Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones

The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to d...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 99; no. 3; pp. 578 - 587
Main Authors Sleiman, Robert J, Gray, Peter P, McCall, Martin N, Codamo, Joe, Sunstrom, Noelle-Ann S
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.02.2008
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence. Biotechnol. Bioeng. 2008;99: 578-587. © 2007 Wiley Periodicals, Inc.
AbstractList The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence.
The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence. Biotechnol. Bioeng. 2008;99: 578-587. © 2007 Wiley Periodicals, Inc.
The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence. Biotechnol. Bioeng. 2008;99: 578-587.
The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FAGS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence. [PUBLICATION ABSTRACT]
Author Sleiman, Robert J
McCall, Martin N
Gray, Peter P
Codamo, Joe
Sunstrom, Noelle-Ann S
Author_xml – sequence: 1
  fullname: Sleiman, Robert J
– sequence: 2
  fullname: Gray, Peter P
– sequence: 3
  fullname: McCall, Martin N
– sequence: 4
  fullname: Codamo, Joe
– sequence: 5
  fullname: Sunstrom, Noelle-Ann S
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19994013$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17680677$$D View this record in MEDLINE/PubMed
BookMark eNqFkdtu1DAQhi1URA9wwQtAhAQSF2nHTmLHl2UFpVIpEmzFpeU4k62LN97aSdt9Bl4a7wFWQkK98Unf_P-M_0Oy1_seCXlJ4ZgCsJPGDseMcsqekAMKUuTAJOyRAwDgeVFJtk8OY7xJV1Fz_ozsU8Fr4EIckF-nxqDDoAdss3RymbM9Zi3eofOLOfZDNkbbz7Lh3ufGOx-yzo0-YDTYG8y0Gezdrjj6MKxpn8Uka4bs2s6u3TLDh0WqWSvpfrCNb5f5Ivh2NKsn49JA8Tl52mkX8cV2PyJXnz5OJ5_zi69n55PTi9yUdcXykrJSCi6xES0VhqMoqk60jAE20DSyKHWtKddVWTFmJDABFe0qLplAFKIujsi7jW5q4HbEOKi5jav2dY9-jEoA5WVZyUfBgqZPTMujIIM6-RY0gW_-AW_8GPo0rWK0EBwEZQl6v4FM8DEG7NQi2LkOS0VBrQJXKXC1Djyxr7aCYzPHdkduE07A2y2go9GuC7o3Nu44KWUJtEjcyYa7tw6X_3dUH86nf6zzTYWNAz78rdDhp0q_Iir14_JMXU5KAVP5RX1L_OsN32mv9CykLq6-s-QNUJcUqrL4DV_03Fc
CODEN BIBIAU
CitedBy_id crossref_primary_10_1080_19420862_2019_1709333
crossref_primary_10_1016_j_biotechadv_2010_04_003
crossref_primary_10_1002_btpr_2914
crossref_primary_10_1002_jctb_6895
crossref_primary_10_4161_mabs_3_5_16968
crossref_primary_10_1002_bit_26000
crossref_primary_10_1002_jctb_2572
crossref_primary_10_1016_j_pep_2021_106029
crossref_primary_10_1002_elsc_202000049
crossref_primary_10_1007_s13277_016_5423_1
crossref_primary_10_1089_mab_2017_0049
crossref_primary_10_1016_j_jviromet_2011_05_011
crossref_primary_10_1371_journal_pone_0091712
crossref_primary_10_4155_pbp_13_8
crossref_primary_10_1002_jctb_2618
crossref_primary_10_1007_s10529_019_02711_4
crossref_primary_10_1186_1472_6750_12_24
crossref_primary_10_1016_j_biotechadv_2015_05_008
crossref_primary_10_1016_j_jala_2008_01_003
crossref_primary_10_2144_0000113936
crossref_primary_10_1007_s10616_018_0276_7
crossref_primary_10_1093_protein_gzu039
crossref_primary_10_1002_btpr_2204
crossref_primary_10_1590_s2175_97902022e19692
crossref_primary_10_1002_btpr_2145
crossref_primary_10_1007_s12033_010_9351_9
crossref_primary_10_1002_btpr_3215
crossref_primary_10_1039_B813657B
crossref_primary_10_1002_bit_26316
crossref_primary_10_1016_j_jbiotec_2011_08_031
crossref_primary_10_4155_pbp_15_18
crossref_primary_10_1002_bit_22968
crossref_primary_10_1016_j_csbj_2020_05_020
crossref_primary_10_1002_bit_23219
crossref_primary_10_1007_s10616_009_9187_y
crossref_primary_10_1080_21655979_2016_1222995
crossref_primary_10_1002_biot_201500579
crossref_primary_10_1002_bit_22707
crossref_primary_10_1111_j_1467_7652_2012_00722_x
crossref_primary_10_1016_j_nbt_2014_02_002
crossref_primary_10_3389_fbioe_2022_858478
crossref_primary_10_1002_biot_202000350
crossref_primary_10_1128_AEM_00104_11
crossref_primary_10_1002_biot_201800675
crossref_primary_10_1016_j_ymeth_2012_03_004
crossref_primary_10_4161_mabs_20761
crossref_primary_10_1002_biot_202000391
Cites_doi 10.1016/0378-1119(89)90010-3
10.1007/BF02521735
10.1007/s002530100673
10.1023/A:1008926708028
10.1038/nbt0991-873
10.1385/MB:15:3:249
10.1038/312643a0
10.1007/BF02674280
10.1093/nar/gni049
10.1002/bit.20534
10.1038/nbt1044
10.1002/(SICI)1097-0320(19990901)37:1<51::AID-CYTO6>3.0.CO;2-Z
10.1002/1097-0290(2000)71:4<266::AID-BIT1016>3.0.CO;2-2
10.1016/S0003-2697(02)00619-X
10.1517/14712598.4.11.1821
10.1038/nbt0901-819
10.1007/s004180000219
10.1038/nbt0292-169
10.1016/S0022-1759(99)00181-7
10.1007/s10969-005-5247-5
10.1016/S0168-1656(99)00044-9
10.1083/jcb.104.3.761
10.1038/nbt0485-337
10.1038/nbt1136
10.1091/mbc.10.7.2209
10.1093/oso/9780195183146.001.0001
10.1002/bit.10424
10.1007/BF00749617
10.1126/science.1074952
10.1023/A:1008858025515
10.1016/S0021-9258(17)34875-5
10.1016/S0958-1669(02)00009-5
10.1083/jcb.102.5.1558
10.1006/bbrc.1999.0954
10.1016/j.cbpa.2004.06.007
10.1023/A:1008093404237
10.1038/nbt0490-333
10.1016/j.conb.2004.08.002
10.1016/S0167-7799(00)01473-6
10.1016/j.tibtech.2005.10.005
10.1038/nbt1026
10.1016/S0378-1119(99)00524-7
10.1093/nar/24.21.4356
10.1089/hum.1997.8.11-1313
10.1016/j.chembiol.2005.01.005
10.1093/nar/24.9.1774
10.1016/S0022-1759(03)00108-X
10.1177/1087057105274532
10.1016/j.cell.2004.09.012
10.1073/pnas.92.6.1921
10.1002/jcp.1030590302
ContentType Journal Article
Copyright Copyright © 2007 Wiley Periodicals, Inc.
2008 INIST-CNRS
(c) 2007 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Feb 15, 2008
Copyright_xml – notice: Copyright © 2007 Wiley Periodicals, Inc.
– notice: 2008 INIST-CNRS
– notice: (c) 2007 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Feb 15, 2008
DBID FBQ
BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.21612
DatabaseName AGRIS
Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE
MEDLINE - Academic

CrossRef
Solid State and Superconductivity Abstracts

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 587
ExternalDocumentID 1415979211
10_1002_bit_21612
17680677
19994013
BIT21612
ark_67375_WNG_NC470T9M_R
US201300841054
Genre article
Journal Article
Feature
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XFK
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AHBTC
AITYG
BSCLL
HGLYW
OIG
08R
AAPBV
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c4852-41249769eb7d17c6e735f7d220eb0bb934a8a16a54522c9027051f56927ee7783
IEDL.DBID DR2
ISSN 0006-3592
IngestDate Wed Dec 04 14:10:47 EST 2024
Wed Dec 04 07:31:57 EST 2024
Tue Dec 03 23:15:04 EST 2024
Thu Oct 10 18:03:15 EDT 2024
Fri Dec 06 04:49:29 EST 2024
Sat Sep 28 07:44:02 EDT 2024
Sun Oct 22 16:03:58 EDT 2023
Sat Aug 24 00:56:09 EDT 2024
Wed Oct 30 09:52:09 EDT 2024
Wed Dec 27 19:19:59 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Antibody
Selection
Fluorescence
Cell sorting
Method
CHO
CHO cell line
GFP
Cell line
Green fluorescent protein
Recombinant protein
recombinant antibody
fluorescence activated cell sorting
Language English
License CC BY 4.0
(c) 2007 Wiley Periodicals, Inc.
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4852-41249769eb7d17c6e735f7d220eb0bb934a8a16a54522c9027051f56927ee7783
Notes http://dx.doi.org/10.1002/bit.21612
ark:/67375/WNG-NC470T9M-R
ArticleID:BIT21612
istex:54934AE89155526E880F21D00991AB54FD18C27D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 17680677
PQID 213760712
PQPubID 48814
PageCount 10
ParticipantIDs proquest_miscellaneous_70164459
proquest_miscellaneous_31067310
proquest_miscellaneous_20878331
proquest_journals_213760712
crossref_primary_10_1002_bit_21612
pubmed_primary_17680677
pascalfrancis_primary_19994013
wiley_primary_10_1002_bit_21612_BIT21612
istex_primary_ark_67375_WNG_NC470T9M_R
fao_agris_US201300841054
PublicationCentury 2000
PublicationDate 15 February 2008
PublicationDateYYYYMMDD 2008-02-15
PublicationDate_xml – month: 02
  year: 2008
  text: 15 February 2008
  day: 15
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wiley Subscription Services, Inc
References Cabantous S, Terwilliger TC, Waldo GS. 2005. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23(1): 102-107.
McNeall J, Sanchez A, Gray PP, Chesterman CN, Sleigh MJ. 1989. Hyperinducible gene expression from a metallothionein promoter containing additional metal-responsive elements. Gene 76(1): 81-88.
Beer CFD, Swanepoel JWH. 1999. Simple and effective number-of-bins circumference selectors for a histogram. Stat Comput 9(1): 27-35.
Kain SR, Adams M, Kondepudi A, Yang TT, Ward WW, Kitts P. 1995. Green fluorescent protein as a reporter of gene expression and protein localization. Biotechniques 19(4): 650-655.
Bailey CG, Tait AS, Sunstrom NA. 2002. High-throughput clonal selection of recombinant CHO cells using a dominant selectable and amplifiable metallothionein-GFP fusion protein. Biotechnol Bioeng 80(6): 670-676.
Alt FW, Kellems RE, Bertino JR, Schimke RT. 1978. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 253(5): 1357-1370.
Zhu J, Musco ML, Grace MJ. 1999. Three-color flow cytometry analysis of tricistronic expression of eBFP, eGFP, and eYFP using EMCV-IRES linkages. Cytometry 37(1): 51-59.
Edwards BS, Oprea T, Prossnitz ER, Sklar LA. 2004. Flow cytometry for high-throughput, high-content screening. Curr Opin Chem Biol 8(4): 392-398.
Weaver JC, Bliss JG, Powell KT, Harrison GI, Williams GB. 1991. Rapid clonal growth measurements at the single-cell level: Gel microdroplets and flow cytometry. Biotechnol (NY) 9(9): 873-877.
Bole DG, Hendershot LM, Kearney JF. 1986. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 102(5): 1558-1566.
Kunaparaju R, Liao M, Sunstrom NA. 2005. Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Biotechnol Bioeng 91(6): 670-677.
Manz R, Assenmacher M, Pfluger E, Miltenyi S, Radbruch A. 1995. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci USA 92(6): 1921-1925.
Melkonyan H, Sorg C, Klempt M. 1996. Electroporation efficiency in mammalian cells is increased by dimethyl sulfoxide (DMSO). Nucleic Acids Res 24(21): 4356-4357.
Cabantous S, Pedelacq JD, Mark BL, Naranjo C, Terwilliger TC, Waldo GS. 2005. Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis. J Struct Funct Genomics 6(2-3): 113-119.
al-Rubeai M, Emery AN, Chalder S, Jan DC. 1992. Specific monoclonal antibody productivity and the cell cycle-comparisons of batch, continuous and perfusion cultures. Cytotechnology 9(1-3): 85-97.
Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT. 1992. High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnol (NY) 10(2): 169-175.
Lee YK, Brewer JW, Hellman R, Hendershot LM. 1999. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol Biol Cell 10(7): 2209-2219.
Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G. 2003. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277(1-2): 141-155.
Holmes P, Al-Rubeai M. 1999. Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J Immunol Methods 230(1-2): 141-147.
Kandel ES, Chang BD, Schott B, Shtil AA, Gudkov AV, Roninson IB. 1997. Applications of green fluorescent protein as a marker of retroviral vectors. Somat Cell Mol Genet 23(5): 325-340.
Hendershot L, Bole D, Kohler G, Kearney JF. 1987. Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein. J Cell Biol 104(3): 761-767.
Strutzenberger K, Borth N, Kunert R, Steinfellner W, Katinger H. 1999. Changes during subclone development and ageing of human antibody-producing recombinant CHO cells. J Biotechnol 69(2-3): 215-226.
Choe J, Guo HH, van den Engh G. 2005. A dual-fluorescence reporter system for high-throughput clone characterization and selection by cell sorting. Nucleic Acids Res 33: 49.
Martin BR, Giepmans BNG, Adams SR, Tsien RY. 2005. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotech 23(10): 1308-1314.
Lucas BK, Giere LM, DeMarco RA, Shen A, Chisholm V, Crowley CW. 1996. High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Res 24(9): 1774-1779.
Young SM, Bologa C, Prossnitz ER, Oprea TI, Sklar LA, Edwards BS. 2005. High-throughput screening with HyperCyt flow cytometry to detect small molecule formylpeptide receptor ligands. J Biomol Screen 10(4): 374-382.
Ibrahim SF, van den Engh G. 2003. High-speed cell sorting: Fundamentals and recent advances. Curr Opin Biotechnol 14(1): 5-12.
Reichert JM. 2000. New biopharmaceuticals in the USA: Trends in development and marketing approvals 1995-1999. Trends Biotechnol 18(9): 364-369.
Meng YG, Liang J, Wong WL, Chisholm V. 2000. Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 242(1-2): 201-207.
Borth N, Zeyda M, Kunert R, Katinger H. 2000. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 71(4): 266-273.
Endemann G, Schechtman D, Mochly-Rosen D. 2003. Cytotoxicity of pEGFP vector is due to residues encoded by multiple cloning site. Anal Biochem 313(2): 345-347.
Carroll S, Al-Rubeai M. 2004. The selection of high-producing cell lines using flow cytometry and cell sorting. Expert Opin Biol Ther 4(11): 1821-1829.
Chudakov DM, Lukyanov S, Lukyanov KA. 2005. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23(12): 605-613.
Rieseberg M, Kasper C, Reardon KF, Scheper T. 2001. Flow cytometry in biotechnology. Appl Microbiol Biotechnol 56(3-4): 350-360.
Patterson GH, Lippincott-Schwartz J. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588): 1873-1877.
Sinacore MS, Drapeau D, Adamson SR. 2000. Adaptation of mammalian cells to growth in serum-free media. Mol Biotechnol 15(3): 249-257.
Shimomura O, Johnson FH, Saiga Y. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59: 223-239.
Jackson RJ, Kaminski A. 1995. Internal initiation of translation in eukaryotes: The picornavirus paradigm and beyond. RNA 1(10): 985-1000.
Bailey CG, Baig M, Gray PP, Sunstrom N-A. 1999. A rapid selection/amplification procedure for high-level expression of recombinant protein in a metal-amplifiable mammalian expression system. Biotechnol Tech 13(9): 615-619.
Reichert JM. 2001. Monoclonal antibodies in the clinic. Nat Biotechnol 19(9): 819-822.
Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology 22: 1393-1398.
Zhang S, Ma C, Chalfie M. 2004. Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119(1): 137-144.
Hawley TS, Herbert DJ, Eaker SS, Hawley RG. 2004. Multiparameter flow cytometry of fluorescent protein reporters. Methods Mol Biol 263: 219-238.
Wahlfors J, Loimas S, Pasanen T, Hakkarainen T. 2001. Green fluorescent protein (GFP) fusion constructs in gene therapy research. Histochem Cell Biol 115(1): 59-65.
Verkhusha VV, Sorkin A. 2005. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol 12(3): 279-285.
Boulianne GL, Hozumi N, Shulman MJ. 1984. Production of functional chimaeric mouse/human antibody. Nature 312(5995): 643-646.
Kromenaker SJ, Srienc F. 1994. Cell cycle kinetics of the accumulation of heavy and light chain immunoglobulin proteins in a mouse hybridoma cell line. Cytotechnology 14(3): 205-218.
Powell KT, Weaver JC. 1990. Gel microdroplets and flow cytometry: Rapid determination of antibody secretion by individual cells within a cell population. Biotechnol (NY) 8(4): 333-337.
Griesbeck O. 2004. Fluorescent proteins as sensors for cellular functions. Curr Opin Neurobiol 14(5): 636-641.
Hanazono Y, Yu JM, Dunbar CE, Emmons RV. 1997. Green fluorescent protein retroviral vectors: Low titer and high recombination frequency suggest a selective disadvantage. Hum Gene Ther 8(11): 1313-1319.
Lloyd D, Leelavatcharamas V, Emery AN, Al-Rubeai M. 1999. The role of the cell cycle in determining gene expression and productivity in CHO cells. Cytotechnology 30: 49-57.
Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ. 1999. Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260(3): 712-717.
Muirhead KA, Horan PK, Poste G. 1985. Flow cytometry: Present and future. Nat Biotech 3(4): 337-356.
2004; 22
1987; 104
2004; 8
2004; 4
2003; 14
1978; 253
2003; 313
1992; 10
2003; 277
2005; 23
1997; 8
1992; 9
2000; 18
1986; 102
1989; 76
1984; 312
2000; 15
1999; 260
1999; 13
2001; 19
1999; 10
2000; 242
1996; 24
2001; 56
2005; 33
2004; 263
1995; 92
2002; 297
1985; 3
1997; 23
1999; 69
2000; 71
1962; 59
2005
1995; 19
2002; 80
1995; 1
1991; 9
1999; 9
2004; 14
1999; 37
1999; 230
1994; 14
2005; 6
2005; 10
2005; 91
1999; 30
2004; 119
1990; 8
2001; 115
2005; 12
e_1_2_1_20_1
Hawley TS (e_1_2_1_21_1) 2004; 263
e_1_2_1_41_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
Sklar LA (e_1_2_1_47_1) 2005
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_18_1
e_1_2_1_42_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
Jackson RJ (e_1_2_1_25_1) 1995; 1
e_1_2_1_44_1
e_1_2_1_27_1
e_1_2_1_48_1
Kain SR (e_1_2_1_26_1) 1995; 19
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_5_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – volume: 24
  start-page: 4356
  issue: 21
  year: 1996
  end-page: 4357
  article-title: Electroporation efficiency in mammalian cells is increased by dimethyl sulfoxide (DMSO)
  publication-title: Nucleic Acids Res
– volume: 14
  start-page: 636
  issue: 5
  year: 2004
  end-page: 641
  article-title: Fluorescent proteins as sensors for cellular functions
  publication-title: Curr Opin Neurobiol
– volume: 260
  start-page: 712
  issue: 3
  year: 1999
  end-page: 717
  article-title: Is green fluorescent protein toxic to the living cells?
  publication-title: Biochem Biophys Res Commun
– volume: 19
  start-page: 650
  issue: 4
  year: 1995
  end-page: 655
  article-title: Green fluorescent protein as a reporter of gene expression and protein localization
  publication-title: Biotechniques
– volume: 14
  start-page: 5
  issue: 1
  year: 2003
  end-page: 12
  article-title: High‐speed cell sorting: Fundamentals and recent advances
  publication-title: Curr Opin Biotechnol
– volume: 4
  start-page: 1821
  issue: 11
  year: 2004
  end-page: 1829
  article-title: The selection of high‐producing cell lines using flow cytometry and cell sorting
  publication-title: Expert Opin Biol Ther
– volume: 263
  start-page: 219
  year: 2004
  end-page: 238
  article-title: Multiparameter flow cytometry of fluorescent protein reporters
  publication-title: Methods Mol Biol
– volume: 230
  start-page: 141
  issue: 1–2
  year: 1999
  end-page: 147
  article-title: Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors
  publication-title: J Immunol Methods
– volume: 115
  start-page: 59
  issue: 1
  year: 2001
  end-page: 65
  article-title: Green fluorescent protein (GFP) fusion constructs in gene therapy research
  publication-title: Histochem Cell Biol
– volume: 119
  start-page: 137
  issue: 1
  year: 2004
  end-page: 144
  article-title: Combinatorial marking of cells and organelles with reconstituted fluorescent proteins
  publication-title: Cell
– volume: 3
  start-page: 337
  issue: 4
  year: 1985
  end-page: 356
  article-title: Flow cytometry: Present and future
  publication-title: Nat Biotech
– volume: 18
  start-page: 364
  issue: 9
  year: 2000
  end-page: 369
  article-title: New biopharmaceuticals in the USA: Trends in development and marketing approvals 1995–1999
  publication-title: Trends Biotechnol
– volume: 56
  start-page: 350
  issue: 3–4
  year: 2001
  end-page: 360
  article-title: Flow cytometry in biotechnology
  publication-title: Appl Microbiol Biotechnol
– volume: 91
  start-page: 670
  issue: 6
  year: 2005
  end-page: 677
  article-title: Epi‐CHO, an episomal expression system for recombinant protein production in CHO cells
  publication-title: Biotechnol Bioeng
– volume: 13
  start-page: 615
  issue: 9
  year: 1999
  end-page: 619
  article-title: A rapid selection/amplification procedure for high‐level expression of recombinant protein in a metal‐amplifiable mammalian expression system
  publication-title: Biotechnol Tech
– volume: 6
  start-page: 113
  issue: 2–3
  year: 2005
  end-page: 119
  article-title: Recent advances in GFP folding reporter and split‐GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis
  publication-title: J Struct Funct Genomics
– volume: 23
  start-page: 102
  issue: 1
  year: 2005
  end-page: 107
  article-title: Protein tagging and detection with engineered self‐assembling fragments of green fluorescent protein
  publication-title: Nat Biotechnol
– volume: 10
  start-page: 169
  issue: 2
  year: 1992
  end-page: 175
  article-title: High‐level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker
  publication-title: Biotechnol (NY)
– volume: 9
  start-page: 27
  issue: 1
  year: 1999
  end-page: 35
  article-title: Simple and effective number‐of‐bins circumference selectors for a histogram
  publication-title: Stat Comput
– volume: 9
  start-page: 85
  issue: 1–3
  year: 1992
  end-page: 97
  article-title: Specific monoclonal antibody productivity and the cell cycle‐comparisons of batch, continuous and perfusion cultures
  publication-title: Cytotechnology
– volume: 23
  start-page: 325
  issue: 5
  year: 1997
  end-page: 340
  article-title: Applications of green fluorescent protein as a marker of retroviral vectors
  publication-title: Somat Cell Mol Genet
– volume: 71
  start-page: 266
  issue: 4
  year: 2000
  end-page: 273
  article-title: Efficient selection of high‐producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting
  publication-title: Biotechnol Bioeng
– volume: 23
  start-page: 605
  issue: 12
  year: 2005
  end-page: 613
  article-title: Fluorescent proteins as a toolkit for in vivo imaging
  publication-title: Trends Biotechnol
– volume: 14
  start-page: 205
  issue: 3
  year: 1994
  end-page: 218
  article-title: Cell cycle kinetics of the accumulation of heavy and light chain immunoglobulin proteins in a mouse hybridoma cell line
  publication-title: Cytotechnology
– start-page: 388
  year: 2005
– volume: 104
  start-page: 761
  issue: 3
  year: 1987
  end-page: 767
  article-title: Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain‐binding protein
  publication-title: J Cell Biol
– volume: 23
  start-page: 1308
  issue: 10
  year: 2005
  end-page: 1314
  article-title: Mammalian cell‐based optimization of the biarsenical‐binding tetracysteine motif for improved fluorescence and affinity
  publication-title: Nat Biotech
– volume: 92
  start-page: 1921
  issue: 6
  year: 1995
  end-page: 1925
  article-title: Analysis and sorting of live cells according to secreted molecules, relocated to a cell‐surface affinity matrix
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 374
  issue: 4
  year: 2005
  end-page: 382
  article-title: High‐throughput screening with HyperCyt flow cytometry to detect small molecule formylpeptide receptor ligands
  publication-title: J Biomol Screen
– volume: 37
  start-page: 51
  issue: 1
  year: 1999
  end-page: 59
  article-title: Three‐color flow cytometry analysis of tricistronic expression of eBFP, eGFP, and eYFP using EMCV‐IRES linkages
  publication-title: Cytometry
– volume: 69
  start-page: 215
  issue: 2–3
  year: 1999
  end-page: 226
  article-title: Changes during subclone development and ageing of human antibody‐producing recombinant CHO cells
  publication-title: J Biotechnol
– volume: 59
  start-page: 223
  year: 1962
  end-page: 239
  article-title: Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea
  publication-title: J Cell Comp Physiol
– volume: 253
  start-page: 1357
  issue: 5
  year: 1978
  end-page: 1370
  article-title: Selective multiplication of dihydrofolate reductase genes in methotrexate‐resistant variants of cultured murine cells
  publication-title: J Biol Chem
– volume: 297
  start-page: 1873
  issue: 5588
  year: 2002
  end-page: 1877
  article-title: A photoactivatable GFP for selective photolabeling of proteins and cells
  publication-title: Science
– volume: 24
  start-page: 1774
  issue: 9
  year: 1996
  end-page: 1779
  article-title: High‐level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector
  publication-title: Nucleic Acids Res
– volume: 102
  start-page: 1558
  issue: 5
  year: 1986
  end-page: 1566
  article-title: Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas
  publication-title: J Cell Biol
– volume: 30
  start-page: 49
  year: 1999
  end-page: 57
  article-title: The role of the cell cycle in determining gene expression and productivity in CHO cells
  publication-title: Cytotechnology
– volume: 80
  start-page: 670
  issue: 6
  year: 2002
  end-page: 676
  article-title: High‐throughput clonal selection of recombinant CHO cells using a dominant selectable and amplifiable metallothionein‐GFP fusion protein
  publication-title: Biotechnol Bioeng
– volume: 10
  start-page: 2209
  issue: 7
  year: 1999
  end-page: 2219
  article-title: BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly
  publication-title: Mol Biol Cell
– volume: 15
  start-page: 249
  issue: 3
  year: 2000
  end-page: 257
  article-title: Adaptation of mammalian cells to growth in serum‐free media
  publication-title: Mol Biotechnol
– volume: 76
  start-page: 81
  issue: 1
  year: 1989
  end-page: 88
  article-title: Hyperinducible gene expression from a metallothionein promoter containing additional metal‐responsive elements
  publication-title: Gene
– volume: 8
  start-page: 333
  issue: 4
  year: 1990
  end-page: 337
  article-title: Gel microdroplets and flow cytometry: Rapid determination of antibody secretion by individual cells within a cell population
  publication-title: Biotechnol (NY)
– volume: 22
  start-page: 1393
  year: 2004
  end-page: 1398
  article-title: Production of recombinant protein therapeutics in cultivated mammalian cells
  publication-title: Nature Biotechnology
– volume: 33
  start-page: 49
  year: 2005
  article-title: A dual‐fluorescence reporter system for high‐throughput clone characterization and selection by cell sorting
  publication-title: Nucleic Acids Res
– volume: 8
  start-page: 392
  issue: 4
  year: 2004
  end-page: 398
  article-title: Flow cytometry for high‐throughput, high‐content screening
  publication-title: Curr Opin Chem Biol
– volume: 8
  start-page: 1313
  issue: 11
  year: 1997
  end-page: 1319
  article-title: Green fluorescent protein retroviral vectors: Low titer and high recombination frequency suggest a selective disadvantage
  publication-title: Hum Gene Ther
– volume: 242
  start-page: 201
  issue: 1–2
  year: 2000
  end-page: 207
  article-title: Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells
  publication-title: Gene
– volume: 312
  start-page: 643
  issue: 5995
  year: 1984
  end-page: 646
  article-title: Production of functional chimaeric mouse/human antibody
  publication-title: Nature
– volume: 313
  start-page: 345
  issue: 2
  year: 2003
  end-page: 347
  article-title: Cytotoxicity of pEGFP vector is due to residues encoded by multiple cloning site
  publication-title: Anal Biochem
– volume: 19
  start-page: 819
  issue: 9
  year: 2001
  end-page: 822
  article-title: Monoclonal antibodies in the clinic
  publication-title: Nat Biotechnol
– volume: 1
  start-page: 985
  issue: 10
  year: 1995
  end-page: 1000
  article-title: Internal initiation of translation in eukaryotes: The picornavirus paradigm and beyond
  publication-title: RNA
– volume: 12
  start-page: 279
  issue: 3
  year: 2005
  end-page: 285
  article-title: Conversion of the monomeric red fluorescent protein into a photoactivatable probe
  publication-title: Chem Biol
– volume: 9
  start-page: 873
  issue: 9
  year: 1991
  end-page: 877
  article-title: Rapid clonal growth measurements at the single‐cell level: Gel microdroplets and flow cytometry
  publication-title: Biotechnol (NY)
– volume: 277
  start-page: 141
  issue: 1–2
  year: 2003
  end-page: 155
  article-title: A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity
  publication-title: J Immunol Methods
– ident: e_1_2_1_36_1
  doi: 10.1016/0378-1119(89)90010-3
– ident: e_1_2_1_2_1
  doi: 10.1007/BF02521735
– ident: e_1_2_1_44_1
  doi: 10.1007/s002530100673
– ident: e_1_2_1_4_1
  doi: 10.1023/A:1008926708028
– ident: e_1_2_1_51_1
  doi: 10.1038/nbt0991-873
– ident: e_1_2_1_46_1
  doi: 10.1385/MB:15:3:249
– ident: e_1_2_1_10_1
  doi: 10.1038/312643a0
– ident: e_1_2_1_27_1
  doi: 10.1007/BF02674280
– ident: e_1_2_1_15_1
  doi: 10.1093/nar/gni049
– ident: e_1_2_1_29_1
  doi: 10.1002/bit.20534
– ident: e_1_2_1_13_1
  doi: 10.1038/nbt1044
– ident: e_1_2_1_55_1
  doi: 10.1002/(SICI)1097-0320(19990901)37:1<51::AID-CYTO6>3.0.CO;2-Z
– ident: e_1_2_1_9_1
  doi: 10.1002/1097-0290(2000)71:4<266::AID-BIT1016>3.0.CO;2-2
– ident: e_1_2_1_18_1
  doi: 10.1016/S0003-2697(02)00619-X
– ident: e_1_2_1_14_1
  doi: 10.1517/14712598.4.11.1821
– volume: 263
  start-page: 219
  year: 2004
  ident: e_1_2_1_21_1
  article-title: Multiparameter flow cytometry of fluorescent protein reporters
  publication-title: Methods Mol Biol
  contributor:
    fullname: Hawley TS
– ident: e_1_2_1_43_1
  doi: 10.1038/nbt0901-819
– ident: e_1_2_1_50_1
  doi: 10.1007/s004180000219
– ident: e_1_2_1_6_1
  doi: 10.1038/nbt0292-169
– ident: e_1_2_1_23_1
  doi: 10.1016/S0022-1759(99)00181-7
– ident: e_1_2_1_12_1
  doi: 10.1007/s10969-005-5247-5
– volume: 1
  start-page: 985
  issue: 10
  year: 1995
  ident: e_1_2_1_25_1
  article-title: Internal initiation of translation in eukaryotes: The picornavirus paradigm and beyond
  publication-title: RNA
  contributor:
    fullname: Jackson RJ
– ident: e_1_2_1_48_1
  doi: 10.1016/S0168-1656(99)00044-9
– ident: e_1_2_1_22_1
  doi: 10.1083/jcb.104.3.761
– ident: e_1_2_1_39_1
  doi: 10.1038/nbt0485-337
– ident: e_1_2_1_35_1
  doi: 10.1038/nbt1136
– ident: e_1_2_1_30_1
  doi: 10.1091/mbc.10.7.2209
– start-page: 388
  volume-title: Flow cytometry for biotechnology
  year: 2005
  ident: e_1_2_1_47_1
  doi: 10.1093/oso/9780195183146.001.0001
  contributor:
    fullname: Sklar LA
– ident: e_1_2_1_5_1
  doi: 10.1002/bit.10424
– ident: e_1_2_1_28_1
  doi: 10.1007/BF00749617
– ident: e_1_2_1_40_1
  doi: 10.1126/science.1074952
– ident: e_1_2_1_7_1
  doi: 10.1023/A:1008858025515
– ident: e_1_2_1_3_1
  doi: 10.1016/S0021-9258(17)34875-5
– ident: e_1_2_1_24_1
  doi: 10.1016/S0958-1669(02)00009-5
– ident: e_1_2_1_8_1
  doi: 10.1083/jcb.102.5.1558
– ident: e_1_2_1_31_1
  doi: 10.1006/bbrc.1999.0954
– ident: e_1_2_1_17_1
  doi: 10.1016/j.cbpa.2004.06.007
– ident: e_1_2_1_32_1
  doi: 10.1023/A:1008093404237
– ident: e_1_2_1_41_1
  doi: 10.1038/nbt0490-333
– ident: e_1_2_1_19_1
  doi: 10.1016/j.conb.2004.08.002
– ident: e_1_2_1_42_1
  doi: 10.1016/S0167-7799(00)01473-6
– ident: e_1_2_1_16_1
  doi: 10.1016/j.tibtech.2005.10.005
– ident: e_1_2_1_52_1
  doi: 10.1038/nbt1026
– ident: e_1_2_1_38_1
  doi: 10.1016/S0378-1119(99)00524-7
– ident: e_1_2_1_37_1
  doi: 10.1093/nar/24.21.4356
– ident: e_1_2_1_20_1
  doi: 10.1089/hum.1997.8.11-1313
– volume: 19
  start-page: 650
  issue: 4
  year: 1995
  ident: e_1_2_1_26_1
  article-title: Green fluorescent protein as a reporter of gene expression and protein localization
  publication-title: Biotechniques
  contributor:
    fullname: Kain SR
– ident: e_1_2_1_49_1
  doi: 10.1016/j.chembiol.2005.01.005
– ident: e_1_2_1_33_1
  doi: 10.1093/nar/24.9.1774
– ident: e_1_2_1_11_1
  doi: 10.1016/S0022-1759(03)00108-X
– ident: e_1_2_1_53_1
  doi: 10.1177/1087057105274532
– ident: e_1_2_1_54_1
  doi: 10.1016/j.cell.2004.09.012
– ident: e_1_2_1_34_1
  doi: 10.1073/pnas.92.6.1921
– ident: e_1_2_1_45_1
  doi: 10.1002/jcp.1030590302
SSID ssj0007866
Score 2.185868
Snippet The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 578
SubjectTerms Animal cells
Animals
Antibodies, Monoclonal - isolation & purification
Antibodies, Monoclonal - metabolism
Biological and medical sciences
Biotechnology
Cell Culture Techniques - methods
Cell Separation - methods
Cellular biology
CHO
CHO Cells
Cloning
Cloning, Molecular - methods
Cricetinae
Cricetulus
Establishment of new cell lines, improvement of cultural methods, mass cultures
Eukaryotic cell cultures
Flow Cytometry - methods
Fluorescence
fluorescence activated cell sorting
Fundamental and applied biological sciences. Psychology
GFP
Methods. Procedures. Technologies
Microscopy, Fluorescence, Multiphoton - methods
Monoclonal antibodies
Pharmaceuticals
recombinant antibody
Rodents
selection
Title Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones
URI https://api.istex.fr/ark:/67375/WNG-NC470T9M-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.21612
https://www.ncbi.nlm.nih.gov/pubmed/17680677
https://www.proquest.com/docview/213760712
https://search.proquest.com/docview/20878331
https://search.proquest.com/docview/31067310
https://search.proquest.com/docview/70164459
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJAQ8cOmAhcGwEJp4SZc4F8fiqSuMgbQ-jFbsAcnyJZmmlWbqBVae-AfwG_klnOM0DUVUQrxEUXLs-HJsnxN__g4hz3EZtzmzvtUCHJRYWV8IBuOK2dAom_CA4dnh4156NIjfnSanG-RlfRam4odY_nDDkeHmaxzgSk_2G9JQfT5tM7BXcP4NI45wvlcnDXUUz6p9SvSYo0SwmlUoYPvLlCtr0bVClWChYuNeIUJSTaCRiiq6xd_Mz1Vr1i1Hh3fIx7oiFQrloj2b6rb5-gfH43_W9C65vTBTaafSq3tkIx-1yFZnBC76pzndow446v7It8j1g_ruRrcOH9cit35jOtwi3zvGwAKHvBSW4mYBxWJR20CWKCLwz-j0S_nz2w-k0h7TYjgrx45uyuQUD2B8bpJPSqQ_APmSTlwoH4rEy8M5za8qaC-8A6U516WdQ4aXjtgWH5ohRie4TwaHr_vdI38RC8I3cZYw3wXJ5qnINbchN2nOo6TglrEg14HWIopVpsJUYch0ZgQ42zDbFEkqGM9zzrPoAdkcQf7bhBqViYDzKC0CHaciRL4cZTQvTJRALqFHntVaIS8ryg9ZkTszCV0hXVd4ZBv0RaozmIrl4D3DDeAgQ8xs7JE9p0TLxGp8gfA5nsgPvTey14150BfH8sQjuyta1nwNrHb0ez2yU6udXEwtE_g84pg4FuHp8i30LTa-GuXlDESCDGocheslImQOhMt6CY7ca3EiPPKw0vemdOChIu-gR144rV3fSPLgbd_dPPp30R1ys4LkMD9MHpPN6XiWPwG7b6p33QD_BYnlU5A
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEBo8cOmAhcFmITTxki5xLo4lXrrC6GDtw2i1vSDLcZJpWmmmNoWVJ_4B_EZ-Cec4TUMRlRAvVdQcO74c2-fYn79DyAtcxpOUJXYSC3BQfJXYQjAYVyxxtUoC7jC8O9zthZ2B_-4sOFsjr6q7MCU_xGLDDUeGma9xgOOG9H7NGhpfFE0GBgtMwDdhuLsI6Hp9UpNH8ag8qUSf2QsEq3iFHLa_SLq0Gt3IVA42KjbvNWIk1QSaKSvjW_zNAF22Z82CdHiPfKyqUuJQLpvTIm7qr3-wPP5vXe-Tu3NLlbZK1XpA1tJRg2y2RuClf5rRPWqwo2ZTvkFuHVRPG-0qglyD3PmN7HCTfG9pDWscUlMkFM8LKJaLJjVqiSII_5wWX_Kf334gm_aYZsNpPjaMUzqleAfjc518kiMDAsjndGKi-VDkXh7OaHpdonvhHejNRZwnM8jwynDb4p96iAEKHpLB4Zt-u2PPw0HY2o8CZps42TwUacwTl-sw5V6Q8YQxJ42dOBaeryLlhgqjpjMtwN-GCScLQsF4mnIeeY_I-gjy3yJUq0g4nHth5sR-KFykzFE65pn2AsjFtcjzSi3kVcn6IUt-ZyahK6TpCotsgcJIdQ6zsRx8YHgG7EQIm_Utsme0aJFYjS8RQccDedp7K3ttnzt90ZUnFtlZUrP6a2C4o-trke1K7-R8dpnA5xHKxLEIu4u30LfY-GqU5lMQcSKoseeulvCQPBB-VktwpF_zA2GRx6XC16UDJxWpBy3y0qjt6kaSB0d98_Dk30V3yUan3z2Wx0e999vkdonQYbYbPCXrxXiaPgMzsIh3zGj_BaWuV7E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGELcHLh2wMNgshCZe0iXOxbF46jrKBqxCoxV7QLIcO5mmlabqBVae-AfwG_klnOM0LUVUQrxEUXLs-HJsnxN__g4hz3AZNxkzrkkFOCihMq4QDMYVM75WJuIew7PDx-34sBu-Po1O18iL6ixMyQ8x_-GGI8PO1zjABybfW5CGpufjOgN7Bebfq2HMBBLnH5wsuKN4Um5UosscRIJVtEIe25snXVqMruSqABMVW_cSIZJqBK2Ul-Et_mZ_Lpuzdj1q3SEfq5qUMJSL-mSc1vXXP0ge_7Oqd8ntmZ1KG6Vi3SNrWb9GNhp98NE_TekutchR-0u-Rq7tV3c3mlX8uBq59RvV4Qb53tAaVjgkpjAUdwsoFouaBWaJIgT_jI6_FD-__UAu7SHNe5NiaPmmdEbxBMbnRfJRgfwHIF_QkY3lQ5F5uTel2WWJ7YV3oDXnaWGmkOHAMtviQ93D8AT3Sbf1stM8dGfBIFwdJhFzbZRsHoss5cbnOs54EOXcMOZlqZemIghVovxYYcx0pgV42zDd5FEsGM8yzpPgAVnvQ_6bhGqVCI_zIM69NIyFj4Q5Sqc810EEufgOeVpphRyUnB-yZHdmErpC2q5wyCboi1RnMBfL7nuGO8BegqDZ0CG7VonmidXwAvFzPJIf2q9kuxlyryOO5YlDtpe0bPE1MNvR8XXIVqV2cja3jODzCGTiWISd-VvoW2x81c-KCYh4CdQ48FdLBEgdCJfVEhzJ18JIOORhqe-L0oGLisSDDnlutXZ1I8n9o469efTvojvk-ruDlnx71H6zRW6W8Bzm-tFjsj4eTrInYAOO02071n8BXadWYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+cell+line+development+using+two%E2%80%90color+fluorescence+activated+cell+sorting+to+select+highly+expressing+antibody%E2%80%90producing+clones&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Sleiman%2C+Robert+J.&rft.au=Gray%2C+Peter+P.&rft.au=McCall%2C+Martin+N.&rft.au=Codamo%2C+Joe&rft.date=2008-02-15&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=99&rft.issue=3&rft.spage=578&rft.epage=587&rft_id=info:doi/10.1002%2Fbit.21612&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bit_21612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon