Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods

Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 19; no. 3; p. 1378
Main Authors Joubert, Bonnie R., Kioumourtzoglou, Marianthi-Anna, Chamberlain, Toccara, Chen, Hua Yun, Gennings, Chris, Turyk, Mary E., Miranda, Marie Lynn, Webster, Thomas F., Ensor, Katherine B., Dunson, David B., Coull, Brent A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.01.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods can address the most basic questions related to the association between environmental mixtures and health endpoints, there were gaps in our ability to learn from mixtures data in several common epidemiologic scenarios, including high correlation among health and exposure measures in space and/or time, the presence of missing observations, the violation of important modeling assumptions, and the presence of computational challenges incurred by current implementations. To address these and other challenges, NIEHS initiated the Powering Research through Innovative methods for Mixtures in Epidemiology (PRIME) program, to support work on the development and expansion of statistical methods for mixtures. Six independent projects supported by PRIME have been highly productive but their methods have not yet been described collectively in a way that would inform application. We review 37 new methods from PRIME projects and summarize the work across previously published research questions, to inform methods selection and increase awareness of these new methods. We highlight important statistical advancements considering data science strategies, exposure-response estimation, timing of exposures, epidemiological methods, the incorporation of toxicity/chemical information, spatiotemporal data, risk assessment, and model performance, efficiency, and interpretation. Importantly, we link to software to encourage application and testing on other datasets. This review can enable more informed analyses of environmental mixtures. We stress training for early career scientists as well as innovation in statistical methodology as an ongoing need. Ultimately, we direct efforts to the common goal of reducing harmful exposures to improve public health.
AbstractList Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods can address the most basic questions related to the association between environmental mixtures and health endpoints, there were gaps in our ability to learn from mixtures data in several common epidemiologic scenarios, including high correlation among health and exposure measures in space and/or time, the presence of missing observations, the violation of important modeling assumptions, and the presence of computational challenges incurred by current implementations. To address these and other challenges, NIEHS initiated the Powering Research through Innovative methods for Mixtures in Epidemiology (PRIME) program, to support work on the development and expansion of statistical methods for mixtures. Six independent projects supported by PRIME have been highly productive but their methods have not yet been described collectively in a way that would inform application. We review 37 new methods from PRIME projects and summarize the work across previously published research questions, to inform methods selection and increase awareness of these new methods. We highlight important statistical advancements considering data science strategies, exposure-response estimation, timing of exposures, epidemiological methods, the incorporation of toxicity/chemical information, spatiotemporal data, risk assessment, and model performance, efficiency, and interpretation. Importantly, we link to software to encourage application and testing on other datasets. This review can enable more informed analyses of environmental mixtures. We stress training for early career scientists as well as innovation in statistical methodology as an ongoing need. Ultimately, we direct efforts to the common goal of reducing harmful exposures to improve public health.Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods can address the most basic questions related to the association between environmental mixtures and health endpoints, there were gaps in our ability to learn from mixtures data in several common epidemiologic scenarios, including high correlation among health and exposure measures in space and/or time, the presence of missing observations, the violation of important modeling assumptions, and the presence of computational challenges incurred by current implementations. To address these and other challenges, NIEHS initiated the Powering Research through Innovative methods for Mixtures in Epidemiology (PRIME) program, to support work on the development and expansion of statistical methods for mixtures. Six independent projects supported by PRIME have been highly productive but their methods have not yet been described collectively in a way that would inform application. We review 37 new methods from PRIME projects and summarize the work across previously published research questions, to inform methods selection and increase awareness of these new methods. We highlight important statistical advancements considering data science strategies, exposure-response estimation, timing of exposures, epidemiological methods, the incorporation of toxicity/chemical information, spatiotemporal data, risk assessment, and model performance, efficiency, and interpretation. Importantly, we link to software to encourage application and testing on other datasets. This review can enable more informed analyses of environmental mixtures. We stress training for early career scientists as well as innovation in statistical methodology as an ongoing need. Ultimately, we direct efforts to the common goal of reducing harmful exposures to improve public health.
Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as sophisticated exposure science and related technologies enable the investigation of the health impacts of mixtures. While existing statistical methods can address the most basic questions related to the association between environmental mixtures and health endpoints, there were gaps in our ability to learn from mixtures data in several common epidemiologic scenarios, including high correlation among health and exposure measures in space and/or time, the presence of missing observations, the violation of important modeling assumptions, and the presence of computational challenges incurred by current implementations. To address these and other challenges, NIEHS initiated the Powering Research through Innovative methods for Mixtures in Epidemiology (PRIME) program, to support work on the development and expansion of statistical methods for mixtures. Six independent projects supported by PRIME have been highly productive but their methods have not yet been described collectively in a way that would inform application. We review 37 new methods from PRIME projects and summarize the work across previously published research questions, to inform methods selection and increase awareness of these new methods. We highlight important statistical advancements considering data science strategies, exposure-response estimation, timing of exposures, epidemiological methods, the incorporation of toxicity/chemical information, spatiotemporal data, risk assessment, and model performance, efficiency, and interpretation. Importantly, we link to software to encourage application and testing on other datasets. This review can enable more informed analyses of environmental mixtures. We stress training for early career scientists as well as innovation in statistical methodology as an ongoing need. Ultimately, we direct efforts to the common goal of reducing harmful exposures to improve public health.
Author Miranda, Marie Lynn
Chen, Hua Yun
Chamberlain, Toccara
Gennings, Chris
Dunson, David B.
Kioumourtzoglou, Marianthi-Anna
Ensor, Katherine B.
Webster, Thomas F.
Joubert, Bonnie R.
Coull, Brent A.
Turyk, Mary E.
AuthorAffiliation 5 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, IN 46556, USA; mlm@nd.edu
6 Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; twebster@bu.edu
3 Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL 60612, USA; hychen@uic.edu (H.Y.C.); mturyk1@uic.edu (M.E.T.)
4 Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; chris.gennings@mssm.edu
8 Department of Statistical Science, Duke University, Durham, NC 27710, USA; dunson@stat.duke.edu
7 Department of Statistics, Rice University, Houston, TX 77005, USA; ensor@rice.edu
9 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; bcoull@hsph.harvard.edu
2 Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA;
AuthorAffiliation_xml – name: 7 Department of Statistics, Rice University, Houston, TX 77005, USA; ensor@rice.edu
– name: 6 Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; twebster@bu.edu
– name: 2 Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; mk3961@cumc.columbia.edu
– name: 5 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, IN 46556, USA; mlm@nd.edu
– name: 1 Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA; toccara.chamberlain@nih.gov
– name: 3 Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL 60612, USA; hychen@uic.edu (H.Y.C.); mturyk1@uic.edu (M.E.T.)
– name: 4 Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; chris.gennings@mssm.edu
– name: 8 Department of Statistical Science, Duke University, Durham, NC 27710, USA; dunson@stat.duke.edu
– name: 9 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; bcoull@hsph.harvard.edu
Author_xml – sequence: 1
  givenname: Bonnie R.
  orcidid: 0000-0001-7952-1180
  surname: Joubert
  fullname: Joubert, Bonnie R.
– sequence: 2
  givenname: Marianthi-Anna
  surname: Kioumourtzoglou
  fullname: Kioumourtzoglou, Marianthi-Anna
– sequence: 3
  givenname: Toccara
  surname: Chamberlain
  fullname: Chamberlain, Toccara
– sequence: 4
  givenname: Hua Yun
  surname: Chen
  fullname: Chen, Hua Yun
– sequence: 5
  givenname: Chris
  orcidid: 0000-0002-6058-5907
  surname: Gennings
  fullname: Gennings, Chris
– sequence: 6
  givenname: Mary E.
  surname: Turyk
  fullname: Turyk, Mary E.
– sequence: 7
  givenname: Marie Lynn
  orcidid: 0000-0002-5670-0837
  surname: Miranda
  fullname: Miranda, Marie Lynn
– sequence: 8
  givenname: Thomas F.
  orcidid: 0000-0003-4896-9323
  surname: Webster
  fullname: Webster, Thomas F.
– sequence: 9
  givenname: Katherine B.
  orcidid: 0000-0002-3964-0465
  surname: Ensor
  fullname: Ensor, Katherine B.
– sequence: 10
  givenname: David B.
  surname: Dunson
  fullname: Dunson, David B.
– sequence: 11
  givenname: Brent A.
  surname: Coull
  fullname: Coull, Brent A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35162394$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1r3DAQxUVJaT6vPRZBL-lhU8mStVIPhRI27UK2XZL0LGR7bGuxJUeyt8kx_3ltki1JoKcRzHs_3ozmEO057wCh95ScMabIZ7uB0NVUEUbZXL5BB1QIMuOC0L1n7310GOOGECa5UO_QPkupSJjiB-hh7f9AsK7CVxDBhLzGfR38UNV46Zzfmt5uAa-gr30RcekDXtm7fggQsXV40dkCWusbX93j0_XVcrX4hNfBV8G0X_BPv4UGG1fgxV03FijwdT8CY29z0-ygx-htaZoIJ0_1CP2-WNyc_5hd_vq-PP92Ocu55P2spLngQKVJiOIMElaoIktZxhJVFglkhhnKjFCZVByA5QlISSUvhBwHLcfeEfr6yO2GrIUiB9cH0-gu2NaEe-2N1S87zta68lstJUsJTUfA6RMg-NsBYq9bG3NoGuPAD1EnIlFEcMKSUfrxlXTjh-DG8SbVPOVkzqdEH54n-hdl9zujgD8K8uBjDFDq3E4L9FNA22hK9HQE-uURjLazV7Yd-T-Gv2Hftqs
CitedBy_id crossref_primary_10_1016_j_envres_2024_119109
crossref_primary_10_1097_EDE_0000000000001778
crossref_primary_10_1164_rccm_202307_1185OC
crossref_primary_10_1016_j_envres_2023_115865
crossref_primary_10_2337_dc22_2140
crossref_primary_10_1007_s40572_024_00444_9
crossref_primary_10_1007_s12561_023_09410_9
crossref_primary_10_1016_j_envres_2025_121368
crossref_primary_10_1038_s41370_024_00717_3
crossref_primary_10_1289_EHP11899
crossref_primary_10_1021_acs_est_3c04346
crossref_primary_10_1093_aje_kwae014
crossref_primary_10_1016_j_lana_2023_100482
crossref_primary_10_1093_jncics_pkae122
crossref_primary_10_1016_j_xcrp_2022_100978
crossref_primary_10_1093_aje_kwae115
crossref_primary_10_3390_antiox11101991
crossref_primary_10_1021_acs_est_3c00848
crossref_primary_10_1007_s40201_024_00925_x
crossref_primary_10_1002_ijgo_14501
crossref_primary_10_1016_j_scitotenv_2023_169409
crossref_primary_10_1016_j_chemosphere_2023_140626
crossref_primary_10_3390_toxics10070403
crossref_primary_10_1002_sim_9765
crossref_primary_10_1016_j_scitotenv_2023_166178
crossref_primary_10_1289_EHP14340
crossref_primary_10_3390_ijerph20032321
crossref_primary_10_1016_j_scitotenv_2024_170220
crossref_primary_10_1007_s12561_023_09385_7
crossref_primary_10_3390_toxics10030116
crossref_primary_10_1007_s12561_023_09405_6
crossref_primary_10_1093_exposome_osae007
crossref_primary_10_1016_j_envint_2023_108307
crossref_primary_10_1289_EHP10557
crossref_primary_10_1016_j_ecoenv_2023_115812
crossref_primary_10_1016_j_uclim_2025_102316
crossref_primary_10_1265_ehpm_23_00312
crossref_primary_10_1289_EHP12555
crossref_primary_10_1016_j_buildenv_2024_112267
crossref_primary_10_1016_j_envres_2022_113413
crossref_primary_10_3389_fpubh_2024_1377685
crossref_primary_10_1007_s40572_024_00466_3
crossref_primary_10_1007_s40572_024_00467_2
crossref_primary_10_1016_j_envres_2024_119938
crossref_primary_10_3390_sym14101962
Cites_doi 10.1093/biostatistics/kxaa051
10.1002/sta4.357
10.1093/biostatistics/kxx036
10.1080/01621459.2016.1264956
10.1016/j.envres.2017.03.031
10.1214/13-AOS1096
10.1093/biomet/asr013
10.1007/s40471-018-0145-0
10.1111/biom.12974
10.1289/EHP2450
10.1214/21-AOAS1461
10.1097/MOP.0000000000000877
10.1289/ehp.1206182
10.1007/s40572-019-0224-5
10.1214/19-AOAS1307
10.1289/isee.2021.O-SY-069
10.1289/EHP10479
10.1111/2041-210X.13345
10.1007/s13253-014-0180-3
10.1214/20-AOAS1363
10.1111/biom.13569
10.1214/21-AOAS1533
10.3390/ijerph19052693
10.1016/j.annepidem.2016.11.016
10.5194/amt-14-5809-2021
10.1038/ng.608
10.1289/isee.2020.virtual.O-SY-1847
10.1080/01621459.2020.1745813
10.1016/j.envres.2021.111241
10.1186/s12940-018-0413-y
10.1016/j.mex.2019.11.008
10.1080/10618600.2015.1067217
10.1289/ehp.1002453
10.1289/isee.2021.O-SY-070
10.1093/biomet/asab056
10.1214/20-AOAS1435
10.1016/j.envint.2018.08.039
10.1111/rssb.12203
10.1289/EHP547
10.1289/EHP5838
10.1186/s12940-019-0515-1
10.1201/9781315370279
10.1289/isee.2022.O-OP-091
10.1002/sim.9099
10.1093/biostatistics/kxu058
10.1016/j.envres.2020.109529
10.18637/jss.v043.i08
10.1201/9781351049757
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ijerph19031378
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1660-4601
ExternalDocumentID PMC8835015
35162394
10_3390_ijerph19031378
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01ES028800
– fundername: NIEHS NIH HHS
  grantid: R01 ES028811
– fundername: NIEHS NIH HHS
  grantid: R01ES028790
– fundername: NIEHS NIH HHS
  grantid: R01 ES028819
– fundername: NIEHS NIH HHS
  grantid: P30 ES023515
– fundername: NIEHS NIH HHS
  grantid: R01ES028811
– fundername: NIEHS NIH HHS
  grantid: R01ES028805
– fundername: NIEHS NIH HHS
  grantid: R01ES028819
– fundername: NIEHS NIH HHS
  grantid: R01 ES028790
– fundername: NIEHS NIH HHS
  grantid: R01ES028804
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABGAM
ABUWG
ACGFO
ACGOD
ACIWK
ADBBV
AENEX
AFKRA
AFRAH
AFZYC
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
Q2X
RNS
RPM
SV3
TR2
UKHRP
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c484t-f1c64e18a20943e23d9db53b329fd2eba3a13a69b894ee3c2e88184d68239fa13
IEDL.DBID M48
ISSN 1660-4601
1661-7827
IngestDate Thu Aug 21 18:11:33 EDT 2025
Fri Jul 11 05:08:46 EDT 2025
Fri Jul 25 19:52:55 EDT 2025
Mon Jul 21 05:45:49 EDT 2025
Tue Jul 01 03:27:50 EDT 2025
Thu Apr 24 23:01:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords epidemiology
risk assessment
environment
health impact
methods
non-chemical stressors
combined exposures
chemical interactions
exposomics
chemicals
mixtures
statistics
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-f1c64e18a20943e23d9db53b329fd2eba3a13a69b894ee3c2e88184d68239fa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6058-5907
0000-0002-5670-0837
0000-0003-4896-9323
0000-0002-3964-0465
0000-0001-7952-1180
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph19031378
PMID 35162394
PQID 2627540741
PQPubID 54923
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8835015
proquest_miscellaneous_2629064032
proquest_journals_2627540741
pubmed_primary_35162394
crossref_citationtrail_10_3390_ijerph19031378
crossref_primary_10_3390_ijerph19031378
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220126
PublicationDateYYYYMMDD 2022-01-26
PublicationDate_xml – month: 1
  year: 2022
  text: 20220126
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of environmental research and public health
PublicationTitleAlternate Int J Environ Res Public Health
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Carrico (ref_46) 2015; 20
ref_14
ref_58
ref_13
ref_57
ref_56
Bravo (ref_62) 2021; 198
ref_10
Tikhonov (ref_55) 2020; 11
ref_52
Roy (ref_18) 2021; 15
Gennings (ref_28) 2020; 186
Weisskopf (ref_6) 2018; 126
ref_19
ref_17
Tanner (ref_30) 2019; 6
ref_15
Ferrari (ref_12) 2020; 116
Liu (ref_68) 2018; 19
Davalos (ref_45) 2017; 27
Hamra (ref_43) 2018; 5
Haris (ref_60) 2016; 25
ref_25
ref_69
ref_24
ref_23
ref_22
ref_20
Gennings (ref_21) 2018; 120
ref_63
Taylor (ref_1) 2016; 124
Carlin (ref_2) 2013; 121
Bobb (ref_70) 2018; 17
ref_27
Bien (ref_61) 2013; 41
ref_26
ref_72
ref_71
Kowal (ref_34) 2021; 40
Buckley (ref_64) 2019; 6
ref_35
ref_33
ref_32
ref_31
ref_39
ref_38
Bello (ref_67) 2017; 156
Moran (ref_11) 2021; 15
Bellio (ref_53) 2019; 75
Ferrari (ref_16) 2020; 14
Schedler (ref_36) 2021; 10
Keil (ref_47) 2020; 128
Hao (ref_59) 2018; 113
Tanner (ref_42) 2020; 32
ref_41
ref_40
Actkinson (ref_37) 2021; 14
ref_3
Gasparrini (ref_65) 2011; 43
Bobb (ref_48) 2015; 16
ref_49
Yang (ref_50) 2010; 42
Janson (ref_51) 2017; 79
ref_9
Gibson (ref_44) 2019; 18
ref_8
Antonelli (ref_29) 2020; 14
Sanchez (ref_66) 2011; 119
ref_5
ref_4
ref_7
Bhattacharya (ref_54) 2011; 98
References_xml – ident: ref_9
– ident: ref_26
  doi: 10.1093/biostatistics/kxaa051
– volume: 10
  start-page: e357
  year: 2021
  ident: ref_36
  article-title: A spatiotemporal case-crossover model of asthma exacerbation in the City of Houston
  publication-title: Stat
  doi: 10.1002/sta4.357
– volume: 19
  start-page: 325
  year: 2018
  ident: ref_68
  article-title: Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx036
– ident: ref_32
– volume: 113
  start-page: 615
  year: 2018
  ident: ref_59
  article-title: Model Selection for High-Dimensional Quadratic Regression via Regularization
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2016.1264956
– volume: 156
  start-page: 253
  year: 2017
  ident: ref_67
  article-title: Extending the Distributed Lag Model framework to handle chemical mixtures
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.03.031
– volume: 41
  start-page: 1111
  year: 2013
  ident: ref_61
  article-title: A Lasso for Hierarchical Interactions
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1096
– ident: ref_39
– volume: 98
  start-page: 291
  year: 2011
  ident: ref_54
  article-title: Sparse Bayesian infinite factor models
  publication-title: Biometrika
  doi: 10.1093/biomet/asr013
– volume: 5
  start-page: 160
  year: 2018
  ident: ref_43
  article-title: Environmental exposure mixtures: Questions and methods to address them
  publication-title: Curr. Epidemiol. Rep.
  doi: 10.1007/s40471-018-0145-0
– volume: 75
  start-page: 337
  year: 2019
  ident: ref_53
  article-title: Multi-Study Factor Analysis (MSFA)
  publication-title: Biometrics
  doi: 10.1111/biom.12974
– ident: ref_35
– volume: 126
  start-page: 047003
  year: 2018
  ident: ref_6
  article-title: Bias Amplification in Epidemiologic Analysis of Exposure to Mixtures
  publication-title: Environ. Health Perspect.
  doi: 10.1289/EHP2450
– volume: 15
  start-page: 1405
  year: 2021
  ident: ref_11
  article-title: Bayesian joint modeling of chemical structure and dose response curves
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/21-AOAS1461
– volume: 32
  start-page: 315
  year: 2020
  ident: ref_42
  article-title: Environmental mixtures and children’s health: Identifying appropriate statistical approaches
  publication-title: Curr. Opin. Pediatr.
  doi: 10.1097/MOP.0000000000000877
– ident: ref_71
– ident: ref_58
– ident: ref_52
  doi: 10.1111/biom.12974
– volume: 121
  start-page: A6
  year: 2013
  ident: ref_2
  article-title: Unraveling the health effects of environmental mixtures: An NIEHS priority
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1206182
– volume: 6
  start-page: 1
  year: 2019
  ident: ref_64
  article-title: Statistical Approaches for Investigating Periods of Susceptibility in Children’s Environmental Health Research
  publication-title: Curr. Environ. Health Rep.
  doi: 10.1007/s40572-019-0224-5
– volume: 14
  start-page: 257
  year: 2020
  ident: ref_29
  article-title: Estimating the health effects of environmental mixtures using Bayesian semiparametric regression and sparsity inducing priors
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/19-AOAS1307
– ident: ref_4
– ident: ref_31
– ident: ref_56
– ident: ref_22
  doi: 10.1289/isee.2021.O-SY-069
– ident: ref_27
– ident: ref_8
  doi: 10.1289/EHP10479
– volume: 11
  start-page: 442
  year: 2020
  ident: ref_55
  article-title: Joint species distribution modelling with the r-package Hmsc
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13345
– ident: ref_10
– volume: 20
  start-page: 100
  year: 2015
  ident: ref_46
  article-title: Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1007/s13253-014-0180-3
– volume: 14
  start-page: 1743
  year: 2020
  ident: ref_16
  article-title: Identifying main effects and interactions among exposures using Gaussian processes
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/20-AOAS1363
– ident: ref_5
  doi: 10.1111/biom.13569
– ident: ref_23
  doi: 10.1214/21-AOAS1533
– ident: ref_41
  doi: 10.3390/ijerph19052693
– volume: 27
  start-page: 145
  year: 2017
  ident: ref_45
  article-title: Current approaches used in epidemiologic studies to examine short-term multipollutant air pollution exposures
  publication-title: Ann. Epidemiol.
  doi: 10.1016/j.annepidem.2016.11.016
– volume: 14
  start-page: 5809
  year: 2021
  ident: ref_37
  article-title: SIBaR: A new method for background quantification and removal from mobile air pollution measurements
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-5809-2021
– ident: ref_38
– ident: ref_17
– volume: 42
  start-page: 565
  year: 2010
  ident: ref_50
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat. Genet.
  doi: 10.1038/ng.608
– ident: ref_72
– ident: ref_20
– ident: ref_7
– ident: ref_69
  doi: 10.1289/isee.2020.virtual.O-SY-1847
– volume: 116
  start-page: 1521
  year: 2020
  ident: ref_12
  article-title: Bayesian factor analysis for inference on interactions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2020.1745813
– ident: ref_3
– ident: ref_24
– volume: 198
  start-page: 111241
  year: 2021
  ident: ref_62
  article-title: Effects of accumulated environmental, social and host exposures on early childhood educational outcomes
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.111241
– volume: 17
  start-page: 67
  year: 2018
  ident: ref_70
  article-title: Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression
  publication-title: Environ. Health
  doi: 10.1186/s12940-018-0413-y
– volume: 6
  start-page: 2855
  year: 2019
  ident: ref_30
  article-title: Repeated holdout validation for weighted quantile sum regression
  publication-title: MethodsX
  doi: 10.1016/j.mex.2019.11.008
– volume: 25
  start-page: 981
  year: 2016
  ident: ref_60
  article-title: Convex Modeling of Interactions with Strong Heredity
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2015.1067217
– volume: 119
  start-page: 409
  year: 2011
  ident: ref_66
  article-title: Statistical methods to study timing of vulnerability with sparsely sampled data on environmental toxicants
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1002453
– ident: ref_14
– ident: ref_25
  doi: 10.1289/isee.2021.O-SY-070
– ident: ref_13
  doi: 10.1093/biomet/asab056
– volume: 15
  start-page: 1386
  year: 2021
  ident: ref_18
  article-title: Perturbed factor analysis: Accounting for group differences in exposure profiles
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/20-AOAS1435
– volume: 120
  start-page: 535
  year: 2018
  ident: ref_21
  article-title: Incorporating regulatory guideline values in analysis of epidemiology data
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.08.039
– volume: 79
  start-page: 1037
  year: 2017
  ident: ref_51
  article-title: EigenPrism: Inference for high dimensional signal-to-noise ratios
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/rssb.12203
– volume: 124
  start-page: A227
  year: 2016
  ident: ref_1
  article-title: Statistical Approaches for Assessing Health Effects of Environmental Chemical Mixtures in Epidemiology: Lessons from an Innovative Workshop
  publication-title: Environ. Health Perspect.
  doi: 10.1289/EHP547
– ident: ref_33
– volume: 128
  start-page: 47004
  year: 2020
  ident: ref_47
  article-title: A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures
  publication-title: Environ. Health Perspect.
  doi: 10.1289/EHP5838
– ident: ref_15
– volume: 18
  start-page: 76
  year: 2019
  ident: ref_44
  article-title: An overview of methods to address distinct research questions on environmental mixtures: An application to persistent organic pollutants and leukocyte telomere length
  publication-title: Environ. Health
  doi: 10.1186/s12940-019-0515-1
– ident: ref_49
  doi: 10.1201/9781315370279
– ident: ref_63
  doi: 10.1289/isee.2022.O-OP-091
– volume: 40
  start-page: 4850
  year: 2021
  ident: ref_34
  article-title: Bayesian variable selection for understanding mixtures in environmental exposures
  publication-title: Stat. Med.
  doi: 10.1002/sim.9099
– ident: ref_19
– volume: 16
  start-page: 493
  year: 2015
  ident: ref_48
  article-title: Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxu058
– ident: ref_57
– volume: 186
  start-page: 109529
  year: 2020
  ident: ref_28
  article-title: Lagged WQS regression for mixtures with many components
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109529
– volume: 43
  start-page: 1
  year: 2011
  ident: ref_65
  article-title: Distributed Lag Linear and Non-Linear Models in R: The Package dlnm
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v043.i08
– ident: ref_40
  doi: 10.1201/9781351049757
SSID ssj0038469
Score 2.5246806
SecondaryResourceType review_article
Snippet Humans are exposed to a diverse mixture of chemical and non-chemical exposures across their lifetimes. Well-designed epidemiology studies as well as...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1378
SubjectTerms Air pollution
Data science
Datasets
Environmental Exposure - analysis
Environmental health
Epidemiologic Methods
Epidemiologic Studies
Epidemiology
Flame retardants
Humans
Interdisciplinary aspects
National Institute of Environmental Health Sciences (U.S.)
Pesticides
Research Design
Review
Risk Assessment
Severe acute respiratory syndrome coronavirus 2
Software
Spatial data
Statistical methods
United States
VOCs
Volatile organic compounds
Workshops
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELcYe5k0TdvYRxibDmkS24NF_ZHU5gVNUwtMKqqmIfEWxbGjdUJpoQXBI_85d4lT6Kbx7FPi5Oz73fnO92Pss0Ufo2eD596lEgOUnuM2uIwL4yp0r602ngLF0XF2eKJ_nKan8cBtHssqO5vYGGo_LemMfFdSO11NALg_O-fEGkXZ1Uih8YQ9FYg0VNJlhgedJVaIreT-CsQgjkjYb5s2Kgzzdyd_An4HoqESiijWHoLSP57m3wWTDxBo-JK9iK4jfGt1_Yqthfo1e96eu0F7nWiD3Y6J9gzxCLqaOohUPHAUCVCvAowa3ug5oMcKo8k1ZRHmMKlhcM8XewNfxj-PRoOvMG5LuPbgeHoVzqCoPQyuZ3T47IF81abVM04sPvQNOxkOfn0_5JFmgZfa6AWvRJnpIEwhqcowSOUtKk45JW3lZXCFKoQqMuuM1SGoUgaDKK99ZqSyFY69Zev1tA7vGYgCDS91pZI66AqVnaaqtFVfuJB53y8Txrv_nJexBzlRYZzlGIuQXvJVvSRsZyk_a7tv_Fdyq1NbHnfhPL9fMwnbXg7j_qGkSFGH6WUjYymbqWTC3rVaXr5KpSIj6viE9Vf0vxSg3tyrI_Xkd9Oj2xjK2Kabj0_rA3sm6TpFT3CZbbH1xcVl-IhOzsJ9albyHTyX_bc
  priority: 102
  providerName: ProQuest
Title Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods
URI https://www.ncbi.nlm.nih.gov/pubmed/35162394
https://www.proquest.com/docview/2627540741
https://www.proquest.com/docview/2629064032
https://pubmed.ncbi.nlm.nih.gov/PMC8835015
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-x7QUJIb7pGJWRkICHQP0Rx0ZCCKaUDSlVNVGpb1ESO6KoSre1m7pH_nPukjSjMCRe8uJLbPns3O985_sBvLSIMQbWu8DloUAHZZAH1uc64CYvEV5bZRw5islIH03U12k4vc5_aidweaNrR3xSk_P52_XZ1Ufc8B_I40SX_d3sh8cxoWWTXEZmB_bQKkXEZpCoLqIg0c4SFOZaDwKFXkhTwPGG97cN1F-o88_kyd-s0fAe3G1hJPvU6P0-3PLVA7jTnMGx5mrRQ_g5Jgo0tE1sk1_HWloedtySoV56ltQc0kuG6JUlszVFFJZsVrH4mjv2ir0enxwn8Rs2btK53rPR4tLPWVY5Fq9P6SDaMcKtddlnHFj70UcwGcbfDo-ClnIhKJRRq6DkhVaem0xQxqEX0llUosylsKUTPs9kxmWmbW6s8l4Wwhu0-MppI6Qtse0x7FaLyj8FxjP8CVOFKqG8KlHxYSgLW0Y899q5qOhBsJnntGjrkRMtxjxFv4T0km7rpQevOvnTphLHPyUPNmpLNwsqFVSOWRGA6sGLrhn3EgVIssovLmoZS5FNKXrwpNFy15UMuSYa-R5EW_rvBKhO93ZLNfte1-s2hqK34f5_9PsMbgu6XzHggdAHsLs6v_DPEfWs8j7sRNMIn-aQ03P4pQ97n-PR-KRfL_Rf5xsHeA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgCpQrxZKGAkEHCwGj92YyMhhCAhod0oQq3U23Z37VWDqk0gaWmP_CF-IzP7SBsQ3Hr2aNfyjP2NPY8P4LlFH6NjveMuCyVeUDoZtz6LuDBZge611cbRRTEeRYM9_Xk_3F-DX20tDKVVtmdidVC7aU5v5FuS2ulqAsB3s2-cWKMoutpSaNRmse3PfuCVbf52-BH1-0LKfm_3w4A3rAI810YveCHySHthUklJdV4qZ3GeKlPSFk76LFWpUGlkM2O19yqX3iCoaRcZqWyBY_jdK3BVK0Ryqkzvf2pPfoVYTu62QMzjiLzdukkkCna2Jl89rhuirxKKKN0uguBfnu2fCZoXEK9_E240rip7X9vWLVjz5W3YqN_5WF2-dAd-jolmDfGPtTl8rKH-YcOGcPXEs7jiqZ4z9JBZPDmlqMWcTUrWO-enPWOvxl-Gce81G9cpY2_YaHrij1haOtY7ndFjt2PkG1etpXFizUfvwt6lKOAerJfT0j8AJlI86KkLltReF2hcYahyW3RF5iPnunkAvF3nJG96nhP1xlGCdx_SS7KqlwBeLuVndbePf0putmpLml0_T85tNIBny2HcrxSESUs_Pa5kLEVPlQzgfq3l5a9UKCKiqg-gu6L_pQD1Al8dKSeHVU9wYyhCHD78_7SewrXBbryT7AxH24_guqRSjo7gMtqE9cX3Y_8YHaxF9qSyagYHl72NfgMXWTqC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qBRFE_Ha1agRFfQh3-djdRBCR9o6e9Y5DLPRt3d1k8aTsnd61to_-W_51zuxXe4q-9TlhN2Qm85vJTOYH8Myij9G33nGXhRIDlH7Grc8iLkxWoHtttXEUKI4n0e6-fn8QHmzAr_YtDJVVtjaxMtRuntMdeU9SO11NANgrmrKI6c7w7eIbJwYpyrS2dBq1iuz50x8Yvi3fjHZQ1s-lHA4-be_yhmGA59roFS9EHmkvTCqpwM5L5SyuWWVK2sJJn6UqFSqNbGas9l7l0hsEOO0iI5UtcAy_ewkuxyo2dMbMdldeohDXyfUWiH8cUTiuG0YqZfu92VePe4hIrIQierfzgPiXl_tnseY59BvegOuN28re1Xp2EzZ8eQuu1Xd-rH7KdBt-TolyDbGQtfV8rKEBYqOGfPXYs3HFWb1k6C2z8eyEMhhLNivZ4Iyr9pS9nH4cjQev2LQuH3vNJvNjf8jS0rHByYIuvh0jP7lqM40Laz56B_YvRAB3YbOcl_4-MJGi0aeOWFJ7XaCihaHKbRGLzEfOxXkAvN3nJG_6nxMNx2GCcRDJJVmXSwAvuvmLuvPHP2dutWJLGguwTM70NYCn3TCeXUrIpKWfH1VzLGVSlQzgXi3l7lcqFBHR1gcQr8m_m0B9wddHytmXqj-4MZQtDh_8f1lP4AoeoOTDaLL3EK5KetXRF1xGW7C5-n7kH6GvtcoeV0rN4PNFn6LfHqg-gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Powering+Research+through+Innovative+Methods+for+Mixtures+in+Epidemiology+%28PRIME%29+Program%3A+Novel+and+Expanded+Statistical+Methods&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Joubert%2C+Bonnie+R&rft.au=Kioumourtzoglou%2C+Marianthi-Anna&rft.au=Chamberlain%2C+Toccara&rft.au=Chen%2C+Hua+Yun&rft.date=2022-01-26&rft.issn=1660-4601&rft.eissn=1660-4601&rft.volume=19&rft.issue=3&rft_id=info:doi/10.3390%2Fijerph19031378&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon