Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods
Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods...
Saved in:
Published in | International journal of environmental research and public health Vol. 19; no. 3; p. 1378 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods can address the most basic questions related to the association between environmental mixtures and health endpoints, there were gaps in our ability to learn from mixtures data in several common epidemiologic scenarios, including high correlation among health and exposure measures in space and/or time, the presence of missing observations, the violation of important modeling assumptions, and the presence of computational challenges incurred by current implementations. To address these and other challenges, NIEHS initiated the Powering Research through Innovative methods for Mixtures in Epidemiology (PRIME) program, to support work on the development and expansion of statistical methods for mixtures. Six independent projects supported by PRIME have been highly productive but their methods have not yet been described collectively in a way that would inform application. We review 37 new methods from PRIME projects and summarize the work across previously published research questions, to inform methods selection and increase awareness of these new methods. We highlight important statistical advancements considering data science strategies, exposure-response estimation, timing of exposures, epidemiological methods, the incorporation of toxicity/chemical information, spatiotemporal data, risk assessment, and model performance, efficiency, and interpretation. Importantly, we link to software to encourage application and testing on other datasets. This review can enable more informed analyses of environmental mixtures. We stress training for early career scientists as well as innovation in statistical methodology as an ongoing need. Ultimately, we direct efforts to the common goal of reducing harmful exposures to improve public health. |
---|---|
AbstractList | Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods can address the most basic questions related to the association between environmental mixtures and health endpoints, there were gaps in our ability to learn from mixtures data in several common epidemiologic scenarios, including high correlation among health and exposure measures in space and/or time, the presence of missing observations, the violation of important modeling assumptions, and the presence of computational challenges incurred by current implementations. To address these and other challenges, NIEHS initiated the Powering Research through Innovative methods for Mixtures in Epidemiology (PRIME) program, to support work on the development and expansion of statistical methods for mixtures. Six independent projects supported by PRIME have been highly productive but their methods have not yet been described collectively in a way that would inform application. We review 37 new methods from PRIME projects and summarize the work across previously published research questions, to inform methods selection and increase awareness of these new methods. We highlight important statistical advancements considering data science strategies, exposure-response estimation, timing of exposures, epidemiological methods, the incorporation of toxicity/chemical information, spatiotemporal data, risk assessment, and model performance, efficiency, and interpretation. Importantly, we link to software to encourage application and testing on other datasets. This review can enable more informed analyses of environmental mixtures. We stress training for early career scientists as well as innovation in statistical methodology as an ongoing need. Ultimately, we direct efforts to the common goal of reducing harmful exposures to improve public health.Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods can address the most basic questions related to the association between environmental mixtures and health endpoints, there were gaps in our ability to learn from mixtures data in several common epidemiologic scenarios, including high correlation among health and exposure measures in space and/or time, the presence of missing observations, the violation of important modeling assumptions, and the presence of computational challenges incurred by current implementations. To address these and other challenges, NIEHS initiated the Powering Research through Innovative methods for Mixtures in Epidemiology (PRIME) program, to support work on the development and expansion of statistical methods for mixtures. Six independent projects supported by PRIME have been highly productive but their methods have not yet been described collectively in a way that would inform application. We review 37 new methods from PRIME projects and summarize the work across previously published research questions, to inform methods selection and increase awareness of these new methods. We highlight important statistical advancements considering data science strategies, exposure-response estimation, timing of exposures, epidemiological methods, the incorporation of toxicity/chemical information, spatiotemporal data, risk assessment, and model performance, efficiency, and interpretation. Importantly, we link to software to encourage application and testing on other datasets. This review can enable more informed analyses of environmental mixtures. We stress training for early career scientists as well as innovation in statistical methodology as an ongoing need. Ultimately, we direct efforts to the common goal of reducing harmful exposures to improve public health. Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods can address the most basic questions related to the association between environmental mixtures and health endpoints, there were gaps in our ability to learn from mixtures data in several common epidemiologic scenarios, including high correlation among health and exposure measures in space and/or time, the presence of missing observations, the violation of important modeling assumptions, and the presence of computational challenges incurred by current implementations. To address these and other challenges, NIEHS initiated the Powering Research through Innovative methods for Mixtures in Epidemiology (PRIME) program, to support work on the development and expansion of statistical methods for mixtures. Six independent projects supported by PRIME have been highly productive but their methods have not yet been described collectively in a way that would inform application. We review 37 new methods from PRIME projects and summarize the work across previously published research questions, to inform methods selection and increase awareness of these new methods. We highlight important statistical advancements considering data science strategies, exposure-response estimation, timing of exposures, epidemiological methods, the incorporation of toxicity/chemical information, spatiotemporal data, risk assessment, and model performance, efficiency, and interpretation. Importantly, we link to software to encourage application and testing on other datasets. This review can enable more informed analyses of environmental mixtures. We stress training for early career scientists as well as innovation in statistical methodology as an ongoing need. Ultimately, we direct efforts to the common goal of reducing harmful exposures to improve public health. |
Author | Miranda, Marie Lynn Chen, Hua Yun Chamberlain, Toccara Gennings, Chris Dunson, David B. Kioumourtzoglou, Marianthi-Anna Ensor, Katherine B. Webster, Thomas F. Joubert, Bonnie R. Coull, Brent A. Turyk, Mary E. |
AuthorAffiliation | 5 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, IN 46556, USA; mlm@nd.edu 6 Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; twebster@bu.edu 3 Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL 60612, USA; hychen@uic.edu (H.Y.C.); mturyk1@uic.edu (M.E.T.) 4 Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; chris.gennings@mssm.edu 8 Department of Statistical Science, Duke University, Durham, NC 27710, USA; dunson@stat.duke.edu 7 Department of Statistics, Rice University, Houston, TX 77005, USA; ensor@rice.edu 9 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; bcoull@hsph.harvard.edu 2 Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; |
AuthorAffiliation_xml | – name: 7 Department of Statistics, Rice University, Houston, TX 77005, USA; ensor@rice.edu – name: 6 Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; twebster@bu.edu – name: 2 Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; mk3961@cumc.columbia.edu – name: 5 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, IN 46556, USA; mlm@nd.edu – name: 1 Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA; toccara.chamberlain@nih.gov – name: 3 Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL 60612, USA; hychen@uic.edu (H.Y.C.); mturyk1@uic.edu (M.E.T.) – name: 4 Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; chris.gennings@mssm.edu – name: 8 Department of Statistical Science, Duke University, Durham, NC 27710, USA; dunson@stat.duke.edu – name: 9 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; bcoull@hsph.harvard.edu |
Author_xml | – sequence: 1 givenname: Bonnie R. orcidid: 0000-0001-7952-1180 surname: Joubert fullname: Joubert, Bonnie R. – sequence: 2 givenname: Marianthi-Anna surname: Kioumourtzoglou fullname: Kioumourtzoglou, Marianthi-Anna – sequence: 3 givenname: Toccara surname: Chamberlain fullname: Chamberlain, Toccara – sequence: 4 givenname: Hua Yun surname: Chen fullname: Chen, Hua Yun – sequence: 5 givenname: Chris orcidid: 0000-0002-6058-5907 surname: Gennings fullname: Gennings, Chris – sequence: 6 givenname: Mary E. surname: Turyk fullname: Turyk, Mary E. – sequence: 7 givenname: Marie Lynn orcidid: 0000-0002-5670-0837 surname: Miranda fullname: Miranda, Marie Lynn – sequence: 8 givenname: Thomas F. orcidid: 0000-0003-4896-9323 surname: Webster fullname: Webster, Thomas F. – sequence: 9 givenname: Katherine B. orcidid: 0000-0002-3964-0465 surname: Ensor fullname: Ensor, Katherine B. – sequence: 10 givenname: David B. surname: Dunson fullname: Dunson, David B. – sequence: 11 givenname: Brent A. surname: Coull fullname: Coull, Brent A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35162394$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1r3DAQxUVJaT6vPRZBL-lhU8mStVIPhRI27UK2XZL0LGR7bGuxJUeyt8kx_3ltki1JoKcRzHs_3ozmEO057wCh95ScMabIZ7uB0NVUEUbZXL5BB1QIMuOC0L1n7310GOOGECa5UO_QPkupSJjiB-hh7f9AsK7CVxDBhLzGfR38UNV46Zzfmt5uAa-gr30RcekDXtm7fggQsXV40dkCWusbX93j0_XVcrX4hNfBV8G0X_BPv4UGG1fgxV03FijwdT8CY29z0-ygx-htaZoIJ0_1CP2-WNyc_5hd_vq-PP92Ocu55P2spLngQKVJiOIMElaoIktZxhJVFglkhhnKjFCZVByA5QlISSUvhBwHLcfeEfr6yO2GrIUiB9cH0-gu2NaEe-2N1S87zta68lstJUsJTUfA6RMg-NsBYq9bG3NoGuPAD1EnIlFEcMKSUfrxlXTjh-DG8SbVPOVkzqdEH54n-hdl9zujgD8K8uBjDFDq3E4L9FNA22hK9HQE-uURjLazV7Yd-T-Gv2Hftqs |
CitedBy_id | crossref_primary_10_1016_j_envres_2024_119109 crossref_primary_10_1097_EDE_0000000000001778 crossref_primary_10_1164_rccm_202307_1185OC crossref_primary_10_1016_j_envres_2023_115865 crossref_primary_10_2337_dc22_2140 crossref_primary_10_1007_s40572_024_00444_9 crossref_primary_10_1007_s12561_023_09410_9 crossref_primary_10_1016_j_envres_2025_121368 crossref_primary_10_1038_s41370_024_00717_3 crossref_primary_10_1289_EHP11899 crossref_primary_10_1021_acs_est_3c04346 crossref_primary_10_1093_aje_kwae014 crossref_primary_10_1016_j_lana_2023_100482 crossref_primary_10_1093_jncics_pkae122 crossref_primary_10_1016_j_xcrp_2022_100978 crossref_primary_10_1093_aje_kwae115 crossref_primary_10_3390_antiox11101991 crossref_primary_10_1021_acs_est_3c00848 crossref_primary_10_1007_s40201_024_00925_x crossref_primary_10_1002_ijgo_14501 crossref_primary_10_1016_j_scitotenv_2023_169409 crossref_primary_10_1016_j_chemosphere_2023_140626 crossref_primary_10_3390_toxics10070403 crossref_primary_10_1002_sim_9765 crossref_primary_10_1016_j_scitotenv_2023_166178 crossref_primary_10_1289_EHP14340 crossref_primary_10_3390_ijerph20032321 crossref_primary_10_1016_j_scitotenv_2024_170220 crossref_primary_10_1007_s12561_023_09385_7 crossref_primary_10_3390_toxics10030116 crossref_primary_10_1007_s12561_023_09405_6 crossref_primary_10_1093_exposome_osae007 crossref_primary_10_1016_j_envint_2023_108307 crossref_primary_10_1289_EHP10557 crossref_primary_10_1016_j_ecoenv_2023_115812 crossref_primary_10_1016_j_uclim_2025_102316 crossref_primary_10_1265_ehpm_23_00312 crossref_primary_10_1289_EHP12555 crossref_primary_10_1016_j_buildenv_2024_112267 crossref_primary_10_1016_j_envres_2022_113413 crossref_primary_10_3389_fpubh_2024_1377685 crossref_primary_10_1007_s40572_024_00466_3 crossref_primary_10_1007_s40572_024_00467_2 crossref_primary_10_1016_j_envres_2024_119938 crossref_primary_10_3390_sym14101962 |
Cites_doi | 10.1093/biostatistics/kxaa051 10.1002/sta4.357 10.1093/biostatistics/kxx036 10.1080/01621459.2016.1264956 10.1016/j.envres.2017.03.031 10.1214/13-AOS1096 10.1093/biomet/asr013 10.1007/s40471-018-0145-0 10.1111/biom.12974 10.1289/EHP2450 10.1214/21-AOAS1461 10.1097/MOP.0000000000000877 10.1289/ehp.1206182 10.1007/s40572-019-0224-5 10.1214/19-AOAS1307 10.1289/isee.2021.O-SY-069 10.1289/EHP10479 10.1111/2041-210X.13345 10.1007/s13253-014-0180-3 10.1214/20-AOAS1363 10.1111/biom.13569 10.1214/21-AOAS1533 10.3390/ijerph19052693 10.1016/j.annepidem.2016.11.016 10.5194/amt-14-5809-2021 10.1038/ng.608 10.1289/isee.2020.virtual.O-SY-1847 10.1080/01621459.2020.1745813 10.1016/j.envres.2021.111241 10.1186/s12940-018-0413-y 10.1016/j.mex.2019.11.008 10.1080/10618600.2015.1067217 10.1289/ehp.1002453 10.1289/isee.2021.O-SY-070 10.1093/biomet/asab056 10.1214/20-AOAS1435 10.1016/j.envint.2018.08.039 10.1111/rssb.12203 10.1289/EHP547 10.1289/EHP5838 10.1186/s12940-019-0515-1 10.1201/9781315370279 10.1289/isee.2022.O-OP-091 10.1002/sim.9099 10.1093/biostatistics/kxu058 10.1016/j.envres.2020.109529 10.18637/jss.v043.i08 10.1201/9781351049757 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ijerph19031378 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Complete (ProQuest Database) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1660-4601 |
ExternalDocumentID | PMC8835015 35162394 10_3390_ijerph19031378 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01ES028800 – fundername: NIEHS NIH HHS grantid: R01 ES028811 – fundername: NIEHS NIH HHS grantid: R01ES028790 – fundername: NIEHS NIH HHS grantid: R01 ES028819 – fundername: NIEHS NIH HHS grantid: P30 ES023515 – fundername: NIEHS NIH HHS grantid: R01ES028811 – fundername: NIEHS NIH HHS grantid: R01ES028805 – fundername: NIEHS NIH HHS grantid: R01ES028819 – fundername: NIEHS NIH HHS grantid: R01 ES028790 – fundername: NIEHS NIH HHS grantid: R01ES028804 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 A8Z AADQD AAFWJ AAHBH AAYXX ABGAM ABUWG ACGFO ACGOD ACIWK ADBBV AENEX AFKRA AFRAH AFZYC AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN F5P FYUFA GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO Q2X RNS RPM SV3 TR2 UKHRP XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c484t-f1c64e18a20943e23d9db53b329fd2eba3a13a69b894ee3c2e88184d68239fa13 |
IEDL.DBID | M48 |
ISSN | 1660-4601 1661-7827 |
IngestDate | Thu Aug 21 18:11:33 EDT 2025 Fri Jul 11 05:08:46 EDT 2025 Fri Jul 25 19:52:55 EDT 2025 Mon Jul 21 05:45:49 EDT 2025 Tue Jul 01 03:27:50 EDT 2025 Thu Apr 24 23:01:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | epidemiology risk assessment environment health impact methods non-chemical stressors combined exposures chemical interactions exposomics chemicals mixtures statistics |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-f1c64e18a20943e23d9db53b329fd2eba3a13a69b894ee3c2e88184d68239fa13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6058-5907 0000-0002-5670-0837 0000-0003-4896-9323 0000-0002-3964-0465 0000-0001-7952-1180 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph19031378 |
PMID | 35162394 |
PQID | 2627540741 |
PQPubID | 54923 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8835015 proquest_miscellaneous_2629064032 proquest_journals_2627540741 pubmed_primary_35162394 crossref_citationtrail_10_3390_ijerph19031378 crossref_primary_10_3390_ijerph19031378 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220126 |
PublicationDateYYYYMMDD | 2022-01-26 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220126 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of environmental research and public health |
PublicationTitleAlternate | Int J Environ Res Public Health |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Carrico (ref_46) 2015; 20 ref_14 ref_58 ref_13 ref_57 ref_56 Bravo (ref_62) 2021; 198 ref_10 Tikhonov (ref_55) 2020; 11 ref_52 Roy (ref_18) 2021; 15 Gennings (ref_28) 2020; 186 Weisskopf (ref_6) 2018; 126 ref_19 ref_17 Tanner (ref_30) 2019; 6 ref_15 Ferrari (ref_12) 2020; 116 Liu (ref_68) 2018; 19 Davalos (ref_45) 2017; 27 Hamra (ref_43) 2018; 5 Haris (ref_60) 2016; 25 ref_25 ref_69 ref_24 ref_23 ref_22 ref_20 Gennings (ref_21) 2018; 120 ref_63 Taylor (ref_1) 2016; 124 Carlin (ref_2) 2013; 121 Bobb (ref_70) 2018; 17 ref_27 Bien (ref_61) 2013; 41 ref_26 ref_72 ref_71 Kowal (ref_34) 2021; 40 Buckley (ref_64) 2019; 6 ref_35 ref_33 ref_32 ref_31 ref_39 ref_38 Bello (ref_67) 2017; 156 Moran (ref_11) 2021; 15 Bellio (ref_53) 2019; 75 Ferrari (ref_16) 2020; 14 Schedler (ref_36) 2021; 10 Keil (ref_47) 2020; 128 Hao (ref_59) 2018; 113 Tanner (ref_42) 2020; 32 ref_41 ref_40 Actkinson (ref_37) 2021; 14 ref_3 Gasparrini (ref_65) 2011; 43 Bobb (ref_48) 2015; 16 ref_49 Yang (ref_50) 2010; 42 Janson (ref_51) 2017; 79 ref_9 Gibson (ref_44) 2019; 18 ref_8 Antonelli (ref_29) 2020; 14 Sanchez (ref_66) 2011; 119 ref_5 ref_4 ref_7 Bhattacharya (ref_54) 2011; 98 |
References_xml | – ident: ref_9 – ident: ref_26 doi: 10.1093/biostatistics/kxaa051 – volume: 10 start-page: e357 year: 2021 ident: ref_36 article-title: A spatiotemporal case-crossover model of asthma exacerbation in the City of Houston publication-title: Stat doi: 10.1002/sta4.357 – volume: 19 start-page: 325 year: 2018 ident: ref_68 article-title: Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures publication-title: Biostatistics doi: 10.1093/biostatistics/kxx036 – ident: ref_32 – volume: 113 start-page: 615 year: 2018 ident: ref_59 article-title: Model Selection for High-Dimensional Quadratic Regression via Regularization publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2016.1264956 – volume: 156 start-page: 253 year: 2017 ident: ref_67 article-title: Extending the Distributed Lag Model framework to handle chemical mixtures publication-title: Environ. Res. doi: 10.1016/j.envres.2017.03.031 – volume: 41 start-page: 1111 year: 2013 ident: ref_61 article-title: A Lasso for Hierarchical Interactions publication-title: Ann. Stat. doi: 10.1214/13-AOS1096 – ident: ref_39 – volume: 98 start-page: 291 year: 2011 ident: ref_54 article-title: Sparse Bayesian infinite factor models publication-title: Biometrika doi: 10.1093/biomet/asr013 – volume: 5 start-page: 160 year: 2018 ident: ref_43 article-title: Environmental exposure mixtures: Questions and methods to address them publication-title: Curr. Epidemiol. Rep. doi: 10.1007/s40471-018-0145-0 – volume: 75 start-page: 337 year: 2019 ident: ref_53 article-title: Multi-Study Factor Analysis (MSFA) publication-title: Biometrics doi: 10.1111/biom.12974 – ident: ref_35 – volume: 126 start-page: 047003 year: 2018 ident: ref_6 article-title: Bias Amplification in Epidemiologic Analysis of Exposure to Mixtures publication-title: Environ. Health Perspect. doi: 10.1289/EHP2450 – volume: 15 start-page: 1405 year: 2021 ident: ref_11 article-title: Bayesian joint modeling of chemical structure and dose response curves publication-title: Ann. Appl. Stat. doi: 10.1214/21-AOAS1461 – volume: 32 start-page: 315 year: 2020 ident: ref_42 article-title: Environmental mixtures and children’s health: Identifying appropriate statistical approaches publication-title: Curr. Opin. Pediatr. doi: 10.1097/MOP.0000000000000877 – ident: ref_71 – ident: ref_58 – ident: ref_52 doi: 10.1111/biom.12974 – volume: 121 start-page: A6 year: 2013 ident: ref_2 article-title: Unraveling the health effects of environmental mixtures: An NIEHS priority publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1206182 – volume: 6 start-page: 1 year: 2019 ident: ref_64 article-title: Statistical Approaches for Investigating Periods of Susceptibility in Children’s Environmental Health Research publication-title: Curr. Environ. Health Rep. doi: 10.1007/s40572-019-0224-5 – volume: 14 start-page: 257 year: 2020 ident: ref_29 article-title: Estimating the health effects of environmental mixtures using Bayesian semiparametric regression and sparsity inducing priors publication-title: Ann. Appl. Stat. doi: 10.1214/19-AOAS1307 – ident: ref_4 – ident: ref_31 – ident: ref_56 – ident: ref_22 doi: 10.1289/isee.2021.O-SY-069 – ident: ref_27 – ident: ref_8 doi: 10.1289/EHP10479 – volume: 11 start-page: 442 year: 2020 ident: ref_55 article-title: Joint species distribution modelling with the r-package Hmsc publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13345 – ident: ref_10 – volume: 20 start-page: 100 year: 2015 ident: ref_46 article-title: Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1007/s13253-014-0180-3 – volume: 14 start-page: 1743 year: 2020 ident: ref_16 article-title: Identifying main effects and interactions among exposures using Gaussian processes publication-title: Ann. Appl. Stat. doi: 10.1214/20-AOAS1363 – ident: ref_5 doi: 10.1111/biom.13569 – ident: ref_23 doi: 10.1214/21-AOAS1533 – ident: ref_41 doi: 10.3390/ijerph19052693 – volume: 27 start-page: 145 year: 2017 ident: ref_45 article-title: Current approaches used in epidemiologic studies to examine short-term multipollutant air pollution exposures publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2016.11.016 – volume: 14 start-page: 5809 year: 2021 ident: ref_37 article-title: SIBaR: A new method for background quantification and removal from mobile air pollution measurements publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-5809-2021 – ident: ref_38 – ident: ref_17 – volume: 42 start-page: 565 year: 2010 ident: ref_50 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat. Genet. doi: 10.1038/ng.608 – ident: ref_72 – ident: ref_20 – ident: ref_7 – ident: ref_69 doi: 10.1289/isee.2020.virtual.O-SY-1847 – volume: 116 start-page: 1521 year: 2020 ident: ref_12 article-title: Bayesian factor analysis for inference on interactions publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2020.1745813 – ident: ref_3 – ident: ref_24 – volume: 198 start-page: 111241 year: 2021 ident: ref_62 article-title: Effects of accumulated environmental, social and host exposures on early childhood educational outcomes publication-title: Environ. Res. doi: 10.1016/j.envres.2021.111241 – volume: 17 start-page: 67 year: 2018 ident: ref_70 article-title: Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression publication-title: Environ. Health doi: 10.1186/s12940-018-0413-y – volume: 6 start-page: 2855 year: 2019 ident: ref_30 article-title: Repeated holdout validation for weighted quantile sum regression publication-title: MethodsX doi: 10.1016/j.mex.2019.11.008 – volume: 25 start-page: 981 year: 2016 ident: ref_60 article-title: Convex Modeling of Interactions with Strong Heredity publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2015.1067217 – volume: 119 start-page: 409 year: 2011 ident: ref_66 article-title: Statistical methods to study timing of vulnerability with sparsely sampled data on environmental toxicants publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1002453 – ident: ref_14 – ident: ref_25 doi: 10.1289/isee.2021.O-SY-070 – ident: ref_13 doi: 10.1093/biomet/asab056 – volume: 15 start-page: 1386 year: 2021 ident: ref_18 article-title: Perturbed factor analysis: Accounting for group differences in exposure profiles publication-title: Ann. Appl. Stat. doi: 10.1214/20-AOAS1435 – volume: 120 start-page: 535 year: 2018 ident: ref_21 article-title: Incorporating regulatory guideline values in analysis of epidemiology data publication-title: Environ. Int. doi: 10.1016/j.envint.2018.08.039 – volume: 79 start-page: 1037 year: 2017 ident: ref_51 article-title: EigenPrism: Inference for high dimensional signal-to-noise ratios publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/rssb.12203 – volume: 124 start-page: A227 year: 2016 ident: ref_1 article-title: Statistical Approaches for Assessing Health Effects of Environmental Chemical Mixtures in Epidemiology: Lessons from an Innovative Workshop publication-title: Environ. Health Perspect. doi: 10.1289/EHP547 – ident: ref_33 – volume: 128 start-page: 47004 year: 2020 ident: ref_47 article-title: A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures publication-title: Environ. Health Perspect. doi: 10.1289/EHP5838 – ident: ref_15 – volume: 18 start-page: 76 year: 2019 ident: ref_44 article-title: An overview of methods to address distinct research questions on environmental mixtures: An application to persistent organic pollutants and leukocyte telomere length publication-title: Environ. Health doi: 10.1186/s12940-019-0515-1 – ident: ref_49 doi: 10.1201/9781315370279 – ident: ref_63 doi: 10.1289/isee.2022.O-OP-091 – volume: 40 start-page: 4850 year: 2021 ident: ref_34 article-title: Bayesian variable selection for understanding mixtures in environmental exposures publication-title: Stat. Med. doi: 10.1002/sim.9099 – ident: ref_19 – volume: 16 start-page: 493 year: 2015 ident: ref_48 article-title: Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures publication-title: Biostatistics doi: 10.1093/biostatistics/kxu058 – ident: ref_57 – volume: 186 start-page: 109529 year: 2020 ident: ref_28 article-title: Lagged WQS regression for mixtures with many components publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109529 – volume: 43 start-page: 1 year: 2011 ident: ref_65 article-title: Distributed Lag Linear and Non-Linear Models in R: The Package dlnm publication-title: J. Stat. Softw. doi: 10.18637/jss.v043.i08 – ident: ref_40 doi: 10.1201/9781351049757 |
SSID | ssj0038469 |
Score | 2.5246806 |
SecondaryResourceType | review_article |
Snippet | Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1378 |
SubjectTerms | Air pollution Data science Datasets Environmental Exposure - analysis Environmental health Epidemiologic Methods Epidemiologic Studies Epidemiology Flame retardants Humans Interdisciplinary aspects National Institute of Environmental Health Sciences (U.S.) Pesticides Research Design Review Risk Assessment Severe acute respiratory syndrome coronavirus 2 Software Spatial data Statistical methods United States VOCs Volatile organic compounds Workshops |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELcYe5k0TdvYRxibDmkS24NF_ZHU5gVNUwtMKqqmIfEWxbGjdUJpoQXBI_85d4lT6Kbx7FPi5Oz73fnO92Pss0Ufo2eD596lEgOUnuM2uIwL4yp0r602ngLF0XF2eKJ_nKan8cBtHssqO5vYGGo_LemMfFdSO11NALg_O-fEGkXZ1Uih8YQ9FYg0VNJlhgedJVaIreT-CsQgjkjYb5s2Kgzzdyd_An4HoqESiijWHoLSP57m3wWTDxBo-JK9iK4jfGt1_Yqthfo1e96eu0F7nWiD3Y6J9gzxCLqaOohUPHAUCVCvAowa3ug5oMcKo8k1ZRHmMKlhcM8XewNfxj-PRoOvMG5LuPbgeHoVzqCoPQyuZ3T47IF81abVM04sPvQNOxkOfn0_5JFmgZfa6AWvRJnpIEwhqcowSOUtKk45JW3lZXCFKoQqMuuM1SGoUgaDKK99ZqSyFY69Zev1tA7vGYgCDS91pZI66AqVnaaqtFVfuJB53y8Txrv_nJexBzlRYZzlGIuQXvJVvSRsZyk_a7tv_Fdyq1NbHnfhPL9fMwnbXg7j_qGkSFGH6WUjYymbqWTC3rVaXr5KpSIj6viE9Vf0vxSg3tyrI_Xkd9Oj2xjK2Kabj0_rA3sm6TpFT3CZbbH1xcVl-IhOzsJ9albyHTyX_bc priority: 102 providerName: ProQuest |
Title | Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35162394 https://www.proquest.com/docview/2627540741 https://www.proquest.com/docview/2629064032 https://pubmed.ncbi.nlm.nih.gov/PMC8835015 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-x7QUJIb7pGJWRkICHQP0Rx0ZCCKaUDSlVNVGpb1ESO6KoSre1m7pH_nPukjSjMCRe8uJLbPns3O985_sBvLSIMQbWu8DloUAHZZAH1uc64CYvEV5bZRw5islIH03U12k4vc5_aidweaNrR3xSk_P52_XZ1Ufc8B_I40SX_d3sh8cxoWWTXEZmB_bQKkXEZpCoLqIg0c4SFOZaDwKFXkhTwPGG97cN1F-o88_kyd-s0fAe3G1hJPvU6P0-3PLVA7jTnMGx5mrRQ_g5Jgo0tE1sk1_HWloedtySoV56ltQc0kuG6JUlszVFFJZsVrH4mjv2ir0enxwn8Rs2btK53rPR4tLPWVY5Fq9P6SDaMcKtddlnHFj70UcwGcbfDo-ClnIhKJRRq6DkhVaem0xQxqEX0llUosylsKUTPs9kxmWmbW6s8l4Wwhu0-MppI6Qtse0x7FaLyj8FxjP8CVOFKqG8KlHxYSgLW0Y899q5qOhBsJnntGjrkRMtxjxFv4T0km7rpQevOvnTphLHPyUPNmpLNwsqFVSOWRGA6sGLrhn3EgVIssovLmoZS5FNKXrwpNFy15UMuSYa-R5EW_rvBKhO93ZLNfte1-s2hqK34f5_9PsMbgu6XzHggdAHsLs6v_DPEfWs8j7sRNMIn-aQ03P4pQ97n-PR-KRfL_Rf5xsHeA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgCpQrxZKGAkEHCwGj92YyMhhCAhod0oQq3U23Z37VWDqk0gaWmP_CF-IzP7SBsQ3Hr2aNfyjP2NPY8P4LlFH6NjveMuCyVeUDoZtz6LuDBZge611cbRRTEeRYM9_Xk_3F-DX20tDKVVtmdidVC7aU5v5FuS2ulqAsB3s2-cWKMoutpSaNRmse3PfuCVbf52-BH1-0LKfm_3w4A3rAI810YveCHySHthUklJdV4qZ3GeKlPSFk76LFWpUGlkM2O19yqX3iCoaRcZqWyBY_jdK3BVK0Ryqkzvf2pPfoVYTu62QMzjiLzdukkkCna2Jl89rhuirxKKKN0uguBfnu2fCZoXEK9_E240rip7X9vWLVjz5W3YqN_5WF2-dAd-jolmDfGPtTl8rKH-YcOGcPXEs7jiqZ4z9JBZPDmlqMWcTUrWO-enPWOvxl-Gce81G9cpY2_YaHrij1haOtY7ndFjt2PkG1etpXFizUfvwt6lKOAerJfT0j8AJlI86KkLltReF2hcYahyW3RF5iPnunkAvF3nJG96nhP1xlGCdx_SS7KqlwBeLuVndbePf0putmpLml0_T85tNIBny2HcrxSESUs_Pa5kLEVPlQzgfq3l5a9UKCKiqg-gu6L_pQD1Al8dKSeHVU9wYyhCHD78_7SewrXBbryT7AxH24_guqRSjo7gMtqE9cX3Y_8YHaxF9qSyagYHl72NfgMXWTqC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qBRFE_Ha1agRFfQh3-djdRBCR9o6e9Y5DLPRt3d1k8aTsnd61to_-W_51zuxXe4q-9TlhN2Qm85vJTOYH8Myij9G33nGXhRIDlH7Grc8iLkxWoHtttXEUKI4n0e6-fn8QHmzAr_YtDJVVtjaxMtRuntMdeU9SO11NANgrmrKI6c7w7eIbJwYpyrS2dBq1iuz50x8Yvi3fjHZQ1s-lHA4-be_yhmGA59roFS9EHmkvTCqpwM5L5SyuWWVK2sJJn6UqFSqNbGas9l7l0hsEOO0iI5UtcAy_ewkuxyo2dMbMdldeohDXyfUWiH8cUTiuG0YqZfu92VePe4hIrIQierfzgPiXl_tnseY59BvegOuN28re1Xp2EzZ8eQuu1Xd-rH7KdBt-TolyDbGQtfV8rKEBYqOGfPXYs3HFWb1k6C2z8eyEMhhLNivZ4Iyr9pS9nH4cjQev2LQuH3vNJvNjf8jS0rHByYIuvh0jP7lqM40Laz56B_YvRAB3YbOcl_4-MJGi0aeOWFJ7XaCihaHKbRGLzEfOxXkAvN3nJG_6nxMNx2GCcRDJJVmXSwAvuvmLuvPHP2dutWJLGguwTM70NYCn3TCeXUrIpKWfH1VzLGVSlQzgXi3l7lcqFBHR1gcQr8m_m0B9wddHytmXqj-4MZQtDh_8f1lP4AoeoOTDaLL3EK5KetXRF1xGW7C5-n7kH6GvtcoeV0rN4PNFn6LfHqg-gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Powering+Research+through+Innovative+Methods+for+Mixtures+in+Epidemiology+%28PRIME%29+Program%3A+Novel+and+Expanded+Statistical+Methods&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Joubert%2C+Bonnie+R&rft.au=Kioumourtzoglou%2C+Marianthi-Anna&rft.au=Chamberlain%2C+Toccara&rft.au=Chen%2C+Hua+Yun&rft.date=2022-01-26&rft.issn=1660-4601&rft.eissn=1660-4601&rft.volume=19&rft.issue=3&rft_id=info:doi/10.3390%2Fijerph19031378&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon |