Rank-preserving regression: a more robust rank regression model against outliers
Mean‐based semi‐parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon‐score‐based rank regression (RR) provides...
Saved in:
Published in | Statistics in medicine Vol. 35; no. 19; pp. 3333 - 3346 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
30.08.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.6930 |
Cover
Abstract | Mean‐based semi‐parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon‐score‐based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional‐response‐model‐based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank‐preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd.Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. |
Author | Zhang, Hui Feng, Changyong Tu, Xin M. Kowalski, Jeanne Wu, Pan Chen, Tian Chen, Rui |
Author_xml | – sequence: 1 givenname: Tian surname: Chen fullname: Chen, Tian email: Correspondence to: Tian Chen, University Hall 2010F, Department of Mathematics and Statistics, University of Toledo, Toledo, OH 43606, U.S.A., tian.chen@utoledo.edu organization: Department of Mathematics and Statistics, University of Toledo, OH, 43606, Toledo, U.S.A – sequence: 2 givenname: Jeanne surname: Kowalski fullname: Kowalski, Jeanne organization: Department of Biostatistics and Bioinformatics, Emory University, GA, 30322, Atlanta, U.S.A – sequence: 3 givenname: Rui surname: Chen fullname: Chen, Rui organization: Consumer Behavior, Amazon.com, Inc. 333 Boren Ave N, WA, 98109, Seattle, U.S.A – sequence: 4 givenname: Pan surname: Wu fullname: Wu, Pan organization: CValue Institute, Christiana Care Health System, John H Ammon Medical Education Center, DE, 19718, Newark, U.S.A – sequence: 5 givenname: Hui surname: Zhang fullname: Zhang, Hui organization: Department of Biostatistics, St. Jude Children's Research Hospital, TN, 38105, Memphis, U.S.A – sequence: 6 givenname: Changyong surname: Feng fullname: Feng, Changyong organization: Department of Biostatistics and Computational Biology, University of Rochester, NY, 14642, Rochester, U.S.A – sequence: 7 givenname: Xin M. surname: Tu fullname: Tu, Xin M. organization: Department of Biostatistics and Computational Biology, University of Rochester, NY, 14642, Rochester, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26934999$$D View this record in MEDLINE/PubMed |
BookMark | eNp90VlLxDAQAOAgiq6r4C-Qgi--dM3VJvFNVl0X1gMPfAxpmy7RtlmT1uPfm2W9UZ_CMN8Mk5l1sNzYRgOwheAAQYj3vKkHqSBwCfQQFCyGOOHLoAcxY3HKULIG1r2_gxChBLNVsIYDpkKIHri4VM19PHPaa_dommnk9DQE3thmP1JRbZ2OnM0630YuyC_pkCt0FampMk3I2q6tjHZ-A6yUqvJ68-3tg5vjo-vhSTw5H42HB5M4pzyBca7KomCE5DRDBQoRo7koBSeY0oIJXOJCcJRQLAqcQZWhLC3nFVzQJIMsJ32wu-g7c_ah076VtfG5rirVaNt5iXj4PeEYp4Hu_KB3tnNNmC4oltKEC4T-V5BgJAiDQW2_qS6rdSFnztTKvcj3jX7OlTvrvdPlB0FQzo8lw7Hk_FiBDn7Q3LSqDbttnTLVbwXxouDJVPrlz8byanz63Rvf6ucPr9y9TBlhibw9G8mUitHhdXolGXkFyTKypQ |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1080_02664763_2019_1620705 crossref_primary_10_1093_jnci_djaa028 crossref_primary_10_1002_sim_8865 crossref_primary_10_1080_02664763_2024_2346357 |
Cites_doi | 10.1080/02664763.2014.925101 10.1002/sim.3853 10.1080/01621459.1996.10476683 10.1002/sim.6026 10.1080/01621459.1999.10473836 10.1002/(SICI)1097-0258(19991130)18:22<3059::AID-SIM247>3.0.CO;2-O 10.1111/j.1467-9868.2011.01020.x 10.1080/01621459.1952.10483446 10.1201/b12123 10.1214/aoms/1177693245 10.1080/02664763.2014.920780 10.1214/aoms/1177692377 10.1080/01621459.1995.10476493 10.1111/j.2517-6161.1994.tb01972.x 10.1002/sim.6560 10.18637/jss.v014.i07 10.1080/03610928308828522 10.1002/sim.5691 10.1093/biomet/90.3.732 10.1093/biomet/93.2.459 10.1080/02331880108802724 10.1002/sim.6199 10.1080/01621459.1990.10475327 10.1161/01.HYP.0000100444.71069.73 10.1016/j.jadohealth.2012.07.005 |
ContentType | Journal Article |
Copyright | Copyright © 2016 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. Aug 30, 2016 |
Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. Aug 30, 2016 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.6930 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 3346 |
ExternalDocumentID | 4320306871 4114346991 26934999 10_1002_sim_6930 SIM6930 ark_67375_WNG_649GDT6S_7 |
Genre | article Journal Article Feature |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R21 DA027521 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP WWH AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c4850-cafdd733c4b1d1caf74c9f983244d792f2d9815429d2b0ab1b6ffdd78945b07c3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 06:45:21 EDT 2025 Sun Jul 13 04:53:33 EDT 2025 Sun Jul 13 03:40:15 EDT 2025 Thu Apr 03 07:09:09 EDT 2025 Tue Jul 01 03:28:09 EDT 2025 Thu Apr 24 23:02:57 EDT 2025 Wed Jan 22 16:21:48 EST 2025 Tue Sep 09 05:32:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | between-subject attribute linear regression sexual health rank regression semi-parametric regression models |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2016 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4850-cafdd733c4b1d1caf74c9f983244d792f2d9815429d2b0ab1b6ffdd78945b07c3 |
Notes | ArticleID:SIM6930 ark:/67375/WNG-649GDT6S-7 istex:0315CDCBD603A66DF50F2661A8A5743656284A8C SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 26934999 |
PQID | 1803219370 |
PQPubID | 48361 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1802738226 proquest_journals_1876458911 proquest_journals_1803219370 pubmed_primary_26934999 crossref_primary_10_1002_sim_6930 crossref_citationtrail_10_1002_sim_6930 wiley_primary_10_1002_sim_6930_SIM6930 istex_primary_ark_67375_WNG_649GDT6S_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 August 2016 |
PublicationDateYYYYMMDD | 2016-08-30 |
PublicationDate_xml | – month: 08 year: 2016 text: 30 August 2016 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability the atherosclerosis risk in communities (aric) study. Hypertension 2003; 42(6): 1106-1111. Terpstra JT, McKean JW. Rank-based analysis of linear models using r. Journal of Statistical Software 2005; 14(7): 1-26. Jureckova J. Nonparametric estimate of regression coefficients. The Annals of Mathematical Statistics 1971; 42(4): 1328-1338. Jung SH. Quasi-likelihood for median regression models. Journal of the American Statistical Association 1996; 91(433): 251-257. Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90: 106-121. Van Elteren P. On the Combination of Independent Two Sample Tests of Wilcoxon. Stichting Mathematisch Centrum. Zuivere Wiskunde: Amsterdam, Netherlands, 1959. Chang WH, McKean JW, Naranjo JD, Sheather SJ. High-breakdown rank regression. Journal of the American Statistical Association 1999; 94(445): 205-219. Strauss D, Ikeda M. Pseudolikelihood estimation for social networks. Journal of the American Statistical Association 1990; 85(409): 204-212. Kowalski J, Tu XM. Modern Applied U-statistics, vol. 714. John Wiley & Sons: Hoboken, New Jersey, 2008. Chen R, Chen T, Lu N, Zhang H, Wu P, Feng C, Tu X. Extending the Mann-Whitney-Wilcoxon rank sum test to longitudinal regression analysis. Journal of Applied Statistics 2014; 41(12): 2658-2675. Terpstra JT, McKean JW, Naranjo JD. Highly efficient weighted for autoregression Wilcoxon estimes for autoregression. Statistics: A Journal of Theoretical and Applied Statistics 2000; 35(1): 45-80. Ma Y, Gonzalez Della Valle A, Zhang H, Tu X. A U-statistics-based approach for modeling Cronbach coefficient alpha within a longitudinal data setting. Statistics in Medicine 2010; 29(6): 659-670. Tang W, He H, Tu XM. Applied Categorical and Count Data Analysis. CRC Press: Boca Raton, Florida, 2012. Thas O, Neve JD, Clement L, Ottoy JP. Probabilistic index models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2012; 74(4): 623-671. Jaeckel LA. Estimating regression coefficients by minimizing the dispersion of the residuals. The Annals of Mathematical Statistics 1972; 43(5): 1449-1458. Wu P, Han Y, Chen T, Tu X. Causal inference for Mann-Whitney-Wilcoxon rank sum and other nonparametric statistics. Statistics in Medicine 2014; 33(8): 1261-1271. Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 1952; 47(260): 663-685. Naranjo J, Hettmansperger T. Bounded influence rank regression. Journal of the Royal Statistical Society. Series B (Methodological) 1994; 56(1): 209-220. Sievers GL. A weighted dispersion function for estimation in linear models. Communications in Statistics-Theory and Methods 1983; 12(10): 1161-1179. Yu Q, Chen R, Tang W, He H, Gallop R, Crits-Christoph P, Hu J, Tu X. Distribution-free models for longitudinal count responses with overdispersion and structural zeros. Statistics in Medicine 2013; 32(14): 2390-2405. Tang W, Lu N, Chen T, Wang W, Gunzler DD, Han Y, Tu XM. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses. Statistics in Medicine 2015; 34(24): 3235-3245. Jung SH, Ying Z. Rank-based regression with repeated measurements data. Biometrika 2003; 90(3): 732-740. Tu XM, Kowalski J, Jia G. Bayesian analysis of prevalence with covariates using simulation-based techniques: applications to HIV screening. Statistics in Medicine 1999; 18(22): 3059-3073. Wang YG, Zhu M. Rank-based regression for analysis of repeated measures. Biometrika 2006; 93(2): 459-464. Morrison-Beedy D, Jones SH, Xia Y, Tu X, Crean HF, Carey MP. Reducing sexual risk behavior in adolescent girls: results from a randomized controlled trial. Journal of Adolescent Health 2013; 52(3): 314-321. Wu P, Gunzler D, Lu N, Chen T, Wymen P, Tu X. Causal inference for community-based multi-layered intervention study. Statistics in Medicine 2014; 33(22): 3905-3918. Lu N, Chen T, Wu P, Gunzler D, Zhang H, He H, Tu X. Functional response models for intraclass correlation coefficients. Journal of Applied Statistics 2014; 41(11): 2539-2556. 1971; 42 2006; 93 2015; 34 1995; 90 2012 2008 1972; 43 2003 1996; 91 2014; 41 1959 2012; 74 1983; 12 1990; 85 1952; 47 2003; 90 2013; 32 2010; 29 2000; 35 1999; 18 2013; 52 1994; 56 1999; 94 2003; 42 2014; 33 2005; 14 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_21_1 Ma Y (e_1_2_8_20_1) 2010; 29 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 Chang WH (e_1_2_8_12_1) 1999; 94 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Van Elteren P (e_1_2_8_23_1) 1959 Kowalski J (e_1_2_8_22_1) 2008 e_1_2_8_10_1 e_1_2_8_11_1 |
References_xml | – reference: Tu XM, Kowalski J, Jia G. Bayesian analysis of prevalence with covariates using simulation-based techniques: applications to HIV screening. Statistics in Medicine 1999; 18(22): 3059-3073. – reference: Ma Y, Gonzalez Della Valle A, Zhang H, Tu X. A U-statistics-based approach for modeling Cronbach coefficient alpha within a longitudinal data setting. Statistics in Medicine 2010; 29(6): 659-670. – reference: Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 1952; 47(260): 663-685. – reference: Thas O, Neve JD, Clement L, Ottoy JP. Probabilistic index models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2012; 74(4): 623-671. – reference: Chen R, Chen T, Lu N, Zhang H, Wu P, Feng C, Tu X. Extending the Mann-Whitney-Wilcoxon rank sum test to longitudinal regression analysis. Journal of Applied Statistics 2014; 41(12): 2658-2675. – reference: Sievers GL. A weighted dispersion function for estimation in linear models. Communications in Statistics-Theory and Methods 1983; 12(10): 1161-1179. – reference: Wu P, Gunzler D, Lu N, Chen T, Wymen P, Tu X. Causal inference for community-based multi-layered intervention study. Statistics in Medicine 2014; 33(22): 3905-3918. – reference: Lu N, Chen T, Wu P, Gunzler D, Zhang H, He H, Tu X. Functional response models for intraclass correlation coefficients. Journal of Applied Statistics 2014; 41(11): 2539-2556. – reference: Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability the atherosclerosis risk in communities (aric) study. Hypertension 2003; 42(6): 1106-1111. – reference: Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90: 106-121. – reference: Van Elteren P. On the Combination of Independent Two Sample Tests of Wilcoxon. Stichting Mathematisch Centrum. Zuivere Wiskunde: Amsterdam, Netherlands, 1959. – reference: Tang W, He H, Tu XM. Applied Categorical and Count Data Analysis. CRC Press: Boca Raton, Florida, 2012. – reference: Tang W, Lu N, Chen T, Wang W, Gunzler DD, Han Y, Tu XM. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses. Statistics in Medicine 2015; 34(24): 3235-3245. – reference: Jureckova J. Nonparametric estimate of regression coefficients. The Annals of Mathematical Statistics 1971; 42(4): 1328-1338. – reference: Terpstra JT, McKean JW, Naranjo JD. Highly efficient weighted for autoregression Wilcoxon estimes for autoregression. Statistics: A Journal of Theoretical and Applied Statistics 2000; 35(1): 45-80. – reference: Naranjo J, Hettmansperger T. Bounded influence rank regression. Journal of the Royal Statistical Society. Series B (Methodological) 1994; 56(1): 209-220. – reference: Wu P, Han Y, Chen T, Tu X. Causal inference for Mann-Whitney-Wilcoxon rank sum and other nonparametric statistics. Statistics in Medicine 2014; 33(8): 1261-1271. – reference: Jung SH. Quasi-likelihood for median regression models. Journal of the American Statistical Association 1996; 91(433): 251-257. – reference: Terpstra JT, McKean JW. Rank-based analysis of linear models using r. Journal of Statistical Software 2005; 14(7): 1-26. – reference: Strauss D, Ikeda M. Pseudolikelihood estimation for social networks. Journal of the American Statistical Association 1990; 85(409): 204-212. – reference: Chang WH, McKean JW, Naranjo JD, Sheather SJ. High-breakdown rank regression. Journal of the American Statistical Association 1999; 94(445): 205-219. – reference: Kowalski J, Tu XM. Modern Applied U-statistics, vol. 714. John Wiley & Sons: Hoboken, New Jersey, 2008. – reference: Yu Q, Chen R, Tang W, He H, Gallop R, Crits-Christoph P, Hu J, Tu X. Distribution-free models for longitudinal count responses with overdispersion and structural zeros. Statistics in Medicine 2013; 32(14): 2390-2405. – reference: Jaeckel LA. Estimating regression coefficients by minimizing the dispersion of the residuals. The Annals of Mathematical Statistics 1972; 43(5): 1449-1458. – reference: Morrison-Beedy D, Jones SH, Xia Y, Tu X, Crean HF, Carey MP. Reducing sexual risk behavior in adolescent girls: results from a randomized controlled trial. Journal of Adolescent Health 2013; 52(3): 314-321. – reference: Jung SH, Ying Z. Rank-based regression with repeated measurements data. Biometrika 2003; 90(3): 732-740. – reference: Wang YG, Zhu M. Rank-based regression for analysis of repeated measures. Biometrika 2006; 93(2): 459-464. – volume: 42 start-page: 1328 issue: 4 year: 1971 end-page: 1338 article-title: Nonparametric estimate of regression coefficients publication-title: The Annals of Mathematical Statistics – volume: 93 start-page: 459 issue: 2 year: 2006 end-page: 464 article-title: Rank‐based regression for analysis of repeated measures publication-title: Biometrika – volume: 32 start-page: 2390 issue: 14 year: 2013 end-page: 2405 article-title: Distribution‐free models for longitudinal count responses with overdispersion and structural zeros publication-title: Statistics in Medicine – volume: 90 start-page: 732 issue: 3 year: 2003 end-page: 740 article-title: Rank‐based regression with repeated measurements data publication-title: Biometrika – volume: 56 start-page: 209 issue: 1 year: 1994 end-page: 220 article-title: Bounded influence rank regression publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 33 start-page: 1261 issue: 8 year: 2014 end-page: 1271 article-title: Causal inference for Mann–Whitney–Wilcoxon rank sum and other nonparametric statistics publication-title: Statistics in Medicine – year: 2003 – volume: 14 start-page: 1 issue: 7 year: 2005 end-page: 26 article-title: Rank‐based analysis of linear models using r publication-title: Journal of Statistical Software – volume: 42 start-page: 1106 issue: 6 year: 2003 end-page: 1111 article-title: Hypertension, blood pressure, and heart rate variability the atherosclerosis risk in communities (aric) study publication-title: Hypertension – volume: 41 start-page: 2539 issue: 11 year: 2014 end-page: 2556 article-title: Functional response models for intraclass correlation coefficients publication-title: Journal of Applied Statistics – volume: 35 start-page: 45 issue: 1 year: 2000 end-page: 80 article-title: Highly efficient weighted for autoregression Wilcoxon estimes for autoregression publication-title: Statistics: A Journal of Theoretical and Applied Statistics – volume: 43 start-page: 1449 issue: 5 year: 1972 end-page: 1458 article-title: Estimating regression coefficients by minimizing the dispersion of the residuals publication-title: The Annals of Mathematical Statistics – volume: 52 start-page: 314 issue: 3 year: 2013 end-page: 321 article-title: Reducing sexual risk behavior in adolescent girls: results from a randomized controlled trial publication-title: Journal of Adolescent Health – year: 2012 – volume: 74 start-page: 623 issue: 4 year: 2012 end-page: 671 article-title: Probabilistic index models publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – year: 1959 – volume: 85 start-page: 204 issue: 409 year: 1990 end-page: 212 article-title: Pseudolikelihood estimation for social networks publication-title: Journal of the American Statistical Association – volume: 47 start-page: 663 issue: 260 year: 1952 end-page: 685 article-title: A generalization of sampling without replacement from a finite universe publication-title: Journal of the American Statistical Association – year: 2008 – volume: 33 start-page: 3905 issue: 22 year: 2014 end-page: 3918 article-title: Causal inference for community‐based multi‐layered intervention study publication-title: Statistics in Medicine – volume: 41 start-page: 2658 issue: 12 year: 2014 end-page: 2675 article-title: Extending the Mann–Whitney–Wilcoxon rank sum test to longitudinal regression analysis publication-title: Journal of Applied Statistics – volume: 34 start-page: 3235 issue: 24 year: 2015 end-page: 3245 article-title: On performance of parametric and distribution‐free models for zero‐inflated and over‐dispersed count responses publication-title: Statistics in Medicine – volume: 94 start-page: 205 issue: 445 year: 1999 end-page: 219 article-title: High‐breakdown rank regression publication-title: Journal of the American Statistical Association – volume: 18 start-page: 3059 issue: 22 year: 1999 end-page: 3073 article-title: Bayesian analysis of prevalence with covariates using simulation‐based techniques: applications to HIV screening publication-title: Statistics in Medicine – volume: 12 start-page: 1161 issue: 10 year: 1983 end-page: 1179 article-title: A weighted dispersion function for estimation in linear models publication-title: Communications in Statistics‐Theory and Methods – volume: 90 start-page: 106 year: 1995 end-page: 121 article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data publication-title: Journal of the American Statistical Association – volume: 91 start-page: 251 issue: 433 year: 1996 end-page: 257 article-title: Quasi‐likelihood for median regression models publication-title: Journal of the American Statistical Association – volume: 29 start-page: 659 issue: 6 year: 2010 end-page: 670 article-title: A U‐statistics‐based approach for modeling Cronbach coefficient alpha within a longitudinal data setting publication-title: Statistics in Medicine – ident: e_1_2_8_17_1 doi: 10.1080/02664763.2014.925101 – volume: 29 start-page: 659 issue: 6 year: 2010 ident: e_1_2_8_20_1 article-title: A U‐statistics‐based approach for modeling Cronbach coefficient alpha within a longitudinal data setting publication-title: Statistics in Medicine doi: 10.1002/sim.3853 – ident: e_1_2_8_7_1 doi: 10.1080/01621459.1996.10476683 – ident: e_1_2_8_15_1 doi: 10.1002/sim.6026 – volume: 94 start-page: 205 issue: 445 year: 1999 ident: e_1_2_8_12_1 article-title: High‐breakdown rank regression publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1999.10473836 – ident: e_1_2_8_29_1 doi: 10.1002/(SICI)1097-0258(19991130)18:22<3059::AID-SIM247>3.0.CO;2-O – ident: e_1_2_8_16_1 doi: 10.1111/j.1467-9868.2011.01020.x – volume-title: Modern Applied U‐statistics year: 2008 ident: e_1_2_8_22_1 – ident: e_1_2_8_26_1 doi: 10.1080/01621459.1952.10483446 – volume-title: On the Combination of Independent Two Sample Tests of Wilcoxon year: 1959 ident: e_1_2_8_23_1 – ident: e_1_2_8_28_1 doi: 10.1201/b12123 – ident: e_1_2_8_5_1 doi: 10.1214/aoms/1177693245 – ident: e_1_2_8_21_1 doi: 10.1080/02664763.2014.920780 – ident: e_1_2_8_24_1 – ident: e_1_2_8_4_1 doi: 10.1214/aoms/1177692377 – ident: e_1_2_8_6_1 doi: 10.1080/01621459.1995.10476493 – ident: e_1_2_8_10_1 doi: 10.1111/j.2517-6161.1994.tb01972.x – ident: e_1_2_8_19_1 doi: 10.1002/sim.6560 – ident: e_1_2_8_27_1 doi: 10.18637/jss.v014.i07 – ident: e_1_2_8_11_1 doi: 10.1080/03610928308828522 – ident: e_1_2_8_18_1 doi: 10.1002/sim.5691 – ident: e_1_2_8_8_1 doi: 10.1093/biomet/90.3.732 – ident: e_1_2_8_9_1 doi: 10.1093/biomet/93.2.459 – ident: e_1_2_8_13_1 doi: 10.1080/02331880108802724 – ident: e_1_2_8_14_1 doi: 10.1002/sim.6199 – ident: e_1_2_8_25_1 doi: 10.1080/01621459.1990.10475327 – ident: e_1_2_8_3_1 doi: 10.1161/01.HYP.0000100444.71069.73 – ident: e_1_2_8_2_1 doi: 10.1016/j.jadohealth.2012.07.005 |
SSID | ssj0011527 |
Score | 2.210892 |
Snippet | Mean‐based semi‐parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over... Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3333 |
SubjectTerms | between-subject attribute Computer Simulation Data analysis Humans linear regression Longitudinal Studies Mathematical models Models, Statistical Parameter estimation rank regression Regression Analysis semi-parametric regression models sexual health Simulation |
Title | Rank-preserving regression: a more robust rank regression model against outliers |
URI | https://api.istex.fr/ark:/67375/WNG-649GDT6S-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6930 https://www.ncbi.nlm.nih.gov/pubmed/26934999 https://www.proquest.com/docview/1803219370 https://www.proquest.com/docview/1876458911 https://www.proquest.com/docview/1802738226 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2hIqFKiI8FypaCjITglG2cOHbCDVHagrQ9bFtRiYNlO_GqWshW-yEhTvwEfiO_hJk4CRS1EuK0WtmxJs7M5MUevwfwQvnCYxL0kalkFglrZFRUJou4tyUCWOPShsR1fCQPT8WHs-ysraqkszCBH6JfcKPIaPI1Bbixy93fpKHL8y8j0vHD9MtTSbT5e5OeOYp3aq20QykVzzre2TjZ7S689Ca6SZP69SqYeRm1Nq-d_bvwqTM4VJvMRuuVHblvf3E5_t8d3YM7LRplb4L73IcbVT2AW-N2v30At8OqHguHlQawSdg0UDs_gMnE1LOf339QKS1lnHrKFtU01NXWr5lhVMPLFnO7Xq4YacP_0cwaBR5mpuYc8SmjsiTS5H4Ip_vvTt4eRq1EQ-REnsWRM74sVZo6YXnJ8Z8SrvAFpgkhSlUkPimLnJMmVpnY2Fhupacr8kJkNlYufQQb9byuHgPzKrUCPQMH9iIvuc1dVuEoBgGnTaQfwqvucWnX8peTjMZnHZiXE43zp2n-hvC873kRODuu6POyeeJ9B7OYUY2byvTHowMtRXGwdyKPtRrCTucSug3vpeZ5nGKqT1V8TbOSguQaOZrSN2Pc0maMqav5uhmCTkUh-h3CVvC03pYELaQvUTSy8Zdr70Ifvx_T7_a_dnwCm4j4ZLMoHu_Axmqxrp4iqlrZZ038_AJmyB67 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amwSTEJdyKwwwEoKndHHi2Ak8IcbWwdqHrtP2gGTZSVxN3VLUi4R44ifwG_kl-NhJYGiTEE9VZcc6cc45-WIffx_AS2EyY5OgCVTJk4BpxYOsVElAjS4sgFV57EhcB0PeP2IfT5KTNXjbnIXx_BDtghtGhsvXGOC4IL39mzV0cXreQyG_a7DBLM7AL6-dUcsdRRu9Vtyj5IImDfNsGG03V154F23gtH69DGhexK3uxbN7Gz43Jvt6k2lvtdS9_NtfbI7_eU934FYNSMk770F3Ya2sOnB9UG-5d-CmX9gj_rxSBzYRnnp253swGqlq-vP7D6ymxaRTTci8nPjS2uoNUQTLeMl8pleLJUF5-D-aiRPhIWqiTi1EJViZhLLc9-Fo98P4fT-oVRqCnKVJGOTKFIWI45xpWlD7T7A8M5nNFIwVIotMVGQpRVmsItKh0lRzg1ekGUt0KPL4AaxXs6p8BMSIWDPrHHZgw9KC6jRPSjuKsphTR9x04XXzvGReU5ijksaZ9OTLkbTzJ3H-uvCi7fnF03Zc0ueVe-RtBzWfYpmbSOTxcE9ylu3tjPmhFF3YanxC1hG-kDQNY5vtYxFe0Sw4Q8VGak1pm23o4n6MqsrZyg2BB6MsAO7CQ-9qrS2RtRA_Rq2RzmGuvAt5uD_A38f_2vE53OiPBwfyYH_46QlsWgDI3Rp5uAXry_mqfGpB1lI_c8H0C0MfIto |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1BK1WVEJfltlDASAieso0Tx054Q5RtC-wK9SIq8WDZSbyqFrLVXiTEE5_AN_IlzMRJoKiVEE-rlR1r4sxMTuzxOQDPlMscJkEXmFImgbBGBllpkoA7WyCANXlck7iOxnLvWLw9SU6aqko6C-P5IboFN4qMOl9TgJ8Vbvs3aeji9MuAdPyuwrqQCCQIEB101FG8lWulLUqpeNISz4bRdnvluVfROs3q14tw5nnYWr93hjfgU2uxLzeZDlZLO8i__UXm-H-3dBOuN3CUvfL-cwuulFUPNkbNhnsPrvllPeZPK_Vgk8Cp53a-DQcHppr-_P6Damkp5VQTNi8nvrC2eskMoyJeNp_Z1WLJSBz-j2ZWS_AwMzGnCFAZ1SWRKPcdOB6-OXq9FzQaDUEu0iQMcuOKQsVxLiwvOP5TIs9chnlCiEJlkYuKLOUkilVENjSWW-noijQTiQ1VHt-FtWpWlfeBORVbga6BAzuRFtymeVLiKAYRp42k68OL9nHpvCEwJx2Nz9pTL0ca50_T_PXhadfzzJN2XNDnef3Euw5mPqUiN5Xoj-NdLUW2u3MkD7Xqw1brErqJ74XmaRhjro9VeEmzkoL0Gjma0jVj4NJujKnK2aoego5FIfztwz3vaZ0tEVpIn6JoZO0vl96FPtwf0e-Df-34BDY-7Az1-_3xu4ewiehP1gvk4RasLeer8hEirKV9XIfSL8WhIYk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank-preserving+regression%3A+a+more+robust+rank+regression+model+against+outliers&rft.jtitle=Statistics+in+medicine&rft.au=Chen%2C+Tian&rft.au=Kowalski%2C+Jeanne&rft.au=Chen%2C+Rui&rft.au=Wu%2C+Pan&rft.date=2016-08-30&rft.eissn=1097-0258&rft.volume=35&rft.issue=19&rft.spage=3333&rft_id=info:doi/10.1002%2Fsim.6930&rft_id=info%3Apmid%2F26934999&rft.externalDocID=26934999 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |