A Simple Theoretical Model Explains Dynein's Response to Load

Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external load. In the presence of vanishing or small external load, dynein walks with 24- or 32-nm steps, whereas at high external load, its step size is...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 90; no. 3; pp. 811 - 821
Main Author Gao, Yi Qin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2006
Biophysical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external load. In the presence of vanishing or small external load, dynein walks with 24- or 32-nm steps, whereas at high external load, its step size is reduced to 8nm. A simple model is proposed to account for this property of dynein. The model assumes that the chemical energy of ATP hydrolysis is used through a loose coupling between the chemical reaction and the translocation of dynein along microtubule. This loose chemomechanical coupling is represented by the loosely coupled motions of dynein along two different reaction coordinates. The first reaction coordinate is tightly coupled to the chemical reaction and describes the protein conformational changes that control the chemical processes, including ATP binding and hydrolysis, and ADP-Pi release. The second coordinate describes the translocation of dynein along microtubule, which is directly subject to the influence of the external load. The model is used to explain the experimental data on the external force dependence of the dynein step size as well as the ATP concentration dependence of the stall force. A number of predictions, such as the external force dependence of speed of translocation, ATP hydrolysis rate, and dynein step sizes, are made based on this theoretical model. This model provides a simple understanding on how a variable chemomechanical coupling ratio can be achieved and used to optimize the biological function of dynein.
AbstractList Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external load. In the presence of vanishing or small external load, dynein walks with 24- or 32-nm steps, whereas at high external load, its step size is reduced to 8 nm. A simple model is proposed to account for this property of dynein. The model assumes that the chemical energy of ATP hydrolysis is used through a loose coupling between the chemical reaction and the translocation of dynein along microtubule. This loose chemomechanical coupling is represented by the loosely coupled motions of dynein along two different reaction coordinates. The first reaction coordinate is tightly coupled to the chemical reaction and describes the protein conformational changes that control the chemical processes, including ATP binding and hydrolysis, and ADP-Pi release. The second coordinate describes the translocation of dynein along microtubule, which is directly subject to the influence of the external load. The model is used to explain the experimental data on the external force dependence of the dynein step size as well as the ATP concentration dependence of the stall force. A number of predictions, such as the external force dependence of speed of translocation, ATP hydrolysis rate, and dynein step sizes, are made based on this theoretical model. This model provides a simple understanding on how a variable chemomechanical coupling ratio can be achieved and used to optimize the biological function of dynein. [PUBLICATION ABSTRACT]
Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external load. In the presence of vanishing or small external load, dynein walks with 24- or 32-nm steps, whereas at high external load, its step size is reduced to 8 nm. A simple model is proposed to account for this property of dynein. The model assumes that the chemical energy of ATP hydrolysis is used through a loose coupling between the chemical reaction and the translocation of dynein along microtubule. This loose chemomechanical coupling is represented by the loosely coupled motions of dynein along two different reaction coordinates. The first reaction coordinate is tightly coupled to the chemical reaction and describes the protein conformational changes that control the chemical processes, including ATP binding and hydrolysis, and ADP-Pi release. The second coordinate describes the translocation of dynein along microtubule, which is directly subject to the influence of the external load. The model is used to explain the experimental data on the external force dependence of the dynein step size as well as the ATP concentration dependence of the stall force. A number of predictions, such as the external force dependence of speed of translocation, ATP hydrolysis rate, and dynein step sizes, are made based on this theoretical model. This model provides a simple understanding on how a variable chemomechanical coupling ratio can be achieved and used to optimize the biological function of dynein.
Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external load. In the presence of vanishing or small external load, dynein walks with 24- or 32-nm steps, whereas at high external load, its step size is reduced to 8nm. A simple model is proposed to account for this property of dynein. The model assumes that the chemical energy of ATP hydrolysis is used through a loose coupling between the chemical reaction and the translocation of dynein along microtubule. This loose chemomechanical coupling is represented by the loosely coupled motions of dynein along two different reaction coordinates. The first reaction coordinate is tightly coupled to the chemical reaction and describes the protein conformational changes that control the chemical processes, including ATP binding and hydrolysis, and ADP-Pi release. The second coordinate describes the translocation of dynein along microtubule, which is directly subject to the influence of the external load. The model is used to explain the experimental data on the external force dependence of the dynein step size as well as the ATP concentration dependence of the stall force. A number of predictions, such as the external force dependence of speed of translocation, ATP hydrolysis rate, and dynein step sizes, are made based on this theoretical model. This model provides a simple understanding on how a variable chemomechanical coupling ratio can be achieved and used to optimize the biological function of dynein.
Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external load. In the presence of vanishing or small external load, dynein walks with 24- or 32-nm steps, whereas at high external load, its step size is reduced to 8 nm. A simple model is proposed to account for this property of dynein. The model assumes that the chemical energy of ATP hydrolysis is used through a loose coupling between the chemical reaction and the translocation of dynein along microtubule. This loose chemomechanical coupling is represented by the loosely coupled motions of dynein along two different reaction coordinates. The first reaction coordinate is tightly coupled to the chemical reaction and describes the protein conformational changes that control the chemical processes, including ATP binding and hydrolysis, and ADP-Pi release. The second coordinate describes the translocation of dynein along microtubule, which is directly subject to the influence of the external load. The model is used to explain the experimental data on the external force dependence of the dynein step size as well as the ATP concentration dependence of the stall force. A number of predictions, such as the external force dependence of speed of translocation, ATP hydrolysis rate, and dynein step sizes, are made based on this theoretical model. This model provides a simple understanding on how a variable chemomechanical coupling ratio can be achieved and used to optimize the biological function of dynein.Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external load. In the presence of vanishing or small external load, dynein walks with 24- or 32-nm steps, whereas at high external load, its step size is reduced to 8 nm. A simple model is proposed to account for this property of dynein. The model assumes that the chemical energy of ATP hydrolysis is used through a loose coupling between the chemical reaction and the translocation of dynein along microtubule. This loose chemomechanical coupling is represented by the loosely coupled motions of dynein along two different reaction coordinates. The first reaction coordinate is tightly coupled to the chemical reaction and describes the protein conformational changes that control the chemical processes, including ATP binding and hydrolysis, and ADP-Pi release. The second coordinate describes the translocation of dynein along microtubule, which is directly subject to the influence of the external load. The model is used to explain the experimental data on the external force dependence of the dynein step size as well as the ATP concentration dependence of the stall force. A number of predictions, such as the external force dependence of speed of translocation, ATP hydrolysis rate, and dynein step sizes, are made based on this theoretical model. This model provides a simple understanding on how a variable chemomechanical coupling ratio can be achieved and used to optimize the biological function of dynein.
Author Gao, Yi Qin
AuthorAffiliation Department of Chemistry, Texas A&M University, College Station, Texas 77843
AuthorAffiliation_xml – name: Department of Chemistry, Texas A&M University, College Station, Texas 77843
Author_xml – sequence: 1
  givenname: Yi Qin
  surname: Gao
  fullname: Gao, Yi Qin
  email: yiqin@mail.chem.tamu.edu
  organization: Department of Chemistry, Texas A&M University, College Station, Texas 77843
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16284275$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9LHDEUxYNY6mr7CQQZfGifZptkkszMg4JY-we2FFr7HDLJjZslm4zJrHS_fSOrUn3w6ULu7xzOzTlE-yEGQOiY4DnhtP80uDgut3k1J5jPcduQrt9DM8IZrTHuxD6aYYxF3bCeH6DDnFcYE8oxeYsOiKAdoy2fobOL6rdbjx6q6yXEBJPTylc_ogFfXf0dvXIhV5-3AVz4mKtfkMcYMlRTrBZRmXfojVU-w_uHeYT-fLm6vvxWL35-_X55sag169hUW-Da6sFYZbreKFBYac07wSxvBCM9tWzgouS3A-04Y-UGq6xVbS-EKRbNETrf-Y6bYQ1GQ5iS8nJMbq3SVkbl5PNNcEt5E-8kaURLsCgGHx4MUrzdQJ7k2mUN3qsAcZNli0UrOG0KePoCXMVNCuU4SQkXfVtiF-jk_zhPOR6_tQD9DtAp5pzASu0mNbl4n855SbC8r1A-VlgeuNxVWLTNC-2T_auqs50KSg13DpLM2kHQYFwCPUkT3av6f30Qt8o
CitedBy_id crossref_primary_10_1002_eji_201545671
crossref_primary_10_1016_j_jtbi_2008_01_029
crossref_primary_10_1088_0256_307X_25_1_086
crossref_primary_10_1073_pnas_0602828103
crossref_primary_10_1016_j_jtbi_2008_12_011
crossref_primary_10_1371_journal_pone_0068523
crossref_primary_10_1134_S0026893308010184
crossref_primary_10_1016_j_jtbi_2012_01_019
crossref_primary_10_1016_j_physrep_2013_03_005
crossref_primary_10_1088_1742_5468_2013_02_P02030
crossref_primary_10_1142_S0217984912501370
crossref_primary_10_1016_j_bpc_2009_09_008
crossref_primary_10_1142_S0217984911026978
crossref_primary_10_1103_RevModPhys_85_135
crossref_primary_10_1016_j_jtbi_2015_01_010
crossref_primary_10_1016_j_jtbi_2015_04_029
crossref_primary_10_1088_1742_5468_2010_04_P04014
crossref_primary_10_1088_1748_3182_8_2_026006
crossref_primary_10_1016_j_bpc_2007_12_009
crossref_primary_10_1371_journal_pone_0214961
crossref_primary_10_1016_j_bpj_2014_06_022
crossref_primary_10_1371_journal_pone_0032717
crossref_primary_10_1088_1478_3975_7_3_036004
crossref_primary_10_1529_biophysj_106_089888
crossref_primary_10_1088_1478_3975_ab907d
crossref_primary_10_1039_C6CP04496D
crossref_primary_10_1016_j_bpj_2020_03_012
crossref_primary_10_1103_PhysRevE_94_042406
crossref_primary_10_1073_pnas_1300891110
Cites_doi 10.1038/ncb857
10.1016/j.cub.2004.04.026
10.1016/j.tcb.2004.09.013
10.1038/sj.emboj.7600240
10.1038/22146
10.1016/S0960-9822(99)80340-6
10.1016/j.sbi.2004.03.012
10.1038/31520
10.1023/A:1020300319224
10.1016/j.cub.2004.06.045
10.1021/bi048985a
10.1016/j.jmb.2004.05.063
10.1016/j.cub.2004.10.046
10.1038/23066
10.1126/science.1093753
10.1038/nature02293
10.1038/35036345
10.1038/nature01377
10.1073/pnas.0403429101
10.1016/S0301-4622(02)00177-1
10.1016/j.ceb.2004.12.006
10.1016/S0014-5793(04)00278-9
10.1126/science.1084398
10.1002/cm.1032
10.1002/cm.20018
10.1529/biophysj.104.042093
10.1247/csf.24.373
10.1073/pnas.050585297
10.1074/jbc.M313472200
10.1016/S0006-3495(99)76950-X
10.1016/0009-2614(79)80114-1
10.1093/oxfordjournals.jbchem.a124794
10.1038/24409
10.1016/j.sbi.2004.03.013
10.1016/j.jsb.2003.10.005
10.1021/bi9730184
ContentType Journal Article
Copyright 2006 The Biophysical Society
Copyright Biophysical Society Feb 1, 2006
Copyright © 2006, Biophysical Society 2006
Copyright_xml – notice: 2006 The Biophysical Society
– notice: Copyright Biophysical Society Feb 1, 2006
– notice: Copyright © 2006, Biophysical Society 2006
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7TK
7TM
7U9
7X2
7X7
7XB
88A
88E
88I
8AF
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0K
M0S
M1P
M2O
M2P
M7P
MBDVC
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
5PM
DOI 10.1529/biophysj.105.073189
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Research Library (ProQuest)
Science Database
Biological Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1542-0086
EndPage 821
ExternalDocumentID PMC1367106
976789991
16284275
10_1529_biophysj_105_073189
S000634950672269X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
23N
2WC
3V.
4.4
457
53G
5GY
5RE
62-
6I.
6J9
6TJ
7X2
7X7
88A
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABUWG
ABVKL
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGHFR
AGKMS
AHMBA
AHPSJ
AI.
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ARAPS
ATCPS
AYCSE
AZFZN
AZQEC
BAWUL
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
D0L
DIK
DU5
DWQXO
E3Z
EBS
EJD
F5P
FCP
FDB
FRP
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HYE
HZ~
IH2
IXB
JIG
KQ8
L7B
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
OZT
P2P
P62
PQQKQ
PRG
PROAC
PSQYO
Q2X
RCE
RNS
ROL
RPM
RWL
S0X
SES
SSZ
TAE
TBP
TN5
UKHRP
VH1
WH7
WOQ
WOW
WQ6
X7M
YNY
YWH
ZA5
ZXP
~02
3O-
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEUPX
AEUYN
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
ASPBG
AVWKF
CITATION
FEDTE
FGOYB
G-2
H13
HVGLF
HX~
MVM
PHGZM
PHGZT
R2-
RIG
UKR
YYP
ZGI
~KM
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
7U9
7XB
8FD
8FK
EFKBS
FR3
H94
K9.
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c484t-fe5cfcbdfad89daea0acc5864f5364192f4b56189fb28544154faffa7966dc483
IEDL.DBID IXB
ISSN 0006-3495
IngestDate Thu Aug 21 17:36:44 EDT 2025
Fri Jul 11 04:28:47 EDT 2025
Fri Jul 25 10:56:28 EDT 2025
Thu Jan 02 21:59:51 EST 2025
Tue Jul 01 02:53:51 EDT 2025
Thu Apr 24 23:16:00 EDT 2025
Fri Feb 23 02:35:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-fe5cfcbdfad89daea0acc5864f5364192f4b56189fb28544154faffa7966dc483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Address reprint requests to Yi Qin Gao, E-mail: yiqin@mail.chem.tamu.edu.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S000634950672269X
PMID 16284275
PQID 215697586
PQPubID 7454
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1367106
proquest_miscellaneous_70676523
proquest_journals_215697586
pubmed_primary_16284275
crossref_citationtrail_10_1529_biophysj_105_073189
crossref_primary_10_1529_biophysj_105_073189
elsevier_sciencedirect_doi_10_1529_biophysj_105_073189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-02-01
PublicationDateYYYYMMDD 2006-02-01
PublicationDate_xml – month: 02
  year: 2006
  text: 2006-02-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 2006
Publisher Elsevier Inc
Biophysical Society
Publisher_xml – name: Elsevier Inc
– name: Biophysical Society
References Mocz, Helms, Jameson, Gibbons (bib36) 1998; 37
Nishiyama, Higuchi, Yanagida (bib17) 2002; 4
Koonce, Samso (bib7) 2004; 14
Kikushima, Yagi, Kamiya (bib12) 2004; 563
Wang, Sheetz (bib29) 1999; 24
Kon, Nishiura, Ohkura, Ohkura, Toyoshima, Sutoh (bib10) 2004; 43
Shiroguchi, Toyoshima (bib32) 2001; 49
Toba, Toyoshima (bib31) 2004; 58
Sakakiara, Kojima, Sakai, Katayama, Oiwa (bib18) 1999; 400
Shingyoji, Higuchi, Yoshimura, Katayama, Yanagida (bib28) 1998; 393
Tinoco, Bustamante (bib34) 2002; 101
Cross (bib6) 2004; 14
Ligon, Tokito, Finklestein, Grossman, Holzbaur (bib35) 2004; 279
Inaba (bib27) 1995; 117
Astumian, Derenyi (bib26) 1999; 77
Oiwa, Sakakibara (bib5) 2005; 17
Hirakawa, Higuchi, Toyoshima (bib19) 2000; 97
Kojima, Kikumoto, Sakakibara, Oiwa (bib33) 2002; 28
Karplus, Gao (bib22) 2004; 14
Mallik, Carter, Lex, King, Gross (bib21) 2004; 427
Mizuno, Toba, Edamatsu, Watai-Nishii, Hirokawa, Toyoshima, Kikkawa (bib23) 2004; 23
Levy, Karplus, Mccammon (bib30) 1979; 65
Burgess, Walker, Sakakibara, Oiwa, Knight (bib8) 2004; 146
Xing, Wang, von Ballmoos, Dimroth, Oster (bib25) 2004; 87
Schnitzer, Visscher, Block (bib15) 2000; 2
Samso, Koonce (bib4) 2004; 340
Takahashi, Edamatsu, Toyoshima (bib11) 2004; 101
Mallik, Gross (bib1) 2004; 14
Welte (bib3) 2004; 14
Visscher, Schnitzer, Block (bib16) 1999; 400
Yildiz, Forkey, McKinney, Ha, Goldman, Selvin (bib14) 2003; 300
Iyadurai, Li, Gilbert, Hays (bib20) 1999; 9
Yildiz, Tomishige, Vale, Selvin (bib13) 2004; 303
Wang, Oster (bib24) 1998; 396
Burgess, Knight (bib2) 2004; 14
Burgess, Walker, Sakakibara, Knight, Kazuhiro (bib9) 2003; 421
Nishiyama (10.1529/biophysj.105.073189_bib17) 2002; 4
Kon (10.1529/biophysj.105.073189_bib10) 2004; 43
Kojima (10.1529/biophysj.105.073189_bib33) 2002; 28
Mizuno (10.1529/biophysj.105.073189_bib23) 2004; 23
Yildiz (10.1529/biophysj.105.073189_bib13) 2004; 303
Yildiz (10.1529/biophysj.105.073189_bib14) 2003; 300
Shiroguchi (10.1529/biophysj.105.073189_bib32) 2001; 49
Shingyoji (10.1529/biophysj.105.073189_bib28) 1998; 393
Wang (10.1529/biophysj.105.073189_bib24) 1998; 396
Mallik (10.1529/biophysj.105.073189_bib1) 2004; 14
Mocz (10.1529/biophysj.105.073189_bib36) 1998; 37
Cross (10.1529/biophysj.105.073189_bib6) 2004; 14
Levy (10.1529/biophysj.105.073189_bib30) 1979; 65
Takahashi (10.1529/biophysj.105.073189_bib11) 2004; 101
Welte (10.1529/biophysj.105.073189_bib3) 2004; 14
Karplus (10.1529/biophysj.105.073189_bib22) 2004; 14
Sakakiara (10.1529/biophysj.105.073189_bib18) 1999; 400
Koonce (10.1529/biophysj.105.073189_bib7) 2004; 14
Oiwa (10.1529/biophysj.105.073189_bib5) 2005; 17
Iyadurai (10.1529/biophysj.105.073189_bib20) 1999; 9
Wang (10.1529/biophysj.105.073189_bib29) 1999; 24
Kikushima (10.1529/biophysj.105.073189_bib12) 2004; 563
Xing (10.1529/biophysj.105.073189_bib25) 2004; 87
Toba (10.1529/biophysj.105.073189_bib31) 2004; 58
Samso (10.1529/biophysj.105.073189_bib4) 2004; 340
Schnitzer (10.1529/biophysj.105.073189_bib15) 2000; 2
Hirakawa (10.1529/biophysj.105.073189_bib19) 2000; 97
Burgess (10.1529/biophysj.105.073189_bib2) 2004; 14
Burgess (10.1529/biophysj.105.073189_bib9) 2003; 421
Tinoco (10.1529/biophysj.105.073189_bib34) 2002; 101
Burgess (10.1529/biophysj.105.073189_bib8) 2004; 146
Mallik (10.1529/biophysj.105.073189_bib21) 2004; 427
Astumian (10.1529/biophysj.105.073189_bib26) 1999; 77
Inaba (10.1529/biophysj.105.073189_bib27) 1995; 117
Visscher (10.1529/biophysj.105.073189_bib16) 1999; 400
Ligon (10.1529/biophysj.105.073189_bib35) 2004; 279
12488024 - Biophys Chem. 2002 Dec 10;101-102:513-33
10423444 - Biophys J. 1999 Aug;77(2):993-1002
15037251 - J Struct Biol. 2004 Apr-May;146(1-2):205-16
23345779 - J Biol Phys. 2002 Sep;28(3):335-45
15063734 - FEBS Lett. 2004 Apr 9;563(1-3):119-22
9641685 - Nature. 1998 Jun 18;393(6686):711-4
11746663 - Cell Motil Cytoskeleton. 2001 Aug;49(4):189-99
7592557 - J Biochem. 1995 Apr;117(4):903-7
15236358 - Cell Motil Cytoskeleton. 2004 Aug;58(4):281-9
15175652 - EMBO J. 2004 Jul 7;23(13):2459-67
15242636 - Curr Biol. 2004 Jul 13;14(13):R525-37
12610617 - Nature. 2003 Feb 13;421(6924):715-8
15236967 - J Mol Biol. 2004 Jul 23;340(5):1059-72
11025662 - Nat Cell Biol. 2000 Oct;2(10):718-23
15519850 - Trends Cell Biol. 2004 Nov;14(11):612-9
9834036 - Nature. 1998 Nov 19;396(6708):279-82
15556858 - Curr Biol. 2004 Nov 23;14(22):R971-82
15326307 - Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12865-9
14985359 - J Biol Chem. 2004 Apr 30;279(18):19201-8
15120091 - Curr Biol. 2004 May 4;14(9):R355-6
15216895 - Cell Struct Funct. 1999 Oct;24(5):373-83
10421581 - Curr Biol. 1999 Jul 15;9(14):771-4
15661525 - Curr Opin Cell Biol. 2005 Feb;17(1):98-103
14961123 - Nature. 2004 Feb 12;427(6975):649-52
10448863 - Nature. 1999 Aug 5;400(6744):586-90
14684828 - Science. 2004 Jan 30;303(5658):676-8
12360289 - Nat Cell Biol. 2002 Oct;4(10):790-7
15366936 - Biochemistry. 2004 Sep 7;43(35):11266-74
10408448 - Nature. 1999 Jul 8;400(6740):184-9
15454418 - Biophys J. 2004 Oct;87(4):2148-63
9657700 - Biochemistry. 1998 Jul 7;37(27):9862-9
12791999 - Science. 2003 Jun 27;300(5628):2061-5
15093827 - Curr Opin Struct Biol. 2004 Apr;14(2):138-46
15093841 - Curr Opin Struct Biol. 2004 Apr;14(2):250-9
10706634 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2533-7
References_xml – volume: 427
  start-page: 649
  year: 2004
  end-page: 652
  ident: bib21
  article-title: Cytoplasmic dynein functions as a gear in response to load
  publication-title: Nature
– volume: 400
  start-page: 586
  year: 1999
  end-page: 589
  ident: bib18
  article-title: Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor
  publication-title: Nature
– volume: 396
  start-page: 279
  year: 1998
  end-page: 282
  ident: bib24
  article-title: Energy transduction in the F
  publication-title: Nature
– volume: 303
  start-page: 676
  year: 2004
  end-page: 678
  ident: bib13
  article-title: Kinesin walks hand-over-hand
  publication-title: Science
– volume: 393
  start-page: 711
  year: 1998
  end-page: 714
  ident: bib28
  article-title: Dynein arms are oscillating force generators
  publication-title: Nature
– volume: 563
  start-page: 119
  year: 2004
  end-page: 122
  ident: bib12
  article-title: Slow ADP-dependent acceleration of microtubule translocation produced by an axonemal dynein
  publication-title: FEBS Lett.
– volume: 49
  start-page: 189
  year: 2001
  end-page: 199
  ident: bib32
  article-title: Regulation of monomeric dynein activity by ATP and ADP concentrations
  publication-title: Cell Motil. Cytoskeleton.
– volume: 14
  start-page: R971
  year: 2004
  end-page: R982
  ident: bib1
  article-title: Molecular motors: Strategies to get along
  publication-title: Curr. Biol.
– volume: 28
  start-page: 335
  year: 2002
  end-page: 345
  ident: bib33
  article-title: Mechanical properties of a single-headed processive motor, inner-arm dynein subspecies-c of Chlamydomonas studied at the single molecule level
  publication-title: J. Biol. Phys.
– volume: 14
  start-page: R525
  year: 2004
  end-page: R537
  ident: bib3
  article-title: Bidirectional transport along microtubules
  publication-title: Curr. Biol.
– volume: 2
  start-page: 718
  year: 2000
  end-page: 723
  ident: bib15
  article-title: Force production by single kinesin motors
  publication-title: Nat. Cell Biol.
– volume: 24
  start-page: 373
  year: 1999
  end-page: 383
  ident: bib29
  article-title: One-dimensional diffusion on microtubules of particles coated with cytoplasmic dynein an immunoglobulins
  publication-title: Cell Struct. Funct.
– volume: 300
  start-page: 2061
  year: 2003
  end-page: 2065
  ident: bib14
  article-title: Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization
  publication-title: Science
– volume: 101
  start-page: 513
  year: 2002
  end-page: 533
  ident: bib34
  article-title: The effect of force on thermodynamics and kinetics of single molecule reactions
  publication-title: Biophys. Chem.
– volume: 9
  start-page: 771
  year: 1999
  end-page: 774
  ident: bib20
  article-title: Evidence for cooperative interactions between the two motor domains of cytoplasmic dynein
  publication-title: Curr. Biol.
– volume: 87
  start-page: 2148
  year: 2004
  end-page: 2163
  ident: bib25
  article-title: Torque generation by the Fo motor of the sodium ATPase
  publication-title: Biophys. J.
– volume: 17
  start-page: 98
  year: 2005
  end-page: 103
  ident: bib5
  article-title: Recent progress in dynein structure and mechanism
  publication-title: Curr. Opin. Cell Biol.
– volume: 14
  start-page: 612
  year: 2004
  end-page: 619
  ident: bib7
  article-title: Of rings and levers: the dynein motor comes of age
  publication-title: Trends Cell Biol.
– volume: 4
  start-page: 790
  year: 2002
  end-page: 797
  ident: bib17
  article-title: Chemomechanical coupling of the forward and backward steps of single kinesin molecules
  publication-title: Nat. Cell Biol.
– volume: 421
  start-page: 715
  year: 2003
  end-page: 718
  ident: bib9
  article-title: Dynein structure and power stroke
  publication-title: Nature
– volume: 58
  start-page: 281
  year: 2004
  end-page: 289
  ident: bib31
  article-title: Dissociation of double-headed cytoplasmic dynein into single-headed species and its motile properties
  publication-title: Cell Motil. Cytoskeleton.
– volume: 23
  start-page: 2459
  year: 2004
  end-page: 2467
  ident: bib23
  article-title: Dynein and kinesin share an overlapping microtubule-binding site
  publication-title: EMBO J.
– volume: 400
  start-page: 184
  year: 1999
  end-page: 189
  ident: bib16
  article-title: Single kinesin molecules studied with a molecular force clamp
  publication-title: Nature
– volume: 65
  start-page: 4
  year: 1979
  end-page: 11
  ident: bib30
  article-title: Diffusive Langevin dynamics of model alkanes
  publication-title: Chem. Phys. Lett.
– volume: 117
  start-page: 903
  year: 1995
  end-page: 907
  ident: bib27
  article-title: ATP-dependent conformational-changes of dynein - evidence for changes in the interaction of dynein heavy-chain with the intermediate chain-1
  publication-title: J. Biochem. (Tokyo).
– volume: 77
  start-page: 993
  year: 1999
  end-page: 1002
  ident: bib26
  article-title: A chemically reversible Brownian motor: application to kinesin and ncd
  publication-title: Biophys. J.
– volume: 146
  start-page: 205
  year: 2004
  end-page: 216
  ident: bib8
  article-title: The structure of dynein-c by negative stain electron microscopy
  publication-title: J. Struct. Biol.
– volume: 37
  start-page: 9862
  year: 1998
  end-page: 9869
  ident: bib36
  article-title: Probing the nucleotide binding sites of axonemal dynein with the fluorescent nucleotide analogue 2 ′(3 ′)-O-(-N-methylanthraniloyl)-adenosine 5 ′-triphosphate
  publication-title: Biochemistry
– volume: 101
  start-page: 12865
  year: 2004
  end-page: 12869
  ident: bib11
  article-title: Multiple ATP-hydrolyzing sites that potentially function in cytoplasmic dynein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 250
  year: 2004
  end-page: 259
  ident: bib22
  article-title: Biomolecular motors: the F-1-ATPase paradigm
  publication-title: Curr. Opin. Struct. Biol.
– volume: 14
  start-page: R355
  year: 2004
  end-page: R356
  ident: bib6
  article-title: Molecular motors: Dynein's gearbox
  publication-title: Curr. Biol.
– volume: 14
  start-page: 138
  year: 2004
  end-page: 146
  ident: bib2
  article-title: Is the dynein motor a winch?
  publication-title: Curr. Opin. Struct. Biol.
– volume: 43
  start-page: 11266
  year: 2004
  end-page: 11274
  ident: bib10
  article-title: Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein
  publication-title: Biochemistry
– volume: 340
  start-page: 1059
  year: 2004
  end-page: 1072
  ident: bib4
  article-title: 25 angstrom resolution structure of a cytoplasmic dynein motor reveals a seven-member planar ring
  publication-title: J. Mol. Biol.
– volume: 97
  start-page: 2533
  year: 2000
  end-page: 2537
  ident: bib19
  article-title: Processive movement of single 22S dynein molecules occurs only at low ATP concentrations
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 279
  start-page: 19201
  year: 2004
  end-page: 19208
  ident: bib35
  article-title: A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 790
  year: 2002
  ident: 10.1529/biophysj.105.073189_bib17
  article-title: Chemomechanical coupling of the forward and backward steps of single kinesin molecules
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb857
– volume: 14
  start-page: R355
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib6
  article-title: Molecular motors: Dynein's gearbox
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.04.026
– volume: 14
  start-page: 612
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib7
  article-title: Of rings and levers: the dynein motor comes of age
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2004.09.013
– volume: 23
  start-page: 2459
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib23
  article-title: Dynein and kinesin share an overlapping microtubule-binding site
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600240
– volume: 400
  start-page: 184
  year: 1999
  ident: 10.1529/biophysj.105.073189_bib16
  article-title: Single kinesin molecules studied with a molecular force clamp
  publication-title: Nature
  doi: 10.1038/22146
– volume: 9
  start-page: 771
  year: 1999
  ident: 10.1529/biophysj.105.073189_bib20
  article-title: Evidence for cooperative interactions between the two motor domains of cytoplasmic dynein
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(99)80340-6
– volume: 14
  start-page: 250
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib22
  article-title: Biomolecular motors: the F-1-ATPase paradigm
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2004.03.012
– volume: 393
  start-page: 711
  year: 1998
  ident: 10.1529/biophysj.105.073189_bib28
  article-title: Dynein arms are oscillating force generators
  publication-title: Nature
  doi: 10.1038/31520
– volume: 28
  start-page: 335
  year: 2002
  ident: 10.1529/biophysj.105.073189_bib33
  article-title: Mechanical properties of a single-headed processive motor, inner-arm dynein subspecies-c of Chlamydomonas studied at the single molecule level
  publication-title: J. Biol. Phys.
  doi: 10.1023/A:1020300319224
– volume: 14
  start-page: R525
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib3
  article-title: Bidirectional transport along microtubules
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.06.045
– volume: 43
  start-page: 11266
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib10
  article-title: Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein
  publication-title: Biochemistry
  doi: 10.1021/bi048985a
– volume: 340
  start-page: 1059
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib4
  article-title: 25 angstrom resolution structure of a cytoplasmic dynein motor reveals a seven-member planar ring
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.05.063
– volume: 14
  start-page: R971
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib1
  article-title: Molecular motors: Strategies to get along
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.10.046
– volume: 400
  start-page: 586
  year: 1999
  ident: 10.1529/biophysj.105.073189_bib18
  article-title: Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor
  publication-title: Nature
  doi: 10.1038/23066
– volume: 303
  start-page: 676
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib13
  article-title: Kinesin walks hand-over-hand
  publication-title: Science
  doi: 10.1126/science.1093753
– volume: 427
  start-page: 649
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib21
  article-title: Cytoplasmic dynein functions as a gear in response to load
  publication-title: Nature
  doi: 10.1038/nature02293
– volume: 2
  start-page: 718
  year: 2000
  ident: 10.1529/biophysj.105.073189_bib15
  article-title: Force production by single kinesin motors
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35036345
– volume: 421
  start-page: 715
  year: 2003
  ident: 10.1529/biophysj.105.073189_bib9
  article-title: Dynein structure and power stroke
  publication-title: Nature
  doi: 10.1038/nature01377
– volume: 101
  start-page: 12865
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib11
  article-title: Multiple ATP-hydrolyzing sites that potentially function in cytoplasmic dynein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0403429101
– volume: 101
  start-page: 513
  year: 2002
  ident: 10.1529/biophysj.105.073189_bib34
  article-title: The effect of force on thermodynamics and kinetics of single molecule reactions
  publication-title: Biophys. Chem.
  doi: 10.1016/S0301-4622(02)00177-1
– volume: 17
  start-page: 98
  year: 2005
  ident: 10.1529/biophysj.105.073189_bib5
  article-title: Recent progress in dynein structure and mechanism
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2004.12.006
– volume: 563
  start-page: 119
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib12
  article-title: Slow ADP-dependent acceleration of microtubule translocation produced by an axonemal dynein
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(04)00278-9
– volume: 300
  start-page: 2061
  year: 2003
  ident: 10.1529/biophysj.105.073189_bib14
  article-title: Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization
  publication-title: Science
  doi: 10.1126/science.1084398
– volume: 49
  start-page: 189
  year: 2001
  ident: 10.1529/biophysj.105.073189_bib32
  article-title: Regulation of monomeric dynein activity by ATP and ADP concentrations
  publication-title: Cell Motil. Cytoskeleton.
  doi: 10.1002/cm.1032
– volume: 58
  start-page: 281
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib31
  article-title: Dissociation of double-headed cytoplasmic dynein into single-headed species and its motile properties
  publication-title: Cell Motil. Cytoskeleton.
  doi: 10.1002/cm.20018
– volume: 87
  start-page: 2148
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib25
  article-title: Torque generation by the Fo motor of the sodium ATPase
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.042093
– volume: 24
  start-page: 373
  year: 1999
  ident: 10.1529/biophysj.105.073189_bib29
  article-title: One-dimensional diffusion on microtubules of particles coated with cytoplasmic dynein an immunoglobulins
  publication-title: Cell Struct. Funct.
  doi: 10.1247/csf.24.373
– volume: 97
  start-page: 2533
  year: 2000
  ident: 10.1529/biophysj.105.073189_bib19
  article-title: Processive movement of single 22S dynein molecules occurs only at low ATP concentrations
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.050585297
– volume: 279
  start-page: 19201
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib35
  article-title: A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313472200
– volume: 77
  start-page: 993
  year: 1999
  ident: 10.1529/biophysj.105.073189_bib26
  article-title: A chemically reversible Brownian motor: application to kinesin and ncd
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)76950-X
– volume: 65
  start-page: 4
  year: 1979
  ident: 10.1529/biophysj.105.073189_bib30
  article-title: Diffusive Langevin dynamics of model alkanes
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(79)80114-1
– volume: 117
  start-page: 903
  year: 1995
  ident: 10.1529/biophysj.105.073189_bib27
  article-title: ATP-dependent conformational-changes of dynein - evidence for changes in the interaction of dynein heavy-chain with the intermediate chain-1
  publication-title: J. Biochem. (Tokyo).
  doi: 10.1093/oxfordjournals.jbchem.a124794
– volume: 396
  start-page: 279
  year: 1998
  ident: 10.1529/biophysj.105.073189_bib24
  article-title: Energy transduction in the F1 motor of ATP synthase
  publication-title: Nature
  doi: 10.1038/24409
– volume: 14
  start-page: 138
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib2
  article-title: Is the dynein motor a winch?
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2004.03.013
– volume: 146
  start-page: 205
  year: 2004
  ident: 10.1529/biophysj.105.073189_bib8
  article-title: The structure of dynein-c by negative stain electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2003.10.005
– volume: 37
  start-page: 9862
  year: 1998
  ident: 10.1529/biophysj.105.073189_bib36
  article-title: Probing the nucleotide binding sites of axonemal dynein with the fluorescent nucleotide analogue 2 ′(3 ′)-O-(-N-methylanthraniloyl)-adenosine 5 ′-triphosphate
  publication-title: Biochemistry
  doi: 10.1021/bi9730184
– reference: 15366936 - Biochemistry. 2004 Sep 7;43(35):11266-74
– reference: 9657700 - Biochemistry. 1998 Jul 7;37(27):9862-9
– reference: 7592557 - J Biochem. 1995 Apr;117(4):903-7
– reference: 15236967 - J Mol Biol. 2004 Jul 23;340(5):1059-72
– reference: 15236358 - Cell Motil Cytoskeleton. 2004 Aug;58(4):281-9
– reference: 14684828 - Science. 2004 Jan 30;303(5658):676-8
– reference: 10423444 - Biophys J. 1999 Aug;77(2):993-1002
– reference: 15454418 - Biophys J. 2004 Oct;87(4):2148-63
– reference: 12360289 - Nat Cell Biol. 2002 Oct;4(10):790-7
– reference: 10421581 - Curr Biol. 1999 Jul 15;9(14):771-4
– reference: 15326307 - Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12865-9
– reference: 15063734 - FEBS Lett. 2004 Apr 9;563(1-3):119-22
– reference: 15661525 - Curr Opin Cell Biol. 2005 Feb;17(1):98-103
– reference: 15037251 - J Struct Biol. 2004 Apr-May;146(1-2):205-16
– reference: 15093841 - Curr Opin Struct Biol. 2004 Apr;14(2):250-9
– reference: 12791999 - Science. 2003 Jun 27;300(5628):2061-5
– reference: 15519850 - Trends Cell Biol. 2004 Nov;14(11):612-9
– reference: 9641685 - Nature. 1998 Jun 18;393(6686):711-4
– reference: 12488024 - Biophys Chem. 2002 Dec 10;101-102:513-33
– reference: 15556858 - Curr Biol. 2004 Nov 23;14(22):R971-82
– reference: 15093827 - Curr Opin Struct Biol. 2004 Apr;14(2):138-46
– reference: 11025662 - Nat Cell Biol. 2000 Oct;2(10):718-23
– reference: 15120091 - Curr Biol. 2004 May 4;14(9):R355-6
– reference: 14985359 - J Biol Chem. 2004 Apr 30;279(18):19201-8
– reference: 11746663 - Cell Motil Cytoskeleton. 2001 Aug;49(4):189-99
– reference: 15242636 - Curr Biol. 2004 Jul 13;14(13):R525-37
– reference: 14961123 - Nature. 2004 Feb 12;427(6975):649-52
– reference: 10408448 - Nature. 1999 Jul 8;400(6740):184-9
– reference: 23345779 - J Biol Phys. 2002 Sep;28(3):335-45
– reference: 10706634 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2533-7
– reference: 10448863 - Nature. 1999 Aug 5;400(6744):586-90
– reference: 15216895 - Cell Struct Funct. 1999 Oct;24(5):373-83
– reference: 15175652 - EMBO J. 2004 Jul 7;23(13):2459-67
– reference: 12610617 - Nature. 2003 Feb 13;421(6924):715-8
– reference: 9834036 - Nature. 1998 Nov 19;396(6708):279-82
SSID ssj0012501
Score 1.9694221
Snippet Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 811
SubjectTerms Adenosine diphosphate
Adenosine Diphosphate - chemistry
Adenosine Triphosphate - chemistry
Animals
ATP
Binding Sites
Biophysical Theory and Modeling
Biophysics
Biophysics - methods
Cells
Chemical reactions
Cytoplasm - metabolism
Diffusion
Dyneins - chemistry
Hydrolysis
Kinesin - chemistry
Kinetics
Load
Mathematical models
Microtubules
Models, Biological
Models, Chemical
Models, Statistical
Molecular Conformation
Molecular Motor Proteins - chemistry
Molecules
Movement
Phosphates - chemistry
Protein Binding
Protein Transport
Stress, Mechanical
Thermodynamics
Time Factors
Translocation
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VKiQuVR9AU_rwAakXAtmNYyeHqkJtEapKDwWkvVl-ilSrhDbLgX_fmY0TykN7je3Imhn7m7HH8wHsTRH1XeZwpVV5lvKJq1IjuEmFKNFkXGUzSa-RT3-Kkwv-fVbMYm5OF9Mqhz1xuVG71tIZ-SFCk6jQuRWfr_6kRBpFl6uRQWMNnlLlMjJqORvjLYTuLBLmiTTHQCAWHSqm1aGpWzo5-E00twdo5ROieX8cmB46nvfzJ_8DpOPn8Cx6kuyoV_0LeOKbl7DRc0vevIJPR-ysptK_7Pz2rSIj6rM5o8Q7XTcd-3rT-Lr52LFffaqsZ4uW_Wi124KL42_nX07SyJWQWl7yRRp8YYM1LmhXVk57nWlrUVo8FLmgm97ADbpKZRUMvZlE2OZBh6AlhjsOf5Fvw3rTNv41MMMrLQqdSYw2eCit0ZNJrqUI3nIrszKB6SAoZWMhceKzmCsKKFC6apAufihUL90E9sdBV30djdXdxaABFV2BHuIV7vSrB-4O-lJxNXZqtJ0EPoytuIzobkQ3vr3ulETUFhiUJ7DT6_Z2lgIRfCqLBOQdrY8dqED33ZamvlwW6qZyeBhyv1k5p13Y7I91KEXmLawv_l77d-joLMz7pTn_A4T7_cc
  priority: 102
  providerName: ProQuest
Title A Simple Theoretical Model Explains Dynein's Response to Load
URI https://dx.doi.org/10.1529/biophysj.105.073189
https://www.ncbi.nlm.nih.gov/pubmed/16284275
https://www.proquest.com/docview/215697586
https://www.proquest.com/docview/70676523
https://pubmed.ncbi.nlm.nih.gov/PMC1367106
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcFSKkLggyjMUFh-QuBA2D8eODxz62lYIKlRaKTfLcWw1qEoqdnvo3zOzcbZdinrgEil-RM6MPQ_PC-BDhly_SRo8aSpPYp42Kq4Fr2MhStwyjbKJpGjk78fi6Ix_rYpqA_bGWBhyqwy0f6DpS2odWqYBmtPLtqUYX2SvKN-TMTETqkI6nPNyGcRX7a4sCcjiQ9U8EdPokHmoyNS0bnu6PvhFtW4_41ZPqdb7v7nTXenzbyfKW1xp9hSeBHGS7Qwr3oIN1z2DR0OByevn8GWH_Wwp_y87vQlYZFT_7IKR951puznbv-5c232cs5PBX9axRc--9aZ5AWezg9O9ozgUTIgtL_ki9q6w3taNN02pGuNMYqwtSsF9kQsy93peo7xUKl9T4CTybu6N90aiztPgJ_KXsNn1nXsNrObKiMIkElUO7ktbmzTNjRTeWW5lUkaQjYDSNmQTp6IWF5q0CoSuHqGLDYUeoBvBp9WkyyGZxv3DxYgBvbYnNJL7-yduj_jS4UjONco2QqF2JCJ4v-rFs0QGEtO5_mquJW4lgZp5BK8G3N6sUiAbz2QRgVzD-moAZele7-na82W2bsqJh3r3m__9mW14PFz7kAvNW9hc_L5y71AQWtQTeCAric9ydjiBh7sHxz9O8O2wSifLM_AHgksMOw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FIEQuiB0TIH0AccHEY7fb9iFCEWGYkEkOMJFya3oVjiI74InQfBT_SNV4CQE0t1y9tKxaXK-6q-oBvIwx6tvIoqcVSRTykS1CLbgOhcjRZGxhooy6kQ-PxOSYfzpJT9bgV98LQ2WV_T9x-aO2taE98m0MTaJAcCvenX8PiTSKDld7Bo3WKg7c4idmbM3O_h6q91Ucjz_M3k_CjlQgNDzn89C71HijrVc2L6xyKlLG4LLcp4mgI1HPNWKKvPCamgsxvnGvvFcZ5gUWl0hw3RtwkycYyKkxffxxOLRANNER9IkwwcSjG3KUxsW2LmvaqTglWt236FUjopX_fyD8F-j-Xa_5RwAc34U7HXJlu62p3YM1V92HWy2X5eIB7OyyLyWNGmazy95IRlRrZ4wK_VRZNWxvUbmyet2wz21prmPzmk1rZR_C8bWI8RGsV3XlngDTvFAiVVGG2Q33udFqNEpUJrwz3GRRHkDcC0qabnA58WecSUpgULqyly5eSGUr3QDeDC-dt3M7Vj8ueg3IDnq0kEJiZFn94mavL9l5fyMHWw1ga7iLbktnMapy9UUjM0QJIo2TAB63ur38SoGIIc7SALIrWh8eoIHgV-9U5bflYHAav4cp_tOV37QFtyezw6mc7h8dbMJGu6VE5TnPYH3-48I9R5A11y-Wps3g63X70m-g3Tyc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD7BJRpeiHcqKvOg8cW63XY6bR-IQZcNCG4IQsLbOJ1LKCEt0iVmf5r_znPoBVGzb7y2nbY5lznfmTlzPoA3IUZ9Exj0tCwKfD4ymZ8LnvtCpGgyJtNBQqeRv07FzjH_chKfLMGv7iwMlVV2c-L1RG0qTWvkQwxNIkNwK4aurYo4GE8-XvzwiUCKNlo7No3GQvbs_Cdmb_Xm7hhV_TYMJ9tHn3f8lmDA1zzlM9_ZWDudG6dMmhllVaC0xk9wF0eCtkcdzxFfpJnL6aAhxjrulHMqwRzB4CsifO89WE4oKRrA8qft6cFhv4WB2KKl6xN-hGlI2_IoDrNhXlS0bnFGJLsf0MdGRDL__7D4L-z9u3rzj3A4eQirLY5lW43hPYIlWz6G-w2z5fwJbG6xbwU1HmZHNyclGRGvnTMq-1NFWbPxvLRF-a5mh02hrmWziu1XyjyF4zsR5DMYlFVp14DlPFMiVkGCuQ53qc7VaBSpRDiruU6C1IOwE5TUbRtzYtM4l5TOoHRlJ128EMtGuh687wddNF08Fj8uOg3IFog0AENinFk8cL3Tl2znglr2luvBRn8XnZh2ZlRpq6taJogZRBxGHjxvdHvzlwLxQ5jEHiS3tN4_QO3Bb98pi9PrNuHUjA8T_hcL_2kDHqAfyf3d6d46rDTrS1Sr8xIGs8sr-woR1yx_3do2g-937U6_AWKZQi4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+theoretical+model+explains+dynein%27s+response+to+load&rft.jtitle=Biophysical+journal&rft.au=Gao%2C+Yi+Qin&rft.date=2006-02-01&rft.issn=0006-3495&rft.volume=90&rft.issue=3&rft.spage=811&rft_id=info:doi/10.1529%2Fbiophysj.105.073189&rft_id=info%3Apmid%2F16284275&rft.externalDocID=16284275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon