Rank-preserving regression: a more robust rank regression model against outliers

Mean‐based semi‐parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon‐score‐based rank regression (RR) provides...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 35; no. 19; pp. 3333 - 3346
Main Authors Chen, Tian, Kowalski, Jeanne, Chen, Rui, Wu, Pan, Zhang, Hui, Feng, Changyong, Tu, Xin M.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 30.08.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.6930

Cover

Abstract Mean‐based semi‐parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon‐score‐based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional‐response‐model‐based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank‐preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data.
Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd.
Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd.Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd.
Author Zhang, Hui
Feng, Changyong
Tu, Xin M.
Kowalski, Jeanne
Wu, Pan
Chen, Tian
Chen, Rui
Author_xml – sequence: 1
  givenname: Tian
  surname: Chen
  fullname: Chen, Tian
  email: Correspondence to: Tian Chen, University Hall 2010F, Department of Mathematics and Statistics, University of Toledo, Toledo, OH 43606, U.S.A., tian.chen@utoledo.edu
  organization: Department of Mathematics and Statistics, University of Toledo, OH, 43606, Toledo, U.S.A
– sequence: 2
  givenname: Jeanne
  surname: Kowalski
  fullname: Kowalski, Jeanne
  organization: Department of Biostatistics and Bioinformatics, Emory University, GA, 30322, Atlanta, U.S.A
– sequence: 3
  givenname: Rui
  surname: Chen
  fullname: Chen, Rui
  organization: Consumer Behavior, Amazon.com, Inc. 333 Boren Ave N, WA, 98109, Seattle, U.S.A
– sequence: 4
  givenname: Pan
  surname: Wu
  fullname: Wu, Pan
  organization: CValue Institute, Christiana Care Health System, John H Ammon Medical Education Center, DE, 19718, Newark, U.S.A
– sequence: 5
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
  organization: Department of Biostatistics, St. Jude Children's Research Hospital, TN, 38105, Memphis, U.S.A
– sequence: 6
  givenname: Changyong
  surname: Feng
  fullname: Feng, Changyong
  organization: Department of Biostatistics and Computational Biology, University of Rochester, NY, 14642, Rochester, U.S.A
– sequence: 7
  givenname: Xin M.
  surname: Tu
  fullname: Tu, Xin M.
  organization: Department of Biostatistics and Computational Biology, University of Rochester, NY, 14642, Rochester, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26934999$$D View this record in MEDLINE/PubMed
BookMark eNp90VlLxDAQAOAgiq6r4C-Qgi--dM3VJvFNVl0X1gMPfAxpmy7RtlmT1uPfm2W9UZ_CMN8Mk5l1sNzYRgOwheAAQYj3vKkHqSBwCfQQFCyGOOHLoAcxY3HKULIG1r2_gxChBLNVsIYDpkKIHri4VM19PHPaa_dommnk9DQE3thmP1JRbZ2OnM0630YuyC_pkCt0FampMk3I2q6tjHZ-A6yUqvJ68-3tg5vjo-vhSTw5H42HB5M4pzyBca7KomCE5DRDBQoRo7koBSeY0oIJXOJCcJRQLAqcQZWhLC3nFVzQJIMsJ32wu-g7c_ah076VtfG5rirVaNt5iXj4PeEYp4Hu_KB3tnNNmC4oltKEC4T-V5BgJAiDQW2_qS6rdSFnztTKvcj3jX7OlTvrvdPlB0FQzo8lw7Hk_FiBDn7Q3LSqDbttnTLVbwXxouDJVPrlz8byanz63Rvf6ucPr9y9TBlhibw9G8mUitHhdXolGXkFyTKypQ
CODEN SMEDDA
CitedBy_id crossref_primary_10_1080_02664763_2019_1620705
crossref_primary_10_1093_jnci_djaa028
crossref_primary_10_1002_sim_8865
crossref_primary_10_1080_02664763_2024_2346357
Cites_doi 10.1080/02664763.2014.925101
10.1002/sim.3853
10.1080/01621459.1996.10476683
10.1002/sim.6026
10.1080/01621459.1999.10473836
10.1002/(SICI)1097-0258(19991130)18:22<3059::AID-SIM247>3.0.CO;2-O
10.1111/j.1467-9868.2011.01020.x
10.1080/01621459.1952.10483446
10.1201/b12123
10.1214/aoms/1177693245
10.1080/02664763.2014.920780
10.1214/aoms/1177692377
10.1080/01621459.1995.10476493
10.1111/j.2517-6161.1994.tb01972.x
10.1002/sim.6560
10.18637/jss.v014.i07
10.1080/03610928308828522
10.1002/sim.5691
10.1093/biomet/90.3.732
10.1093/biomet/93.2.459
10.1080/02331880108802724
10.1002/sim.6199
10.1080/01621459.1990.10475327
10.1161/01.HYP.0000100444.71069.73
10.1016/j.jadohealth.2012.07.005
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Aug 30, 2016
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Aug 30, 2016
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.6930
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3346
ExternalDocumentID 4320306871
4114346991
26934999
10_1002_sim_6930
SIM6930
ark_67375_WNG_649GDT6S_7
Genre article
Journal Article
Feature
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R21 DA027521
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c4850-cafdd733c4b1d1caf74c9f983244d792f2d9815429d2b0ab1b6ffdd78945b07c3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 06:45:21 EDT 2025
Sun Jul 13 04:53:33 EDT 2025
Sun Jul 13 03:40:15 EDT 2025
Thu Apr 03 07:09:09 EDT 2025
Tue Jul 01 03:28:09 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Wed Jan 22 16:21:48 EST 2025
Tue Sep 09 05:32:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords between-subject attribute
linear regression
sexual health
rank regression
semi-parametric regression models
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2016 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4850-cafdd733c4b1d1caf74c9f983244d792f2d9815429d2b0ab1b6ffdd78945b07c3
Notes ArticleID:SIM6930
ark:/67375/WNG-649GDT6S-7
istex:0315CDCBD603A66DF50F2661A8A5743656284A8C
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 26934999
PQID 1803219370
PQPubID 48361
PageCount 14
ParticipantIDs proquest_miscellaneous_1802738226
proquest_journals_1876458911
proquest_journals_1803219370
pubmed_primary_26934999
crossref_primary_10_1002_sim_6930
crossref_citationtrail_10_1002_sim_6930
wiley_primary_10_1002_sim_6930_SIM6930
istex_primary_ark_67375_WNG_649GDT6S_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 August 2016
PublicationDateYYYYMMDD 2016-08-30
PublicationDate_xml – month: 08
  year: 2016
  text: 30 August 2016
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability the atherosclerosis risk in communities (aric) study. Hypertension 2003; 42(6): 1106-1111.
Terpstra JT, McKean JW. Rank-based analysis of linear models using r. Journal of Statistical Software 2005; 14(7): 1-26.
Jureckova J. Nonparametric estimate of regression coefficients. The Annals of Mathematical Statistics 1971; 42(4): 1328-1338.
Jung SH. Quasi-likelihood for median regression models. Journal of the American Statistical Association 1996; 91(433): 251-257.
Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90: 106-121.
Van Elteren P. On the Combination of Independent Two Sample Tests of Wilcoxon. Stichting Mathematisch Centrum. Zuivere Wiskunde: Amsterdam, Netherlands, 1959.
Chang WH, McKean JW, Naranjo JD, Sheather SJ. High-breakdown rank regression. Journal of the American Statistical Association 1999; 94(445): 205-219.
Strauss D, Ikeda M. Pseudolikelihood estimation for social networks. Journal of the American Statistical Association 1990; 85(409): 204-212.
Kowalski J, Tu XM. Modern Applied U-statistics, vol. 714. John Wiley & Sons: Hoboken, New Jersey, 2008.
Chen R, Chen T, Lu N, Zhang H, Wu P, Feng C, Tu X. Extending the Mann-Whitney-Wilcoxon rank sum test to longitudinal regression analysis. Journal of Applied Statistics 2014; 41(12): 2658-2675.
Terpstra JT, McKean JW, Naranjo JD. Highly efficient weighted for autoregression Wilcoxon estimes for autoregression. Statistics: A Journal of Theoretical and Applied Statistics 2000; 35(1): 45-80.
Ma Y, Gonzalez Della Valle A, Zhang H, Tu X. A U-statistics-based approach for modeling Cronbach coefficient alpha within a longitudinal data setting. Statistics in Medicine 2010; 29(6): 659-670.
Tang W, He H, Tu XM. Applied Categorical and Count Data Analysis. CRC Press: Boca Raton, Florida, 2012.
Thas O, Neve JD, Clement L, Ottoy JP. Probabilistic index models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2012; 74(4): 623-671.
Jaeckel LA. Estimating regression coefficients by minimizing the dispersion of the residuals. The Annals of Mathematical Statistics 1972; 43(5): 1449-1458.
Wu P, Han Y, Chen T, Tu X. Causal inference for Mann-Whitney-Wilcoxon rank sum and other nonparametric statistics. Statistics in Medicine 2014; 33(8): 1261-1271.
Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 1952; 47(260): 663-685.
Naranjo J, Hettmansperger T. Bounded influence rank regression. Journal of the Royal Statistical Society. Series B (Methodological) 1994; 56(1): 209-220.
Sievers GL. A weighted dispersion function for estimation in linear models. Communications in Statistics-Theory and Methods 1983; 12(10): 1161-1179.
Yu Q, Chen R, Tang W, He H, Gallop R, Crits-Christoph P, Hu J, Tu X. Distribution-free models for longitudinal count responses with overdispersion and structural zeros. Statistics in Medicine 2013; 32(14): 2390-2405.
Tang W, Lu N, Chen T, Wang W, Gunzler DD, Han Y, Tu XM. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses. Statistics in Medicine 2015; 34(24): 3235-3245.
Jung SH, Ying Z. Rank-based regression with repeated measurements data. Biometrika 2003; 90(3): 732-740.
Tu XM, Kowalski J, Jia G. Bayesian analysis of prevalence with covariates using simulation-based techniques: applications to HIV screening. Statistics in Medicine 1999; 18(22): 3059-3073.
Wang YG, Zhu M. Rank-based regression for analysis of repeated measures. Biometrika 2006; 93(2): 459-464.
Morrison-Beedy D, Jones SH, Xia Y, Tu X, Crean HF, Carey MP. Reducing sexual risk behavior in adolescent girls: results from a randomized controlled trial. Journal of Adolescent Health 2013; 52(3): 314-321.
Wu P, Gunzler D, Lu N, Chen T, Wymen P, Tu X. Causal inference for community-based multi-layered intervention study. Statistics in Medicine 2014; 33(22): 3905-3918.
Lu N, Chen T, Wu P, Gunzler D, Zhang H, He H, Tu X. Functional response models for intraclass correlation coefficients. Journal of Applied Statistics 2014; 41(11): 2539-2556.
1971; 42
2006; 93
2015; 34
1995; 90
2012
2008
1972; 43
2003
1996; 91
2014; 41
1959
2012; 74
1983; 12
1990; 85
1952; 47
2003; 90
2013; 32
2010; 29
2000; 35
1999; 18
2013; 52
1994; 56
1999; 94
2003; 42
2014; 33
2005; 14
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
Ma Y (e_1_2_8_20_1) 2010; 29
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Chang WH (e_1_2_8_12_1) 1999; 94
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Van Elteren P (e_1_2_8_23_1) 1959
Kowalski J (e_1_2_8_22_1) 2008
e_1_2_8_10_1
e_1_2_8_11_1
References_xml – reference: Tu XM, Kowalski J, Jia G. Bayesian analysis of prevalence with covariates using simulation-based techniques: applications to HIV screening. Statistics in Medicine 1999; 18(22): 3059-3073.
– reference: Ma Y, Gonzalez Della Valle A, Zhang H, Tu X. A U-statistics-based approach for modeling Cronbach coefficient alpha within a longitudinal data setting. Statistics in Medicine 2010; 29(6): 659-670.
– reference: Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 1952; 47(260): 663-685.
– reference: Thas O, Neve JD, Clement L, Ottoy JP. Probabilistic index models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2012; 74(4): 623-671.
– reference: Chen R, Chen T, Lu N, Zhang H, Wu P, Feng C, Tu X. Extending the Mann-Whitney-Wilcoxon rank sum test to longitudinal regression analysis. Journal of Applied Statistics 2014; 41(12): 2658-2675.
– reference: Sievers GL. A weighted dispersion function for estimation in linear models. Communications in Statistics-Theory and Methods 1983; 12(10): 1161-1179.
– reference: Wu P, Gunzler D, Lu N, Chen T, Wymen P, Tu X. Causal inference for community-based multi-layered intervention study. Statistics in Medicine 2014; 33(22): 3905-3918.
– reference: Lu N, Chen T, Wu P, Gunzler D, Zhang H, He H, Tu X. Functional response models for intraclass correlation coefficients. Journal of Applied Statistics 2014; 41(11): 2539-2556.
– reference: Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability the atherosclerosis risk in communities (aric) study. Hypertension 2003; 42(6): 1106-1111.
– reference: Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90: 106-121.
– reference: Van Elteren P. On the Combination of Independent Two Sample Tests of Wilcoxon. Stichting Mathematisch Centrum. Zuivere Wiskunde: Amsterdam, Netherlands, 1959.
– reference: Tang W, He H, Tu XM. Applied Categorical and Count Data Analysis. CRC Press: Boca Raton, Florida, 2012.
– reference: Tang W, Lu N, Chen T, Wang W, Gunzler DD, Han Y, Tu XM. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses. Statistics in Medicine 2015; 34(24): 3235-3245.
– reference: Jureckova J. Nonparametric estimate of regression coefficients. The Annals of Mathematical Statistics 1971; 42(4): 1328-1338.
– reference: Terpstra JT, McKean JW, Naranjo JD. Highly efficient weighted for autoregression Wilcoxon estimes for autoregression. Statistics: A Journal of Theoretical and Applied Statistics 2000; 35(1): 45-80.
– reference: Naranjo J, Hettmansperger T. Bounded influence rank regression. Journal of the Royal Statistical Society. Series B (Methodological) 1994; 56(1): 209-220.
– reference: Wu P, Han Y, Chen T, Tu X. Causal inference for Mann-Whitney-Wilcoxon rank sum and other nonparametric statistics. Statistics in Medicine 2014; 33(8): 1261-1271.
– reference: Jung SH. Quasi-likelihood for median regression models. Journal of the American Statistical Association 1996; 91(433): 251-257.
– reference: Terpstra JT, McKean JW. Rank-based analysis of linear models using r. Journal of Statistical Software 2005; 14(7): 1-26.
– reference: Strauss D, Ikeda M. Pseudolikelihood estimation for social networks. Journal of the American Statistical Association 1990; 85(409): 204-212.
– reference: Chang WH, McKean JW, Naranjo JD, Sheather SJ. High-breakdown rank regression. Journal of the American Statistical Association 1999; 94(445): 205-219.
– reference: Kowalski J, Tu XM. Modern Applied U-statistics, vol. 714. John Wiley & Sons: Hoboken, New Jersey, 2008.
– reference: Yu Q, Chen R, Tang W, He H, Gallop R, Crits-Christoph P, Hu J, Tu X. Distribution-free models for longitudinal count responses with overdispersion and structural zeros. Statistics in Medicine 2013; 32(14): 2390-2405.
– reference: Jaeckel LA. Estimating regression coefficients by minimizing the dispersion of the residuals. The Annals of Mathematical Statistics 1972; 43(5): 1449-1458.
– reference: Morrison-Beedy D, Jones SH, Xia Y, Tu X, Crean HF, Carey MP. Reducing sexual risk behavior in adolescent girls: results from a randomized controlled trial. Journal of Adolescent Health 2013; 52(3): 314-321.
– reference: Jung SH, Ying Z. Rank-based regression with repeated measurements data. Biometrika 2003; 90(3): 732-740.
– reference: Wang YG, Zhu M. Rank-based regression for analysis of repeated measures. Biometrika 2006; 93(2): 459-464.
– volume: 42
  start-page: 1328
  issue: 4
  year: 1971
  end-page: 1338
  article-title: Nonparametric estimate of regression coefficients
  publication-title: The Annals of Mathematical Statistics
– volume: 93
  start-page: 459
  issue: 2
  year: 2006
  end-page: 464
  article-title: Rank‐based regression for analysis of repeated measures
  publication-title: Biometrika
– volume: 32
  start-page: 2390
  issue: 14
  year: 2013
  end-page: 2405
  article-title: Distribution‐free models for longitudinal count responses with overdispersion and structural zeros
  publication-title: Statistics in Medicine
– volume: 90
  start-page: 732
  issue: 3
  year: 2003
  end-page: 740
  article-title: Rank‐based regression with repeated measurements data
  publication-title: Biometrika
– volume: 56
  start-page: 209
  issue: 1
  year: 1994
  end-page: 220
  article-title: Bounded influence rank regression
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 33
  start-page: 1261
  issue: 8
  year: 2014
  end-page: 1271
  article-title: Causal inference for Mann–Whitney–Wilcoxon rank sum and other nonparametric statistics
  publication-title: Statistics in Medicine
– year: 2003
– volume: 14
  start-page: 1
  issue: 7
  year: 2005
  end-page: 26
  article-title: Rank‐based analysis of linear models using r
  publication-title: Journal of Statistical Software
– volume: 42
  start-page: 1106
  issue: 6
  year: 2003
  end-page: 1111
  article-title: Hypertension, blood pressure, and heart rate variability the atherosclerosis risk in communities (aric) study
  publication-title: Hypertension
– volume: 41
  start-page: 2539
  issue: 11
  year: 2014
  end-page: 2556
  article-title: Functional response models for intraclass correlation coefficients
  publication-title: Journal of Applied Statistics
– volume: 35
  start-page: 45
  issue: 1
  year: 2000
  end-page: 80
  article-title: Highly efficient weighted for autoregression Wilcoxon estimes for autoregression
  publication-title: Statistics: A Journal of Theoretical and Applied Statistics
– volume: 43
  start-page: 1449
  issue: 5
  year: 1972
  end-page: 1458
  article-title: Estimating regression coefficients by minimizing the dispersion of the residuals
  publication-title: The Annals of Mathematical Statistics
– volume: 52
  start-page: 314
  issue: 3
  year: 2013
  end-page: 321
  article-title: Reducing sexual risk behavior in adolescent girls: results from a randomized controlled trial
  publication-title: Journal of Adolescent Health
– year: 2012
– volume: 74
  start-page: 623
  issue: 4
  year: 2012
  end-page: 671
  article-title: Probabilistic index models
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– year: 1959
– volume: 85
  start-page: 204
  issue: 409
  year: 1990
  end-page: 212
  article-title: Pseudolikelihood estimation for social networks
  publication-title: Journal of the American Statistical Association
– volume: 47
  start-page: 663
  issue: 260
  year: 1952
  end-page: 685
  article-title: A generalization of sampling without replacement from a finite universe
  publication-title: Journal of the American Statistical Association
– year: 2008
– volume: 33
  start-page: 3905
  issue: 22
  year: 2014
  end-page: 3918
  article-title: Causal inference for community‐based multi‐layered intervention study
  publication-title: Statistics in Medicine
– volume: 41
  start-page: 2658
  issue: 12
  year: 2014
  end-page: 2675
  article-title: Extending the Mann–Whitney–Wilcoxon rank sum test to longitudinal regression analysis
  publication-title: Journal of Applied Statistics
– volume: 34
  start-page: 3235
  issue: 24
  year: 2015
  end-page: 3245
  article-title: On performance of parametric and distribution‐free models for zero‐inflated and over‐dispersed count responses
  publication-title: Statistics in Medicine
– volume: 94
  start-page: 205
  issue: 445
  year: 1999
  end-page: 219
  article-title: High‐breakdown rank regression
  publication-title: Journal of the American Statistical Association
– volume: 18
  start-page: 3059
  issue: 22
  year: 1999
  end-page: 3073
  article-title: Bayesian analysis of prevalence with covariates using simulation‐based techniques: applications to HIV screening
  publication-title: Statistics in Medicine
– volume: 12
  start-page: 1161
  issue: 10
  year: 1983
  end-page: 1179
  article-title: A weighted dispersion function for estimation in linear models
  publication-title: Communications in Statistics‐Theory and Methods
– volume: 90
  start-page: 106
  year: 1995
  end-page: 121
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: Journal of the American Statistical Association
– volume: 91
  start-page: 251
  issue: 433
  year: 1996
  end-page: 257
  article-title: Quasi‐likelihood for median regression models
  publication-title: Journal of the American Statistical Association
– volume: 29
  start-page: 659
  issue: 6
  year: 2010
  end-page: 670
  article-title: A U‐statistics‐based approach for modeling Cronbach coefficient alpha within a longitudinal data setting
  publication-title: Statistics in Medicine
– ident: e_1_2_8_17_1
  doi: 10.1080/02664763.2014.925101
– volume: 29
  start-page: 659
  issue: 6
  year: 2010
  ident: e_1_2_8_20_1
  article-title: A U‐statistics‐based approach for modeling Cronbach coefficient alpha within a longitudinal data setting
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3853
– ident: e_1_2_8_7_1
  doi: 10.1080/01621459.1996.10476683
– ident: e_1_2_8_15_1
  doi: 10.1002/sim.6026
– volume: 94
  start-page: 205
  issue: 445
  year: 1999
  ident: e_1_2_8_12_1
  article-title: High‐breakdown rank regression
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1999.10473836
– ident: e_1_2_8_29_1
  doi: 10.1002/(SICI)1097-0258(19991130)18:22<3059::AID-SIM247>3.0.CO;2-O
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1467-9868.2011.01020.x
– volume-title: Modern Applied U‐statistics
  year: 2008
  ident: e_1_2_8_22_1
– ident: e_1_2_8_26_1
  doi: 10.1080/01621459.1952.10483446
– volume-title: On the Combination of Independent Two Sample Tests of Wilcoxon
  year: 1959
  ident: e_1_2_8_23_1
– ident: e_1_2_8_28_1
  doi: 10.1201/b12123
– ident: e_1_2_8_5_1
  doi: 10.1214/aoms/1177693245
– ident: e_1_2_8_21_1
  doi: 10.1080/02664763.2014.920780
– ident: e_1_2_8_24_1
– ident: e_1_2_8_4_1
  doi: 10.1214/aoms/1177692377
– ident: e_1_2_8_6_1
  doi: 10.1080/01621459.1995.10476493
– ident: e_1_2_8_10_1
  doi: 10.1111/j.2517-6161.1994.tb01972.x
– ident: e_1_2_8_19_1
  doi: 10.1002/sim.6560
– ident: e_1_2_8_27_1
  doi: 10.18637/jss.v014.i07
– ident: e_1_2_8_11_1
  doi: 10.1080/03610928308828522
– ident: e_1_2_8_18_1
  doi: 10.1002/sim.5691
– ident: e_1_2_8_8_1
  doi: 10.1093/biomet/90.3.732
– ident: e_1_2_8_9_1
  doi: 10.1093/biomet/93.2.459
– ident: e_1_2_8_13_1
  doi: 10.1080/02331880108802724
– ident: e_1_2_8_14_1
  doi: 10.1002/sim.6199
– ident: e_1_2_8_25_1
  doi: 10.1080/01621459.1990.10475327
– ident: e_1_2_8_3_1
  doi: 10.1161/01.HYP.0000100444.71069.73
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jadohealth.2012.07.005
SSID ssj0011527
Score 2.210892
Snippet Mean‐based semi‐parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over...
Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3333
SubjectTerms between-subject attribute
Computer Simulation
Data analysis
Humans
linear regression
Longitudinal Studies
Mathematical models
Models, Statistical
Parameter estimation
rank regression
Regression Analysis
semi-parametric regression models
sexual health
Simulation
Title Rank-preserving regression: a more robust rank regression model against outliers
URI https://api.istex.fr/ark:/67375/WNG-649GDT6S-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6930
https://www.ncbi.nlm.nih.gov/pubmed/26934999
https://www.proquest.com/docview/1803219370
https://www.proquest.com/docview/1876458911
https://www.proquest.com/docview/1802738226
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2hIqFKiI8FypaCjITglG2cOHbCDVHagrQ9bFtRiYNlO_GqWshW-yEhTvwEfiO_hJk4CRS1EuK0WtmxJs7M5MUevwfwQvnCYxL0kalkFglrZFRUJou4tyUCWOPShsR1fCQPT8WHs-ysraqkszCBH6JfcKPIaPI1Bbixy93fpKHL8y8j0vHD9MtTSbT5e5OeOYp3aq20QykVzzre2TjZ7S689Ca6SZP69SqYeRm1Nq-d_bvwqTM4VJvMRuuVHblvf3E5_t8d3YM7LRplb4L73IcbVT2AW-N2v30At8OqHguHlQawSdg0UDs_gMnE1LOf339QKS1lnHrKFtU01NXWr5lhVMPLFnO7Xq4YacP_0cwaBR5mpuYc8SmjsiTS5H4Ip_vvTt4eRq1EQ-REnsWRM74sVZo6YXnJ8Z8SrvAFpgkhSlUkPimLnJMmVpnY2Fhupacr8kJkNlYufQQb9byuHgPzKrUCPQMH9iIvuc1dVuEoBgGnTaQfwqvucWnX8peTjMZnHZiXE43zp2n-hvC873kRODuu6POyeeJ9B7OYUY2byvTHowMtRXGwdyKPtRrCTucSug3vpeZ5nGKqT1V8TbOSguQaOZrSN2Pc0maMqav5uhmCTkUh-h3CVvC03pYELaQvUTSy8Zdr70Ifvx_T7_a_dnwCm4j4ZLMoHu_Axmqxrp4iqlrZZ038_AJmyB67
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amwSTEJdyKwwwEoKndHHi2Ak8IcbWwdqHrtP2gGTZSVxN3VLUi4R44ifwG_kl-NhJYGiTEE9VZcc6cc45-WIffx_AS2EyY5OgCVTJk4BpxYOsVElAjS4sgFV57EhcB0PeP2IfT5KTNXjbnIXx_BDtghtGhsvXGOC4IL39mzV0cXreQyG_a7DBLM7AL6-dUcsdRRu9Vtyj5IImDfNsGG03V154F23gtH69DGhexK3uxbN7Gz43Jvt6k2lvtdS9_NtfbI7_eU934FYNSMk770F3Ya2sOnB9UG-5d-CmX9gj_rxSBzYRnnp253swGqlq-vP7D6ymxaRTTci8nPjS2uoNUQTLeMl8pleLJUF5-D-aiRPhIWqiTi1EJViZhLLc9-Fo98P4fT-oVRqCnKVJGOTKFIWI45xpWlD7T7A8M5nNFIwVIotMVGQpRVmsItKh0lRzg1ekGUt0KPL4AaxXs6p8BMSIWDPrHHZgw9KC6jRPSjuKsphTR9x04XXzvGReU5ijksaZ9OTLkbTzJ3H-uvCi7fnF03Zc0ueVe-RtBzWfYpmbSOTxcE9ylu3tjPmhFF3YanxC1hG-kDQNY5vtYxFe0Sw4Q8VGak1pm23o4n6MqsrZyg2BB6MsAO7CQ-9qrS2RtRA_Rq2RzmGuvAt5uD_A38f_2vE53OiPBwfyYH_46QlsWgDI3Rp5uAXry_mqfGpB1lI_c8H0C0MfIto
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1BK1WVEJfltlDASAieso0Tx054Q5RtC-wK9SIq8WDZSbyqFrLVXiTEE5_AN_IlzMRJoKiVEE-rlR1r4sxMTuzxOQDPlMscJkEXmFImgbBGBllpkoA7WyCANXlck7iOxnLvWLw9SU6aqko6C-P5IboFN4qMOl9TgJ8Vbvs3aeji9MuAdPyuwrqQCCQIEB101FG8lWulLUqpeNISz4bRdnvluVfROs3q14tw5nnYWr93hjfgU2uxLzeZDlZLO8i__UXm-H-3dBOuN3CUvfL-cwuulFUPNkbNhnsPrvllPeZPK_Vgk8Cp53a-DQcHppr-_P6Damkp5VQTNi8nvrC2eskMoyJeNp_Z1WLJSBz-j2ZWS_AwMzGnCFAZ1SWRKPcdOB6-OXq9FzQaDUEu0iQMcuOKQsVxLiwvOP5TIs9chnlCiEJlkYuKLOUkilVENjSWW-noijQTiQ1VHt-FtWpWlfeBORVbga6BAzuRFtymeVLiKAYRp42k68OL9nHpvCEwJx2Nz9pTL0ca50_T_PXhadfzzJN2XNDnef3Euw5mPqUiN5Xoj-NdLUW2u3MkD7Xqw1brErqJ74XmaRhjro9VeEmzkoL0Gjma0jVj4NJujKnK2aoego5FIfztwz3vaZ0tEVpIn6JoZO0vl96FPtwf0e-Df-34BDY-7Az1-_3xu4ewiehP1gvk4RasLeer8hEirKV9XIfSL8WhIYk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank-preserving+regression%3A+a+more+robust+rank+regression+model+against+outliers&rft.jtitle=Statistics+in+medicine&rft.au=Chen%2C+Tian&rft.au=Kowalski%2C+Jeanne&rft.au=Chen%2C+Rui&rft.au=Wu%2C+Pan&rft.date=2016-08-30&rft.eissn=1097-0258&rft.volume=35&rft.issue=19&rft.spage=3333&rft_id=info:doi/10.1002%2Fsim.6930&rft_id=info%3Apmid%2F26934999&rft.externalDocID=26934999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon