The Impact of Model Parameterization and Estimation Methods on Tests of Measurement Invariance With Ordered Polytomous Data

Evaluations of measurement invariance provide essential construct validity evidence—a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of...

Full description

Saved in:
Bibliographic Details
Published inEducational and psychological measurement Vol. 78; no. 2; pp. 272 - 296
Main Authors Koziol, Natalie A., Bovaird, James A.
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.04.2018
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text
ISSN0013-1644
1552-3888
1552-3888
DOI10.1177/0013164416683754

Cover

Abstract Evaluations of measurement invariance provide essential construct validity evidence—a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or Type II errors can render measurement invariance conclusions meaningless. The present study used Monte Carlo simulation methods to compare the effects of multiple model parameterizations (linear factor model, Tobit factor model, and categorical factor model) and estimators (maximum likelihood [ML], robust maximum likelihood [MLR], and weighted least squares mean and variance-adjusted [WLSMV]) on the performance of the chi-square test for the exact-fit hypothesis and chi-square and likelihood ratio difference tests for the equal-fit hypothesis for evaluating measurement invariance with ordered polytomous data. The test statistics were examined under multiple generation conditions that varied according to the degree of metric noninvariance, the size of the sample, the magnitude of the factor loadings, and the distribution of the observed item responses. The categorical factor model with WLSMV estimation performed best for evaluating overall model fit, and the categorical factor model with ML and MLR estimation performed best for evaluating change in fit. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their study.
AbstractList Evaluations of measurement invariance provide essential construct validity evidence-a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or Type II errors can render measurement invariance conclusions meaningless. The present study used Monte Carlo simulation methods to compare the effects of multiple model parameterizations (linear factor model, Tobit factor model, and categorical factor model) and estimators (maximum likelihood [ML], robust maximum likelihood [MLR], and weighted least squares mean and variance-adjusted [WLSMV]) on the performance of the chi-square test for the exact-fit hypothesis and chi-square and likelihood ratio difference tests for the equal-fit hypothesis for evaluating measurement invariance with ordered polytomous data. The test statistics were examined under multiple generation conditions that varied according to the degree of metric noninvariance, the size of the sample, the magnitude of the factor loadings, and the distribution of the observed item responses. The categorical factor model with WLSMV estimation performed best for evaluating overall model fit, and the categorical factor model with ML and MLR estimation performed best for evaluating change in fit. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their study.
Evaluations of measurement invariance provide essential construct validity evidence-a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or Type II errors can render measurement invariance conclusions meaningless. The present study used Monte Carlo simulation methods to compare the effects of multiple model parameterizations (linear factor model, Tobit factor model, and categorical factor model) and estimators (maximum likelihood [ML], robust maximum likelihood [MLR], and weighted least squares mean and variance-adjusted [WLSMV]) on the performance of the chi-square test for the exact-fit hypothesis and chi-square and likelihood ratio difference tests for the equal-fit hypothesis for evaluating measurement invariance with ordered polytomous data. The test statistics were examined under multiple generation conditions that varied according to the degree of metric noninvariance, the size of the sample, the magnitude of the factor loadings, and the distribution of the observed item responses. The categorical factor model with WLSMV estimation performed best for evaluating overall model fit, and the categorical factor model with ML and MLR estimation performed best for evaluating change in fit. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their study.Evaluations of measurement invariance provide essential construct validity evidence-a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or Type II errors can render measurement invariance conclusions meaningless. The present study used Monte Carlo simulation methods to compare the effects of multiple model parameterizations (linear factor model, Tobit factor model, and categorical factor model) and estimators (maximum likelihood [ML], robust maximum likelihood [MLR], and weighted least squares mean and variance-adjusted [WLSMV]) on the performance of the chi-square test for the exact-fit hypothesis and chi-square and likelihood ratio difference tests for the equal-fit hypothesis for evaluating measurement invariance with ordered polytomous data. The test statistics were examined under multiple generation conditions that varied according to the degree of metric noninvariance, the size of the sample, the magnitude of the factor loadings, and the distribution of the observed item responses. The categorical factor model with WLSMV estimation performed best for evaluating overall model fit, and the categorical factor model with ML and MLR estimation performed best for evaluating change in fit. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their study.
Author Koziol, Natalie A.
Bovaird, James A.
Author_xml – sequence: 1
  givenname: Natalie A.
  surname: Koziol
  fullname: Koziol, Natalie A.
  email: nkoziol@unl.edu
  organization: University of Nebraska–Lincoln, Lincoln, NE, USA
– sequence: 2
  givenname: James A.
  surname: Bovaird
  fullname: Bovaird, James A.
  organization: University of Nebraska–Lincoln, Lincoln, NE, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29795956$$D View this record in MEDLINE/PubMed
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1170569$$DView record in ERIC
BookMark eNp9Uk1v1DAQtVAR3S7cuYAsceESsBN_5YKEygKLWrWHRRwjrz3pukrire1UKvx5vE1ZYCXwxbbmvZl58-YEHQ1-AISeU_KGUinfEkIrKhijQqhKcvYIzSjnZVEppY7QbBcudvFjdBLjNcmHUfoEHZe1rHnNxQz9WG0AL_utNgn7Fp97Cx2-1EH3kCC47zo5P2A9WLyIyfXT9xzSxtuI83MFMcV7Jug4BuhhSHg53Org9GAAf3Npgy-ChQAWX_ruLvnejxF_0Ek_RY9b3UV49nDP0dePi9Xp5-Ls4tPy9P1ZYZhiqWitkDWz0HLKyqoUFVS8VUaqdaul4nbdGmmyaqs0qHVtVVszwS0XVa2o5byao3dT3u247sGa3GLQXbMNWU-4a7x2zd-RwW2aK3_b8FpwIUhO8GJKkCdi9rzFl-wB4aLO8dcPBYK_GfNEmt5FA12nB8him5IwXkqqql0vrw6g134MQ5afUUSWStbZyjl6-WfH-5K_fMsAMgFM8DEGaPcQSprdajSHq5Ep4oBiXLr3M2t23f-IxUSM-gp-t_tP_E_gPcjQ
CitedBy_id crossref_primary_10_1007_s10608_024_10519_4
crossref_primary_10_1080_15305058_2021_1995867
crossref_primary_10_1007_s10578_018_0844_2
crossref_primary_10_1016_j_psychres_2018_03_062
crossref_primary_10_1027_1015_5759_a000730
crossref_primary_10_1027_1015_5759_a000811
crossref_primary_10_1177_10541373241267827
crossref_primary_10_3389_fpsyg_2020_00712
crossref_primary_10_3389_fpsyg_2021_626084
crossref_primary_10_1002_eat_23696
crossref_primary_10_1016_j_appdev_2022_101443
crossref_primary_10_1177_1073191120980064
crossref_primary_10_1177_10731911231153835
crossref_primary_10_1016_j_bodyim_2019_11_004
crossref_primary_10_1016_j_jsp_2023_01_001
crossref_primary_10_1027_2698_1866_a000061
crossref_primary_10_3389_fpsyg_2018_01146
crossref_primary_10_1111_1475_6773_14189
Cites_doi 10.1080/10705511.2014.882658
10.2307/3151512
10.2307/1907382
10.1007/BF02296272
10.1177/014662169201600206
10.1002/9781118619179
10.1080/10705510802561311
10.1207/s15328007sem1104_2
10.1007/BF02293814
10.1037/a0015825
10.1037/0021-9010.91.6.1292
10.1080/10705511.2011.557337
10.1080/10705510701301677
10.1007/BF03372160
10.1177/014662169602000306
10.1007/BF02296192
10.1207/S15328007SEM0902_5
10.1016/j.paid.2006.10.001
10.1080/10705510701575461
10.1016/j.paid.2006.09.018
10.1207/s15328007sem1303_3
10.1037/1082-989X.9.4.466
10.1207/s15328007sem1302_2
10.1207/s15327906mbr4101_4
10.1177/0146621614523116
10.1177/0146621613476156
10.1177/0016986210379095
10.1111/j.2044-8317.1985.tb00832.x
10.1177/0146621610377450
10.1111/0081-1750.00078
10.1027/1614-2241.4.2.73
10.1037/10409-007
10.1037/0021-9010.93.3.568
ContentType Journal Article
Copyright The Author(s) 2017
The Author(s) 2017 2017 SAGE Publications
Copyright_xml – notice: The Author(s) 2017
– notice: The Author(s) 2017 2017 SAGE Publications
DBID AAYXX
CITATION
NPM
AHOVV
7X8
ERI
GA5
5PM
DOI 10.1177/0013164416683754
DatabaseName CrossRef
PubMed
Education Research Index
MEDLINE - Academic
ERIC
ERIC - Full Text Only (Discovery)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
ERIC
DatabaseTitleList PubMed
CrossRef
ERIC

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Education
Psychology
EISSN 1552-3888
ERIC EJ1170569
EndPage 296
ExternalDocumentID PMC5965660
EJ1170569
29795956
10_1177_0013164416683754
10.1177_0013164416683754
Genre Journal Article
GrantInformation_xml – fundername: Institute of Education Sciences
  grantid: IES #R305C090022
  funderid: https://doi.org/10.13039/100005246
– fundername: ;
  grantid: IES #R305C090022
GroupedDBID --Z
-DZ
-TM
-~X
.2G
.2L
01A
07C
09Z
0R~
186
18M
1VT
1~K
29G
2KS
31S
31V
31W
31X
4.4
41~
53G
56W
5GY
5VS
6PF
85S
AABOD
AACKU
AADIR
AADUE
AAGGD
AAGLT
AAHSB
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAQDB
AAQXI
AARIX
AATAA
AAWLO
AAWTL
ABAWP
ABCCA
ABCJG
ABDLQ
ABDPE
ABEIX
ABFSI
ABFXH
ABHQH
ABIDT
ABIVO
ABJNI
ABKRH
ABOPQ
ABPNF
ABPPZ
ABQKF
ABQPY
ABQXT
ABRHV
ABTDE
ABUJY
ABYTW
ACABN
ACAEP
ACCUC
ACDXX
ACFUR
ACFZE
ACGFS
ACHQT
ACJER
ACLZU
ACNCT
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUFS
ACUIR
ACZOB
ADBBV
ADDLC
ADEBD
ADEIA
ADMHC
ADMHG
ADNMO
ADNON
ADPEE
ADRRZ
ADSTG
ADTOS
ADUKL
ADXHL
ADYCS
AEDXQ
AENEX
AEOBU
AEONT
AESMA
AESZF
AETEA
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNAY
AGNHF
AGNWV
AGQPQ
AGWNL
AGWVZ
AHDMH
AHHFK
AHOJL
AHWHD
AIDAL
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
ANDLU
AOIJS
ARTOV
ARYUH
ASPBG
ATKJL
AUTPY
AUVAJ
AVWKF
AYPQM
AZFZN
B8O
B8S
B8T
B8Z
BDZRT
BKOMP
BMVBW
BPACV
BYIEH
CAG
CBRKF
CCGJY
CEADM
COF
CS3
DD0
DD~
DG~
DOPDO
DU5
DV7
DV8
E.L
EBS
EIHBH
EJD
F5P
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HYE
HZ~
H~9
IAO
IEA
IER
IOF
IPO
IPY
ITC
IVC
J8X
LPU
LWO
MS~
MVM
N9A
NHB
O9-
OHT
OK1
OMK
P-O
P.B
PQQKQ
Q1R
Q7O
Q7P
Q7X
ROL
RPM
RWL
RXW
S01
SASJQ
SAUOL
SBI
SCNPE
SFB
SFC
SFF
SFK
SFT
SFX
SFY
SGP
SGU
SGV
SHB
SHF
SHM
SPJ
SPP
SQCSI
SSDHQ
TAE
TN5
UAP
UBC
UBH
UHB
UPT
VJK
WH7
WHG
XJT
XOL
XSW
XZL
YF5
YYP
YYQ
YZZ
ZCA
ZCG
ZPLXX
ZPPRI
ZUP
ZXP
~32
AAYXX
ACCVC
AJGYC
AMNSR
CITATION
M4V
NPM
UAO
YCJ
AAPII
AHOVV
AJHME
AJVBE
7X8
AAEJI
ERI
GA5
5PM
ID FETCH-LOGICAL-c484t-fd6794def51423263e35f8c78bfa785dbfc7c552d8ae8b9d8f9465d563981d553
IEDL.DBID ERI
ISSN 0013-1644
1552-3888
IngestDate Thu Aug 21 14:35:57 EDT 2025
Tue Sep 02 19:04:25 EDT 2025
Fri Sep 05 04:25:00 EDT 2025
Wed Aug 13 06:25:32 EDT 2025
Thu Apr 03 07:04:25 EDT 2025
Tue Jul 01 05:26:13 EDT 2025
Thu Apr 24 23:10:53 EDT 2025
Tue Jun 17 22:30:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords measurement invariance
robust maximum likelihood
limited information estimation
Tobit model
categorical confirmatory factor analysis
polytomous data
differential item functioning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-fd6794def51423263e35f8c78bfa785dbfc7c552d8ae8b9d8f9465d563981d553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1170569
PMID 29795956
PQID 2007287968
PQPubID 40846
PageCount 25
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5965660
eric_primary_EJ1170569
proquest_miscellaneous_2045271835
proquest_journals_2007287968
pubmed_primary_29795956
crossref_primary_10_1177_0013164416683754
crossref_citationtrail_10_1177_0013164416683754
sage_journals_10_1177_0013164416683754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Durham
– name: Sage CA: Los Angeles, CA
PublicationTitle Educational and psychological measurement
PublicationTitleAlternate Educ Psychol Meas
PublicationYear 2018
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Beauducel, Herzberg 2006; 13
Satorra, Bentler 2001; 66
Lozano, García-Cueto, Muñiz 2008; 4
McBee 2010; 54
Narayanan 1996; 20
Cheung, Rensvold 2002; 9
Sinharay 2013; 14
Lubke, Muthén 2004; 11
Muraki 1992; 16
Suh, Cho 2014; 38
Forero, Maydeu-Olivares 2009; 14
Maydeu-Olivares, Cai 2006; 41
Tobin 1958; 26
Barrett 2007; 42
Wang, Tay, Drasgow 2013; 37
Sass, Schmitt, Marsh 2014; 21
Andrich 1978; 43
Babakus, Ferguson, Jöreskog 1987; 24
Fan, Sivo 2009; 16
Kim, Yoon 2011; 18
Hayduk, Cummings, Boadu, Pazderka-Robinson, Boulianne 2007; 42
Muthén, Kaplan 1985; 38
French, Finch 2006; 13
Flora, Curran 2004; 9
Meade, Bauer 2007; 14
Woods 2011; 35
Stark, Chernyshenko, Drasgow 2006; 91
Meade, Johnson, Braddy 2008; 93
Masters 1982; 47
Yoon, Millsap 2007; 14
bibr44-0013164416683754
bibr6-0013164416683754
bibr36-0013164416683754
bibr1-0013164416683754
bibr23-0013164416683754
bibr22-0013164416683754
bibr5-0013164416683754
bibr35-0013164416683754
bibr40-0013164416683754
bibr14-0013164416683754
Muthén L. K. (bibr32-0013164416683754) 1998
IRT in Mplus (bibr16-0013164416683754) 2013
bibr13-0013164416683754
bibr21-0013164416683754
bibr26-0013164416683754
bibr4-0013164416683754
Asparouhov T. (bibr2-0013164416683754) 2006
Kline R. B. (bibr18-0013164416683754) 2016
Muthén B. (bibr29-0013164416683754) 2002
bibr39-0013164416683754
bibr34-0013164416683754
bibr43-0013164416683754
bibr17-0013164416683754
bibr30-0013164416683754
Casella G. (bibr8-0013164416683754) 2002
de Ayala R. J. (bibr10-0013164416683754) 2009
bibr25-0013164416683754
bibr12-0013164416683754
bibr20-0013164416683754
Sinharay S. (bibr37-0013164416683754) 2013; 14
bibr3-0013164416683754
bibr38-0013164416683754
Millsap R. E. (bibr27-0013164416683754) 2012
bibr42-0013164416683754
bibr33-0013164416683754
bibr9-0013164416683754
Brown T. (bibr7-0013164416683754) 2006
bibr11-0013164416683754
bibr24-0013164416683754
bibr41-0013164416683754
bibr15-0013164416683754
bibr28-0013164416683754
bibr19-0013164416683754
Muthén B. O. (bibr31-0013164416683754) 1997
References_xml – volume: 47
  start-page: 149
  year: 1982
  end-page: 174
  article-title: A Rasch model for partial credit scoring
  publication-title: Psychometrika
– volume: 35
  start-page: 145
  year: 2011
  end-page: 164
  article-title: DIF testing for ordinal items with Poly-SIBTEST, the Mantel and GMH tests, and IRT-LR-DIF when the latent distribution is nonnormal for both groups
  publication-title: Applied Psychological Measurement
– volume: 18
  start-page: 212
  year: 2011
  end-page: 228
  article-title: Testing measurement invariance: A comparison of multiple-group categorical CFA and IRT
  publication-title: Structural Equation Modeling
– volume: 14
  start-page: 149
  year: 2013
  end-page: 158
  article-title: An extension of a Bayesian approach to detect differential item functioning
  publication-title: Journal of Applied Measurement
– volume: 13
  start-page: 186
  year: 2006
  end-page: 203
  article-title: On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA
  publication-title: Structural Equation Modeling
– volume: 11
  start-page: 514
  year: 2004
  end-page: 534
  article-title: Applying multigroup confirmatory factor models for continuous outcomes to Likert scale data complicates meaningful group comparisons
  publication-title: Structural Equation Modeling
– volume: 13
  start-page: 378
  year: 2006
  end-page: 402
  article-title: Confirmatory factor analytic procedures for the determination of measurement invariance
  publication-title: Structural Equation Modeling
– volume: 41
  start-page: 55
  year: 2006
  end-page: 64
  article-title: A cautionary note on using G (dif) to assess relative model fit in categorical data analysis
  publication-title: Multivariate Behavioral Research
– volume: 16
  start-page: 159
  year: 1992
  end-page: 176
  article-title: A generalized partial credit model: Application of an EM algorithm
  publication-title: Applied Psychological Measurement
– volume: 66
  start-page: 507
  year: 2001
  end-page: 514
  article-title: A scaled difference chi-square test statistic for moment structure analysis
  publication-title: Psychometrika
– volume: 14
  start-page: 435
  year: 2007
  end-page: 463
  article-title: Detecting violations of factorial invariance using data-based specification searches: A Monte Carlo study
  publication-title: Structural Equation Modeling
– volume: 20
  start-page: 257
  year: 1996
  end-page: 274
  article-title: Identification of items that show nonuniform DIF
  publication-title: Applied Psychological Measurement
– volume: 42
  start-page: 815
  year: 2007
  end-page: 824
  article-title: Structural equation modelling: Adjudging model fit
  publication-title: Personality and Individual Differences
– volume: 42
  start-page: 841
  year: 2007
  end-page: 850
  article-title: Testing! testing! One, two three: Testing the theory in structural equation models!
  publication-title: Personality and Individual Differences
– volume: 21
  start-page: 167
  year: 2014
  end-page: 180
  article-title: Evaluating model fit with ordered categorical data within a measurement invariance framework: A comparison of estimators
  publication-title: Structural Equation Modeling
– volume: 37
  start-page: 316
  year: 2013
  end-page: 335
  article-title: Detecting differential item functioning of polytomous items for an ideal point response process
  publication-title: Applied Psychological Measurement
– volume: 91
  start-page: 1292
  year: 2006
  end-page: 1306
  article-title: Detecting differential item functioning with confirmatory factor analysis and item response theory: Toward a unified strategy
  publication-title: Journal of Applied Psychology
– volume: 9
  start-page: 233
  year: 2002
  end-page: 255
  article-title: Evaluating goodness-of-fit indexes for testing measurement invariance
  publication-title: Structural Equation Modeling
– volume: 14
  start-page: 275
  year: 2009
  end-page: 299
  article-title: Estimation of IRT graded response models: Limited versus full information methods
  publication-title: Psychological Methods
– volume: 54
  start-page: 314
  year: 2010
  end-page: 320
  article-title: Modeling outcomes with floor or ceiling effects: An introduction to the Tobit model
  publication-title: Gifted Child Quarterly
– volume: 38
  start-page: 171
  year: 1985
  end-page: 189
  article-title: A comparison of some methodologies for the factor analysis of non-normal Likert variables
  publication-title: British Journal of Mathematical and Statistical Psychology
– volume: 43
  start-page: 561
  year: 1978
  end-page: 573
  article-title: A rating formulation for ordered response categories
  publication-title: Psychometrika
– volume: 24
  start-page: 222
  year: 1987
  end-page: 228
  article-title: The sensitivity of confirmatory maximum likelihood factor analysis to violations of measurement scale and distributional assumptions
  publication-title: Journal of Marketing Research
– volume: 9
  start-page: 466
  year: 2004
  end-page: 491
  article-title: An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data
  publication-title: Psychological Methods
– volume: 4
  start-page: 73
  year: 2008
  end-page: 79
  article-title: Effect of the number of response categories on the reliability and validity of rating scales
  publication-title: Methodology
– volume: 14
  start-page: 611
  year: 2007
  end-page: 635
  article-title: Power and precision in confirmatory factor analytic tests of measurement invariance
  publication-title: Structural Equation Modeling
– volume: 16
  start-page: 54
  year: 2009
  end-page: 69
  article-title: Using Δgoodness-of-fit indexes in assessing mean structure invariance
  publication-title: Structural Equation Modeling
– volume: 38
  start-page: 359
  year: 2014
  end-page: 375
  article-title: Chi-square difference tests for detecting differential functioning in a multidimensional IRT model: A Monte Carlo Study
  publication-title: Applied Psychological Measurement
– volume: 93
  start-page: 568
  year: 2008
  end-page: 592
  article-title: Power and sensitivity of alternative fit indices in tests of measurement invariance
  publication-title: Journal of Applied Psychology
– volume: 26
  start-page: 24
  year: 1958
  end-page: 36
  article-title: Estimation of relationships for limited dependent variables
  publication-title: Econometrica
– ident: bibr35-0013164416683754
  doi: 10.1080/10705511.2014.882658
– ident: bibr3-0013164416683754
  doi: 10.2307/3151512
– ident: bibr40-0013164416683754
  doi: 10.2307/1907382
– volume-title: The theory and practice of item response theory
  year: 2009
  ident: bibr10-0013164416683754
– ident: bibr21-0013164416683754
  doi: 10.1007/BF02296272
– volume-title: IRT in Mplus
  year: 2013
  ident: bibr16-0013164416683754
– volume-title: Statistical inference
  year: 2002
  ident: bibr8-0013164416683754
– ident: bibr28-0013164416683754
  doi: 10.1177/014662169201600206
– ident: bibr6-0013164416683754
  doi: 10.1002/9781118619179
– ident: bibr11-0013164416683754
  doi: 10.1080/10705510802561311
– ident: bibr20-0013164416683754
  doi: 10.1207/s15328007sem1104_2
– ident: bibr1-0013164416683754
  doi: 10.1007/BF02293814
– ident: bibr13-0013164416683754
  doi: 10.1037/a0015825
– ident: bibr38-0013164416683754
  doi: 10.1037/0021-9010.91.6.1292
– ident: bibr17-0013164416683754
  doi: 10.1080/10705511.2011.557337
– ident: bibr43-0013164416683754
  doi: 10.1080/10705510701301677
– volume-title: Confirmatory factor analysis for applied research
  year: 2006
  ident: bibr7-0013164416683754
– ident: bibr34-0013164416683754
  doi: 10.1007/BF03372160
– volume: 14
  start-page: 149
  year: 2013
  ident: bibr37-0013164416683754
  publication-title: Journal of Applied Measurement
– volume-title: Mplus user’s guide
  year: 1998
  ident: bibr32-0013164416683754
– ident: bibr33-0013164416683754
  doi: 10.1177/014662169602000306
– volume-title: Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes
  year: 1997
  ident: bibr31-0013164416683754
– ident: bibr36-0013164416683754
  doi: 10.1007/BF02296192
– ident: bibr9-0013164416683754
  doi: 10.1207/S15328007SEM0902_5
– ident: bibr15-0013164416683754
  doi: 10.1016/j.paid.2006.10.001
– ident: bibr24-0013164416683754
  doi: 10.1080/10705510701575461
– ident: bibr4-0013164416683754
  doi: 10.1016/j.paid.2006.09.018
– ident: bibr14-0013164416683754
  doi: 10.1207/s15328007sem1303_3
– ident: bibr12-0013164416683754
  doi: 10.1037/1082-989X.9.4.466
– ident: bibr5-0013164416683754
  doi: 10.1207/s15328007sem1302_2
– volume-title: Robust chi square difference testing with mean and variance adjusted test statistics
  year: 2006
  ident: bibr2-0013164416683754
– ident: bibr22-0013164416683754
  doi: 10.1207/s15327906mbr4101_4
– ident: bibr39-0013164416683754
  doi: 10.1177/0146621614523116
– ident: bibr41-0013164416683754
  doi: 10.1177/0146621613476156
– volume-title: Principles and practice of structural equation modeling
  year: 2016
  ident: bibr18-0013164416683754
– ident: bibr23-0013164416683754
  doi: 10.1177/0016986210379095
– ident: bibr30-0013164416683754
  doi: 10.1111/j.2044-8317.1985.tb00832.x
– ident: bibr42-0013164416683754
  doi: 10.1177/0146621610377450
– start-page: 380
  volume-title: Handbook of structural equation modeling
  year: 2012
  ident: bibr27-0013164416683754
– ident: bibr44-0013164416683754
  doi: 10.1111/0081-1750.00078
– ident: bibr19-0013164416683754
  doi: 10.1027/1614-2241.4.2.73
– volume-title: Using Mplus Monte Carlo simulations in practice: A note on assessing estimation quality and power in latent variable models
  year: 2002
  ident: bibr29-0013164416683754
– ident: bibr26-0013164416683754
  doi: 10.1037/10409-007
– ident: bibr25-0013164416683754
  doi: 10.1037/0021-9010.93.3.568
SSID ssj0000411
Score 2.2844737
Snippet Evaluations of measurement invariance provide essential construct validity evidence—a prerequisite for seeking meaning in psychological and educational...
Evaluations of measurement invariance provide essential construct validity evidence-a prerequisite for seeking meaning in psychological and educational...
Evaluations of measurement invariance provide essential construct validity evidence--a prerequisite for seeking meaning in psychological and educational...
SourceID pubmedcentral
eric
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 272
SubjectTerms Chi-square test
Comparative Analysis
Computation
Construct Validity
Educational Research
Error of Measurement
Factor Analysis
Goodness of Fit
Hypotheses
Least Squares Statistics
Maximum Likelihood Statistics
Measurement Techniques
Monte Carlo Methods
Monte Carlo simulation
Researchers
Statistical Analysis
Studies
Test Bias
Tests
Validity
Title The Impact of Model Parameterization and Estimation Methods on Tests of Measurement Invariance With Ordered Polytomous Data
URI https://journals.sagepub.com/doi/full/10.1177/0013164416683754
https://www.ncbi.nlm.nih.gov/pubmed/29795956
https://www.proquest.com/docview/2007287968
https://www.proquest.com/docview/2045271835
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1170569
https://pubmed.ncbi.nlm.nih.gov/PMC5965660
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7aXJJLadKmdZoGBUqhB5O1VyPJx5AHSSCPQwK5LZJl0cLiLVk3EPrnOyM_NtuQkJtBsrA9M9Y3o5n5AL5Z9FVehEAS8JjKLOjUaeXTXNmRDUoWI8e1w-cX6uRGnt3i7SJ08dqMyjMmTEFVvOUSRtN7Pf0PWGZZT1xA3oBcnE7uxfYyDAGUMkz-ugqrw1pLO9Ny8vMj1Pk0efJRBljclI7fw7sOTYr9Vvzr8KaqN5iIuUva2IC14Qf38AH-kk6I01gWKWZBMA3aVFxZTs_ijs1tQaawtRdHZPhtTaM4jxTTc0GX1_SE83jnIrAoTut7crdZdwTHdMXlXaT_FFez6UMz48CCOLSN_Qg3x0fXBydpR76QltLIJg1ekan6KhCiItSlxtUYgym1ccFqg96FUpeIuTe2Mq7wJhRSoUdCPASBEcebsFLP6uozCOeynByxLGTGSOtyi0p6m-nSIren1Ans9R9-UnadyZkgYzrJ-mbk_4ktgR_DHb_brhwvzN1kWQ7zBnknsN1Ld9IZ7pxZOTU5kYUyCewOw2RyfI5i64q-2oQ7-Oe0p48xgU-tMgyr5wWTt6NKQC-pyTCB23kvj9S_fsa23lgwth4l8J0VavFIz73Y1nMv9gXWCNaZNr9oG1aauz_VV4JOjduJhrITY1r_AB1CD-U
linkProvider ERIC Clearinghouse on Information & Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B98BeYAwGgQ2MhJB4yNaktuM8TlundqyjSJ0YvER2HGsTVYrWDGnwz3OXX203gRBvkfxDOft8_pycvw_grRY2C2PncAas8HngIt9E0vqh1F3tJI-7hu4Oj07l4Iwfn4vzJamvegTnu5RWhW9UBut2dRNTEhHE0CYupSL51vuwpoiTpgNr-1_Gn0aLMMyDoJEvoAaLf5R3-ljZk1bTnpfw5t20yaXcr3I7OnoEXxtDqiyUb7vXBdrw8xbH439ZugEPa5DK9iuvegz3snyT9J3rXJBNWG_j5s0T-IWuxoblbUs2c4zU1aZsrCnri4igq3ueTOeW9TGeVFcl2ahUrp4zfJyg-fOy5eJ7JRvmP_AUTy7JPl8WF-zjVakqysaz6U0xo-8V7FAX-imcHfUnBwO_1nTwU6544TsrMQLYzCFQQzAne1lPOJVGyjgdKWGNS6NUiNAqnSkTW-ViLoUVCKQQWQvR24JOPsuz58CMCUI83wUuUIprE2ohudVBlGpBrJeRB3vNrCZpTXhOuhvTJGg4zm-NsAfv2xbfK7KPv9TdIkdp6_WPScNHyNiD7cZ1kmaOSewzwrNpLJUHb9piXMn0e0bnGY5aQsIAIUKFnvDgWeVpbe9hTJrwQnoQrfhgW4FYwldL8suLki1cxATZux68I0dbvNKfDHvxrxVfw4PBZHSSnAxPP7yEdUSSqkpp2oZOcXWd7SBaK8yrel3-Bn2RMXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTkJ7YRcYZIxhJITEQ9YmjS95nFirddBRpE2Mp8iJY22iSqc1Qxr8-Z3jXLpuAiHeIsWOYvv4-LN9zvcBvNPc5GFsLY6A4X4UWOmnUhg_FLqnrYjiXkq5w-NjcXgaHZ3xszo2h3Jh6h6c71FYFf6Rc9Y0uy-N7dZ3jF1HEkMLuRCKJFwfwwquU72wAyv73ydfxwtXHAVBI2FAFRb3lA--sbQuLYc-38GcD0Mn78R_uSVpuFbprs4dkyFFovzYuy6xHb_u8Tz-d2vX4WkNVtl-ZV0b8CgvNknnuY4J2YTV1n_ePIPfaHJs5LIu2cwyUlmbsomm6C8ihK7yPZkuDBugX6lSJtnYKVjPGT6eYBfMXc3FuSUbFT9xN0-myb5dlOfsy5VTF2WT2fSmnNG5BTvQpX4Op8PBycdDv9Z28LNIRaVvjUBPYHKLgA1BnejnfW5VJlVqtVTcpDaTGeehUTpXaWyUjSPBDUdAhQib8_4WdIpZkb8ElqZBiPu8wAZKRToNNReR0YHMNCf2S-lBtxnZJKuJz0l_Y5oEDdf5vR724ENb47Ii_fhL2S0ylrbc4Ii0fLiIPdhpzCdpxplEPyXuUWOhPHjbvsYZTdc0usix1xISCAgRMvS5By8qa2u_HsakDc-FB3LJDtsCxBa-_Ka4OHes4Twm6N7z4D0Z2-KX_tSw7X8t-AaeTA6GyefR8adXsIqAUlWRTTvQKa-u89cI2sp0t56at1ZPM-k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Model+Parameterization+and+Estimation+Methods+on+Tests+of+Measurement+Invariance+With+Ordered+Polytomous+Data&rft.jtitle=Educational+and+psychological+measurement&rft.au=Koziol%2C+Natalie+A.&rft.au=Bovaird%2C+James+A.&rft.date=2018-04-01&rft.issn=0013-1644&rft.eissn=1552-3888&rft.volume=78&rft.issue=2&rft.spage=272&rft.epage=296&rft_id=info:doi/10.1177%2F0013164416683754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_0013164416683754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-1644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-1644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-1644&client=summon