Involuntary Measurement System for Respiratory Waveform for Prevention of Accidental Drowning during Bathing
Death rate of accidental drowning in the bathtub was the highest among casualties occurring at home, according to the annual report of the Japanese Ministry of Health, Labour and Welfare in 2007. To prevent accidental drowning during bathing at home, we obtained respiratory waveforms from bioelectri...
Saved in:
Published in | Advanced Biomedical Engineering Vol. 2; pp. 17 - 24 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kagoshima
Japanese Society for Medical and Biological Engineering
2013
|
Subjects | |
Online Access | Get full text |
ISSN | 2187-5219 2187-5219 |
DOI | 10.14326/abe.2.17 |
Cover
Abstract | Death rate of accidental drowning in the bathtub was the highest among casualties occurring at home, according to the annual report of the Japanese Ministry of Health, Labour and Welfare in 2007. To prevent accidental drowning during bathing at home, we obtained respiratory waveforms from bioelectric impedance (BEI) measurement using non-contact electrodes. The BEI measurement is an involuntary measurement method, from which respiratory waveform during bathing can be extracted. In the present study, to find the most appropriate electrode configuration as well as the optimal measuring frequency, we calculated the frequency dependence of impedance amplitude by numerical technique based on a three-dimensional finite difference method for a composite system consisting of a human body submerged in bath water. The results of model calculation agreed with the experimental results. Next, to obtain respiratory waveforms with large amplitudes, we investigated the optimal frequency experimentally. The frequency of 1MHz was suitable for involuntary measurement of respiratory waveform during bathing. |
---|---|
AbstractList | Death rate of accidental drowning in the bathtub was the highest among casualties occurring at home, according to the annual report of the Japanese Ministry of Health, Labour and Welfare in 2007. To prevent accidental drowning during bathing at home, we obtained respiratory waveforms from bioelectric impedance (BEI) measurement using non-contact electrodes. The BEI measurement is an involuntary measurement method, from which respiratory waveform during bathing can be extracted. In the present study, to find the most appropriate electrode configuration as well as the optimal measuring frequency, we calculated the frequency dependence of impedance amplitude by numerical technique based on a three-dimensional finite difference method for a composite system consisting of a human body submerged in bath water. The results of model calculation agreed with the experimental results. Next, to obtain respiratory waveforms with large amplitudes, we investigated the optimal frequency experimentally. The frequency of 1MHz was suitable for involuntary measurement of respiratory waveform during bathing. |
Author | SASAKI, Kazuo SEKINE, Katsuhisa TANPO, Atsushi KOBAYASHI, Masashi KIM, Juhyon NAKAJIMA, Kazuki TSUBOSAKA, Yasushi YAMAZAKI, Katsuya TOBE, Kazuyuki |
Author_xml | – sequence: 1 fullname: SASAKI, Kazuo organization: Division of Bio-Information Engineering, Faculty of Engineering, University of Toyama – sequence: 1 fullname: NAKAJIMA, Kazuki organization: Division of Bio-Information Engineering, Faculty of Engineering, University of Toyama – sequence: 1 fullname: KOBAYASHI, Masashi organization: The First Department of Internal Medicine, University of Toyama – sequence: 1 fullname: YAMAZAKI, Katsuya organization: The First Department of Internal Medicine, University of Toyama – sequence: 1 fullname: SEKINE, Katsuhisa organization: School of Health Sciences, Faculty of Medicine, Kanazawa University – sequence: 1 fullname: TANPO, Atsushi organization: Division of Bio-Information Engineering, Faculty of Engineering, University of Toyama – sequence: 1 fullname: KIM, Juhyon organization: Division of Bio-Information Engineering, Faculty of Engineering, University of Toyama – sequence: 1 fullname: TSUBOSAKA, Yasushi organization: Division of Bio-Information Engineering, Faculty of Engineering, University of Toyama – sequence: 1 fullname: TOBE, Kazuyuki organization: The First Department of Internal Medicine, University of Toyama |
BookMark | eNptkN1PwjAUxRuDiYg8-B8s8ckHoOvGynxD_CLBaPyIj81ddwcjo8W2w_DfWxgxxvh02tPfuTc9p6SltEJCzkPaD-OIJQPIsM_6IT8ibRaOeG_IwrT163xCutYuKaWMp_EwYW1STdVGV7VyYLbBI4KtDa5QueB1ax2ugkKb4AXtujTgtEc-YIPeax6eDW48W2oV6CIYS1nm_gpVcGP0lyrVPMhrs5NrcAuvZ-S4gMpi96Ad8n53-zZ56M2e7qeT8awn41HsepjHmFIIIYJM5kmeRlmaxXFEMeJpKlmMmFPKR4WUkgNHHGHB84TyJJLZLtYhF83ctdGfNVonlro2yq8UjCcsjYbDhHpq0FDSaGsNFkKWDna_cQbKSoRU7FsVvlXBRMh94vJPYm3KlW_uX_aqYZfWwRx_SDCulBUeQLqHf0y5ACNQRd9OIZLF |
CitedBy_id | crossref_primary_10_9746_sicetr_54_533 |
Cites_doi | 10.1378/chest.71.4.456 10.1109/IEMBS.1999.803850 10.1109/TBME.1986.325836 10.18494/SAM.2011.709 10.1001/jama.260.3.380 10.1016/j.forsciint.2004.04.085 10.1016/S1344-6223(02)00136-0 10.1080/0309190021000059687 10.1177/002580249903900414 10.1109/IEMBS.2010.5627480 10.1007/BF00870463 10.2105/AJPH.75.6.630 10.1007/s11517-007-0256-0 10.1088/0022-3727/39/3/012 10.1097/01.SGA.0000305222.16522.a4 10.1016/S0169-409X(98)00061-1 |
ContentType | Journal Article |
Copyright | 2013 Japanese Society for Medical and Biological Engineering 2013. This work is published under https://abe-journal.org/about/. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2013 Japanese Society for Medical and Biological Engineering – notice: 2013. This work is published under https://abe-journal.org/about/. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.14326/abe.2.17 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2187-5219 |
EndPage | 24 |
ExternalDocumentID | 10_14326_abe_2_17 article_abe_2_0_2_17_article_char_en |
GroupedDBID | 7.U ABJCF ADBBV ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BAWUL BBNVY BENPR BGLVJ BHPHI CCPQU DIK GROUPED_DOAJ HCIFZ JSF JSH KQ8 M7P M7S M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO RJT RZJ AAYXX CITATION 8FE 8FG 8FH ABUWG AZQEC DWQXO GNUQQ L6V LK8 PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c484t-ed4e90a1a3abcd6d93b9b4430e3799c24eed0078fccc7a7ee8ef7d60763cba1a3 |
IEDL.DBID | BENPR |
ISSN | 2187-5219 |
IngestDate | Fri Jul 25 11:47:29 EDT 2025 Tue Aug 05 12:03:12 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Wed Sep 03 06:30:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-ed4e90a1a3abcd6d93b9b4430e3799c24eed0078fccc7a7ee8ef7d60763cba1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2762935560?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2762935560 |
PQPubID | 6059413 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2762935560 crossref_citationtrail_10_14326_abe_2_17 crossref_primary_10_14326_abe_2_17 jstage_primary_article_abe_2_0_2_17_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2013 2013-00-00 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationPlace | Kagoshima |
PublicationPlace_xml | – name: Kagoshima |
PublicationTitle | Advanced Biomedical Engineering |
PublicationTitleAlternate | ABE |
PublicationYear | 2013 |
Publisher | Japanese Society for Medical and Biological Engineering |
Publisher_xml | – name: Japanese Society for Medical and Biological Engineering |
References | 7. Kwatra SC, Jain VK. A new technique for monitoring heart signals--Part I:Instrumentation design. IEEE Trans Biomed Eng. 33(1), pp.35-41, 1986. 6. Yoshioka N, Chiba T, Yamauchi M, Monma T, Yoshizaki K. Forensic consideration of death in the bathtub. Legal Med. 5, pp.S375-81, 2003. 12. Biomedical applications of physical sensors. In:Bronzino JD, editor. The biomedical engineering handbook 2nd ed. Boca Raton:CRC press;2000. 47-15-16. 9. Motoi K, Ogawa M, Ueno H, Kuwae Y, Ikarashi A, Yuji T, Higashi Y, Tanaka S, Fujimoto T, Asanoi H, Yamakoshi K. A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation. Conf Proc IEEE Eng Med Biol Soc. 2009, pp.4323-4326, 2009. 2. Budnick LD, Ross DA. Bathtub-related drownings in the United States, 1979-81. Am J Public Health. 75(6), pp.630-633, 1985. 4. Japanese Ministry of Health, Labour and Welfare, “Vital statistics in 2006” (in Japanese) [Online] Available:http://www.mhlw.go.jp/toukei/saikin/hw/jinkou/suii07/deth18.html [accessed December 25, 2008]. 20. Asami K. Dielectric dispersion in biological cells of complex geometry simulated by three-dimensional finite difference method. J Phys D:Appl Phys. 39, pp.492-499, 2006. 8. Ishijima M. Unobtrusive approaches to monitoring vital signs at home. Med Biol Eng Comput. 45, pp.1137-1141, 2007. 11. Patterson R. Bioelectric impedance measurements. In:Bronzino JD, editor. The Biomedical engineering handbook 2nd ed. Boca Raton:CRC press;2000. 73-1-8. 3. O'Carroll PW, Alkon E, Weiss B. Drowning mortality in Los Angeles County, 1976 to 1984. JAMA. 260(3), pp.380-383, 1988. 17. Brown BH. Electrical impedance tomography (EIT) :a review. J Med Eng Technol. 27, pp.97-108, 2003. 18. Krylovich VI, Mikhal'kov VV. Raising the accuracy of measuring the dielectric permittivity of fluids. J Eng Phys Thermophys. 56(1), pp.68-72, 2004. 1. Nowers MP. Suicide by drowning in the bath. Med Sci Law. 39(4), pp.349-353, 1999. 13. Ellett ML, Woodruff KA, Stewart DL. The use of carbon dioxide monitoring to determine orogastric tube placement in premature infants:a pilot study. Gastroenterol Nurs. 30(6), pp.414-417, 2007. 21. Gilbert R, Ashutosh K, Auchincloss JH Jr, Rana S, Peppi D. Prospective study of controlled oxygen therapy. Poor prognosis of patients with asynchronous breathing. Chest. 71, pp.456-462, 1977. 10. Yamakoshi K. Current status of noninvasive bioinstrumentation for healthcare. Sens Mater. 23(1), pp.1-20, 2011. 5. Chiba T, Yamauchi M, Nishida N, Kaneko T, Yoshizaki K, Yoshioka N. Risk factors of sudden death in the Japanese hot bath in the senior population. Forensic Sci Int. 149 (2-3), pp.151-158, 2005. 15. Nakajima K, Sekine K, Yamazaki K, Tampo A, Omote Y, Fukunaga H, Yagi Y, Ishizu K, Nakajima M, Tobe K, Kobayashi M, Sasaki K. Detection of respiratory waveforms using non-contact electrodes during bathing. Conf Proc IEEE Eng Med Biol Soc. 2010, pp.911-914, 2010. 14. Nakajima K, Sekine K, Yamazaki K, Sakai Y, Tampo A, Fukunaga H, Yagi Y, Ishizu K, Nakajima M, Tobe K, Kobayashi M, Sasaki K. Non-contact respiratory monitoring with a bioelectric impedance technique to detect abnormal respiration during bathing. Jpn J Appl Phys. 48, pp.107001-1-5, 2009. 22. Nakajima K. An evaluation method for water surface fluctuation during bathing, Proc. Ann. Fall Meeting of the Biomedical Engineering Society and 21st Ann. Int. Conf. IEEE EMBS. 1999;695. 23. Nishiura T, Nakajima M. Development of a bathroom watching system using fiber grating vision sensor with a built-in color pickup device. IEICE 2006. J89-D(5), pp.1001-1010, 2006 (in Japanese). 19. Takashima S. Electrical properties of biopolymers and Membranes. Adam Hilger, Bristol, Philadelphia;1989. 16. Weavera JC, Vaughana TE, Chizmadzhevb Y. Theory of electrical creation of aqueous pathways across skin transport barriers. Adv Drug Delivery Rev. 35, pp.21-39, 1999. 11 22 12 23 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – reference: 14. Nakajima K, Sekine K, Yamazaki K, Sakai Y, Tampo A, Fukunaga H, Yagi Y, Ishizu K, Nakajima M, Tobe K, Kobayashi M, Sasaki K. Non-contact respiratory monitoring with a bioelectric impedance technique to detect abnormal respiration during bathing. Jpn J Appl Phys. 48, pp.107001-1-5, 2009. – reference: 10. Yamakoshi K. Current status of noninvasive bioinstrumentation for healthcare. Sens Mater. 23(1), pp.1-20, 2011. – reference: 12. Biomedical applications of physical sensors. In:Bronzino JD, editor. The biomedical engineering handbook 2nd ed. Boca Raton:CRC press;2000. 47-15-16. – reference: 23. Nishiura T, Nakajima M. Development of a bathroom watching system using fiber grating vision sensor with a built-in color pickup device. IEICE 2006. J89-D(5), pp.1001-1010, 2006 (in Japanese). – reference: 18. Krylovich VI, Mikhal'kov VV. Raising the accuracy of measuring the dielectric permittivity of fluids. J Eng Phys Thermophys. 56(1), pp.68-72, 2004. – reference: 3. O'Carroll PW, Alkon E, Weiss B. Drowning mortality in Los Angeles County, 1976 to 1984. JAMA. 260(3), pp.380-383, 1988. – reference: 4. Japanese Ministry of Health, Labour and Welfare, “Vital statistics in 2006” (in Japanese) [Online] Available:http://www.mhlw.go.jp/toukei/saikin/hw/jinkou/suii07/deth18.html [accessed December 25, 2008]. – reference: 9. Motoi K, Ogawa M, Ueno H, Kuwae Y, Ikarashi A, Yuji T, Higashi Y, Tanaka S, Fujimoto T, Asanoi H, Yamakoshi K. A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation. Conf Proc IEEE Eng Med Biol Soc. 2009, pp.4323-4326, 2009. – reference: 21. Gilbert R, Ashutosh K, Auchincloss JH Jr, Rana S, Peppi D. Prospective study of controlled oxygen therapy. Poor prognosis of patients with asynchronous breathing. Chest. 71, pp.456-462, 1977. – reference: 19. Takashima S. Electrical properties of biopolymers and Membranes. Adam Hilger, Bristol, Philadelphia;1989. – reference: 2. Budnick LD, Ross DA. Bathtub-related drownings in the United States, 1979-81. Am J Public Health. 75(6), pp.630-633, 1985. – reference: 17. Brown BH. Electrical impedance tomography (EIT) :a review. J Med Eng Technol. 27, pp.97-108, 2003. – reference: 7. Kwatra SC, Jain VK. A new technique for monitoring heart signals--Part I:Instrumentation design. IEEE Trans Biomed Eng. 33(1), pp.35-41, 1986. – reference: 13. Ellett ML, Woodruff KA, Stewart DL. The use of carbon dioxide monitoring to determine orogastric tube placement in premature infants:a pilot study. Gastroenterol Nurs. 30(6), pp.414-417, 2007. – reference: 16. Weavera JC, Vaughana TE, Chizmadzhevb Y. Theory of electrical creation of aqueous pathways across skin transport barriers. Adv Drug Delivery Rev. 35, pp.21-39, 1999. – reference: 11. Patterson R. Bioelectric impedance measurements. In:Bronzino JD, editor. The Biomedical engineering handbook 2nd ed. Boca Raton:CRC press;2000. 73-1-8. – reference: 20. Asami K. Dielectric dispersion in biological cells of complex geometry simulated by three-dimensional finite difference method. J Phys D:Appl Phys. 39, pp.492-499, 2006. – reference: 1. Nowers MP. Suicide by drowning in the bath. Med Sci Law. 39(4), pp.349-353, 1999. – reference: 5. Chiba T, Yamauchi M, Nishida N, Kaneko T, Yoshizaki K, Yoshioka N. Risk factors of sudden death in the Japanese hot bath in the senior population. Forensic Sci Int. 149 (2-3), pp.151-158, 2005. – reference: 6. Yoshioka N, Chiba T, Yamauchi M, Monma T, Yoshizaki K. Forensic consideration of death in the bathtub. Legal Med. 5, pp.S375-81, 2003. – reference: 22. Nakajima K. An evaluation method for water surface fluctuation during bathing, Proc. Ann. Fall Meeting of the Biomedical Engineering Society and 21st Ann. Int. Conf. IEEE EMBS. 1999;695. – reference: 8. Ishijima M. Unobtrusive approaches to monitoring vital signs at home. Med Biol Eng Comput. 45, pp.1137-1141, 2007. – reference: 15. Nakajima K, Sekine K, Yamazaki K, Tampo A, Omote Y, Fukunaga H, Yagi Y, Ishizu K, Nakajima M, Tobe K, Kobayashi M, Sasaki K. Detection of respiratory waveforms using non-contact electrodes during bathing. Conf Proc IEEE Eng Med Biol Soc. 2010, pp.911-914, 2010. – ident: 21 doi: 10.1378/chest.71.4.456 – ident: 22 doi: 10.1109/IEMBS.1999.803850 – ident: 4 – ident: 7 doi: 10.1109/TBME.1986.325836 – ident: 12 – ident: 11 – ident: 10 doi: 10.18494/SAM.2011.709 – ident: 3 doi: 10.1001/jama.260.3.380 – ident: 19 – ident: 5 doi: 10.1016/j.forsciint.2004.04.085 – ident: 14 – ident: 6 doi: 10.1016/S1344-6223(02)00136-0 – ident: 17 doi: 10.1080/0309190021000059687 – ident: 1 doi: 10.1177/002580249903900414 – ident: 15 doi: 10.1109/IEMBS.2010.5627480 – ident: 18 doi: 10.1007/BF00870463 – ident: 2 doi: 10.2105/AJPH.75.6.630 – ident: 8 doi: 10.1007/s11517-007-0256-0 – ident: 9 – ident: 20 doi: 10.1088/0022-3727/39/3/012 – ident: 13 doi: 10.1097/01.SGA.0000305222.16522.a4 – ident: 16 doi: 10.1016/S0169-409X(98)00061-1 – ident: 23 |
SSID | ssj0002794562 |
Score | 1.8222849 |
Snippet | Death rate of accidental drowning in the bathtub was the highest among casualties occurring at home, according to the annual report of the Japanese Ministry of... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17 |
SubjectTerms | Accident prevention Amplitudes Bathing bioelectric impedance Bioelectricity Casualties Electrodes Finite difference method Frequency dependence Impedance involuntary measurement Measurement methods respiratory waveform Waveforms |
Title | Involuntary Measurement System for Respiratory Waveform for Prevention of Accidental Drowning during Bathing |
URI | https://www.jstage.jst.go.jp/article/abe/2/0/2_17/_article/-char/en https://www.proquest.com/docview/2762935560 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Advanced Biomedical Engineering, 2013, Vol.2, pp.17-24 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BwoEeqraACKRohXrgYljbGz8OVQUlISAlQggEN2sfYySEHAppJf59Z-x1glTUq3e8h9157ezO9wF8UzJzubEyCAc6CpQjNdZoyoBvBbWyOrN1f8Vkmoxv1MXd4G4Fpm0vDD-rbH1i7ajdzHKN_Cgiq2Us8ET-ePoVMGsU3662FBraUyu47zXE2Cp0ySVnpPfdk-H08mpRdYlI_Sjie4ghRbnLkTZ4GB3WhGXLwLT2QLnZ_b8Ouo46o0_w0aeL4rjZ38-wgtUX-PAGRHADHs8rdjHVXD-_ismy5CcaMHJBWam4Wl6oi1v9BzlTrQdaBKdZJWalOLaWOUYpHxenfDyn-UXTxyhO-JVidb8JN6Ph9c9x4DkUAqsyNQ_QKcylDnWsjXWJy2OTG6ViiXGa5zZSFCM5TSittalOETMsU5dIcjvW8G9b0KlmFW6DSBmYJ6bjRZKjkmVoEAeorAtDpIml6sFBu4CF9QDjzHPxWPBBg9e6oLUuoiJMe7C_EH1qUDXeE4qbXViIeGPyErKWWnzkLjUy9R702y0rvDm-FEvl2fn_8C6sRzXfBddY-tCZP__Gr5R1zM0erGajsz2vUH8BviTfAw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BQIIeqhZaNZSWVVWkXkzs9caOD6iCAkoKiSoEKjezjzESQg6PtBV_rr-tM_Y6QSrixtU73sPu7Mw3szvfAHxWYc9lxoZB1NUyUI7UWKMpAr4V1Mrqnq3qK4ajpH-qvp91z-bgb1MLw88qG5tYGWo3tpwj70g6tcwFnoRfr28C7hrFt6tNCw3tWyu47YpizBd2HOL9Hwrh7rYHe7Tfm1Ie7J986we-y0BgVU9NAnQKs1BHOtbGusRlscmMUnGIcZplViryIuxIC2ttqlPEHhapSyj-j63h32jeeVhQXOHagoXd_dGP42mWR5K6E8LwlEaKsFJHG9ySW1WDtJkjXLwkLHjxv0OovNzBK3jp4anYqfXpNcxhuQIvHpAWrsLVoGSTVk707b0YzlKMoiY_F4SCxfHsAl_81L-RkXE10DBGjUsxLsSOtdzTlPC_2ON0AM0v6rpJscuvIsuLN3D6LKv5FlrluMR3IFImAoopnEkyVGERGcQuKuuiCGniULXhS7OAufWE5txX4yrnwIbXOqe1zmUepW34NBW9rlk8HhOK612YivjD6yXCSmr6kaviyLS0Yb3Zstwf_7t8pqxrTw9vwFL_ZHiUHw1Gh-9hWVa9Nji_sw6tye0v_ECIZ2I-erUScP7cmvwPlModhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Involuntary+Measurement+System+for+Respiratory+Waveform+for+Prevention+of+Accidental+Drowning+during+Bathing&rft.jtitle=Advanced+Biomedical+Engineering&rft.au=SASAKI%2C+Kazuo&rft.au=NAKAJIMA%2C+Kazuki&rft.au=KOBAYASHI%2C+Masashi&rft.au=YAMAZAKI%2C+Katsuya&rft.date=2013&rft.pub=Japanese+Society+for+Medical+and+Biological+Engineering&rft.eissn=2187-5219&rft.volume=2&rft.spage=17&rft.epage=24&rft_id=info:doi/10.14326%2Fabe.2.17&rft.externalDocID=article_abe_2_0_2_17_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2187-5219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2187-5219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2187-5219&client=summon |