The Impact of Model Parameterization and Estimation Methods on Tests of Measurement Invariance With Ordered Polytomous Data
Evaluations of measurement invariance provide essential construct validity evidence—a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of...
Saved in:
| Published in | Educational and psychological measurement Vol. 78; no. 2; pp. 272 - 296 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Los Angeles, CA
SAGE Publications
01.04.2018
SAGE PUBLICATIONS, INC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0013-1644 1552-3888 1552-3888 |
| DOI | 10.1177/0013164416683754 |
Cover
| Abstract | Evaluations of measurement invariance provide essential construct validity evidence—a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or Type II errors can render measurement invariance conclusions meaningless. The present study used Monte Carlo simulation methods to compare the effects of multiple model parameterizations (linear factor model, Tobit factor model, and categorical factor model) and estimators (maximum likelihood [ML], robust maximum likelihood [MLR], and weighted least squares mean and variance-adjusted [WLSMV]) on the performance of the chi-square test for the exact-fit hypothesis and chi-square and likelihood ratio difference tests for the equal-fit hypothesis for evaluating measurement invariance with ordered polytomous data. The test statistics were examined under multiple generation conditions that varied according to the degree of metric noninvariance, the size of the sample, the magnitude of the factor loadings, and the distribution of the observed item responses. The categorical factor model with WLSMV estimation performed best for evaluating overall model fit, and the categorical factor model with ML and MLR estimation performed best for evaluating change in fit. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their study. |
|---|---|
| AbstractList | Evaluations of measurement invariance provide essential construct validity evidence-a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or Type II errors can render measurement invariance conclusions meaningless. The present study used Monte Carlo simulation methods to compare the effects of multiple model parameterizations (linear factor model, Tobit factor model, and categorical factor model) and estimators (maximum likelihood [ML], robust maximum likelihood [MLR], and weighted least squares mean and variance-adjusted [WLSMV]) on the performance of the chi-square test for the exact-fit hypothesis and chi-square and likelihood ratio difference tests for the equal-fit hypothesis for evaluating measurement invariance with ordered polytomous data. The test statistics were examined under multiple generation conditions that varied according to the degree of metric noninvariance, the size of the sample, the magnitude of the factor loadings, and the distribution of the observed item responses. The categorical factor model with WLSMV estimation performed best for evaluating overall model fit, and the categorical factor model with ML and MLR estimation performed best for evaluating change in fit. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their study. Evaluations of measurement invariance provide essential construct validity evidence-a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or Type II errors can render measurement invariance conclusions meaningless. The present study used Monte Carlo simulation methods to compare the effects of multiple model parameterizations (linear factor model, Tobit factor model, and categorical factor model) and estimators (maximum likelihood [ML], robust maximum likelihood [MLR], and weighted least squares mean and variance-adjusted [WLSMV]) on the performance of the chi-square test for the exact-fit hypothesis and chi-square and likelihood ratio difference tests for the equal-fit hypothesis for evaluating measurement invariance with ordered polytomous data. The test statistics were examined under multiple generation conditions that varied according to the degree of metric noninvariance, the size of the sample, the magnitude of the factor loadings, and the distribution of the observed item responses. The categorical factor model with WLSMV estimation performed best for evaluating overall model fit, and the categorical factor model with ML and MLR estimation performed best for evaluating change in fit. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their study.Evaluations of measurement invariance provide essential construct validity evidence-a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or Type II errors can render measurement invariance conclusions meaningless. The present study used Monte Carlo simulation methods to compare the effects of multiple model parameterizations (linear factor model, Tobit factor model, and categorical factor model) and estimators (maximum likelihood [ML], robust maximum likelihood [MLR], and weighted least squares mean and variance-adjusted [WLSMV]) on the performance of the chi-square test for the exact-fit hypothesis and chi-square and likelihood ratio difference tests for the equal-fit hypothesis for evaluating measurement invariance with ordered polytomous data. The test statistics were examined under multiple generation conditions that varied according to the degree of metric noninvariance, the size of the sample, the magnitude of the factor loadings, and the distribution of the observed item responses. The categorical factor model with WLSMV estimation performed best for evaluating overall model fit, and the categorical factor model with ML and MLR estimation performed best for evaluating change in fit. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their study. |
| Author | Koziol, Natalie A. Bovaird, James A. |
| Author_xml | – sequence: 1 givenname: Natalie A. surname: Koziol fullname: Koziol, Natalie A. email: nkoziol@unl.edu organization: University of Nebraska–Lincoln, Lincoln, NE, USA – sequence: 2 givenname: James A. surname: Bovaird fullname: Bovaird, James A. organization: University of Nebraska–Lincoln, Lincoln, NE, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29795956$$D View this record in MEDLINE/PubMed http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1170569$$DView record in ERIC |
| BookMark | eNp9Uk1v1DAQtVAR3S7cuYAsceESsBN_5YKEygKLWrWHRRwjrz3pukrire1UKvx5vE1ZYCXwxbbmvZl58-YEHQ1-AISeU_KGUinfEkIrKhijQqhKcvYIzSjnZVEppY7QbBcudvFjdBLjNcmHUfoEHZe1rHnNxQz9WG0AL_utNgn7Fp97Cx2-1EH3kCC47zo5P2A9WLyIyfXT9xzSxtuI83MFMcV7Jug4BuhhSHg53Org9GAAf3Npgy-ChQAWX_ruLvnejxF_0Ek_RY9b3UV49nDP0dePi9Xp5-Ls4tPy9P1ZYZhiqWitkDWz0HLKyqoUFVS8VUaqdaul4nbdGmmyaqs0qHVtVVszwS0XVa2o5byao3dT3u247sGa3GLQXbMNWU-4a7x2zd-RwW2aK3_b8FpwIUhO8GJKkCdi9rzFl-wB4aLO8dcPBYK_GfNEmt5FA12nB8him5IwXkqqql0vrw6g134MQ5afUUSWStbZyjl6-WfH-5K_fMsAMgFM8DEGaPcQSprdajSHq5Ep4oBiXLr3M2t23f-IxUSM-gp-t_tP_E_gPcjQ |
| CitedBy_id | crossref_primary_10_1007_s10608_024_10519_4 crossref_primary_10_1080_15305058_2021_1995867 crossref_primary_10_1007_s10578_018_0844_2 crossref_primary_10_1016_j_psychres_2018_03_062 crossref_primary_10_1027_1015_5759_a000730 crossref_primary_10_1027_1015_5759_a000811 crossref_primary_10_1177_10541373241267827 crossref_primary_10_3389_fpsyg_2020_00712 crossref_primary_10_3389_fpsyg_2021_626084 crossref_primary_10_1002_eat_23696 crossref_primary_10_1016_j_appdev_2022_101443 crossref_primary_10_1177_1073191120980064 crossref_primary_10_1177_10731911231153835 crossref_primary_10_1016_j_bodyim_2019_11_004 crossref_primary_10_1016_j_jsp_2023_01_001 crossref_primary_10_1027_2698_1866_a000061 crossref_primary_10_3389_fpsyg_2018_01146 crossref_primary_10_1111_1475_6773_14189 |
| Cites_doi | 10.1080/10705511.2014.882658 10.2307/3151512 10.2307/1907382 10.1007/BF02296272 10.1177/014662169201600206 10.1002/9781118619179 10.1080/10705510802561311 10.1207/s15328007sem1104_2 10.1007/BF02293814 10.1037/a0015825 10.1037/0021-9010.91.6.1292 10.1080/10705511.2011.557337 10.1080/10705510701301677 10.1007/BF03372160 10.1177/014662169602000306 10.1007/BF02296192 10.1207/S15328007SEM0902_5 10.1016/j.paid.2006.10.001 10.1080/10705510701575461 10.1016/j.paid.2006.09.018 10.1207/s15328007sem1303_3 10.1037/1082-989X.9.4.466 10.1207/s15328007sem1302_2 10.1207/s15327906mbr4101_4 10.1177/0146621614523116 10.1177/0146621613476156 10.1177/0016986210379095 10.1111/j.2044-8317.1985.tb00832.x 10.1177/0146621610377450 10.1111/0081-1750.00078 10.1027/1614-2241.4.2.73 10.1037/10409-007 10.1037/0021-9010.93.3.568 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 The Author(s) 2017 2017 SAGE Publications |
| Copyright_xml | – notice: The Author(s) 2017 – notice: The Author(s) 2017 2017 SAGE Publications |
| DBID | AAYXX CITATION NPM AHOVV 7X8 ERI GA5 5PM |
| DOI | 10.1177/0013164416683754 |
| DatabaseName | CrossRef PubMed Education Research Index MEDLINE - Academic ERIC ERIC - Full Text Only (Discovery) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic ERIC |
| DatabaseTitleList | PubMed CrossRef ERIC MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Education Psychology |
| EISSN | 1552-3888 |
| ERIC | EJ1170569 |
| EndPage | 296 |
| ExternalDocumentID | PMC5965660 EJ1170569 29795956 10_1177_0013164416683754 10.1177_0013164416683754 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Institute of Education Sciences grantid: IES #R305C090022 funderid: https://doi.org/10.13039/100005246 – fundername: ; grantid: IES #R305C090022 |
| GroupedDBID | --Z -DZ -TM -~X .2G .2L 01A 07C 09Z 0R~ 186 18M 1VT 1~K 29G 2KS 31S 31V 31W 31X 4.4 41~ 53G 56W 5GY 5VS 6PF 85S AABOD AACKU AADIR AADUE AAGGD AAGLT AAHSB AAJPV AAKTJ AAMFR AANSI AAPEO AAQDB AAQXI AARIX AATAA AAWLO AAWTL ABAWP ABCCA ABCJG ABDLQ ABDPE ABEIX ABFSI ABFXH ABHQH ABIDT ABIVO ABJNI ABKRH ABOPQ ABPNF ABPPZ ABQKF ABQPY ABQXT ABRHV ABTDE ABUJY ABYTW ACABN ACAEP ACCUC ACDXX ACFUR ACFZE ACGFS ACHQT ACJER ACLZU ACNCT ACOFE ACOXC ACROE ACRPL ACSIQ ACUFS ACUIR ACZOB ADBBV ADDLC ADEBD ADEIA ADMHC ADMHG ADNMO ADNON ADPEE ADRRZ ADSTG ADTOS ADUKL ADXHL ADYCS AEDXQ AENEX AEOBU AEONT AESMA AESZF AETEA AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFFNX AFKBI AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNAY AGNHF AGNWV AGQPQ AGWNL AGWVZ AHDMH AHHFK AHOJL AHWHD AIDAL AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ANDLU AOIJS ARTOV ARYUH ASPBG ATKJL AUTPY AUVAJ AVWKF AYPQM AZFZN B8O B8S B8T B8Z BDZRT BKOMP BMVBW BPACV BYIEH CAG CBRKF CCGJY CEADM COF CS3 DD0 DD~ DG~ DOPDO DU5 DV7 DV8 E.L EBS EIHBH EJD F5P FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HYE HZ~ H~9 IAO IEA IER IOF IPO IPY ITC IVC J8X LPU LWO MS~ MVM N9A NHB O9- OHT OK1 OMK P-O P.B PQQKQ Q1R Q7O Q7P Q7X ROL RPM RWL RXW S01 SASJQ SAUOL SBI SCNPE SFB SFC SFF SFK SFT SFX SFY SGP SGU SGV SHB SHF SHM SPJ SPP SQCSI SSDHQ TAE TN5 UAP UBC UBH UHB UPT VJK WH7 WHG XJT XOL XSW XZL YF5 YYP YYQ YZZ ZCA ZCG ZPLXX ZPPRI ZUP ZXP ~32 AAYXX ACCVC AJGYC AMNSR CITATION M4V NPM UAO YCJ AAPII AHOVV AJHME AJVBE 7X8 AAEJI ERI GA5 5PM |
| ID | FETCH-LOGICAL-c484t-fd6794def51423263e35f8c78bfa785dbfc7c552d8ae8b9d8f9465d563981d553 |
| IEDL.DBID | ERI |
| ISSN | 0013-1644 1552-3888 |
| IngestDate | Thu Aug 21 14:35:57 EDT 2025 Tue Sep 02 19:04:25 EDT 2025 Fri Sep 05 04:25:00 EDT 2025 Wed Aug 13 06:25:32 EDT 2025 Thu Apr 03 07:04:25 EDT 2025 Tue Jul 01 05:26:13 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 Tue Jun 17 22:30:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | measurement invariance robust maximum likelihood limited information estimation Tobit model categorical confirmatory factor analysis polytomous data differential item functioning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c484t-fd6794def51423263e35f8c78bfa785dbfc7c552d8ae8b9d8f9465d563981d553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1170569 |
| PMID | 29795956 |
| PQID | 2007287968 |
| PQPubID | 40846 |
| PageCount | 25 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5965660 eric_primary_EJ1170569 proquest_miscellaneous_2045271835 proquest_journals_2007287968 pubmed_primary_29795956 crossref_primary_10_1177_0013164416683754 crossref_citationtrail_10_1177_0013164416683754 sage_journals_10_1177_0013164416683754 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Angeles, CA |
| PublicationPlace_xml | – name: Los Angeles, CA – name: United States – name: Durham – name: Sage CA: Los Angeles, CA |
| PublicationTitle | Educational and psychological measurement |
| PublicationTitleAlternate | Educ Psychol Meas |
| PublicationYear | 2018 |
| Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
| Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
| References | Beauducel, Herzberg 2006; 13 Satorra, Bentler 2001; 66 Lozano, García-Cueto, Muñiz 2008; 4 McBee 2010; 54 Narayanan 1996; 20 Cheung, Rensvold 2002; 9 Sinharay 2013; 14 Lubke, Muthén 2004; 11 Muraki 1992; 16 Suh, Cho 2014; 38 Forero, Maydeu-Olivares 2009; 14 Maydeu-Olivares, Cai 2006; 41 Tobin 1958; 26 Barrett 2007; 42 Wang, Tay, Drasgow 2013; 37 Sass, Schmitt, Marsh 2014; 21 Andrich 1978; 43 Babakus, Ferguson, Jöreskog 1987; 24 Fan, Sivo 2009; 16 Kim, Yoon 2011; 18 Hayduk, Cummings, Boadu, Pazderka-Robinson, Boulianne 2007; 42 Muthén, Kaplan 1985; 38 French, Finch 2006; 13 Flora, Curran 2004; 9 Meade, Bauer 2007; 14 Woods 2011; 35 Stark, Chernyshenko, Drasgow 2006; 91 Meade, Johnson, Braddy 2008; 93 Masters 1982; 47 Yoon, Millsap 2007; 14 bibr44-0013164416683754 bibr6-0013164416683754 bibr36-0013164416683754 bibr1-0013164416683754 bibr23-0013164416683754 bibr22-0013164416683754 bibr5-0013164416683754 bibr35-0013164416683754 bibr40-0013164416683754 bibr14-0013164416683754 Muthén L. K. (bibr32-0013164416683754) 1998 IRT in Mplus (bibr16-0013164416683754) 2013 bibr13-0013164416683754 bibr21-0013164416683754 bibr26-0013164416683754 bibr4-0013164416683754 Asparouhov T. (bibr2-0013164416683754) 2006 Kline R. B. (bibr18-0013164416683754) 2016 Muthén B. (bibr29-0013164416683754) 2002 bibr39-0013164416683754 bibr34-0013164416683754 bibr43-0013164416683754 bibr17-0013164416683754 bibr30-0013164416683754 Casella G. (bibr8-0013164416683754) 2002 de Ayala R. J. (bibr10-0013164416683754) 2009 bibr25-0013164416683754 bibr12-0013164416683754 bibr20-0013164416683754 Sinharay S. (bibr37-0013164416683754) 2013; 14 bibr3-0013164416683754 bibr38-0013164416683754 Millsap R. E. (bibr27-0013164416683754) 2012 bibr42-0013164416683754 bibr33-0013164416683754 bibr9-0013164416683754 Brown T. (bibr7-0013164416683754) 2006 bibr11-0013164416683754 bibr24-0013164416683754 bibr41-0013164416683754 bibr15-0013164416683754 bibr28-0013164416683754 bibr19-0013164416683754 Muthén B. O. (bibr31-0013164416683754) 1997 |
| References_xml | – volume: 47 start-page: 149 year: 1982 end-page: 174 article-title: A Rasch model for partial credit scoring publication-title: Psychometrika – volume: 35 start-page: 145 year: 2011 end-page: 164 article-title: DIF testing for ordinal items with Poly-SIBTEST, the Mantel and GMH tests, and IRT-LR-DIF when the latent distribution is nonnormal for both groups publication-title: Applied Psychological Measurement – volume: 18 start-page: 212 year: 2011 end-page: 228 article-title: Testing measurement invariance: A comparison of multiple-group categorical CFA and IRT publication-title: Structural Equation Modeling – volume: 14 start-page: 149 year: 2013 end-page: 158 article-title: An extension of a Bayesian approach to detect differential item functioning publication-title: Journal of Applied Measurement – volume: 13 start-page: 186 year: 2006 end-page: 203 article-title: On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA publication-title: Structural Equation Modeling – volume: 11 start-page: 514 year: 2004 end-page: 534 article-title: Applying multigroup confirmatory factor models for continuous outcomes to Likert scale data complicates meaningful group comparisons publication-title: Structural Equation Modeling – volume: 13 start-page: 378 year: 2006 end-page: 402 article-title: Confirmatory factor analytic procedures for the determination of measurement invariance publication-title: Structural Equation Modeling – volume: 41 start-page: 55 year: 2006 end-page: 64 article-title: A cautionary note on using G (dif) to assess relative model fit in categorical data analysis publication-title: Multivariate Behavioral Research – volume: 16 start-page: 159 year: 1992 end-page: 176 article-title: A generalized partial credit model: Application of an EM algorithm publication-title: Applied Psychological Measurement – volume: 66 start-page: 507 year: 2001 end-page: 514 article-title: A scaled difference chi-square test statistic for moment structure analysis publication-title: Psychometrika – volume: 14 start-page: 435 year: 2007 end-page: 463 article-title: Detecting violations of factorial invariance using data-based specification searches: A Monte Carlo study publication-title: Structural Equation Modeling – volume: 20 start-page: 257 year: 1996 end-page: 274 article-title: Identification of items that show nonuniform DIF publication-title: Applied Psychological Measurement – volume: 42 start-page: 815 year: 2007 end-page: 824 article-title: Structural equation modelling: Adjudging model fit publication-title: Personality and Individual Differences – volume: 42 start-page: 841 year: 2007 end-page: 850 article-title: Testing! testing! One, two three: Testing the theory in structural equation models! publication-title: Personality and Individual Differences – volume: 21 start-page: 167 year: 2014 end-page: 180 article-title: Evaluating model fit with ordered categorical data within a measurement invariance framework: A comparison of estimators publication-title: Structural Equation Modeling – volume: 37 start-page: 316 year: 2013 end-page: 335 article-title: Detecting differential item functioning of polytomous items for an ideal point response process publication-title: Applied Psychological Measurement – volume: 91 start-page: 1292 year: 2006 end-page: 1306 article-title: Detecting differential item functioning with confirmatory factor analysis and item response theory: Toward a unified strategy publication-title: Journal of Applied Psychology – volume: 9 start-page: 233 year: 2002 end-page: 255 article-title: Evaluating goodness-of-fit indexes for testing measurement invariance publication-title: Structural Equation Modeling – volume: 14 start-page: 275 year: 2009 end-page: 299 article-title: Estimation of IRT graded response models: Limited versus full information methods publication-title: Psychological Methods – volume: 54 start-page: 314 year: 2010 end-page: 320 article-title: Modeling outcomes with floor or ceiling effects: An introduction to the Tobit model publication-title: Gifted Child Quarterly – volume: 38 start-page: 171 year: 1985 end-page: 189 article-title: A comparison of some methodologies for the factor analysis of non-normal Likert variables publication-title: British Journal of Mathematical and Statistical Psychology – volume: 43 start-page: 561 year: 1978 end-page: 573 article-title: A rating formulation for ordered response categories publication-title: Psychometrika – volume: 24 start-page: 222 year: 1987 end-page: 228 article-title: The sensitivity of confirmatory maximum likelihood factor analysis to violations of measurement scale and distributional assumptions publication-title: Journal of Marketing Research – volume: 9 start-page: 466 year: 2004 end-page: 491 article-title: An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data publication-title: Psychological Methods – volume: 4 start-page: 73 year: 2008 end-page: 79 article-title: Effect of the number of response categories on the reliability and validity of rating scales publication-title: Methodology – volume: 14 start-page: 611 year: 2007 end-page: 635 article-title: Power and precision in confirmatory factor analytic tests of measurement invariance publication-title: Structural Equation Modeling – volume: 16 start-page: 54 year: 2009 end-page: 69 article-title: Using Δgoodness-of-fit indexes in assessing mean structure invariance publication-title: Structural Equation Modeling – volume: 38 start-page: 359 year: 2014 end-page: 375 article-title: Chi-square difference tests for detecting differential functioning in a multidimensional IRT model: A Monte Carlo Study publication-title: Applied Psychological Measurement – volume: 93 start-page: 568 year: 2008 end-page: 592 article-title: Power and sensitivity of alternative fit indices in tests of measurement invariance publication-title: Journal of Applied Psychology – volume: 26 start-page: 24 year: 1958 end-page: 36 article-title: Estimation of relationships for limited dependent variables publication-title: Econometrica – ident: bibr35-0013164416683754 doi: 10.1080/10705511.2014.882658 – ident: bibr3-0013164416683754 doi: 10.2307/3151512 – ident: bibr40-0013164416683754 doi: 10.2307/1907382 – volume-title: The theory and practice of item response theory year: 2009 ident: bibr10-0013164416683754 – ident: bibr21-0013164416683754 doi: 10.1007/BF02296272 – volume-title: IRT in Mplus year: 2013 ident: bibr16-0013164416683754 – volume-title: Statistical inference year: 2002 ident: bibr8-0013164416683754 – ident: bibr28-0013164416683754 doi: 10.1177/014662169201600206 – ident: bibr6-0013164416683754 doi: 10.1002/9781118619179 – ident: bibr11-0013164416683754 doi: 10.1080/10705510802561311 – ident: bibr20-0013164416683754 doi: 10.1207/s15328007sem1104_2 – ident: bibr1-0013164416683754 doi: 10.1007/BF02293814 – ident: bibr13-0013164416683754 doi: 10.1037/a0015825 – ident: bibr38-0013164416683754 doi: 10.1037/0021-9010.91.6.1292 – ident: bibr17-0013164416683754 doi: 10.1080/10705511.2011.557337 – ident: bibr43-0013164416683754 doi: 10.1080/10705510701301677 – volume-title: Confirmatory factor analysis for applied research year: 2006 ident: bibr7-0013164416683754 – ident: bibr34-0013164416683754 doi: 10.1007/BF03372160 – volume: 14 start-page: 149 year: 2013 ident: bibr37-0013164416683754 publication-title: Journal of Applied Measurement – volume-title: Mplus user’s guide year: 1998 ident: bibr32-0013164416683754 – ident: bibr33-0013164416683754 doi: 10.1177/014662169602000306 – volume-title: Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes year: 1997 ident: bibr31-0013164416683754 – ident: bibr36-0013164416683754 doi: 10.1007/BF02296192 – ident: bibr9-0013164416683754 doi: 10.1207/S15328007SEM0902_5 – ident: bibr15-0013164416683754 doi: 10.1016/j.paid.2006.10.001 – ident: bibr24-0013164416683754 doi: 10.1080/10705510701575461 – ident: bibr4-0013164416683754 doi: 10.1016/j.paid.2006.09.018 – ident: bibr14-0013164416683754 doi: 10.1207/s15328007sem1303_3 – ident: bibr12-0013164416683754 doi: 10.1037/1082-989X.9.4.466 – ident: bibr5-0013164416683754 doi: 10.1207/s15328007sem1302_2 – volume-title: Robust chi square difference testing with mean and variance adjusted test statistics year: 2006 ident: bibr2-0013164416683754 – ident: bibr22-0013164416683754 doi: 10.1207/s15327906mbr4101_4 – ident: bibr39-0013164416683754 doi: 10.1177/0146621614523116 – ident: bibr41-0013164416683754 doi: 10.1177/0146621613476156 – volume-title: Principles and practice of structural equation modeling year: 2016 ident: bibr18-0013164416683754 – ident: bibr23-0013164416683754 doi: 10.1177/0016986210379095 – ident: bibr30-0013164416683754 doi: 10.1111/j.2044-8317.1985.tb00832.x – ident: bibr42-0013164416683754 doi: 10.1177/0146621610377450 – start-page: 380 volume-title: Handbook of structural equation modeling year: 2012 ident: bibr27-0013164416683754 – ident: bibr44-0013164416683754 doi: 10.1111/0081-1750.00078 – ident: bibr19-0013164416683754 doi: 10.1027/1614-2241.4.2.73 – volume-title: Using Mplus Monte Carlo simulations in practice: A note on assessing estimation quality and power in latent variable models year: 2002 ident: bibr29-0013164416683754 – ident: bibr26-0013164416683754 doi: 10.1037/10409-007 – ident: bibr25-0013164416683754 doi: 10.1037/0021-9010.93.3.568 |
| SSID | ssj0000411 |
| Score | 2.2844737 |
| Snippet | Evaluations of measurement invariance provide essential construct validity evidence—a prerequisite for seeking meaning in psychological and educational... Evaluations of measurement invariance provide essential construct validity evidence-a prerequisite for seeking meaning in psychological and educational... Evaluations of measurement invariance provide essential construct validity evidence--a prerequisite for seeking meaning in psychological and educational... |
| SourceID | pubmedcentral eric proquest pubmed crossref sage |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 272 |
| SubjectTerms | Chi-square test Comparative Analysis Computation Construct Validity Educational Research Error of Measurement Factor Analysis Goodness of Fit Hypotheses Least Squares Statistics Maximum Likelihood Statistics Measurement Techniques Monte Carlo Methods Monte Carlo simulation Researchers Statistical Analysis Studies Test Bias Tests Validity |
| Title | The Impact of Model Parameterization and Estimation Methods on Tests of Measurement Invariance With Ordered Polytomous Data |
| URI | https://journals.sagepub.com/doi/full/10.1177/0013164416683754 https://www.ncbi.nlm.nih.gov/pubmed/29795956 https://www.proquest.com/docview/2007287968 https://www.proquest.com/docview/2045271835 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1170569 https://pubmed.ncbi.nlm.nih.gov/PMC5965660 |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7aXJJLadKmdZoGBUqhB5O1VyPJx5AHSSCPQwK5LZJl0cLiLVk3EPrnOyM_NtuQkJtBsrA9M9Y3o5n5AL5Z9FVehEAS8JjKLOjUaeXTXNmRDUoWI8e1w-cX6uRGnt3i7SJ08dqMyjMmTEFVvOUSRtN7Pf0PWGZZT1xA3oBcnE7uxfYyDAGUMkz-ugqrw1pLO9Ny8vMj1Pk0efJRBljclI7fw7sOTYr9Vvzr8KaqN5iIuUva2IC14Qf38AH-kk6I01gWKWZBMA3aVFxZTs_ijs1tQaawtRdHZPhtTaM4jxTTc0GX1_SE83jnIrAoTut7crdZdwTHdMXlXaT_FFez6UMz48CCOLSN_Qg3x0fXBydpR76QltLIJg1ekan6KhCiItSlxtUYgym1ccFqg96FUpeIuTe2Mq7wJhRSoUdCPASBEcebsFLP6uozCOeynByxLGTGSOtyi0p6m-nSIren1Ans9R9-UnadyZkgYzrJ-mbk_4ktgR_DHb_brhwvzN1kWQ7zBnknsN1Ld9IZ7pxZOTU5kYUyCewOw2RyfI5i64q-2oQ7-Oe0p48xgU-tMgyr5wWTt6NKQC-pyTCB23kvj9S_fsa23lgwth4l8J0VavFIz73Y1nMv9gXWCNaZNr9oG1aauz_VV4JOjduJhrITY1r_AB1CD-U |
| linkProvider | ERIC Clearinghouse on Information & Technology |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B98BeYAwGgQ2MhJB4yNaktuM8TlundqyjSJ0YvER2HGsTVYrWDGnwz3OXX203gRBvkfxDOft8_pycvw_grRY2C2PncAas8HngIt9E0vqh1F3tJI-7hu4Oj07l4Iwfn4vzJamvegTnu5RWhW9UBut2dRNTEhHE0CYupSL51vuwpoiTpgNr-1_Gn0aLMMyDoJEvoAaLf5R3-ljZk1bTnpfw5t20yaXcr3I7OnoEXxtDqiyUb7vXBdrw8xbH439ZugEPa5DK9iuvegz3snyT9J3rXJBNWG_j5s0T-IWuxoblbUs2c4zU1aZsrCnri4igq3ueTOeW9TGeVFcl2ahUrp4zfJyg-fOy5eJ7JRvmP_AUTy7JPl8WF-zjVakqysaz6U0xo-8V7FAX-imcHfUnBwO_1nTwU6544TsrMQLYzCFQQzAne1lPOJVGyjgdKWGNS6NUiNAqnSkTW-ViLoUVCKQQWQvR24JOPsuz58CMCUI83wUuUIprE2ohudVBlGpBrJeRB3vNrCZpTXhOuhvTJGg4zm-NsAfv2xbfK7KPv9TdIkdp6_WPScNHyNiD7cZ1kmaOSewzwrNpLJUHb9piXMn0e0bnGY5aQsIAIUKFnvDgWeVpbe9hTJrwQnoQrfhgW4FYwldL8suLki1cxATZux68I0dbvNKfDHvxrxVfw4PBZHSSnAxPP7yEdUSSqkpp2oZOcXWd7SBaK8yrel3-Bn2RMXQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTkJ7YRcYZIxhJITEQ9YmjS95nFirddBRpE2Mp8iJY22iSqc1Qxr8-Z3jXLpuAiHeIsWOYvv4-LN9zvcBvNPc5GFsLY6A4X4UWOmnUhg_FLqnrYjiXkq5w-NjcXgaHZ3xszo2h3Jh6h6c71FYFf6Rc9Y0uy-N7dZ3jF1HEkMLuRCKJFwfwwquU72wAyv73ydfxwtXHAVBI2FAFRb3lA--sbQuLYc-38GcD0Mn78R_uSVpuFbprs4dkyFFovzYuy6xHb_u8Tz-d2vX4WkNVtl-ZV0b8CgvNknnuY4J2YTV1n_ePIPfaHJs5LIu2cwyUlmbsomm6C8ihK7yPZkuDBugX6lSJtnYKVjPGT6eYBfMXc3FuSUbFT9xN0-myb5dlOfsy5VTF2WT2fSmnNG5BTvQpX4Op8PBycdDv9Z28LNIRaVvjUBPYHKLgA1BnejnfW5VJlVqtVTcpDaTGeehUTpXaWyUjSPBDUdAhQib8_4WdIpZkb8ElqZBiPu8wAZKRToNNReR0YHMNCf2S-lBtxnZJKuJz0l_Y5oEDdf5vR724ENb47Ii_fhL2S0ylrbc4Ii0fLiIPdhpzCdpxplEPyXuUWOhPHjbvsYZTdc0usix1xISCAgRMvS5By8qa2u_HsakDc-FB3LJDtsCxBa-_Ka4OHes4Twm6N7z4D0Z2-KX_tSw7X8t-AaeTA6GyefR8adXsIqAUlWRTTvQKa-u89cI2sp0t56at1ZPM-k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Model+Parameterization+and+Estimation+Methods+on+Tests+of+Measurement+Invariance+With+Ordered+Polytomous+Data&rft.jtitle=Educational+and+psychological+measurement&rft.au=Koziol%2C+Natalie+A.&rft.au=Bovaird%2C+James+A.&rft.date=2018-04-01&rft.issn=0013-1644&rft.eissn=1552-3888&rft.volume=78&rft.issue=2&rft.spage=272&rft.epage=296&rft_id=info:doi/10.1177%2F0013164416683754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_0013164416683754 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-1644&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-1644&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-1644&client=summon |