Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones
The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to d...
Saved in:
Published in | Biotechnology and bioengineering Vol. 99; no. 3; pp. 578 - 587 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.02.2008
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence. Biotechnol. Bioeng. 2008;99: 578-587. © 2007 Wiley Periodicals, Inc. |
---|---|
AbstractList | The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence. The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence. Biotechnol. Bioeng. 2008;99: 578-587. © 2007 Wiley Periodicals, Inc. The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence. Biotechnol. Bioeng. 2008;99: 578-587. The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FAGS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence. [PUBLICATION ABSTRACT] |
Author | Sleiman, Robert J McCall, Martin N Gray, Peter P Codamo, Joe Sunstrom, Noelle-Ann S |
Author_xml | – sequence: 1 fullname: Sleiman, Robert J – sequence: 2 fullname: Gray, Peter P – sequence: 3 fullname: McCall, Martin N – sequence: 4 fullname: Codamo, Joe – sequence: 5 fullname: Sunstrom, Noelle-Ann S |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19994013$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17680677$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdtu1DAQhi1URA9wwQtAhAQSF2nHTmLHl2UFpVIpEmzFpeU4k62LN97aSdt9Bl4a7wFWQkK98Unf_P-M_0Oy1_seCXlJ4ZgCsJPGDseMcsqekAMKUuTAJOyRAwDgeVFJtk8OY7xJV1Fz_ozsU8Fr4EIckF-nxqDDoAdss3RymbM9Zi3eofOLOfZDNkbbz7Lh3ufGOx-yzo0-YDTYG8y0Gezdrjj6MKxpn8Uka4bs2s6u3TLDh0WqWSvpfrCNb5f5Ivh2NKsn49JA8Tl52mkX8cV2PyJXnz5OJ5_zi69n55PTi9yUdcXykrJSCi6xES0VhqMoqk60jAE20DSyKHWtKddVWTFmJDABFe0qLplAFKIujsi7jW5q4HbEOKi5jav2dY9-jEoA5WVZyUfBgqZPTMujIIM6-RY0gW_-AW_8GPo0rWK0EBwEZQl6v4FM8DEG7NQi2LkOS0VBrQJXKXC1Djyxr7aCYzPHdkduE07A2y2go9GuC7o3Nu44KWUJtEjcyYa7tw6X_3dUH86nf6zzTYWNAz78rdDhp0q_Iir14_JMXU5KAVP5RX1L_OsN32mv9CykLq6-s-QNUJcUqrL4DV_03Fc |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1080_19420862_2019_1709333 crossref_primary_10_1016_j_biotechadv_2010_04_003 crossref_primary_10_1002_btpr_2914 crossref_primary_10_1002_jctb_6895 crossref_primary_10_4161_mabs_3_5_16968 crossref_primary_10_1002_bit_26000 crossref_primary_10_1002_jctb_2572 crossref_primary_10_1016_j_pep_2021_106029 crossref_primary_10_1002_elsc_202000049 crossref_primary_10_1007_s13277_016_5423_1 crossref_primary_10_1089_mab_2017_0049 crossref_primary_10_1016_j_jviromet_2011_05_011 crossref_primary_10_1371_journal_pone_0091712 crossref_primary_10_4155_pbp_13_8 crossref_primary_10_1002_jctb_2618 crossref_primary_10_1007_s10529_019_02711_4 crossref_primary_10_1186_1472_6750_12_24 crossref_primary_10_1016_j_biotechadv_2015_05_008 crossref_primary_10_1016_j_jala_2008_01_003 crossref_primary_10_2144_0000113936 crossref_primary_10_1007_s10616_018_0276_7 crossref_primary_10_1093_protein_gzu039 crossref_primary_10_1002_btpr_2204 crossref_primary_10_1590_s2175_97902022e19692 crossref_primary_10_1002_btpr_2145 crossref_primary_10_1007_s12033_010_9351_9 crossref_primary_10_1002_btpr_3215 crossref_primary_10_1039_B813657B crossref_primary_10_1002_bit_26316 crossref_primary_10_1016_j_jbiotec_2011_08_031 crossref_primary_10_4155_pbp_15_18 crossref_primary_10_1002_bit_22968 crossref_primary_10_1016_j_csbj_2020_05_020 crossref_primary_10_1002_bit_23219 crossref_primary_10_1007_s10616_009_9187_y crossref_primary_10_1080_21655979_2016_1222995 crossref_primary_10_1002_biot_201500579 crossref_primary_10_1002_bit_22707 crossref_primary_10_1111_j_1467_7652_2012_00722_x crossref_primary_10_1016_j_nbt_2014_02_002 crossref_primary_10_3389_fbioe_2022_858478 crossref_primary_10_1002_biot_202000350 crossref_primary_10_1128_AEM_00104_11 crossref_primary_10_1002_biot_201800675 crossref_primary_10_1016_j_ymeth_2012_03_004 crossref_primary_10_4161_mabs_20761 crossref_primary_10_1002_biot_202000391 |
Cites_doi | 10.1016/0378-1119(89)90010-3 10.1007/BF02521735 10.1007/s002530100673 10.1023/A:1008926708028 10.1038/nbt0991-873 10.1385/MB:15:3:249 10.1038/312643a0 10.1007/BF02674280 10.1093/nar/gni049 10.1002/bit.20534 10.1038/nbt1044 10.1002/(SICI)1097-0320(19990901)37:1<51::AID-CYTO6>3.0.CO;2-Z 10.1002/1097-0290(2000)71:4<266::AID-BIT1016>3.0.CO;2-2 10.1016/S0003-2697(02)00619-X 10.1517/14712598.4.11.1821 10.1038/nbt0901-819 10.1007/s004180000219 10.1038/nbt0292-169 10.1016/S0022-1759(99)00181-7 10.1007/s10969-005-5247-5 10.1016/S0168-1656(99)00044-9 10.1083/jcb.104.3.761 10.1038/nbt0485-337 10.1038/nbt1136 10.1091/mbc.10.7.2209 10.1093/oso/9780195183146.001.0001 10.1002/bit.10424 10.1007/BF00749617 10.1126/science.1074952 10.1023/A:1008858025515 10.1016/S0021-9258(17)34875-5 10.1016/S0958-1669(02)00009-5 10.1083/jcb.102.5.1558 10.1006/bbrc.1999.0954 10.1016/j.cbpa.2004.06.007 10.1023/A:1008093404237 10.1038/nbt0490-333 10.1016/j.conb.2004.08.002 10.1016/S0167-7799(00)01473-6 10.1016/j.tibtech.2005.10.005 10.1038/nbt1026 10.1016/S0378-1119(99)00524-7 10.1093/nar/24.21.4356 10.1089/hum.1997.8.11-1313 10.1016/j.chembiol.2005.01.005 10.1093/nar/24.9.1774 10.1016/S0022-1759(03)00108-X 10.1177/1087057105274532 10.1016/j.cell.2004.09.012 10.1073/pnas.92.6.1921 10.1002/jcp.1030590302 |
ContentType | Journal Article |
Copyright | Copyright © 2007 Wiley Periodicals, Inc. 2008 INIST-CNRS (c) 2007 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Feb 15, 2008 |
Copyright_xml | – notice: Copyright © 2007 Wiley Periodicals, Inc. – notice: 2008 INIST-CNRS – notice: (c) 2007 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Feb 15, 2008 |
DBID | FBQ BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/bit.21612 |
DatabaseName | AGRIS Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic CrossRef Solid State and Superconductivity Abstracts Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 587 |
ExternalDocumentID | 1415979211 10_1002_bit_21612 17680677 19994013 BIT21612 ark_67375_WNG_NC470T9M_R US201300841054 |
Genre | article Journal Article Feature |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AI. AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XFK XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AHBTC AITYG BSCLL HGLYW OIG 08R AAPBV IQODW CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c4852-41249769eb7d17c6e735f7d220eb0bb934a8a16a54522c9027051f56927ee7783 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 |
IngestDate | Wed Dec 04 14:10:47 EST 2024 Wed Dec 04 07:31:57 EST 2024 Tue Dec 03 23:15:04 EST 2024 Thu Oct 10 18:03:15 EDT 2024 Fri Dec 06 04:49:29 EST 2024 Sat Sep 28 07:44:02 EDT 2024 Sun Oct 22 16:03:58 EDT 2023 Sat Aug 24 00:56:09 EDT 2024 Wed Oct 30 09:52:09 EDT 2024 Wed Dec 27 19:19:59 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Antibody Selection Fluorescence Cell sorting Method CHO CHO cell line GFP Cell line Green fluorescent protein Recombinant protein recombinant antibody fluorescence activated cell sorting |
Language | English |
License | CC BY 4.0 (c) 2007 Wiley Periodicals, Inc. http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4852-41249769eb7d17c6e735f7d220eb0bb934a8a16a54522c9027051f56927ee7783 |
Notes | http://dx.doi.org/10.1002/bit.21612 ark:/67375/WNG-NC470T9M-R ArticleID:BIT21612 istex:54934AE89155526E880F21D00991AB54FD18C27D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 17680677 |
PQID | 213760712 |
PQPubID | 48814 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_70164459 proquest_miscellaneous_31067310 proquest_miscellaneous_20878331 proquest_journals_213760712 crossref_primary_10_1002_bit_21612 pubmed_primary_17680677 pascalfrancis_primary_19994013 wiley_primary_10_1002_bit_21612_BIT21612 istex_primary_ark_67375_WNG_NC470T9M_R fao_agris_US201300841054 |
PublicationCentury | 2000 |
PublicationDate | 15 February 2008 |
PublicationDateYYYYMMDD | 2008-02-15 |
PublicationDate_xml | – month: 02 year: 2008 text: 15 February 2008 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Wiley Subscription Services, Inc |
References | Cabantous S, Terwilliger TC, Waldo GS. 2005. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23(1): 102-107. McNeall J, Sanchez A, Gray PP, Chesterman CN, Sleigh MJ. 1989. Hyperinducible gene expression from a metallothionein promoter containing additional metal-responsive elements. Gene 76(1): 81-88. Beer CFD, Swanepoel JWH. 1999. Simple and effective number-of-bins circumference selectors for a histogram. Stat Comput 9(1): 27-35. Kain SR, Adams M, Kondepudi A, Yang TT, Ward WW, Kitts P. 1995. Green fluorescent protein as a reporter of gene expression and protein localization. Biotechniques 19(4): 650-655. Bailey CG, Tait AS, Sunstrom NA. 2002. High-throughput clonal selection of recombinant CHO cells using a dominant selectable and amplifiable metallothionein-GFP fusion protein. Biotechnol Bioeng 80(6): 670-676. Alt FW, Kellems RE, Bertino JR, Schimke RT. 1978. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 253(5): 1357-1370. Zhu J, Musco ML, Grace MJ. 1999. Three-color flow cytometry analysis of tricistronic expression of eBFP, eGFP, and eYFP using EMCV-IRES linkages. Cytometry 37(1): 51-59. Edwards BS, Oprea T, Prossnitz ER, Sklar LA. 2004. Flow cytometry for high-throughput, high-content screening. Curr Opin Chem Biol 8(4): 392-398. Weaver JC, Bliss JG, Powell KT, Harrison GI, Williams GB. 1991. Rapid clonal growth measurements at the single-cell level: Gel microdroplets and flow cytometry. Biotechnol (NY) 9(9): 873-877. Bole DG, Hendershot LM, Kearney JF. 1986. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 102(5): 1558-1566. Kunaparaju R, Liao M, Sunstrom NA. 2005. Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Biotechnol Bioeng 91(6): 670-677. Manz R, Assenmacher M, Pfluger E, Miltenyi S, Radbruch A. 1995. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci USA 92(6): 1921-1925. Melkonyan H, Sorg C, Klempt M. 1996. Electroporation efficiency in mammalian cells is increased by dimethyl sulfoxide (DMSO). Nucleic Acids Res 24(21): 4356-4357. Cabantous S, Pedelacq JD, Mark BL, Naranjo C, Terwilliger TC, Waldo GS. 2005. Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis. J Struct Funct Genomics 6(2-3): 113-119. al-Rubeai M, Emery AN, Chalder S, Jan DC. 1992. Specific monoclonal antibody productivity and the cell cycle-comparisons of batch, continuous and perfusion cultures. Cytotechnology 9(1-3): 85-97. Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT. 1992. High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnol (NY) 10(2): 169-175. Lee YK, Brewer JW, Hellman R, Hendershot LM. 1999. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol Biol Cell 10(7): 2209-2219. Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G. 2003. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277(1-2): 141-155. Holmes P, Al-Rubeai M. 1999. Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J Immunol Methods 230(1-2): 141-147. Kandel ES, Chang BD, Schott B, Shtil AA, Gudkov AV, Roninson IB. 1997. Applications of green fluorescent protein as a marker of retroviral vectors. Somat Cell Mol Genet 23(5): 325-340. Hendershot L, Bole D, Kohler G, Kearney JF. 1987. Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein. J Cell Biol 104(3): 761-767. Strutzenberger K, Borth N, Kunert R, Steinfellner W, Katinger H. 1999. Changes during subclone development and ageing of human antibody-producing recombinant CHO cells. J Biotechnol 69(2-3): 215-226. Choe J, Guo HH, van den Engh G. 2005. A dual-fluorescence reporter system for high-throughput clone characterization and selection by cell sorting. Nucleic Acids Res 33: 49. Martin BR, Giepmans BNG, Adams SR, Tsien RY. 2005. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotech 23(10): 1308-1314. Lucas BK, Giere LM, DeMarco RA, Shen A, Chisholm V, Crowley CW. 1996. High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Res 24(9): 1774-1779. Young SM, Bologa C, Prossnitz ER, Oprea TI, Sklar LA, Edwards BS. 2005. High-throughput screening with HyperCyt flow cytometry to detect small molecule formylpeptide receptor ligands. J Biomol Screen 10(4): 374-382. Ibrahim SF, van den Engh G. 2003. High-speed cell sorting: Fundamentals and recent advances. Curr Opin Biotechnol 14(1): 5-12. Reichert JM. 2000. New biopharmaceuticals in the USA: Trends in development and marketing approvals 1995-1999. Trends Biotechnol 18(9): 364-369. Meng YG, Liang J, Wong WL, Chisholm V. 2000. Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 242(1-2): 201-207. Borth N, Zeyda M, Kunert R, Katinger H. 2000. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 71(4): 266-273. Endemann G, Schechtman D, Mochly-Rosen D. 2003. Cytotoxicity of pEGFP vector is due to residues encoded by multiple cloning site. Anal Biochem 313(2): 345-347. Carroll S, Al-Rubeai M. 2004. The selection of high-producing cell lines using flow cytometry and cell sorting. Expert Opin Biol Ther 4(11): 1821-1829. Chudakov DM, Lukyanov S, Lukyanov KA. 2005. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23(12): 605-613. Rieseberg M, Kasper C, Reardon KF, Scheper T. 2001. Flow cytometry in biotechnology. Appl Microbiol Biotechnol 56(3-4): 350-360. Patterson GH, Lippincott-Schwartz J. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588): 1873-1877. Sinacore MS, Drapeau D, Adamson SR. 2000. Adaptation of mammalian cells to growth in serum-free media. Mol Biotechnol 15(3): 249-257. Shimomura O, Johnson FH, Saiga Y. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59: 223-239. Jackson RJ, Kaminski A. 1995. Internal initiation of translation in eukaryotes: The picornavirus paradigm and beyond. RNA 1(10): 985-1000. Bailey CG, Baig M, Gray PP, Sunstrom N-A. 1999. A rapid selection/amplification procedure for high-level expression of recombinant protein in a metal-amplifiable mammalian expression system. Biotechnol Tech 13(9): 615-619. Reichert JM. 2001. Monoclonal antibodies in the clinic. Nat Biotechnol 19(9): 819-822. Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology 22: 1393-1398. Zhang S, Ma C, Chalfie M. 2004. Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119(1): 137-144. Hawley TS, Herbert DJ, Eaker SS, Hawley RG. 2004. Multiparameter flow cytometry of fluorescent protein reporters. Methods Mol Biol 263: 219-238. Wahlfors J, Loimas S, Pasanen T, Hakkarainen T. 2001. Green fluorescent protein (GFP) fusion constructs in gene therapy research. Histochem Cell Biol 115(1): 59-65. Verkhusha VV, Sorkin A. 2005. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol 12(3): 279-285. Boulianne GL, Hozumi N, Shulman MJ. 1984. Production of functional chimaeric mouse/human antibody. Nature 312(5995): 643-646. Kromenaker SJ, Srienc F. 1994. Cell cycle kinetics of the accumulation of heavy and light chain immunoglobulin proteins in a mouse hybridoma cell line. Cytotechnology 14(3): 205-218. Powell KT, Weaver JC. 1990. Gel microdroplets and flow cytometry: Rapid determination of antibody secretion by individual cells within a cell population. Biotechnol (NY) 8(4): 333-337. Griesbeck O. 2004. Fluorescent proteins as sensors for cellular functions. Curr Opin Neurobiol 14(5): 636-641. Hanazono Y, Yu JM, Dunbar CE, Emmons RV. 1997. Green fluorescent protein retroviral vectors: Low titer and high recombination frequency suggest a selective disadvantage. Hum Gene Ther 8(11): 1313-1319. Lloyd D, Leelavatcharamas V, Emery AN, Al-Rubeai M. 1999. The role of the cell cycle in determining gene expression and productivity in CHO cells. Cytotechnology 30: 49-57. Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ. 1999. Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260(3): 712-717. Muirhead KA, Horan PK, Poste G. 1985. Flow cytometry: Present and future. Nat Biotech 3(4): 337-356. 2004; 22 1987; 104 2004; 8 2004; 4 2003; 14 1978; 253 2003; 313 1992; 10 2003; 277 2005; 23 1997; 8 1992; 9 2000; 18 1986; 102 1989; 76 1984; 312 2000; 15 1999; 260 1999; 13 2001; 19 1999; 10 2000; 242 1996; 24 2001; 56 2005; 33 2004; 263 1995; 92 2002; 297 1985; 3 1997; 23 1999; 69 2000; 71 1962; 59 2005 1995; 19 2002; 80 1995; 1 1991; 9 1999; 9 2004; 14 1999; 37 1999; 230 1994; 14 2005; 6 2005; 10 2005; 91 1999; 30 2004; 119 1990; 8 2001; 115 2005; 12 e_1_2_1_20_1 Hawley TS (e_1_2_1_21_1) 2004; 263 e_1_2_1_41_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_8_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 Sklar LA (e_1_2_1_47_1) 2005 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_18_1 e_1_2_1_42_1 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_46_1 Jackson RJ (e_1_2_1_25_1) 1995; 1 e_1_2_1_44_1 e_1_2_1_27_1 e_1_2_1_48_1 Kain SR (e_1_2_1_26_1) 1995; 19 e_1_2_1_29_1 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_55_1 e_1_2_1_5_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – volume: 24 start-page: 4356 issue: 21 year: 1996 end-page: 4357 article-title: Electroporation efficiency in mammalian cells is increased by dimethyl sulfoxide (DMSO) publication-title: Nucleic Acids Res – volume: 14 start-page: 636 issue: 5 year: 2004 end-page: 641 article-title: Fluorescent proteins as sensors for cellular functions publication-title: Curr Opin Neurobiol – volume: 260 start-page: 712 issue: 3 year: 1999 end-page: 717 article-title: Is green fluorescent protein toxic to the living cells? publication-title: Biochem Biophys Res Commun – volume: 19 start-page: 650 issue: 4 year: 1995 end-page: 655 article-title: Green fluorescent protein as a reporter of gene expression and protein localization publication-title: Biotechniques – volume: 14 start-page: 5 issue: 1 year: 2003 end-page: 12 article-title: High‐speed cell sorting: Fundamentals and recent advances publication-title: Curr Opin Biotechnol – volume: 4 start-page: 1821 issue: 11 year: 2004 end-page: 1829 article-title: The selection of high‐producing cell lines using flow cytometry and cell sorting publication-title: Expert Opin Biol Ther – volume: 263 start-page: 219 year: 2004 end-page: 238 article-title: Multiparameter flow cytometry of fluorescent protein reporters publication-title: Methods Mol Biol – volume: 230 start-page: 141 issue: 1–2 year: 1999 end-page: 147 article-title: Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors publication-title: J Immunol Methods – volume: 115 start-page: 59 issue: 1 year: 2001 end-page: 65 article-title: Green fluorescent protein (GFP) fusion constructs in gene therapy research publication-title: Histochem Cell Biol – volume: 119 start-page: 137 issue: 1 year: 2004 end-page: 144 article-title: Combinatorial marking of cells and organelles with reconstituted fluorescent proteins publication-title: Cell – volume: 3 start-page: 337 issue: 4 year: 1985 end-page: 356 article-title: Flow cytometry: Present and future publication-title: Nat Biotech – volume: 18 start-page: 364 issue: 9 year: 2000 end-page: 369 article-title: New biopharmaceuticals in the USA: Trends in development and marketing approvals 1995–1999 publication-title: Trends Biotechnol – volume: 56 start-page: 350 issue: 3–4 year: 2001 end-page: 360 article-title: Flow cytometry in biotechnology publication-title: Appl Microbiol Biotechnol – volume: 91 start-page: 670 issue: 6 year: 2005 end-page: 677 article-title: Epi‐CHO, an episomal expression system for recombinant protein production in CHO cells publication-title: Biotechnol Bioeng – volume: 13 start-page: 615 issue: 9 year: 1999 end-page: 619 article-title: A rapid selection/amplification procedure for high‐level expression of recombinant protein in a metal‐amplifiable mammalian expression system publication-title: Biotechnol Tech – volume: 6 start-page: 113 issue: 2–3 year: 2005 end-page: 119 article-title: Recent advances in GFP folding reporter and split‐GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis publication-title: J Struct Funct Genomics – volume: 23 start-page: 102 issue: 1 year: 2005 end-page: 107 article-title: Protein tagging and detection with engineered self‐assembling fragments of green fluorescent protein publication-title: Nat Biotechnol – volume: 10 start-page: 169 issue: 2 year: 1992 end-page: 175 article-title: High‐level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker publication-title: Biotechnol (NY) – volume: 9 start-page: 27 issue: 1 year: 1999 end-page: 35 article-title: Simple and effective number‐of‐bins circumference selectors for a histogram publication-title: Stat Comput – volume: 9 start-page: 85 issue: 1–3 year: 1992 end-page: 97 article-title: Specific monoclonal antibody productivity and the cell cycle‐comparisons of batch, continuous and perfusion cultures publication-title: Cytotechnology – volume: 23 start-page: 325 issue: 5 year: 1997 end-page: 340 article-title: Applications of green fluorescent protein as a marker of retroviral vectors publication-title: Somat Cell Mol Genet – volume: 71 start-page: 266 issue: 4 year: 2000 end-page: 273 article-title: Efficient selection of high‐producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting publication-title: Biotechnol Bioeng – volume: 23 start-page: 605 issue: 12 year: 2005 end-page: 613 article-title: Fluorescent proteins as a toolkit for in vivo imaging publication-title: Trends Biotechnol – volume: 14 start-page: 205 issue: 3 year: 1994 end-page: 218 article-title: Cell cycle kinetics of the accumulation of heavy and light chain immunoglobulin proteins in a mouse hybridoma cell line publication-title: Cytotechnology – start-page: 388 year: 2005 – volume: 104 start-page: 761 issue: 3 year: 1987 end-page: 767 article-title: Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain‐binding protein publication-title: J Cell Biol – volume: 23 start-page: 1308 issue: 10 year: 2005 end-page: 1314 article-title: Mammalian cell‐based optimization of the biarsenical‐binding tetracysteine motif for improved fluorescence and affinity publication-title: Nat Biotech – volume: 92 start-page: 1921 issue: 6 year: 1995 end-page: 1925 article-title: Analysis and sorting of live cells according to secreted molecules, relocated to a cell‐surface affinity matrix publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 374 issue: 4 year: 2005 end-page: 382 article-title: High‐throughput screening with HyperCyt flow cytometry to detect small molecule formylpeptide receptor ligands publication-title: J Biomol Screen – volume: 37 start-page: 51 issue: 1 year: 1999 end-page: 59 article-title: Three‐color flow cytometry analysis of tricistronic expression of eBFP, eGFP, and eYFP using EMCV‐IRES linkages publication-title: Cytometry – volume: 69 start-page: 215 issue: 2–3 year: 1999 end-page: 226 article-title: Changes during subclone development and ageing of human antibody‐producing recombinant CHO cells publication-title: J Biotechnol – volume: 59 start-page: 223 year: 1962 end-page: 239 article-title: Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea publication-title: J Cell Comp Physiol – volume: 253 start-page: 1357 issue: 5 year: 1978 end-page: 1370 article-title: Selective multiplication of dihydrofolate reductase genes in methotrexate‐resistant variants of cultured murine cells publication-title: J Biol Chem – volume: 297 start-page: 1873 issue: 5588 year: 2002 end-page: 1877 article-title: A photoactivatable GFP for selective photolabeling of proteins and cells publication-title: Science – volume: 24 start-page: 1774 issue: 9 year: 1996 end-page: 1779 article-title: High‐level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector publication-title: Nucleic Acids Res – volume: 102 start-page: 1558 issue: 5 year: 1986 end-page: 1566 article-title: Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas publication-title: J Cell Biol – volume: 30 start-page: 49 year: 1999 end-page: 57 article-title: The role of the cell cycle in determining gene expression and productivity in CHO cells publication-title: Cytotechnology – volume: 80 start-page: 670 issue: 6 year: 2002 end-page: 676 article-title: High‐throughput clonal selection of recombinant CHO cells using a dominant selectable and amplifiable metallothionein‐GFP fusion protein publication-title: Biotechnol Bioeng – volume: 10 start-page: 2209 issue: 7 year: 1999 end-page: 2219 article-title: BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly publication-title: Mol Biol Cell – volume: 15 start-page: 249 issue: 3 year: 2000 end-page: 257 article-title: Adaptation of mammalian cells to growth in serum‐free media publication-title: Mol Biotechnol – volume: 76 start-page: 81 issue: 1 year: 1989 end-page: 88 article-title: Hyperinducible gene expression from a metallothionein promoter containing additional metal‐responsive elements publication-title: Gene – volume: 8 start-page: 333 issue: 4 year: 1990 end-page: 337 article-title: Gel microdroplets and flow cytometry: Rapid determination of antibody secretion by individual cells within a cell population publication-title: Biotechnol (NY) – volume: 22 start-page: 1393 year: 2004 end-page: 1398 article-title: Production of recombinant protein therapeutics in cultivated mammalian cells publication-title: Nature Biotechnology – volume: 33 start-page: 49 year: 2005 article-title: A dual‐fluorescence reporter system for high‐throughput clone characterization and selection by cell sorting publication-title: Nucleic Acids Res – volume: 8 start-page: 392 issue: 4 year: 2004 end-page: 398 article-title: Flow cytometry for high‐throughput, high‐content screening publication-title: Curr Opin Chem Biol – volume: 8 start-page: 1313 issue: 11 year: 1997 end-page: 1319 article-title: Green fluorescent protein retroviral vectors: Low titer and high recombination frequency suggest a selective disadvantage publication-title: Hum Gene Ther – volume: 242 start-page: 201 issue: 1–2 year: 2000 end-page: 207 article-title: Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells publication-title: Gene – volume: 312 start-page: 643 issue: 5995 year: 1984 end-page: 646 article-title: Production of functional chimaeric mouse/human antibody publication-title: Nature – volume: 313 start-page: 345 issue: 2 year: 2003 end-page: 347 article-title: Cytotoxicity of pEGFP vector is due to residues encoded by multiple cloning site publication-title: Anal Biochem – volume: 19 start-page: 819 issue: 9 year: 2001 end-page: 822 article-title: Monoclonal antibodies in the clinic publication-title: Nat Biotechnol – volume: 1 start-page: 985 issue: 10 year: 1995 end-page: 1000 article-title: Internal initiation of translation in eukaryotes: The picornavirus paradigm and beyond publication-title: RNA – volume: 12 start-page: 279 issue: 3 year: 2005 end-page: 285 article-title: Conversion of the monomeric red fluorescent protein into a photoactivatable probe publication-title: Chem Biol – volume: 9 start-page: 873 issue: 9 year: 1991 end-page: 877 article-title: Rapid clonal growth measurements at the single‐cell level: Gel microdroplets and flow cytometry publication-title: Biotechnol (NY) – volume: 277 start-page: 141 issue: 1–2 year: 2003 end-page: 155 article-title: A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity publication-title: J Immunol Methods – ident: e_1_2_1_36_1 doi: 10.1016/0378-1119(89)90010-3 – ident: e_1_2_1_2_1 doi: 10.1007/BF02521735 – ident: e_1_2_1_44_1 doi: 10.1007/s002530100673 – ident: e_1_2_1_4_1 doi: 10.1023/A:1008926708028 – ident: e_1_2_1_51_1 doi: 10.1038/nbt0991-873 – ident: e_1_2_1_46_1 doi: 10.1385/MB:15:3:249 – ident: e_1_2_1_10_1 doi: 10.1038/312643a0 – ident: e_1_2_1_27_1 doi: 10.1007/BF02674280 – ident: e_1_2_1_15_1 doi: 10.1093/nar/gni049 – ident: e_1_2_1_29_1 doi: 10.1002/bit.20534 – ident: e_1_2_1_13_1 doi: 10.1038/nbt1044 – ident: e_1_2_1_55_1 doi: 10.1002/(SICI)1097-0320(19990901)37:1<51::AID-CYTO6>3.0.CO;2-Z – ident: e_1_2_1_9_1 doi: 10.1002/1097-0290(2000)71:4<266::AID-BIT1016>3.0.CO;2-2 – ident: e_1_2_1_18_1 doi: 10.1016/S0003-2697(02)00619-X – ident: e_1_2_1_14_1 doi: 10.1517/14712598.4.11.1821 – volume: 263 start-page: 219 year: 2004 ident: e_1_2_1_21_1 article-title: Multiparameter flow cytometry of fluorescent protein reporters publication-title: Methods Mol Biol contributor: fullname: Hawley TS – ident: e_1_2_1_43_1 doi: 10.1038/nbt0901-819 – ident: e_1_2_1_50_1 doi: 10.1007/s004180000219 – ident: e_1_2_1_6_1 doi: 10.1038/nbt0292-169 – ident: e_1_2_1_23_1 doi: 10.1016/S0022-1759(99)00181-7 – ident: e_1_2_1_12_1 doi: 10.1007/s10969-005-5247-5 – volume: 1 start-page: 985 issue: 10 year: 1995 ident: e_1_2_1_25_1 article-title: Internal initiation of translation in eukaryotes: The picornavirus paradigm and beyond publication-title: RNA contributor: fullname: Jackson RJ – ident: e_1_2_1_48_1 doi: 10.1016/S0168-1656(99)00044-9 – ident: e_1_2_1_22_1 doi: 10.1083/jcb.104.3.761 – ident: e_1_2_1_39_1 doi: 10.1038/nbt0485-337 – ident: e_1_2_1_35_1 doi: 10.1038/nbt1136 – ident: e_1_2_1_30_1 doi: 10.1091/mbc.10.7.2209 – start-page: 388 volume-title: Flow cytometry for biotechnology year: 2005 ident: e_1_2_1_47_1 doi: 10.1093/oso/9780195183146.001.0001 contributor: fullname: Sklar LA – ident: e_1_2_1_5_1 doi: 10.1002/bit.10424 – ident: e_1_2_1_28_1 doi: 10.1007/BF00749617 – ident: e_1_2_1_40_1 doi: 10.1126/science.1074952 – ident: e_1_2_1_7_1 doi: 10.1023/A:1008858025515 – ident: e_1_2_1_3_1 doi: 10.1016/S0021-9258(17)34875-5 – ident: e_1_2_1_24_1 doi: 10.1016/S0958-1669(02)00009-5 – ident: e_1_2_1_8_1 doi: 10.1083/jcb.102.5.1558 – ident: e_1_2_1_31_1 doi: 10.1006/bbrc.1999.0954 – ident: e_1_2_1_17_1 doi: 10.1016/j.cbpa.2004.06.007 – ident: e_1_2_1_32_1 doi: 10.1023/A:1008093404237 – ident: e_1_2_1_41_1 doi: 10.1038/nbt0490-333 – ident: e_1_2_1_19_1 doi: 10.1016/j.conb.2004.08.002 – ident: e_1_2_1_42_1 doi: 10.1016/S0167-7799(00)01473-6 – ident: e_1_2_1_16_1 doi: 10.1016/j.tibtech.2005.10.005 – ident: e_1_2_1_52_1 doi: 10.1038/nbt1026 – ident: e_1_2_1_38_1 doi: 10.1016/S0378-1119(99)00524-7 – ident: e_1_2_1_37_1 doi: 10.1093/nar/24.21.4356 – ident: e_1_2_1_20_1 doi: 10.1089/hum.1997.8.11-1313 – volume: 19 start-page: 650 issue: 4 year: 1995 ident: e_1_2_1_26_1 article-title: Green fluorescent protein as a reporter of gene expression and protein localization publication-title: Biotechniques contributor: fullname: Kain SR – ident: e_1_2_1_49_1 doi: 10.1016/j.chembiol.2005.01.005 – ident: e_1_2_1_33_1 doi: 10.1093/nar/24.9.1774 – ident: e_1_2_1_11_1 doi: 10.1016/S0022-1759(03)00108-X – ident: e_1_2_1_53_1 doi: 10.1177/1087057105274532 – ident: e_1_2_1_54_1 doi: 10.1016/j.cell.2004.09.012 – ident: e_1_2_1_34_1 doi: 10.1073/pnas.92.6.1921 – ident: e_1_2_1_45_1 doi: 10.1002/jcp.1030590302 |
SSID | ssj0007866 |
Score | 2.185868 |
Snippet | The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 578 |
SubjectTerms | Animal cells Animals Antibodies, Monoclonal - isolation & purification Antibodies, Monoclonal - metabolism Biological and medical sciences Biotechnology Cell Culture Techniques - methods Cell Separation - methods Cellular biology CHO CHO Cells Cloning Cloning, Molecular - methods Cricetinae Cricetulus Establishment of new cell lines, improvement of cultural methods, mass cultures Eukaryotic cell cultures Flow Cytometry - methods Fluorescence fluorescence activated cell sorting Fundamental and applied biological sciences. Psychology GFP Methods. Procedures. Technologies Microscopy, Fluorescence, Multiphoton - methods Monoclonal antibodies Pharmaceuticals recombinant antibody Rodents selection |
Title | Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones |
URI | https://api.istex.fr/ark:/67375/WNG-NC470T9M-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.21612 https://www.ncbi.nlm.nih.gov/pubmed/17680677 https://www.proquest.com/docview/213760712 https://search.proquest.com/docview/20878331 https://search.proquest.com/docview/31067310 https://search.proquest.com/docview/70164459 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJAQ8cOmAhcGwEJp4SZc4F8fiqSuMgbQ-jFbsAcnyJZmmlWbqBVae-AfwG_klnOM0DUVUQrxEUXLs-HJsnxN__g4hz3EZtzmzvtUCHJRYWV8IBuOK2dAom_CA4dnh4156NIjfnSanG-RlfRam4odY_nDDkeHmaxzgSk_2G9JQfT5tM7BXcP4NI45wvlcnDXUUz6p9SvSYo0SwmlUoYPvLlCtr0bVClWChYuNeIUJSTaCRiiq6xd_Mz1Vr1i1Hh3fIx7oiFQrloj2b6rb5-gfH43_W9C65vTBTaafSq3tkIx-1yFZnBC76pzndow446v7It8j1g_ruRrcOH9cit35jOtwi3zvGwAKHvBSW4mYBxWJR20CWKCLwz-j0S_nz2w-k0h7TYjgrx45uyuQUD2B8bpJPSqQ_APmSTlwoH4rEy8M5za8qaC-8A6U516WdQ4aXjtgWH5ohRie4TwaHr_vdI38RC8I3cZYw3wXJ5qnINbchN2nOo6TglrEg14HWIopVpsJUYch0ZgQ42zDbFEkqGM9zzrPoAdkcQf7bhBqViYDzKC0CHaciRL4cZTQvTJRALqFHntVaIS8ryg9ZkTszCV0hXVd4ZBv0RaozmIrl4D3DDeAgQ8xs7JE9p0TLxGp8gfA5nsgPvTey14150BfH8sQjuyta1nwNrHb0ez2yU6udXEwtE_g84pg4FuHp8i30LTa-GuXlDESCDGocheslImQOhMt6CY7ca3EiPPKw0vemdOChIu-gR144rV3fSPLgbd_dPPp30R1ys4LkMD9MHpPN6XiWPwG7b6p33QD_BYnlU5A |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEBo8cOmAhcFmITTxki5xLo4lXrrC6GDtw2i1vSDLcZJpWmmmNoWVJ_4B_EZ-Cec4TUMRlRAvVdQcO74c2-fYn79DyAtcxpOUJXYSC3BQfJXYQjAYVyxxtUoC7jC8O9zthZ2B_-4sOFsjr6q7MCU_xGLDDUeGma9xgOOG9H7NGhpfFE0GBgtMwDdhuLsI6Hp9UpNH8ag8qUSf2QsEq3iFHLa_SLq0Gt3IVA42KjbvNWIk1QSaKSvjW_zNAF22Z82CdHiPfKyqUuJQLpvTIm7qr3-wPP5vXe-Tu3NLlbZK1XpA1tJRg2y2RuClf5rRPWqwo2ZTvkFuHVRPG-0qglyD3PmN7HCTfG9pDWscUlMkFM8LKJaLJjVqiSII_5wWX_Kf334gm_aYZsNpPjaMUzqleAfjc518kiMDAsjndGKi-VDkXh7OaHpdonvhHejNRZwnM8jwynDb4p96iAEKHpLB4Zt-u2PPw0HY2o8CZps42TwUacwTl-sw5V6Q8YQxJ42dOBaeryLlhgqjpjMtwN-GCScLQsF4mnIeeY_I-gjy3yJUq0g4nHth5sR-KFykzFE65pn2AsjFtcjzSi3kVcn6IUt-ZyahK6TpCotsgcJIdQ6zsRx8YHgG7EQIm_Utsme0aJFYjS8RQccDedp7K3ttnzt90ZUnFtlZUrP6a2C4o-trke1K7-R8dpnA5xHKxLEIu4u30LfY-GqU5lMQcSKoseeulvCQPBB-VktwpF_zA2GRx6XC16UDJxWpBy3y0qjt6kaSB0d98_Dk30V3yUan3z2Wx0e999vkdonQYbYbPCXrxXiaPgMzsIh3zGj_BaWuV7E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGELcHLh2wMNgshCZe0iXOxbF46jrKBqxCoxV7QLIcO5mmlabqBVae-AfwG_klnOM0LUVUQrxEUXLs-HJsnxN__g4hz3AZNxkzrkkFOCihMq4QDMYVM75WJuIew7PDx-34sBu-Po1O18iL6ixMyQ8x_-GGI8PO1zjABybfW5CGpufjOgN7Bebfq2HMBBLnH5wsuKN4Um5UosscRIJVtEIe25snXVqMruSqABMVW_cSIZJqBK2Ul-Et_mZ_Lpuzdj1q3SEfq5qUMJSL-mSc1vXXP0ge_7Oqd8ntmZ1KG6Vi3SNrWb9GNhp98NE_TekutchR-0u-Rq7tV3c3mlX8uBq59RvV4Qb53tAaVjgkpjAUdwsoFouaBWaJIgT_jI6_FD-__UAu7SHNe5NiaPmmdEbxBMbnRfJRgfwHIF_QkY3lQ5F5uTel2WWJ7YV3oDXnaWGmkOHAMtviQ93D8AT3Sbf1stM8dGfBIFwdJhFzbZRsHoss5cbnOs54EOXcMOZlqZemIghVovxYYcx0pgV42zDd5FEsGM8yzpPgAVnvQ_6bhGqVCI_zIM69NIyFj4Q5Sqc810EEufgOeVpphRyUnB-yZHdmErpC2q5wyCboi1RnMBfL7nuGO8BegqDZ0CG7VonmidXwAvFzPJIf2q9kuxlyryOO5YlDtpe0bPE1MNvR8XXIVqV2cja3jODzCGTiWISd-VvoW2x81c-KCYh4CdQ48FdLBEgdCJfVEhzJ18JIOORhqe-L0oGLisSDDnlutXZ1I8n9o469efTvojvk-ruDlnx71H6zRW6W8Bzm-tFjsj4eTrInYAOO02071n8BXadWYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+cell+line+development+using+two%E2%80%90color+fluorescence+activated+cell+sorting+to+select+highly+expressing+antibody%E2%80%90producing+clones&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Sleiman%2C+Robert+J.&rft.au=Gray%2C+Peter+P.&rft.au=McCall%2C+Martin+N.&rft.au=Codamo%2C+Joe&rft.date=2008-02-15&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=99&rft.issue=3&rft.spage=578&rft.epage=587&rft_id=info:doi/10.1002%2Fbit.21612&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bit_21612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |