB13362
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Greenland, Disko I
PN, Arctic
AN, Greenland
Arctic region
Greenland
GeographicLocations_xml – name: AN, Greenland
– name: Greenland, Disko I
– name: PN, Arctic
– name: Arctic region
– name: Greenland
GrantInformation_xml – fundername: Danish National Research Foundation
  funderid: CENPERM DNRF 100
– fundername: Government of the Northwest Territories
– fundername: Ontario Ministry of Training, Colleges and Universities
– fundername: NSERC
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
M7N
7S9
L.6
ID FETCH-LOGICAL-c4852-c616f2ee5e38d74274270a8ec6a19f5e7e706a7bc38cbbe84eb96c8f01ea001a3
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Fri Jul 11 18:26:04 EDT 2025
Thu Jul 10 19:55:51 EDT 2025
Fri Jul 11 15:45:50 EDT 2025
Fri Jul 25 10:50:13 EDT 2025
Wed Feb 19 02:41:31 EST 2025
Tue Jul 01 03:52:55 EDT 2025
Thu Apr 24 22:52:05 EDT 2025
Wed Jan 22 17:09:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ascomycota
fungi
climate warming
litter moisture
litter decomposition
Betula glandulosa
deepened snow
Arctic
Basidiomycota
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4852-c616f2ee5e38d74274270a8ec6a19f5e7e706a7bc38cbbe84eb96c8f01ea001a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5112-0094
PMID 27197084
PQID 1848480674
PQPubID 30327
PageCount 15
ParticipantIDs proquest_miscellaneous_2020880728
proquest_miscellaneous_1855077604
proquest_miscellaneous_1826683236
proquest_journals_1848480674
pubmed_primary_27197084
crossref_primary_10_1111_gcb_13362
crossref_citationtrail_10_1111_gcb_13362
wiley_primary_10_1111_gcb_13362_GCB13362
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1995; 74
2013; 3
2013; 65
2006; 76
1983; 6
2000; 44
2010; 186
2007; 73
2006; 171
2011; 14
2012; 15
2011; 17
2016; 181
1997; 3
2014; 23
2010; 26
2004; 70
1990
2013; 57
1992; 112
2004; 36
2013; 94
2012; 170
2013; 118
2006; 440
2015; 91
2011; 25
2014; 95
2007; 22
2010; 7
2014; 11
2009; 15
1996; 66
2012; 82
2015; 5
2006; 94
2016; 19
2015; 124
2006; 11
2002; 34
2004; 262
1991; 72
2006; 9
2005; 436
2008; 14
2003; 35
2008; 11
2006; 4
2015; 207
2007; 10
2015; 8
2011; 5
2015; 24
2009; 79
2010; 42
2012; 2
2013; 339
2011; 93
2015; 21
2011; 43
1999; 31
2015
2013
1998; 30
2012; 6
2008; 40
2010; 91
2005; 16
2007; 88
1998; 4
2014; 346
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Clarke KR (e_1_2_6_16_1) 2015
Hartmann DL (e_1_2_6_34_1) 2013
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
Collins M (e_1_2_6_20_1) 2013
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 5
  start-page: 887
  year: 2015
  end-page: 891
  article-title: Climate sensitivity of shrub growth across the tundra biome
  publication-title: Nature Climate Change
– volume: 16
  start-page: 267
  year: 2005
  end-page: 282
  article-title: The circumpolar Arctic vegetation map
  publication-title: Journal of Vegetation Science
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 6
  start-page: 989
  year: 1983
  end-page: 1011
  article-title: Extraction and analysis of nitrogen, phosphorus and carbon fractions in plant material
  publication-title: Journal of Plant Nutrition
– volume: 25
  year: 2011
  end-page: GB3018
  article-title: Is the northern high‐latitude land‐based CO sink weakening?
  publication-title: Global Biogeochemical Cycles
– volume: 26
  start-page: 2460
  year: 2010
  end-page: 2461
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
– volume: 42
  start-page: 1396
  year: 2010
  end-page: 1407
  article-title: Unfrozen water content moderates temperature dependence of sub‐zero microbial respiration
  publication-title: Soil Biology & Biochemistry
– volume: 6
  start-page: 1749
  year: 2012
  end-page: 1762
  article-title: Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions
  publication-title: The ISME Journal
– volume: 171
  start-page: 391
  year: 2006
  end-page: 404
  article-title: Increased ectomycorrhizal fungal abundance after long‐term fertilization and warming of two arctic tundra ecosystems
  publication-title: New Phytologist
– volume: 3
  year: 2013
  end-page: 1556
  article-title: The changing seasonal climate in the Arctic
  publication-title: Scientific Reports
– volume: 10
  start-page: 619
  year: 2007
  end-page: 627
  article-title: Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  publication-title: Ecology Letters
– volume: 65
  start-page: 338
  year: 2013
  end-page: 347
  article-title: The seasonal pattern of soil microbial community structure in mesic low arctic tundra
  publication-title: Soil Biology & Biochemistry
– volume: 8
  start-page: 776
  year: 2015
  end-page: 779
  article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss
  publication-title: Nature Geoscience
– volume: 11
  start-page: 1157
  year: 2008
  end-page: 1167
  article-title: Fungal taxa target different carbon sources in forest soil
  publication-title: Ecosystems
– volume: 88
  start-page: 1386
  year: 2007
  end-page: 1394
  article-title: Microbial stress‐response physiology and its implications for ecosystem function
  publication-title: Ecology
– volume: 91
  year: 2015
  article-title: Long‐term warming alters richness and composition of taxonomic and functional groups of arctic fungi
  publication-title: Fems Microbiology Ecology
– volume: 22
  start-page: 955
  year: 2007
  end-page: 974
  article-title: Ecology of ligninolytic fungi associated with leaf litter decomposition
  publication-title: Ecological Research
– volume: 23
  start-page: 3258
  year: 2014
  end-page: 3272
  article-title: Rich and cold: diversity, distribution and drivers of fungal communities in patterned‐ground ecosystems of the North American Arctic
  publication-title: Molecular Ecology
– volume: 3
  start-page: 20
  year: 1997
  end-page: 32
  article-title: Open‐top designs for manipulating field temperature in high‐latitude ecosystems
  publication-title: Global Change Biology
– volume: 21
  start-page: 959
  year: 2015
  end-page: 972
  article-title: Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska
  publication-title: Global Change Biology
– volume: 70
  start-page: 315
  year: 2004
  end-page: 330
  article-title: Moisture effects on temperature sensitivity of CO exchange in a subarctic heath ecosystem
  publication-title: Biogeochemistry
– volume: 124
  start-page: 27
  year: 2015
  end-page: 44
  article-title: A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition
  publication-title: Biogeochemistry
– volume: 5
  start-page: 682
  year: 2011
  end-page: 699
  article-title: Carbon and nitrogen cycling in snow‐covered environments
  publication-title: Geography Compass
– volume: 31
  start-page: 831
  year: 1999
  end-page: 838
  article-title: Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga
  publication-title: Soil Biology and Biochemistry
– volume: 74
  start-page: 503
  year: 1995
  end-page: 512
  article-title: Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi‐desert and a subarctic dwarf shrub heath
  publication-title: Oikos
– volume: 3
  start-page: 37
  year: 1997
  end-page: 49
  article-title: Elevated atmospheric CO affects decomposition of (L) Sm litter and roots in experiments simulating environmental change in two contrasting arctic ecosystems
  publication-title: Global Change Biology
– volume: 72
  start-page: 709
  year: 1991
  end-page: 715
  article-title: Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves
  publication-title: Ecology
– volume: 36
  start-page: 217
  year: 2004
  end-page: 227
  article-title: Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities
  publication-title: Soil Biology & Biochemistry
– volume: 94
  start-page: 94
  year: 2013
  end-page: 105
  article-title: Nutrient‐specific solubility patterns of leaf litter across 41 lowland tropical woody species
  publication-title: Ecology
– volume: 4
  start-page: 217
  year: 1998
  end-page: 227
  article-title: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest
  publication-title: Global Change Biology
– volume: 43
  start-page: 287
  year: 2011
  end-page: 295
  article-title: A cross‐seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling
  publication-title: Soil Biology & Biochemistry
– volume: 207
  start-page: 1145
  year: 2015
  end-page: 1158
  article-title: Changes in fungal communities along a boreal forest soil fertility gradient
  publication-title: New Phytologist
– volume: 14
  start-page: 2898
  year: 2008
  end-page: 2909
  article-title: Warming and drying suppress microbial activity and carbon cycling in boreal forest soils
  publication-title: Global Change Biology
– volume: 21
  start-page: 2410
  year: 2015
  end-page: 2423
  article-title: Winter warming as an important co‐driver for growth in western Greenland during the past century
  publication-title: Global Change Biology
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Applied and Environmental Microbiology
– volume: 170
  start-page: 809
  year: 2012
  end-page: 819
  article-title: Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub‐arctic bog species
  publication-title: Oecologia
– year: 2015
– volume: 14
  start-page: 852
  year: 2011
  end-page: 862
  article-title: Nutrient co‐limitation of primary producer communities
  publication-title: Ecology Letters
– volume: 11
  start-page: 6573
  year: 2014
  end-page: 6593
  article-title: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
  publication-title: Biogeosciences
– volume: 181
  start-page: 287
  year: 2016
  end-page: 297
  article-title: Coupled long‐term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra
  publication-title: Oecologia
– volume: 44
  start-page: 139
  year: 2000
  end-page: 150
  article-title: Annual CO flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth
  publication-title: Climatic Change
– start-page: 315
  year: 1990
  end-page: 322
– volume: 17
  start-page: 1625
  year: 2011
  end-page: 1636
  article-title: Long‐term experimental manipulation of climate alters the ectomycorrhizal community of in Arctic tundra
  publication-title: Global Change Biology
– volume: 24
  start-page: 424
  year: 2015
  end-page: 437
  article-title: Long‐term experimental warming alters community composition of ascomycetes in Alaskan moist and dry Arctic tundra
  publication-title: Molecular Ecology
– volume: 82
  start-page: 303
  year: 2012
  end-page: 315
  article-title: Long‐term warming alters the composition of Arctic soil microbial communities
  publication-title: Fems Microbiology Ecology
– volume: 79
  start-page: 523
  year: 2009
  end-page: 555
  article-title: Sensitivity of the carbon cycle in the Arctic to climate change
  publication-title: Ecological Monographs
– volume: 186
  start-page: 281
  year: 2010
  end-page: 285
  article-title: The UNITE database for molecular identification of fungi – recent updates and future perspectives
  publication-title: New Phytologist
– volume: 124
  start-page: 81
  year: 2015
  end-page: 94
  article-title: Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra
  publication-title: Biogeochemistry
– volume: 11
  start-page: 386
  year: 2006
  article-title: When effect sizes disagree: the case of r and d
  publication-title: Psychological Methods
– volume: 436
  start-page: 1157
  year: 2005
  end-page: 1160
  article-title: The contribution of species richness and composition to bacterial services
  publication-title: Nature
– volume: 11
  start-page: 377
  year: 2008
  end-page: 396
  article-title: Landscape and ecosystem‐level controls on net carbon dioxide exchange along a natural moisture gradient in Canadian low arctic tundra
  publication-title: Ecosystems
– volume: 3
  start-page: 909
  year: 2013
  end-page: 912
  article-title: Global soil carbon projections are improved by modelling microbial processes
  publication-title: Nature Climate Change
– volume: 30
  start-page: 373
  year: 1998
  end-page: 380
  article-title: Carbon dioxide fluxes in moist and dry Arctic tundra during season: responses to increases in summer temperature and winter snow accumulation
  publication-title: Arctic and Alpine Research
– volume: 262
  start-page: 215
  year: 2004
  end-page: 227
  article-title: Decomposition of mountain birch leaf litter at the forest‐tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions
  publication-title: Plant and Soil
– start-page: 1029
  year: 2013
  end-page: 1136
– volume: 14
  start-page: 2636
  year: 2008
  end-page: 2660
  article-title: Simple three‐pool model accurately describes patterns of long‐term litter decomposition in diverse climates
  publication-title: Global Change Biology
– volume: 95
  start-page: 1861
  year: 2014
  end-page: 1875
  article-title: Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition
  publication-title: Ecology
– volume: 19
  start-page: 155
  year: 2016
  end-page: 169
  article-title: Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming
  publication-title: Ecosystems
– volume: 15
  start-page: 1180
  year: 2012
  end-page: 1188
  article-title: The origin of litter chemical complexity during decomposition
  publication-title: Ecology Letters
– volume: 339
  start-page: 1615
  year: 2013
  end-page: 1618
  article-title: Roots and associated fungi drive long‐term carbon sequestration in boreal forest
  publication-title: Science
– volume: 346
  start-page: 1078
  year: 2014
  article-title: Global diversity and geography of soil fungi
  publication-title: Science
– volume: 112
  start-page: 155
  year: 1992
  article-title: A power primer
  publication-title: Psychological Bulletin
– volume: 34
  start-page: 1785
  year: 2002
  end-page: 1795
  article-title: Temperature controls of microbial respiration in arctic tundra soils above and below freezing
  publication-title: Soil Biology & Biochemistry
– volume: 82
  start-page: 666
  year: 2012
  end-page: 677
  article-title: New primers to amplify the fungal ITS2 region ‐ evaluation by 454‐sequencing of artificial and natural communities
  publication-title: Fems Microbiology Ecology
– volume: 94
  start-page: 713
  year: 2006
  end-page: 724
  article-title: The freezer defrosting: global warming and litter decomposition rates in cold biomes
  publication-title: Journal of Ecology
– volume: 93
  start-page: 930
  year: 2011
  end-page: 938
  article-title: Responses of soil microbial communities to water stress: results from a meta‐analysis
  publication-title: Ecology
– volume: 15
  start-page: 2715
  year: 2009
  end-page: 2722
  article-title: Water availability controls microbial temperature responses in frozen soil CO production
  publication-title: Global Change Biology
– volume: 35
  start-page: 263
  year: 2003
  end-page: 272
  article-title: Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling
  publication-title: Soil Biology & Biochemistry
– volume: 66
  start-page: 503
  year: 1996
  end-page: 522
  article-title: Temperature and plant species control over litter decomposition in Alaskan tundra
  publication-title: Ecological Monographs
– volume: 17
  start-page: 1394
  year: 2011
  end-page: 1407
  article-title: Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra
  publication-title: Global Change Biology
– volume: 2
  start-page: 453
  year: 2012
  end-page: 457
  article-title: Plot‐scale evidence of tundra vegetation change and links to recent summer warming
  publication-title: Nature Climate Change
– volume: 10
  start-page: 419
  year: 2007
  end-page: 431
  article-title: Deeper snow enhances winter respiration from both plant‐associated and bulk soil carbon pools in birch hummock tundra
  publication-title: Ecosystems
– volume: 40
  start-page: 266
  year: 2008
  end-page: 268
  article-title: Temporal variation in soil microbial communities in Alpine tundra
  publication-title: Soil Biology and Biochemistry
– volume: 57
  start-page: 217
  year: 2013
  end-page: 227
  article-title: Sensitivity of soil respiration and microbial communities to altered snowfall
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 1127
  year: 2006
  end-page: 1135
  article-title: Resource availability controls fungal diversity across a plant diversity gradient
  publication-title: Ecology Letters
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  article-title: QIIME allows analysis of high‐throughput community sequencing data
  publication-title: Nature Methods
– start-page: 159
  year: 2013
  end-page: 254
– volume: 118
  start-page: 1133
  year: 2013
  end-page: 1143
  article-title: Moisture drives surface decomposition in thawing tundra
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 4
  start-page: 102
  year: 2006
  end-page: 112
  article-title: Microbial biogeography: putting microorganisms on the map
  publication-title: Nature Reviews Microbiology
– volume: 91
  start-page: 2324
  year: 2010
  end-page: 2332
  article-title: Functional diversity in resource use by fungi
  publication-title: Ecology
– volume: 76
  start-page: 241
  year: 2006
  end-page: 264
  article-title: The arctic amplification debate
  publication-title: Climatic Change
– ident: e_1_2_6_51_1
  doi: 10.1016/j.soilbio.2010.10.013
– ident: e_1_2_6_72_1
  doi: 10.1111/nph.13426
– ident: e_1_2_6_52_1
  doi: 10.1016/S0038-0717(02)00168-2
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1469-8137.2009.03160.x
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1365-2486.2009.01898.x
– ident: e_1_2_6_38_1
  doi: 10.1111/gcb.12913
– ident: e_1_2_6_56_1
  doi: 10.1007/s10021-007-9033-z
– ident: e_1_2_6_24_1
  doi: 10.1046/j.1365-2486.1998.00128.x
– ident: e_1_2_6_37_1
  doi: 10.2307/2963492
– ident: e_1_2_6_63_1
  doi: 10.1016/j.soilbio.2003.09.008
– ident: e_1_2_6_65_1
  doi: 10.1038/ismej.2012.11
– ident: e_1_2_6_39_1
  doi: 10.5194/bg-11-6573-2014
– ident: e_1_2_6_18_1
  doi: 10.1126/science.1231923
– ident: e_1_2_6_79_1
  doi: 10.1023/A:1005555012742
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-2486.2008.01716.x
– start-page: 159
  volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_6_34_1
– ident: e_1_2_6_57_1
  doi: 10.1007/s10021-008-9128-1
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1365-2486.2010.02318.x
– ident: e_1_2_6_13_1
  doi: 10.1016/j.soilbio.2013.06.012
– ident: e_1_2_6_44_1
  doi: 10.1007/s00442-015-3543-8
– ident: e_1_2_6_8_1
  doi: 10.1038/nature03891
– ident: e_1_2_6_48_1
  doi: 10.1037/1082-989X.11.4.386
– ident: e_1_2_6_66_1
  doi: 10.1890/11-1958.1
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1461-0248.2007.01051.x
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_6_61_1
  doi: 10.1046/j.1365-2486.1997.d01-133.x
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1365-2745.2006.01142.x
– ident: e_1_2_6_49_1
  doi: 10.1890/08-2025.1
– ident: e_1_2_6_62_1
  doi: 10.1016/S0038-0717(98)00182-5
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1461-0248.2011.01651.x
– ident: e_1_2_6_31_1
  doi: 10.1093/femsec/fiv095
– ident: e_1_2_6_41_1
  doi: 10.1007/s10533-003-0855-2
– ident: e_1_2_6_81_1
  doi: 10.1111/j.1461-0248.2012.01837.x
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1365-2486.2008.01674.x
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1469-8137.2006.01778.x
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1574-6941.2012.01350.x
– ident: e_1_2_6_29_1
  doi: 10.1016/S0038-0717(02)00258-4
– ident: e_1_2_6_14_1
  doi: 10.1038/nmeth.f.303
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1574-6941.2012.01437.x
– ident: e_1_2_6_59_1
  doi: 10.1007/s11284-007-0390-z
– ident: e_1_2_6_74_1
  doi: 10.1016/j.soilbio.2010.04.018
– ident: e_1_2_6_28_1
  doi: 10.1093/bioinformatics/btq461
– ident: e_1_2_6_67_1
  doi: 10.1007/s10533-015-0082-7
– ident: e_1_2_6_78_1
  doi: 10.1128/AEM.00062-07
– ident: e_1_2_6_6_1
  doi: 10.1007/s00442-012-2330-z
– ident: e_1_2_6_32_1
  doi: 10.1007/s10021-008-9186-4
– ident: e_1_2_6_42_1
  doi: 10.2307/1552009
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1365-2486.2010.02303.x
– ident: e_1_2_6_19_1
  doi: 10.1037/0033-2909.112.1.155
– ident: e_1_2_6_75_1
  doi: 10.1111/mec.12743
– ident: e_1_2_6_76_1
  doi: 10.1111/j.1461-0248.2006.00965.x
– ident: e_1_2_6_80_1
  doi: 10.1016/B978-0-12-372180-8.50042-1
– ident: e_1_2_6_10_1
  doi: 10.1016/j.soilbio.2007.07.017
– ident: e_1_2_6_11_1
  doi: 10.1007/s10021-015-9924-3
– ident: e_1_2_6_22_1
  doi: 10.1038/ngeo2520
– ident: e_1_2_6_77_1
  doi: 10.1111/j.1654-1103.2005.tb02365.x
– start-page: 1029
  volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_6_20_1
– ident: e_1_2_6_43_1
  doi: 10.1080/01904168309363161
– ident: e_1_2_6_64_1
  doi: 10.1890/06-0219
– ident: e_1_2_6_69_1
  doi: 10.1007/s10584-005-9017-y
– ident: e_1_2_6_25_1
  doi: 10.1890/13-2221.1
– ident: e_1_2_6_2_1
  doi: 10.1016/j.soilbio.2012.07.022
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1749-8198.2011.00420.x
– ident: e_1_2_6_53_1
  doi: 10.1111/gcb.12716
– ident: e_1_2_6_82_1
  doi: 10.1038/nclimate1951
– ident: e_1_2_6_30_1
  doi: 10.1038/nclimate1465
– volume-title: PRIMER v7: User Manual/Tutorial
  year: 2015
  ident: e_1_2_6_16_1
– ident: e_1_2_6_70_1
  doi: 10.1023/B:PLSO.0000037044.63113.fe
– ident: e_1_2_6_68_1
  doi: 10.1111/mec.13045
– ident: e_1_2_6_60_1
  doi: 10.2307/3545996
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1365-2486.1997.gcb136.x
– ident: e_1_2_6_45_1
  doi: 10.1890/11-0026.1
– ident: e_1_2_6_9_1
  doi: 10.1038/srep01556
– ident: e_1_2_6_15_1
  doi: 10.2307/2937210
– ident: e_1_2_6_50_1
  doi: 10.1890/09-0654.1
– ident: e_1_2_6_36_1
  doi: 10.1002/jgrg.20089
– ident: e_1_2_6_47_1
  doi: 10.1038/nrmicro1341
– ident: e_1_2_6_35_1
  doi: 10.1029/2010GB003813
– ident: e_1_2_6_71_1
  doi: 10.1007/s10533-015-0079-2
– ident: e_1_2_6_73_1
  doi: 10.1126/science.1256688
– ident: e_1_2_6_54_1
  doi: 10.1038/nclimate2697
SSID ssj0003206
Score 2.49748
Snippet Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 406
SubjectTerms Air temperature
Arctic
Arctic region
Arctic Regions
Arctic zone
Ascomycota
Basidiomycota
Betula
Betula glandulosa
biogeochemical cycles
buried soils
carbon
Climate change
climate warming
Community composition
community structure
Decomposition
deepened snow
drying
Ecosystem
ecosystems
Evapotranspiration
fungal communities
Fungi
Fungi - growth & development
Global warming
Greenland
Leaf litter
litter decomposition
litter moisture
Moisture content
Nutrient cycles
Organic matter
phylotype
Plant Leaves
plant litter
saprophytes
Seasons
shrubs
Snow
snow fences
Soil Microbiology
Soil moisture
Soil organic matter
soil water regimes
Summer
Taiga & tundra
Temperature
Tundra
water content
winter
Title Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13362
https://www.ncbi.nlm.nih.gov/pubmed/27197084
https://www.proquest.com/docview/1848480674
https://www.proquest.com/docview/1826683236
https://www.proquest.com/docview/1855077604
https://www.proquest.com/docview/2020880728
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KQfDFy2p1tcpRRPqSJZkkkwk-6bK1CPVBLPRBCHPLtrhmJclS11_vOZNLrZcisvuQsCdhMjmX78ye-Q5jLxKtbMZ1FCgn8iDRSY42F6WBKaVObEm7IWmD8_F7cXSSvDtNT3fYq2EvTMcPMS64kWV4f00GrnTzk5EvjZ5hguX9L9VqESD6cEkdFXPfVzOK0wRdTRT3rEJUxTNeeTUW_QYwr-JVH3AOb7NPw1C7OpPPs02rZ-b7LyyO__ksd9itHojC605z7rIdV03Yja415XbC9haXO-BQrHcBzYRNjxFmr2svBi9hvjpHzOvP7rFvi-rMVxQA6ber4UJRqc0SaiKIdQ1gFMWIBNZRJfsatR_sUBcCqrKAOQG-Z_iCiB5WOGVAZcDQ0HL9crWF8wpsvQVa7afjC9dCu6lsre6zk8PFx_lR0Ld2CEwiUx4YEYmSO5e6WFrMzukbKumMUFFepi5zWShUpk0sjdZOJk7nwsgyjJzCwKriPbZbrSv3kAEXUpRCm1IlRK6oNC9tHOYOM19b5mE4ZQfDSy5Mz3tO7TdWxZD_4OwXfvan7Pko-rUj-_iT0P6gKUVv702BeTJ-MPInU_Zs_Bktlf5-UZVbb0gGwRA60FhcJ0P8cpkIr7kPp76qMsy4nLIHnaaOo-VZlGehxKsPvL79_TGKt_M3_uDRv4s-Zjc5oRq_ArXPdtt6454gJmv1U298PwA6tDOp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRQguPAIFQ4EFIdSLI3u9Xq8lLhClBGh6QK3UC7L25VARHOQkKuHXM7N-lPKoEEoOjjKO7PU8vpnMfkPIc66VzZiOQ-VEHnLNc7C5OA1NKTW3Je6GxA3O00MxOebvTtKTLfKy2wvT8EP0BTe0DO-v0cCxIP2Tlc-MHkKGhQ74Ck709gnVh3PyqIT5yZpxknJwNnHS8gphH09_6sVo9BvEvIhYfcjZv0k-dhfbdJp8Hq5Xemi-_8Lj-L93c4vcaLEofdUoz22y5aoBudpMp9wMyM74fBMciLVeYDkgwRSQ9qL2YvQFHc1PAfb6T3fIt3H1yTcVUFRxV9Mzhd02M1ojR6xbUgikEJSoddjMvgADoLZrDaGqshTSAnjU9AuAejqHNaPYCUyXWLGfzTf0tKK23lAs-OPxmVvR1bqytbpLjvfHR6NJ2E53CA2XKQuNiEXJnEtdIi0k6PiOlHRGqDgvU5e5LBIq0yaRRmsnudO5MLKMYqcgtqpkh2xXi8rdJ5QJKUqhTak48isqzUqbRLmD5NeWeRQFZK97yoVpqc9xAse86FIgWP3Cr35AnvWiXxu-jz8J7XaqUrQmvywgVYYXBH8ekKf912Cs-A-MqtxijTKAh8CHJuIyGaSYy0R0ye8wHK0qo4zJgNxrVLW_WpbFeRZJOHvPK9zfb6N4M3rtDx78u-gTcm1yND0oDt4evn9IrjMEOb4gtUu2V_XaPQKIttKPvSX-AE9DN8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5VRSBeOAIFQ4EFIdQXR2t7vV6LJ0gTytEKISr1Acnay6EiOJXjqIRfz8zaTilHhVDyYCtja72e45vN7DeEPOVa2SzWUaicyEOueQ42F6WhKaXmtsTdkLjBef9A7B3yN0fp0QZ53u-Fafkh1gtuaBneX6OBn9jyJyOfGj2EBAv97yUumESV3v1wxh2VxL6xZpSkHHxNlHS0QljGs770fDD6DWGeB6w-4kyuk0_9WNtCky_DZaOH5vsvNI7_-TA3yLUOidIXrercJBuuGpDLbW_K1YBsjc-2wIFY5wMWAxLsA86e116MPqOj2TGAXn92i3wbV599SQFFBXc1PVVYazOlNTLEugWFMAohiVqHpexzUH9q-8IQqipLISmAF02_AqSnM5gyinXAdIHr9dPZih5X1NYrisv9eHzqGtosK1ur2-RwMv442gu73g6h4TKNQyMiUcbOpS6RFtJz_DIlnREqysvUZS5jQmXaJNJo7SR3OhdGlixyCiKrSrbIZjWv3F1CYyFFKbQpFUd2RaXj0iYsd5D62jJnLCA7_UsuTEd8jv03ZkWfAMHsF372A_JkLXrSsn38SWi715SiM_hFAYkyfCD084A8Xv8Mpor_v6jKzZcoA2gIPGgiLpJBgrlMsAvuE2NjVcmyWAbkTqup69HGWZRnTMLVO17f_v4YxavRS39w799FH5Er73cnxbvXB2_vk6sxIhy_GrVNNpt66R4APmv0Q2-HPwChOjZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+summer+warming+reduces+fungal+decomposer+diversity+and+litter+mass+loss+more+strongly+in+dry+than+in+wet+tundra&rft.jtitle=Global+change+biology&rft.au=Christiansen%2C+Casper+T&rft.au=Haugwitz%2C+Merian+S&rft.au=Priem%C3%A9%2C+Anders&rft.au=Nielsen%2C+Cecilie+S&rft.date=2017-01-01&rft.eissn=1365-2486&rft.volume=23&rft.issue=1&rft.spage=406&rft_id=info:doi/10.1111%2Fgcb.13362&rft_id=info%3Apmid%2F27197084&rft.externalDocID=27197084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon