Intracellular marriage of bicarbonate and Mn ions as “immune ion reactors” to regulate redox homeostasis and enhanced antitumor immune responses
Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([Formula: see text]), as the most important component to amplify therapeutic effects, must b...
Saved in:
Published in | Journal of nanobiotechnology Vol. 20; no. 1; pp. 193 - 17 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
19.04.2022
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([Formula: see text]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [Formula: see text] is strictly limited because of the tight control by live cells.
Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO
-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn
and [Formula: see text], and ICG in the cytoplasm. The suddenly increased [Formula: see text] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [Formula: see text] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn
-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination.
The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ. |
---|---|
AbstractList | Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([formula omitted]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [formula omitted] is strictly limited because of the tight control by live cells. Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO.sub.3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn.sup.2+ and [formula omitted], and ICG in the cytoplasm. The suddenly increased [formula omitted] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [formula omitted] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn.sup.2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination. The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ. Background Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([formula omitted]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [formula omitted] is strictly limited because of the tight control by live cells. Results Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO.sub.3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn.sup.2+ and [formula omitted], and ICG in the cytoplasm. The suddenly increased [formula omitted] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [formula omitted] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn.sup.2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination. Conclusions The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ. Keywords: Self-supplying intracellular ions, Redox homeostasis, Immune activator, Manganese immunotherapy, Orthotopic liver cancer Abstract Background Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ( $${\text{HCO}}_{3}^{ - }$$ HCO 3 - ), as the most important component to amplify therapeutic effects, must be present, however, intracellular $${\text{HCO}}_{3}^{ - }$$ HCO 3 - is strictly limited because of the tight control by live cells. Results Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as “immune ion reactors” to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release “ion reactors” of Mn2+ and $${\text{HCO}}_{3}^{ - }$$ HCO 3 - , and ICG in the cytoplasm. The suddenly increased $${\text{HCO}}_{3}^{ - }$$ HCO 3 - in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because $${\text{HCO}}_{3}^{ - }$$ HCO 3 - play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination. Conclusions The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ. Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([Formula: see text]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [Formula: see text] is strictly limited because of the tight control by live cells.BACKGROUNDDifferent from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([Formula: see text]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [Formula: see text] is strictly limited because of the tight control by live cells.Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn2+ and [Formula: see text], and ICG in the cytoplasm. The suddenly increased [Formula: see text] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [Formula: see text] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination.RESULTSHerein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn2+ and [Formula: see text], and ICG in the cytoplasm. The suddenly increased [Formula: see text] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [Formula: see text] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination.The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ.CONCLUSIONSThe combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ. Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate ([Formula: see text]), as the most important component to amplify therapeutic effects, must be present, however, intracellular [Formula: see text] is strictly limited because of the tight control by live cells. Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO -ICG) were designed for intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release "ion reactors" of Mn and [Formula: see text], and ICG in the cytoplasm. The suddenly increased [Formula: see text] in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because [Formula: see text] play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn -enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination. The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ. |
ArticleNumber | 193 |
Audience | Academic |
Author | Wang, Zongzhang Chen, Hongmin Feng, Yushuo Ding, Dandan Qin, Ruixue Liu, Yaqing Sun, Wenjing Chen, Lei Xu, Lihua Ma, Xiaoqian |
Author_xml | – sequence: 1 givenname: Yushuo surname: Feng fullname: Feng, Yushuo – sequence: 2 givenname: Yaqing surname: Liu fullname: Liu, Yaqing – sequence: 3 givenname: Xiaoqian surname: Ma fullname: Ma, Xiaoqian – sequence: 4 givenname: Lihua surname: Xu fullname: Xu, Lihua – sequence: 5 givenname: Dandan surname: Ding fullname: Ding, Dandan – sequence: 6 givenname: Lei surname: Chen fullname: Chen, Lei – sequence: 7 givenname: Zongzhang surname: Wang fullname: Wang, Zongzhang – sequence: 8 givenname: Ruixue surname: Qin fullname: Qin, Ruixue – sequence: 9 givenname: Wenjing surname: Sun fullname: Sun, Wenjing – sequence: 10 givenname: Hongmin surname: Chen fullname: Chen, Hongmin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35440088$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhiNURC_wAiyQJTZ0kWI7zm2DVFUURipC4rK2HOck4yqxB9uphl0fgiW8XJ-Ek5mh6iCEsnB8_P2_fez_ODmwzkKSPGf0jLGqeB0Yr3OWUs5TygQV6fpRcsREWaYZy_ODB_-HyXEI1xRJwcWT5DDLhaC0qo6SHwsbvdIwDNOgPBmV90b1QFxHGqOVb5xVEYiyLflgiXE2EBXI3e1PM46ThblCPCgdnQ93t79IdDjt0QtFHlq3Jks3ggtRBRM2NmCXympocRJNnEbnyc7LQ1jhBhCeJo87NQR4thtPkq-Xb79cvE-vPr5bXJxfpVpUYp1qrkpasJJBxwAyzfJK0YxntOScV62mvGAd500HJQ5Q64o3GdYZK6HJEDxJFlvf1qlrufIG2_8unTJyU3C-l8pHoweQteBV03Y1UJ6JVrEmzwVnTZ2JgkHVKPR6s_VaTc0IrYb5Xoc90_0Va5aydzeyppzSTKDBq52Bd98mCFGOJswPoyy4KUhe5LwqBM9LRF9u0V7h0Yzt3PyGMy7PS8oorfO8RursHxR-LYxGY5Q6g_U9wemeAJkI69irKQS5-Pxpn33xsN37Pv8kCwG-BbR3IXjo7hFG5RxfuY2vxFDKTXzlGkXVXyJtoooYMjy6Gf4n_Q3tGPdH |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2023_11_017 crossref_primary_10_7554_eLife_85494 crossref_primary_10_1039_D3SC03635A crossref_primary_10_1021_acsami_4c09536 crossref_primary_10_1186_s12951_023_01819_0 crossref_primary_10_1039_D3TB02844E crossref_primary_10_3389_fimmu_2023_1128840 crossref_primary_10_1002_mco2_755 crossref_primary_10_1016_j_apsb_2024_12_018 crossref_primary_10_1016_j_cej_2024_155749 crossref_primary_10_1186_s12951_025_03336_8 |
Cites_doi | 10.1038/s41423-021-00669-w 10.1021/acsnano.8b09387 10.1016/j.nantod.2018.06.008 10.1111/j.1469-7793.1999.209aa.x 10.1002/anie.202005111 10.1073/pnas.0404911101 10.1002/anie.201408510 10.1039/C8RA02095G 10.1038/nrm2820 10.1038/s41573-021-00163-y 10.1016/j.cell.2017.09.021 10.1038/s41422-020-00395-4 10.1007/s003300000564 10.1002/adfm.201903850 10.1016/S1076-6332(03)00571-3 10.1002/adma.201806803 10.1016/S0891-5849(00)00252-5 10.1016/j.immuni.2018.03.017 10.1016/j.freeradbiomed.2006.11.032 10.7554/eLife.15691 10.1038/s41467-020-15591-4 10.1002/anie.201712027 10.1038/nrc.2017.77 10.1002/adma.201904058 10.1038/nnano.2016.199 10.1021/acs.nanolett.0c02622 10.1038/nnano.2007.260 10.1002/adfm.201907066 10.1002/adma.201703588 10.1080/10643380500326564 10.1080/14756360410001689540 10.1021/acsami.7b03087 10.1016/j.nantod.2021.101109 10.1166/jbn.2018.2636 10.1053/j.gastro.2006.05.021 10.1038/s41467-018-05798-x 10.1038/nnano.2012.90 10.1016/j.chempr.2020.02.020 10.1021/acs.nanolett.9b05008 10.1126/sciadv.aav5562 10.1002/anie.200802323 10.1073/pnas.87.1.394 10.1002/anie.201510748 10.1073/pnas.0611142104 10.1016/S0899-9007(02)00916-4 10.1039/B813725K 10.1152/physrev.00013.2006 10.1007/s11427-016-0373-3 10.1006/exnr.2002.8056 10.1158/0008-5472.CAN-15-1743 10.1177/1534735420922579 10.1073/pnas.87.1.389 10.1002/advs.202001060 10.1038/nchembio.85 10.1126/science.210504 10.1021/acs.inorgchem.9b03524 10.1002/jmri.1880070109 10.1021/acsami.9b11843 10.1038/s41423-020-00524-4 10.1021/ja025956j 10.1016/j.chempr.2019.05.024 10.1021/nn506210a 10.1007/s00330-006-0336-9 10.1016/S0378-5173(02)00054-6 10.1080/10408360500523878 10.1038/nnano.2016.164 10.1021/acsami.9b16617 10.1002/anie.201805664 10.1074/jbc.M111.219899 10.1023/A:1008121125755 10.1021/jacs.7b11036 10.1073/pnas.87.1.384 10.1002/adma.201906024 10.1002/anie.201102852 10.1021/acsnano.9b06111 10.1002/adfm.201704089 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). COPYRIGHT 2022 BioMed Central Ltd. The Author(s) 2022 |
Copyright_xml | – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: The Author(s) 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/s12951-022-01404-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1477-3155 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_9428bdf9e0234da1b55421b93461e8ba PMC9020034 A701009559 35440088 10_1186_s12951_022_01404_x |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 82001956 – fundername: the National Postdoctoral Program for Innovative Talents grantid: BX20200196 – fundername: the open research fund of National Facility for Translational Medicine grantid: TMSK-2021-102 – fundername: National Natural Science Foundation of China grantid: 82172007, 81771977 – fundername: the Science Fund for Distinguished Young Scholars of Fujian Province grantid: 2021J06007 – fundername: the Xiamen Science and Technology Plan Project grantid: 3502Z20183017 – fundername: the Fundamental Research Funds for the Central Universities of China grantid: 20720180054 – fundername: ; grantid: BX20200196 – fundername: ; grantid: 2021J06007 – fundername: ; grantid: 82001956; 82172007, 81771977 – fundername: ; grantid: 3502Z20183017 – fundername: ; grantid: 20720180054 – fundername: ; grantid: TMSK-2021-102 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADDVE ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE I-F IAO IHR INH INR ISR ITC ITG ITH KB. KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV RVI SCM SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF FRP NPM PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c484x-c2a706171ef1ee3c158a0323072228dc0261f22bfe7f22e9c82b38dc117eb3323 |
IEDL.DBID | M48 |
ISSN | 1477-3155 |
IngestDate | Wed Aug 27 01:30:11 EDT 2025 Thu Aug 21 18:40:57 EDT 2025 Thu Jul 10 18:07:26 EDT 2025 Tue Jun 17 21:32:16 EDT 2025 Tue Jun 10 20:28:15 EDT 2025 Fri Jun 27 03:37:14 EDT 2025 Wed Feb 19 02:25:42 EST 2025 Tue Jul 01 01:26:49 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Immune activator Self-supplying intracellular ions Orthotopic liver cancer Manganese immunotherapy Redox homeostasis |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484x-c2a706171ef1ee3c158a0323072228dc0261f22bfe7f22e9c82b38dc117eb3323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-022-01404-x |
PMID | 35440088 |
PQID | 2652864257 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9428bdf9e0234da1b55421b93461e8ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_9020034 proquest_miscellaneous_2652864257 gale_infotracmisc_A701009559 gale_infotracacademiconefile_A701009559 gale_incontextgauss_ISR_A701009559 pubmed_primary_35440088 crossref_primary_10_1186_s12951_022_01404_x crossref_citationtrail_10_1186_s12951_022_01404_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220419 |
PublicationDateYYYYMMDD | 2022-04-19 |
PublicationDate_xml | – month: 4 year: 2022 text: 20220419 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of nanobiotechnology |
PublicationTitleAlternate | J Nanobiotechnology |
PublicationYear | 2022 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | H Zhang (1404_CR52) 2017; 60 X Qian (1404_CR21) 2019; 30 Z Shi (1404_CR59) 2018; 14 BR Stockwell (1404_CR12) 2017; 171 M Chao (1404_CR49) 2016; 5 Z Dong (1404_CR25) 2020; 6 Z Tang (1404_CR1) 2019; 58 SI Liochev (1404_CR33) 2004; 101 P Wang (1404_CR27) 2019; 11 Z Ren (1404_CR67) 2020; 32 H Xiong (1404_CR68) 2020; 20 C Corbet (1404_CR51) 2017; 17 JM Estrela (1404_CR60) 2006; 43 JR Casey (1404_CR40) 2010; 11 Y Feng (1404_CR61) 2019; 11 C Bartolozzi (1404_CR30) 2000; 10 S Pilon-Thomas (1404_CR47) 2016; 76 E Ember (1404_CR38) 2009; 33 G Zheng (1404_CR11) 2007; 104 X Yang (1404_CR56) 2021; 38 W Jiang (1404_CR76) 2019; 31 Z Wang (1404_CR19) 2018; 9 D He (1404_CR63) 2017; 27 G Hao (1404_CR46) 2018; 8 L Gao (1404_CR4) 2007; 2 CC Winterbourn (1404_CR9) 2008; 4 LS Lin (1404_CR5) 2018; 57 R Chen (1404_CR74) 2019; 5 C Wang (1404_CR53) 2018; 48 J Liu (1404_CR2) 2018; 21 I Fridovich (1404_CR8) 1978; 201 L Hou (1404_CR16) 2020; 14 K Hensley (1404_CR70) 2000; 28 RR Low (1404_CR31) 1997; 7 ZH Meng (1404_CR39) 2020; 59 K Fan (1404_CR3) 2012; 7 Y Zhao (1404_CR64) 2015; 54 M Nakai (1404_CR73) 2003; 179 H Fan (1404_CR20) 2016; 55 Z Dong (1404_CR24) 2018; 140 G Kroemer (1404_CR72) 2007; 87 M Lv (1404_CR17) 2020; 30 Y Cheng (1404_CR32) 2019; 29 AK Stewart (1404_CR42) 1999; 516 HS Thomsen (1404_CR29) 2004; 11 CJ Ke (1404_CR43) 2011; 50 Y Yang (1404_CR58) 2017; 29 MB Yim (1404_CR35) 1990; 87 SE Kim (1404_CR14) 2016; 11 BY Choi (1404_CR44) 2002; 239 Y Chen (1404_CR66) 2020; 20 B Pulendran (1404_CR57) 2021; 20 Y Cheng (1404_CR26) 2017; 9 HS Thomsen (1404_CR28) 2007; 17 1404_CR23 JJ Pignatello (1404_CR6) 2006; 36 YZ Fang (1404_CR10) 2002; 18 BS Lane (1404_CR37) 2002; 124 S Pastorekova (1404_CR41) 2004; 19 G Haslam (1404_CR75) 2000; 32 PS Smith (1404_CR71) 2007; 42 K Takayasu (1404_CR50) 2006; 131 C Liu (1404_CR69) 2020; 11 ER Stadtman (1404_CR36) 1990; 87 M Yang (1404_CR48) 2020; 19 C Liu (1404_CR22) 2019; 13 KH Min (1404_CR62) 2015; 9 J Tan (1404_CR7) 2019; 5 Y Song (1404_CR54) 2021; 18 J Shin (1404_CR18) 2009; 48 Y Ding (1404_CR65) 2020; 7 B Ding (1404_CR15) 2020; 59 A Tarangelo (1404_CR13) 2016; 11 T Gu (1404_CR77) 2019; 31 A Hulikova (1404_CR45) 2011; 286 R Zhang (1404_CR55) 2021; 18 BS Berlett (1404_CR34) 1989; 87 |
References_xml | – volume: 18 start-page: 1222 year: 2021 ident: 1404_CR55 publication-title: Cell Mol Immunol doi: 10.1038/s41423-021-00669-w – volume: 13 start-page: 4267 year: 2019 ident: 1404_CR22 publication-title: ACS Nano doi: 10.1021/acsnano.8b09387 – volume: 21 start-page: 55 year: 2018 ident: 1404_CR2 publication-title: Nano Today doi: 10.1016/j.nantod.2018.06.008 – volume: 516 start-page: 209 year: 1999 ident: 1404_CR42 publication-title: J Physiol doi: 10.1111/j.1469-7793.1999.209aa.x – volume: 59 start-page: 16381 year: 2020 ident: 1404_CR15 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202005111 – volume: 101 start-page: 12485 year: 2004 ident: 1404_CR33 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0404911101 – volume: 54 start-page: 919 year: 2015 ident: 1404_CR64 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201408510 – volume: 8 start-page: 22182 year: 2018 ident: 1404_CR46 publication-title: RSC Adv doi: 10.1039/C8RA02095G – volume: 11 start-page: 50 year: 2010 ident: 1404_CR40 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2820 – volume: 20 start-page: 454 year: 2021 ident: 1404_CR57 publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-021-00163-y – volume: 171 start-page: 273 year: 2017 ident: 1404_CR12 publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 30 start-page: 966 year: 2020 ident: 1404_CR17 publication-title: Cell Res doi: 10.1038/s41422-020-00395-4 – volume: 10 start-page: 1697 year: 2000 ident: 1404_CR30 publication-title: Eur Radiol doi: 10.1007/s003300000564 – volume: 29 start-page: 1903850 year: 2019 ident: 1404_CR32 publication-title: Adv Funct Mater doi: 10.1002/adfm.201903850 – volume: 11 start-page: 38 year: 2004 ident: 1404_CR29 publication-title: Acad Radiol doi: 10.1016/S1076-6332(03)00571-3 – ident: 1404_CR23 – volume: 31 start-page: e1806803 year: 2019 ident: 1404_CR77 publication-title: Adv Mater doi: 10.1002/adma.201806803 – volume: 28 start-page: 1456 year: 2000 ident: 1404_CR70 publication-title: Free Radical Biol Med doi: 10.1016/S0891-5849(00)00252-5 – volume: 48 start-page: 675 year: 2018 ident: 1404_CR53 publication-title: Immunity doi: 10.1016/j.immuni.2018.03.017 – volume: 42 start-page: 787 year: 2007 ident: 1404_CR71 publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2006.11.032 – volume: 5 start-page: e15691 year: 2016 ident: 1404_CR49 publication-title: Elife doi: 10.7554/eLife.15691 – volume: 11 start-page: 1735 year: 2020 ident: 1404_CR69 publication-title: Nat Commun doi: 10.1038/s41467-020-15591-4 – volume: 57 start-page: 4902 year: 2018 ident: 1404_CR5 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201712027 – volume: 17 start-page: 577 year: 2017 ident: 1404_CR51 publication-title: Nat Rev Cancer doi: 10.1038/nrc.2017.77 – volume: 31 start-page: e1904058 year: 2019 ident: 1404_CR76 publication-title: Adv Mater doi: 10.1002/adma.201904058 – volume: 11 start-page: 921 year: 2016 ident: 1404_CR13 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2016.199 – volume: 20 start-page: 6780 year: 2020 ident: 1404_CR66 publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c02622 – volume: 2 start-page: 577 year: 2007 ident: 1404_CR4 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2007.260 – volume: 30 start-page: 1907066 year: 2019 ident: 1404_CR21 publication-title: Adv Funct Mater doi: 10.1002/adfm.201907066 – volume: 29 start-page: 1703588 year: 2017 ident: 1404_CR58 publication-title: Adv Mater doi: 10.1002/adma.201703588 – volume: 36 start-page: 1 year: 2006 ident: 1404_CR6 publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643380500326564 – volume: 19 start-page: 199 year: 2004 ident: 1404_CR41 publication-title: J Enzyme Inhib Med Chem doi: 10.1080/14756360410001689540 – volume: 9 start-page: 19296 year: 2017 ident: 1404_CR26 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b03087 – volume: 38 start-page: 101109 year: 2021 ident: 1404_CR56 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101109 – volume: 14 start-page: 1934 year: 2018 ident: 1404_CR59 publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2018.2636 – volume: 131 start-page: 461 year: 2006 ident: 1404_CR50 publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.05.021 – volume: 9 start-page: 3334 year: 2018 ident: 1404_CR19 publication-title: Nat Commun doi: 10.1038/s41467-018-05798-x – volume: 7 start-page: 459 year: 2012 ident: 1404_CR3 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2012.90 – volume: 6 start-page: 1391 year: 2020 ident: 1404_CR25 publication-title: Chem doi: 10.1016/j.chempr.2020.02.020 – volume: 20 start-page: 1781 year: 2020 ident: 1404_CR68 publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b05008 – volume: 5 start-page: eaav5562 year: 2019 ident: 1404_CR74 publication-title: Sci Adv. doi: 10.1126/sciadv.aav5562 – volume: 48 start-page: 321 year: 2009 ident: 1404_CR18 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200802323 – volume: 87 start-page: 394 year: 1990 ident: 1404_CR35 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.87.1.394 – volume: 55 start-page: 5477 year: 2016 ident: 1404_CR20 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201510748 – volume: 104 start-page: 8989 year: 2007 ident: 1404_CR11 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0611142104 – volume: 18 start-page: 872 year: 2002 ident: 1404_CR10 publication-title: Nutrition doi: 10.1016/S0899-9007(02)00916-4 – volume: 33 start-page: 34 year: 2009 ident: 1404_CR38 publication-title: New J Chem doi: 10.1039/B813725K – volume: 87 start-page: 99 year: 2007 ident: 1404_CR72 publication-title: Physiol Rev doi: 10.1152/physrev.00013.2006 – volume: 60 start-page: 326 year: 2017 ident: 1404_CR52 publication-title: Sci China: Life Sci doi: 10.1007/s11427-016-0373-3 – volume: 179 start-page: 103 year: 2003 ident: 1404_CR73 publication-title: Exp Neurol doi: 10.1006/exnr.2002.8056 – volume: 76 start-page: 1381 year: 2016 ident: 1404_CR47 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-15-1743 – volume: 19 start-page: 153473542092257 year: 2020 ident: 1404_CR48 publication-title: Integr Cancer Ther doi: 10.1177/1534735420922579 – volume: 87 start-page: 389 year: 1989 ident: 1404_CR34 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.87.1.389 – volume: 7 start-page: 2001060 year: 2020 ident: 1404_CR65 publication-title: Adv Sci doi: 10.1002/advs.202001060 – volume: 4 start-page: 278 year: 2008 ident: 1404_CR9 publication-title: Nat Chem Biol doi: 10.1038/nchembio.85 – volume: 201 start-page: 875 year: 1978 ident: 1404_CR8 publication-title: Science doi: 10.1126/science.210504 – volume: 59 start-page: 3171 year: 2020 ident: 1404_CR39 publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.9b03524 – volume: 7 start-page: 56 year: 1997 ident: 1404_CR31 publication-title: Chin J Magn Reson Imaging doi: 10.1002/jmri.1880070109 – volume: 11 start-page: 37461 year: 2019 ident: 1404_CR61 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b11843 – volume: 18 start-page: 1571 year: 2021 ident: 1404_CR54 publication-title: Cell Mol Immunol doi: 10.1038/s41423-020-00524-4 – volume: 124 start-page: 11946 year: 2002 ident: 1404_CR37 publication-title: J Am Chem Soc doi: 10.1021/ja025956j – volume: 5 start-page: 1775 year: 2019 ident: 1404_CR7 publication-title: Chem doi: 10.1016/j.chempr.2019.05.024 – volume: 9 start-page: 134 year: 2015 ident: 1404_CR62 publication-title: ACS Nano doi: 10.1021/nn506210a – volume: 17 start-page: 273 year: 2007 ident: 1404_CR28 publication-title: Eur Radiol doi: 10.1007/s00330-006-0336-9 – volume: 239 start-page: 81 year: 2002 ident: 1404_CR44 publication-title: Int J Pharm doi: 10.1016/S0378-5173(02)00054-6 – volume: 43 start-page: 143 year: 2006 ident: 1404_CR60 publication-title: Crit Rev Clin Lab Sci doi: 10.1080/10408360500523878 – volume: 11 start-page: 977 year: 2016 ident: 1404_CR14 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2016.164 – volume: 11 start-page: 41140 year: 2019 ident: 1404_CR27 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b16617 – volume: 58 start-page: 946 year: 2019 ident: 1404_CR1 publication-title: Angew Chem, Int Ed doi: 10.1002/anie.201805664 – volume: 286 start-page: 13815 year: 2011 ident: 1404_CR45 publication-title: J Biol Chem doi: 10.1074/jbc.M111.219899 – volume: 32 start-page: 63 year: 2000 ident: 1404_CR75 publication-title: Cytotechnology doi: 10.1023/A:1008121125755 – volume: 140 start-page: 2165 year: 2018 ident: 1404_CR24 publication-title: J Am Chem Soc doi: 10.1021/jacs.7b11036 – volume: 87 start-page: 384 year: 1990 ident: 1404_CR36 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.87.1.384 – volume: 32 start-page: e1906024 year: 2020 ident: 1404_CR67 publication-title: Adv Mater doi: 10.1002/adma.201906024 – volume: 50 start-page: 8086 year: 2011 ident: 1404_CR43 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201102852 – volume: 14 start-page: 3927 year: 2020 ident: 1404_CR16 publication-title: ACS Nano doi: 10.1021/acsnano.9b06111 – volume: 27 start-page: 1704089 year: 2017 ident: 1404_CR63 publication-title: Adv Funct Mater doi: 10.1002/adfm.201704089 |
SSID | ssj0022424 |
Score | 2.3190756 |
Snippet | Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses.... Background Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune... Abstract Background Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 193 |
SubjectTerms | Bicarbonates Bicarbonates - therapeutic use Biological response modifiers Cancer Care and treatment Cell Line, Tumor Chemical properties Health aspects Homeostasis Humans Immune activator Immune response Immunity Immunotherapy Manganese Manganese immunotherapy Metal ions Methods Neoplasms - drug therapy Oncology, Experimental Orthotopic liver cancer Oxidation-Reduction Redox homeostasis Self-supplying intracellular ions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT3BA_BMoyCAkDijq2nES-1gQVYsEB6BSb5btTLorsQlKdqU99iE4wsv1SZhxsquNkODCKYo9iRLP2DNjff6GsVelDlAZWaV5PVOp8jWkOhif1irPa6eqsnARIPupOD1XHy7yi71SX4QJG-iBh4E7Mhgf-6o2gM5FVU549H9SeJOpQoD2MTRCn7dNpsZUiw49bI_I6OKoR6-WY9osCYag8KM2EzcU2fr_XJP3nNIUMLnngU7usNtj6MiPh0--y25Ac4_d2iMUvM9-nNGTtBlP6FK-dB3a1yXwtuYetdF52isH7pqKf2w4WRx3Pb---rmgYyJALRyjyFiC5_rqF1-1eBuL1QMnZtENn7dLaDGi7Bd9fA0084ghwBsCHSzbjo_v6gb0LfQP2PnJ-6_vTtOx7kIalFabNEhXUmQjoBYAWRC5drOMEOO0XVQFSttqKVGvJV7ABC19hu1ClJiao-BDdtC0DTxmHIKvwIfSCxcU6MLURtY65MFkoF1VJExs1WDDSEpOtTG-2Zic6MIOqrOoOhtVZzcJe7N75vtAyfFX6bek3Z0k0WnHBjQyOxqZ_ZeRJewl2YYlwoyGEDmXbt339uzLZ3tcYkYbefwS9noUqlvStRsPOOBIEMfWRPJwIokzOky6X2xN0FIXweAaaNe9lUUudUHLbMIeDSa5-7EsV7gea52wcmKskz-f9jSLeSQUNzOCKKon_2OonrKbMs4zlQpzyA5W3RqeYdy28s_jFP0NdmpEkg priority: 102 providerName: Directory of Open Access Journals |
Title | Intracellular marriage of bicarbonate and Mn ions as “immune ion reactors” to regulate redox homeostasis and enhanced antitumor immune responses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35440088 https://www.proquest.com/docview/2652864257 https://pubmed.ncbi.nlm.nih.gov/PMC9020034 https://doaj.org/article/9428bdf9e0234da1b55421b93461e8ba |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELfGJqHxgPhPxqhMhcQDCmscJ3EeEFrRyoa0CRUqVbxYtuO0ldaEJa1UvgUfmTs3LY0YvCRyfHaU3F3uzvn5jpDXiTA2S1nmR3mP-1zn1hcm1X7OoyhXPEti5QCyV_H5iH8eR-M9sil31LzA-tbQDutJjarrd6ubnx9A4d87hRfxSQ02K4KgmCHIgMMtwac8AMuUoKJe8u1fBYZbITYbZ24dd0juhhEHsXaFWP7YKZfO_--P9o7VaiMqd0zU4AG53_iW9HQtDA_Jni0ekXs7GQcfk18XOBJX6xF-SueqAgGcWFrmVAO7Ko2L6ZaqIqOXBUWRpKqm3RnuIrHYpuBkugo9XboooeEq2VuKaUdXdFrObQnuZj2r3RS2mDqAATQQkTAvK9rMVK2hubZ-QkaDs28fz_2mKINvuOAr3zCVoNsT2DywNjRBJFQvRDg5riVlBmO6nDFgegInmxrBdAjXgyCBuB0In5L9oizsc0Kt0ZnVJtGBMtyKOM1TlgsTmTS0QmWxR4INC6RpMpZj4Yxr6SIXEcs1ByVwUDoOypVH3m7H_Fjn6_gvdR85u6XEXNvuQllNZKO6MoUITWd5asG94ZkKNHhgLNBpyOPACq080kW5kJhNo0C4zkQt61pefB3K0wTCXZfkzyNvGqK8RD6rZvcDvAlMwNWiPG5RgrqbVverjfhJ7EKMXGHLZS1ZHDER4zfYI8_W4rh9sI1UeyRpCWrryds9xWzqso2nPcQv8qN_zvmCHDKnQ9wP0mOyv6iW9iV4agvdIXeScQJHMfjUIQf9s6svw45b9eg4xYTjsP_9N4zmQUs |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+marriage+of+bicarbonate+and+Mn+ions+as+%22immune+ion+reactors%22+to+regulate+redox+homeostasis+and+enhanced+antitumor+immune+responses&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Feng%2C+Yushuo&rft.au=Liu%2C+Yaqing&rft.au=Ma%2C+Xiaoqian&rft.au=Xu%2C+Lihua&rft.date=2022-04-19&rft.eissn=1477-3155&rft.volume=20&rft.issue=1&rft.spage=193&rft_id=info:doi/10.1186%2Fs12951-022-01404-x&rft_id=info%3Apmid%2F35440088&rft.externalDocID=35440088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon |