Intracellular marriage of bicarbonate and Mn ions as “immune ion reactors” to regulate redox homeostasis and enhanced antitumor immune responses

Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([Formula: see text]), as the most important component to amplify therapeutic effects, must b...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanobiotechnology Vol. 20; no. 1; pp. 193 - 17
Main Authors Feng, Yushuo, Liu, Yaqing, Ma, Xiaoqian, Xu, Lihua, Ding, Dandan, Chen, Lei, Wang, Zongzhang, Qin, Ruixue, Sun, Wenjing, Chen, Hongmin
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 19.04.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([Formula: see text]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [Formula: see text] is strictly limited because of the tight control by live cells. Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO -ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn and [Formula: see text], and ICG in the cytoplasm. The suddenly increased [Formula: see text] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [Formula: see text] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn -enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination. The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ.
AbstractList Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([formula omitted]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [formula omitted] is strictly limited because of the tight control by live cells. Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO.sub.3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn.sup.2+ and [formula omitted], and ICG in the cytoplasm. The suddenly increased [formula omitted] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [formula omitted] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn.sup.2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination. The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ.
Background Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([formula omitted]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [formula omitted] is strictly limited because of the tight control by live cells. Results Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO.sub.3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn.sup.2+ and [formula omitted], and ICG in the cytoplasm. The suddenly increased [formula omitted] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [formula omitted] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn.sup.2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination. Conclusions The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ. Keywords: Self-supplying intracellular ions, Redox homeostasis, Immune activator, Manganese immunotherapy, Orthotopic liver cancer
Abstract Background Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ( $${\text{HCO}}_{3}^{ - }$$ HCO 3 - ), as the most important component to amplify therapeutic effects, must be present, however, intracellular $${\text{HCO}}_{3}^{ - }$$ HCO 3 - is strictly limited because of the tight control by live cells. Results Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as “immune ion reactors” to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release “ion reactors” of Mn2+ and $${\text{HCO}}_{3}^{ - }$$ HCO 3 - , and ICG in the cytoplasm. The suddenly increased $${\text{HCO}}_{3}^{ - }$$ HCO 3 - in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because $${\text{HCO}}_{3}^{ - }$$ HCO 3 - play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination. Conclusions The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ.
Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([Formula: see text]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [Formula: see text] is strictly limited because of the tight control by live cells.BACKGROUNDDifferent from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([Formula: see text]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [Formula: see text] is strictly limited because of the tight control by live cells.Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn2+ and [Formula: see text], and ICG in the cytoplasm. The suddenly increased [Formula: see text] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [Formula: see text] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination.RESULTSHerein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn2+ and [Formula: see text], and ICG in the cytoplasm. The suddenly increased [Formula: see text] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [Formula: see text] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination.The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ.CONCLUSIONSThe combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ.
Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([Formula: see text]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [Formula: see text] is strictly limited because of the tight control by live cells. Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO -ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn and [Formula: see text], and ICG in the cytoplasm. The suddenly increased [Formula: see text] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [Formula: see text] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn -enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination. The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ.
ArticleNumber 193
Audience Academic
Author Wang, Zongzhang
Chen, Hongmin
Feng, Yushuo
Ding, Dandan
Qin, Ruixue
Liu, Yaqing
Sun, Wenjing
Chen, Lei
Xu, Lihua
Ma, Xiaoqian
Author_xml – sequence: 1
  givenname: Yushuo
  surname: Feng
  fullname: Feng, Yushuo
– sequence: 2
  givenname: Yaqing
  surname: Liu
  fullname: Liu, Yaqing
– sequence: 3
  givenname: Xiaoqian
  surname: Ma
  fullname: Ma, Xiaoqian
– sequence: 4
  givenname: Lihua
  surname: Xu
  fullname: Xu, Lihua
– sequence: 5
  givenname: Dandan
  surname: Ding
  fullname: Ding, Dandan
– sequence: 6
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
– sequence: 7
  givenname: Zongzhang
  surname: Wang
  fullname: Wang, Zongzhang
– sequence: 8
  givenname: Ruixue
  surname: Qin
  fullname: Qin, Ruixue
– sequence: 9
  givenname: Wenjing
  surname: Sun
  fullname: Sun, Wenjing
– sequence: 10
  givenname: Hongmin
  surname: Chen
  fullname: Chen, Hongmin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35440088$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC_wAiyQJTZ0kWI7zm2DVFUURipC4rK2HOck4yqxB9uphl0fgiW8XJ-Ek5mh6iCEsnB8_P2_fez_ODmwzkKSPGf0jLGqeB0Yr3OWUs5TygQV6fpRcsREWaYZy_ODB_-HyXEI1xRJwcWT5DDLhaC0qo6SHwsbvdIwDNOgPBmV90b1QFxHGqOVb5xVEYiyLflgiXE2EBXI3e1PM46ThblCPCgdnQ93t79IdDjt0QtFHlq3Jks3ggtRBRM2NmCXympocRJNnEbnyc7LQ1jhBhCeJo87NQR4thtPkq-Xb79cvE-vPr5bXJxfpVpUYp1qrkpasJJBxwAyzfJK0YxntOScV62mvGAd500HJQ5Q64o3GdYZK6HJEDxJFlvf1qlrufIG2_8unTJyU3C-l8pHoweQteBV03Y1UJ6JVrEmzwVnTZ2JgkHVKPR6s_VaTc0IrYb5Xoc90_0Va5aydzeyppzSTKDBq52Bd98mCFGOJswPoyy4KUhe5LwqBM9LRF9u0V7h0Yzt3PyGMy7PS8oorfO8RursHxR-LYxGY5Q6g_U9wemeAJkI69irKQS5-Pxpn33xsN37Pv8kCwG-BbR3IXjo7hFG5RxfuY2vxFDKTXzlGkXVXyJtoooYMjy6Gf4n_Q3tGPdH
CitedBy_id crossref_primary_10_1016_j_bioactmat_2023_11_017
crossref_primary_10_7554_eLife_85494
crossref_primary_10_1039_D3SC03635A
crossref_primary_10_1021_acsami_4c09536
crossref_primary_10_1186_s12951_023_01819_0
crossref_primary_10_1039_D3TB02844E
crossref_primary_10_3389_fimmu_2023_1128840
crossref_primary_10_1002_mco2_755
crossref_primary_10_1016_j_apsb_2024_12_018
crossref_primary_10_1016_j_cej_2024_155749
crossref_primary_10_1186_s12951_025_03336_8
Cites_doi 10.1038/s41423-021-00669-w
10.1021/acsnano.8b09387
10.1016/j.nantod.2018.06.008
10.1111/j.1469-7793.1999.209aa.x
10.1002/anie.202005111
10.1073/pnas.0404911101
10.1002/anie.201408510
10.1039/C8RA02095G
10.1038/nrm2820
10.1038/s41573-021-00163-y
10.1016/j.cell.2017.09.021
10.1038/s41422-020-00395-4
10.1007/s003300000564
10.1002/adfm.201903850
10.1016/S1076-6332(03)00571-3
10.1002/adma.201806803
10.1016/S0891-5849(00)00252-5
10.1016/j.immuni.2018.03.017
10.1016/j.freeradbiomed.2006.11.032
10.7554/eLife.15691
10.1038/s41467-020-15591-4
10.1002/anie.201712027
10.1038/nrc.2017.77
10.1002/adma.201904058
10.1038/nnano.2016.199
10.1021/acs.nanolett.0c02622
10.1038/nnano.2007.260
10.1002/adfm.201907066
10.1002/adma.201703588
10.1080/10643380500326564
10.1080/14756360410001689540
10.1021/acsami.7b03087
10.1016/j.nantod.2021.101109
10.1166/jbn.2018.2636
10.1053/j.gastro.2006.05.021
10.1038/s41467-018-05798-x
10.1038/nnano.2012.90
10.1016/j.chempr.2020.02.020
10.1021/acs.nanolett.9b05008
10.1126/sciadv.aav5562
10.1002/anie.200802323
10.1073/pnas.87.1.394
10.1002/anie.201510748
10.1073/pnas.0611142104
10.1016/S0899-9007(02)00916-4
10.1039/B813725K
10.1152/physrev.00013.2006
10.1007/s11427-016-0373-3
10.1006/exnr.2002.8056
10.1158/0008-5472.CAN-15-1743
10.1177/1534735420922579
10.1073/pnas.87.1.389
10.1002/advs.202001060
10.1038/nchembio.85
10.1126/science.210504
10.1021/acs.inorgchem.9b03524
10.1002/jmri.1880070109
10.1021/acsami.9b11843
10.1038/s41423-020-00524-4
10.1021/ja025956j
10.1016/j.chempr.2019.05.024
10.1021/nn506210a
10.1007/s00330-006-0336-9
10.1016/S0378-5173(02)00054-6
10.1080/10408360500523878
10.1038/nnano.2016.164
10.1021/acsami.9b16617
10.1002/anie.201805664
10.1074/jbc.M111.219899
10.1023/A:1008121125755
10.1021/jacs.7b11036
10.1073/pnas.87.1.384
10.1002/adma.201906024
10.1002/anie.201102852
10.1021/acsnano.9b06111
10.1002/adfm.201704089
ContentType Journal Article
Copyright 2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
The Author(s) 2022
Copyright_xml – notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: The Author(s) 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s12951-022-01404-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1477-3155
EndPage 17
ExternalDocumentID oai_doaj_org_article_9428bdf9e0234da1b55421b93461e8ba
PMC9020034
A701009559
35440088
10_1186_s12951_022_01404_x
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 82001956
– fundername: the National Postdoctoral Program for Innovative Talents
  grantid: BX20200196
– fundername: the open research fund of National Facility for Translational Medicine
  grantid: TMSK-2021-102
– fundername: National Natural Science Foundation of China
  grantid: 82172007, 81771977
– fundername: the Science Fund for Distinguished Young Scholars of Fujian Province
  grantid: 2021J06007
– fundername: the Xiamen Science and Technology Plan Project
  grantid: 3502Z20183017
– fundername: the Fundamental Research Funds for the Central Universities of China
  grantid: 20720180054
– fundername: ;
  grantid: BX20200196
– fundername: ;
  grantid: 2021J06007
– fundername: ;
  grantid: 82001956; 82172007, 81771977
– fundername: ;
  grantid: 3502Z20183017
– fundername: ;
  grantid: 20720180054
– fundername: ;
  grantid: TMSK-2021-102
GroupedDBID ---
0R~
29L
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADDVE
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IHR
INH
INR
ISR
ITC
ITG
ITH
KB.
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
RVI
SCM
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
FRP
NPM
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c484x-c2a706171ef1ee3c158a0323072228dc0261f22bfe7f22e9c82b38dc117eb3323
IEDL.DBID M48
ISSN 1477-3155
IngestDate Wed Aug 27 01:30:11 EDT 2025
Thu Aug 21 18:40:57 EDT 2025
Thu Jul 10 18:07:26 EDT 2025
Tue Jun 17 21:32:16 EDT 2025
Tue Jun 10 20:28:15 EDT 2025
Fri Jun 27 03:37:14 EDT 2025
Wed Feb 19 02:25:42 EST 2025
Tue Jul 01 01:26:49 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Immune activator
Self-supplying intracellular ions
Orthotopic liver cancer
Manganese immunotherapy
Redox homeostasis
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484x-c2a706171ef1ee3c158a0323072228dc0261f22bfe7f22e9c82b38dc117eb3323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-022-01404-x
PMID 35440088
PQID 2652864257
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_9428bdf9e0234da1b55421b93461e8ba
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9020034
proquest_miscellaneous_2652864257
gale_infotracmisc_A701009559
gale_infotracacademiconefile_A701009559
gale_incontextgauss_ISR_A701009559
pubmed_primary_35440088
crossref_primary_10_1186_s12951_022_01404_x
crossref_citationtrail_10_1186_s12951_022_01404_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220419
PublicationDateYYYYMMDD 2022-04-19
PublicationDate_xml – month: 4
  year: 2022
  text: 20220419
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of nanobiotechnology
PublicationTitleAlternate J Nanobiotechnology
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References H Zhang (1404_CR52) 2017; 60
X Qian (1404_CR21) 2019; 30
Z Shi (1404_CR59) 2018; 14
BR Stockwell (1404_CR12) 2017; 171
M Chao (1404_CR49) 2016; 5
Z Dong (1404_CR25) 2020; 6
Z Tang (1404_CR1) 2019; 58
SI Liochev (1404_CR33) 2004; 101
P Wang (1404_CR27) 2019; 11
Z Ren (1404_CR67) 2020; 32
H Xiong (1404_CR68) 2020; 20
C Corbet (1404_CR51) 2017; 17
JM Estrela (1404_CR60) 2006; 43
JR Casey (1404_CR40) 2010; 11
Y Feng (1404_CR61) 2019; 11
C Bartolozzi (1404_CR30) 2000; 10
S Pilon-Thomas (1404_CR47) 2016; 76
E Ember (1404_CR38) 2009; 33
G Zheng (1404_CR11) 2007; 104
X Yang (1404_CR56) 2021; 38
W Jiang (1404_CR76) 2019; 31
Z Wang (1404_CR19) 2018; 9
D He (1404_CR63) 2017; 27
G Hao (1404_CR46) 2018; 8
L Gao (1404_CR4) 2007; 2
CC Winterbourn (1404_CR9) 2008; 4
LS Lin (1404_CR5) 2018; 57
R Chen (1404_CR74) 2019; 5
C Wang (1404_CR53) 2018; 48
J Liu (1404_CR2) 2018; 21
I Fridovich (1404_CR8) 1978; 201
L Hou (1404_CR16) 2020; 14
K Hensley (1404_CR70) 2000; 28
RR Low (1404_CR31) 1997; 7
ZH Meng (1404_CR39) 2020; 59
K Fan (1404_CR3) 2012; 7
Y Zhao (1404_CR64) 2015; 54
M Nakai (1404_CR73) 2003; 179
H Fan (1404_CR20) 2016; 55
Z Dong (1404_CR24) 2018; 140
G Kroemer (1404_CR72) 2007; 87
M Lv (1404_CR17) 2020; 30
Y Cheng (1404_CR32) 2019; 29
AK Stewart (1404_CR42) 1999; 516
HS Thomsen (1404_CR29) 2004; 11
CJ Ke (1404_CR43) 2011; 50
Y Yang (1404_CR58) 2017; 29
MB Yim (1404_CR35) 1990; 87
SE Kim (1404_CR14) 2016; 11
BY Choi (1404_CR44) 2002; 239
Y Chen (1404_CR66) 2020; 20
B Pulendran (1404_CR57) 2021; 20
Y Cheng (1404_CR26) 2017; 9
HS Thomsen (1404_CR28) 2007; 17
1404_CR23
JJ Pignatello (1404_CR6) 2006; 36
YZ Fang (1404_CR10) 2002; 18
BS Lane (1404_CR37) 2002; 124
S Pastorekova (1404_CR41) 2004; 19
G Haslam (1404_CR75) 2000; 32
PS Smith (1404_CR71) 2007; 42
K Takayasu (1404_CR50) 2006; 131
C Liu (1404_CR69) 2020; 11
ER Stadtman (1404_CR36) 1990; 87
M Yang (1404_CR48) 2020; 19
C Liu (1404_CR22) 2019; 13
KH Min (1404_CR62) 2015; 9
J Tan (1404_CR7) 2019; 5
Y Song (1404_CR54) 2021; 18
J Shin (1404_CR18) 2009; 48
Y Ding (1404_CR65) 2020; 7
B Ding (1404_CR15) 2020; 59
A Tarangelo (1404_CR13) 2016; 11
T Gu (1404_CR77) 2019; 31
A Hulikova (1404_CR45) 2011; 286
R Zhang (1404_CR55) 2021; 18
BS Berlett (1404_CR34) 1989; 87
References_xml – volume: 18
  start-page: 1222
  year: 2021
  ident: 1404_CR55
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-021-00669-w
– volume: 13
  start-page: 4267
  year: 2019
  ident: 1404_CR22
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09387
– volume: 21
  start-page: 55
  year: 2018
  ident: 1404_CR2
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2018.06.008
– volume: 516
  start-page: 209
  year: 1999
  ident: 1404_CR42
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1999.209aa.x
– volume: 59
  start-page: 16381
  year: 2020
  ident: 1404_CR15
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202005111
– volume: 101
  start-page: 12485
  year: 2004
  ident: 1404_CR33
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0404911101
– volume: 54
  start-page: 919
  year: 2015
  ident: 1404_CR64
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201408510
– volume: 8
  start-page: 22182
  year: 2018
  ident: 1404_CR46
  publication-title: RSC Adv
  doi: 10.1039/C8RA02095G
– volume: 11
  start-page: 50
  year: 2010
  ident: 1404_CR40
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2820
– volume: 20
  start-page: 454
  year: 2021
  ident: 1404_CR57
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-021-00163-y
– volume: 171
  start-page: 273
  year: 2017
  ident: 1404_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 30
  start-page: 966
  year: 2020
  ident: 1404_CR17
  publication-title: Cell Res
  doi: 10.1038/s41422-020-00395-4
– volume: 10
  start-page: 1697
  year: 2000
  ident: 1404_CR30
  publication-title: Eur Radiol
  doi: 10.1007/s003300000564
– volume: 29
  start-page: 1903850
  year: 2019
  ident: 1404_CR32
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201903850
– volume: 11
  start-page: 38
  year: 2004
  ident: 1404_CR29
  publication-title: Acad Radiol
  doi: 10.1016/S1076-6332(03)00571-3
– ident: 1404_CR23
– volume: 31
  start-page: e1806803
  year: 2019
  ident: 1404_CR77
  publication-title: Adv Mater
  doi: 10.1002/adma.201806803
– volume: 28
  start-page: 1456
  year: 2000
  ident: 1404_CR70
  publication-title: Free Radical Biol Med
  doi: 10.1016/S0891-5849(00)00252-5
– volume: 48
  start-page: 675
  year: 2018
  ident: 1404_CR53
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.03.017
– volume: 42
  start-page: 787
  year: 2007
  ident: 1404_CR71
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2006.11.032
– volume: 5
  start-page: e15691
  year: 2016
  ident: 1404_CR49
  publication-title: Elife
  doi: 10.7554/eLife.15691
– volume: 11
  start-page: 1735
  year: 2020
  ident: 1404_CR69
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15591-4
– volume: 57
  start-page: 4902
  year: 2018
  ident: 1404_CR5
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201712027
– volume: 17
  start-page: 577
  year: 2017
  ident: 1404_CR51
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2017.77
– volume: 31
  start-page: e1904058
  year: 2019
  ident: 1404_CR76
  publication-title: Adv Mater
  doi: 10.1002/adma.201904058
– volume: 11
  start-page: 921
  year: 2016
  ident: 1404_CR13
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2016.199
– volume: 20
  start-page: 6780
  year: 2020
  ident: 1404_CR66
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.0c02622
– volume: 2
  start-page: 577
  year: 2007
  ident: 1404_CR4
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2007.260
– volume: 30
  start-page: 1907066
  year: 2019
  ident: 1404_CR21
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201907066
– volume: 29
  start-page: 1703588
  year: 2017
  ident: 1404_CR58
  publication-title: Adv Mater
  doi: 10.1002/adma.201703588
– volume: 36
  start-page: 1
  year: 2006
  ident: 1404_CR6
  publication-title: Crit Rev Environ Sci Technol
  doi: 10.1080/10643380500326564
– volume: 19
  start-page: 199
  year: 2004
  ident: 1404_CR41
  publication-title: J Enzyme Inhib Med Chem
  doi: 10.1080/14756360410001689540
– volume: 9
  start-page: 19296
  year: 2017
  ident: 1404_CR26
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b03087
– volume: 38
  start-page: 101109
  year: 2021
  ident: 1404_CR56
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101109
– volume: 14
  start-page: 1934
  year: 2018
  ident: 1404_CR59
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2018.2636
– volume: 131
  start-page: 461
  year: 2006
  ident: 1404_CR50
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.05.021
– volume: 9
  start-page: 3334
  year: 2018
  ident: 1404_CR19
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05798-x
– volume: 7
  start-page: 459
  year: 2012
  ident: 1404_CR3
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2012.90
– volume: 6
  start-page: 1391
  year: 2020
  ident: 1404_CR25
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.02.020
– volume: 20
  start-page: 1781
  year: 2020
  ident: 1404_CR68
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b05008
– volume: 5
  start-page: eaav5562
  year: 2019
  ident: 1404_CR74
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.aav5562
– volume: 48
  start-page: 321
  year: 2009
  ident: 1404_CR18
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200802323
– volume: 87
  start-page: 394
  year: 1990
  ident: 1404_CR35
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.87.1.394
– volume: 55
  start-page: 5477
  year: 2016
  ident: 1404_CR20
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201510748
– volume: 104
  start-page: 8989
  year: 2007
  ident: 1404_CR11
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0611142104
– volume: 18
  start-page: 872
  year: 2002
  ident: 1404_CR10
  publication-title: Nutrition
  doi: 10.1016/S0899-9007(02)00916-4
– volume: 33
  start-page: 34
  year: 2009
  ident: 1404_CR38
  publication-title: New J Chem
  doi: 10.1039/B813725K
– volume: 87
  start-page: 99
  year: 2007
  ident: 1404_CR72
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00013.2006
– volume: 60
  start-page: 326
  year: 2017
  ident: 1404_CR52
  publication-title: Sci China: Life Sci
  doi: 10.1007/s11427-016-0373-3
– volume: 179
  start-page: 103
  year: 2003
  ident: 1404_CR73
  publication-title: Exp Neurol
  doi: 10.1006/exnr.2002.8056
– volume: 76
  start-page: 1381
  year: 2016
  ident: 1404_CR47
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-15-1743
– volume: 19
  start-page: 153473542092257
  year: 2020
  ident: 1404_CR48
  publication-title: Integr Cancer Ther
  doi: 10.1177/1534735420922579
– volume: 87
  start-page: 389
  year: 1989
  ident: 1404_CR34
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.87.1.389
– volume: 7
  start-page: 2001060
  year: 2020
  ident: 1404_CR65
  publication-title: Adv Sci
  doi: 10.1002/advs.202001060
– volume: 4
  start-page: 278
  year: 2008
  ident: 1404_CR9
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.85
– volume: 201
  start-page: 875
  year: 1978
  ident: 1404_CR8
  publication-title: Science
  doi: 10.1126/science.210504
– volume: 59
  start-page: 3171
  year: 2020
  ident: 1404_CR39
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.9b03524
– volume: 7
  start-page: 56
  year: 1997
  ident: 1404_CR31
  publication-title: Chin J Magn Reson Imaging
  doi: 10.1002/jmri.1880070109
– volume: 11
  start-page: 37461
  year: 2019
  ident: 1404_CR61
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b11843
– volume: 18
  start-page: 1571
  year: 2021
  ident: 1404_CR54
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-020-00524-4
– volume: 124
  start-page: 11946
  year: 2002
  ident: 1404_CR37
  publication-title: J Am Chem Soc
  doi: 10.1021/ja025956j
– volume: 5
  start-page: 1775
  year: 2019
  ident: 1404_CR7
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.05.024
– volume: 9
  start-page: 134
  year: 2015
  ident: 1404_CR62
  publication-title: ACS Nano
  doi: 10.1021/nn506210a
– volume: 17
  start-page: 273
  year: 2007
  ident: 1404_CR28
  publication-title: Eur Radiol
  doi: 10.1007/s00330-006-0336-9
– volume: 239
  start-page: 81
  year: 2002
  ident: 1404_CR44
  publication-title: Int J Pharm
  doi: 10.1016/S0378-5173(02)00054-6
– volume: 43
  start-page: 143
  year: 2006
  ident: 1404_CR60
  publication-title: Crit Rev Clin Lab Sci
  doi: 10.1080/10408360500523878
– volume: 11
  start-page: 977
  year: 2016
  ident: 1404_CR14
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2016.164
– volume: 11
  start-page: 41140
  year: 2019
  ident: 1404_CR27
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b16617
– volume: 58
  start-page: 946
  year: 2019
  ident: 1404_CR1
  publication-title: Angew Chem, Int Ed
  doi: 10.1002/anie.201805664
– volume: 286
  start-page: 13815
  year: 2011
  ident: 1404_CR45
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.219899
– volume: 32
  start-page: 63
  year: 2000
  ident: 1404_CR75
  publication-title: Cytotechnology
  doi: 10.1023/A:1008121125755
– volume: 140
  start-page: 2165
  year: 2018
  ident: 1404_CR24
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b11036
– volume: 87
  start-page: 384
  year: 1990
  ident: 1404_CR36
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.87.1.384
– volume: 32
  start-page: e1906024
  year: 2020
  ident: 1404_CR67
  publication-title: Adv Mater
  doi: 10.1002/adma.201906024
– volume: 50
  start-page: 8086
  year: 2011
  ident: 1404_CR43
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201102852
– volume: 14
  start-page: 3927
  year: 2020
  ident: 1404_CR16
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06111
– volume: 27
  start-page: 1704089
  year: 2017
  ident: 1404_CR63
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201704089
SSID ssj0022424
Score 2.3190756
Snippet Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses....
Background Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune...
Abstract Background Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 193
SubjectTerms Bicarbonates
Bicarbonates - therapeutic use
Biological response modifiers
Cancer
Care and treatment
Cell Line, Tumor
Chemical properties
Health aspects
Homeostasis
Humans
Immune activator
Immune response
Immunity
Immunotherapy
Manganese
Manganese immunotherapy
Metal ions
Methods
Neoplasms - drug therapy
Oncology, Experimental
Orthotopic liver cancer
Oxidation-Reduction
Redox homeostasis
Self-supplying intracellular ions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT3BA_BMoyCAkDijq2nES-1gQVYsEB6BSb5btTLorsQlKdqU99iE4wsv1SZhxsquNkODCKYo9iRLP2DNjff6GsVelDlAZWaV5PVOp8jWkOhif1irPa6eqsnARIPupOD1XHy7yi71SX4QJG-iBh4E7Mhgf-6o2gM5FVU549H9SeJOpQoD2MTRCn7dNpsZUiw49bI_I6OKoR6-WY9osCYag8KM2EzcU2fr_XJP3nNIUMLnngU7usNtj6MiPh0--y25Ac4_d2iMUvM9-nNGTtBlP6FK-dB3a1yXwtuYetdF52isH7pqKf2w4WRx3Pb---rmgYyJALRyjyFiC5_rqF1-1eBuL1QMnZtENn7dLaDGi7Bd9fA0084ghwBsCHSzbjo_v6gb0LfQP2PnJ-6_vTtOx7kIalFabNEhXUmQjoBYAWRC5drOMEOO0XVQFSttqKVGvJV7ABC19hu1ClJiao-BDdtC0DTxmHIKvwIfSCxcU6MLURtY65MFkoF1VJExs1WDDSEpOtTG-2Zic6MIOqrOoOhtVZzcJe7N75vtAyfFX6bek3Z0k0WnHBjQyOxqZ_ZeRJewl2YYlwoyGEDmXbt339uzLZ3tcYkYbefwS9noUqlvStRsPOOBIEMfWRPJwIokzOky6X2xN0FIXweAaaNe9lUUudUHLbMIeDSa5-7EsV7gea52wcmKskz-f9jSLeSQUNzOCKKon_2OonrKbMs4zlQpzyA5W3RqeYdy28s_jFP0NdmpEkg
  priority: 102
  providerName: Directory of Open Access Journals
Title Intracellular marriage of bicarbonate and Mn ions as “immune ion reactors” to regulate redox homeostasis and enhanced antitumor immune responses
URI https://www.ncbi.nlm.nih.gov/pubmed/35440088
https://www.proquest.com/docview/2652864257
https://pubmed.ncbi.nlm.nih.gov/PMC9020034
https://doaj.org/article/9428bdf9e0234da1b55421b93461e8ba
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELfGJqHxgPhPxqhMhcQDCmscJ3EeEFrRyoa0CRUqVbxYtuO0ldaEJa1UvgUfmTs3LY0YvCRyfHaU3F3uzvn5jpDXiTA2S1nmR3mP-1zn1hcm1X7OoyhXPEti5QCyV_H5iH8eR-M9sil31LzA-tbQDutJjarrd6ubnx9A4d87hRfxSQ02K4KgmCHIgMMtwac8AMuUoKJe8u1fBYZbITYbZ24dd0juhhEHsXaFWP7YKZfO_--P9o7VaiMqd0zU4AG53_iW9HQtDA_Jni0ekXs7GQcfk18XOBJX6xF-SueqAgGcWFrmVAO7Ko2L6ZaqIqOXBUWRpKqm3RnuIrHYpuBkugo9XboooeEq2VuKaUdXdFrObQnuZj2r3RS2mDqAATQQkTAvK9rMVK2hubZ-QkaDs28fz_2mKINvuOAr3zCVoNsT2DywNjRBJFQvRDg5riVlBmO6nDFgegInmxrBdAjXgyCBuB0In5L9oizsc0Kt0ZnVJtGBMtyKOM1TlgsTmTS0QmWxR4INC6RpMpZj4Yxr6SIXEcs1ByVwUDoOypVH3m7H_Fjn6_gvdR85u6XEXNvuQllNZKO6MoUITWd5asG94ZkKNHhgLNBpyOPACq080kW5kJhNo0C4zkQt61pefB3K0wTCXZfkzyNvGqK8RD6rZvcDvAlMwNWiPG5RgrqbVverjfhJ7EKMXGHLZS1ZHDER4zfYI8_W4rh9sI1UeyRpCWrryds9xWzqso2nPcQv8qN_zvmCHDKnQ9wP0mOyv6iW9iV4agvdIXeScQJHMfjUIQf9s6svw45b9eg4xYTjsP_9N4zmQUs
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+marriage+of+bicarbonate+and+Mn+ions+as+%22immune+ion+reactors%22+to+regulate+redox+homeostasis+and+enhanced+antitumor+immune+responses&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Feng%2C+Yushuo&rft.au=Liu%2C+Yaqing&rft.au=Ma%2C+Xiaoqian&rft.au=Xu%2C+Lihua&rft.date=2022-04-19&rft.eissn=1477-3155&rft.volume=20&rft.issue=1&rft.spage=193&rft_id=info:doi/10.1186%2Fs12951-022-01404-x&rft_id=info%3Apmid%2F35440088&rft.externalDocID=35440088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon