Redox and Hormonal Changes in the Transcriptome of Grape (Vitis vinifera) Berries during Natural Noble Rot Development
Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Fu...
Saved in:
Published in | Plants (Basel) Vol. 11; no. 7; p. 864 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2223-7747 2223-7747 |
DOI | 10.3390/plants11070864 |
Cover
Loading…
Abstract | Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development. |
---|---|
AbstractList | Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development. Noble rot is a favorable form of the interaction between grape ( spp.) berries and the phytopathogenic fungus . The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development. Noble rot is a favorable form of the interaction between grape ( Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea . The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development. Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development. |
Author | Kiss, Levente Kámán-Tóth, Evelin Barna, Balázs Kalapos, Balázs Fodor, József Hegyi-Kaló, Júlia Szám, Dorottya Réka Dankó, Tamás Hamow, Kamirán Áron Gullner, Gábor Pogány, Miklós Váczy, Kálmán Zoltán |
AuthorAffiliation | 4 Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia 3 Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; szam.dorottya.reka@gmail.com 2 Food and Wine Research Institute, Eszterházy Károly Catholic University, 3300 Eger, Hungary; hegyi-kalo.julia@uni-eszterhazy.hu (J.H.-K.); vaczy.kalman@uni-eszterhazy.hu (K.Z.V.) 1 Centre for Agricultural Research, 2462 Martonvásár, Hungary; tamas.danko89@gmail.com (T.D.); toth.evelin@atk.hu (E.K.-T.); hamow.kamiran@atk.hu (K.Á.H.); kalapos.balazs@atk.hu (B.K.); or levente.kiss@usq.edu.au (L.K.); fodor.jozsef@atk.hu (J.F.); gullner.gabor@atk.hu (G.G.); barna.balazs@atk.hu (B.B.) |
AuthorAffiliation_xml | – name: 3 Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; szam.dorottya.reka@gmail.com – name: 1 Centre for Agricultural Research, 2462 Martonvásár, Hungary; tamas.danko89@gmail.com (T.D.); toth.evelin@atk.hu (E.K.-T.); hamow.kamiran@atk.hu (K.Á.H.); kalapos.balazs@atk.hu (B.K.); or levente.kiss@usq.edu.au (L.K.); fodor.jozsef@atk.hu (J.F.); gullner.gabor@atk.hu (G.G.); barna.balazs@atk.hu (B.B.) – name: 2 Food and Wine Research Institute, Eszterházy Károly Catholic University, 3300 Eger, Hungary; hegyi-kalo.julia@uni-eszterhazy.hu (J.H.-K.); vaczy.kalman@uni-eszterhazy.hu (K.Z.V.) – name: 4 Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia |
Author_xml | – sequence: 1 givenname: Miklós surname: Pogány fullname: Pogány, Miklós – sequence: 2 givenname: Tamás surname: Dankó fullname: Dankó, Tamás – sequence: 3 givenname: Júlia surname: Hegyi-Kaló fullname: Hegyi-Kaló, Júlia – sequence: 4 givenname: Evelin surname: Kámán-Tóth fullname: Kámán-Tóth, Evelin – sequence: 5 givenname: Dorottya Réka surname: Szám fullname: Szám, Dorottya Réka – sequence: 6 givenname: Kamirán Áron orcidid: 0000-0002-7089-1078 surname: Hamow fullname: Hamow, Kamirán Áron – sequence: 7 givenname: Balázs orcidid: 0000-0003-2340-4270 surname: Kalapos fullname: Kalapos, Balázs – sequence: 8 givenname: Levente orcidid: 0000-0002-4785-4308 surname: Kiss fullname: Kiss, Levente – sequence: 9 givenname: József surname: Fodor fullname: Fodor, József – sequence: 10 givenname: Gábor surname: Gullner fullname: Gullner, Gábor – sequence: 11 givenname: Kálmán Zoltán orcidid: 0000-0002-8303-5887 surname: Váczy fullname: Váczy, Kálmán Zoltán – sequence: 12 givenname: Balázs surname: Barna fullname: Barna, Balázs |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35406844$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ktFrFDEQxoNUbK199VECvtSHq9kku8m-CHpqWygVSvU1zCbZu5TdZE2yh_735rxWegVDIEPyfT9mMvMSHfjgLUKvK3LGWEveTwP4nKqKCCIb_gwdUUrZQgguDh7Fh-gkpTtSliy7al6gQ1Zz0kjOj9DmxprwC4M3-CLEMXgY8HINfmUTdh7ntcW3EXzS0U05jBaHHp9HmCw-_eGyS3jjvOtthHf4k43RFZuZo_MrfA15joV2HbrB4puQ8We7sUOYRuvzK_S8hyHZk_vzGH3_-uV2ebG4-nZ-ufx4tdBc8rww1hImoW65rikQxvreMNHJihpOKCN91QvNQILgGij0tanaBjSpCRFCG8mO0eWOawLcqSm6EeJvFcCpvxchrhTE7PRgVVNzClWnOSOMtx2RUsvC4NJ0lPWyKawPO9Y0d6M1upRR6tuD7r94t1arsFEtKURBC-D0HhDDz9mmrEaXtB1KF22Yk6INb2spJKmL9O0T6V2YY2nOTkXK78gt8M3jjP6l8tDeIuA7gY4hpWh7pV2G7MI2QTeoiqjtIKn9QSq2sye2B_J_DH8AXyDLng |
CitedBy_id | crossref_primary_10_3389_fpls_2024_1433161 crossref_primary_10_3390_jof11010031 crossref_primary_10_3389_fpls_2024_1351008 crossref_primary_10_3390_horticulturae9090994 crossref_primary_10_3389_fpls_2023_1266807 crossref_primary_10_3389_fpls_2023_1124298 crossref_primary_10_3390_plants11162115 |
Cites_doi | 10.1074/jbc.M113.514794 10.1002/pmic.200600443 10.1093/jxb/erh183 10.1023/A:1015557300450 10.1093/mp/ssn017 10.1006/meth.2001.1262 10.1186/1471-2229-6-27 10.1016/j.molp.2017.07.010 10.1093/mp/ssp089 10.1104/pp.010605 10.1016/j.plaphy.2012.05.024 10.1186/1471-2229-12-130 10.1016/j.mimet.2017.09.006 10.1038/s41598-018-24452-6 10.1104/pp.105.4.1075 10.1104/pp.105.062539 10.1186/1471-2229-10-281 10.1074/jbc.RA118.003496 10.1016/j.plaphy.2019.02.013 10.1126/science.1239705 10.1016/j.fct.2019.05.017 10.1016/j.plantsci.2012.07.014 10.1002/pmic.200900654 10.1021/jf053117l 10.1016/j.plantsci.2017.05.013 10.1016/j.freeradbiomed.2017.12.028 10.1111/j.1399-3054.2008.01103.x 10.1074/jbc.M309882200 10.1007/s00425-004-1299-1 10.1021/pr200918f 10.3389/fpls.2018.01836 10.1104/pp.17.00555 10.1111/bph.13625 10.1007/s11105-014-0799-9 10.1016/j.plantsci.2019.01.024 10.1038/nchembio.1840 10.1007/s00425-007-0667-z 10.3389/fpls.2017.01457 10.1105/tpc.019000 10.1016/j.freeradbiomed.2018.01.011 10.1021/jf2051569 10.1016/j.molp.2015.03.011 10.1071/FP03118 10.1104/pp.110.169797 10.1002/9781118569184 10.1042/BJ20140390 10.1111/tpj.13178 10.1093/jxb/ers210 10.1111/j.1469-8137.2008.02511.x 10.1104/pp.010063 10.1126/science.1194980 10.3390/molecules24132452 10.1111/j.1365-313X.2010.04387.x 10.1016/j.plaphy.2012.06.017 10.1016/j.jprot.2009.01.003 10.1016/j.microc.2019.01.073 10.3389/fpls.2018.01301 10.1038/s41477-019-0408-x 10.1093/jxb/ern217 10.1038/s41598-021-00002-5 10.1186/1471-2164-9-118 10.1038/ncomms4425 10.1073/pnas.1103010108 10.1111/j.1364-3703.2007.00399.x 10.1146/annurev.phyto.43.040204.135923 10.1111/j.1365-313X.2008.03618.x 10.1104/pp.108.117457 10.3389/fpls.2013.00054 10.1016/j.pmpp.2021.101626 10.1371/journal.pone.0204530 10.1186/s12870-020-02773-x 10.1016/j.postharvbio.2019.05.025 10.1016/j.plantsci.2016.06.019 10.1094/MPMI-02-15-0039-R 10.1073/pnas.1701101114 10.1016/j.tplants.2009.03.006 10.1111/mpp.12769 10.1016/j.bbrc.2011.09.039 10.1111/tpj.12958 10.1093/nar/gky1131 10.1093/treephys/23.5.325 10.1016/j.str.2012.12.001 10.1186/1471-2229-13-167 10.1093/jxb/ert395 10.1111/tpj.12538 10.1104/pp.108.128488 10.1007/s11103-007-9274-4 10.1002/0470010398 10.1093/jxb/eru517 10.1111/j.1365-313X.2008.03783.x 10.1038/cdd.2014.50 10.1093/mp/ssn078 10.1021/jf400641r |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 5PM DOA |
DOI | 10.3390/plants11070864 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (WRLC) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_6542a1bc430349b088c87cd48db23f86 PMC9003472 35406844 10_3390_plants11070864 |
Genre | Journal Article |
GeographicLocations | Hungary |
GeographicLocations_xml | – name: Hungary |
GrantInformation_xml | – fundername: Széchenyi 2020 programme, the European Regional Development Fund and the Hungarian Government grantid: GINOP-2.3.2-15-2016-00061 |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE IAG IAO IGH ISR ITC KQ8 LK8 M0K M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RPM NPM 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c484t-dee038a594c52a033ffd37b812d40230f1f7c3a8a74ca2af5d196ac050077cd83 |
IEDL.DBID | M48 |
ISSN | 2223-7747 |
IngestDate | Wed Aug 27 01:26:23 EDT 2025 Thu Aug 21 18:33:32 EDT 2025 Thu Jul 10 17:32:06 EDT 2025 Fri Jul 25 09:36:27 EDT 2025 Thu Jan 02 22:54:55 EST 2025 Tue Jul 01 02:33:09 EDT 2025 Thu Apr 24 22:55:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Furmint Botrytis grapevine noble rot abscisic acid Tokaj hormone redox |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-dee038a594c52a033ffd37b812d40230f1f7c3a8a74ca2af5d196ac050077cd83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7089-1078 0000-0003-2340-4270 0000-0002-4785-4308 0000-0002-8303-5887 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants11070864 |
PMID | 35406844 |
PQID | 2649048482 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6542a1bc430349b088c87cd48db23f86 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9003472 proquest_miscellaneous_2649587805 proquest_journals_2649048482 pubmed_primary_35406844 crossref_citationtrail_10_3390_plants11070864 crossref_primary_10_3390_plants11070864 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220324 |
PublicationDateYYYYMMDD | 2022-03-24 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220324 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationTitleAlternate | Plants (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_92 Janda (ref_6) 2021; 114 ref_91 Kuhn (ref_9) 2013; 65 Mehterov (ref_29) 2012; 59 ref_14 Glaring (ref_74) 2012; 58 Ding (ref_90) 2015; 84 Weiberg (ref_1) 2013; 342 Loreti (ref_12) 2008; 179 Pandey (ref_99) 1977; 16 Noshi (ref_68) 2016; 252 Kilili (ref_42) 2004; 279 White (ref_33) 2018; 293 Hebelstrup (ref_35) 2012; 63 ref_20 AbuQamar (ref_23) 2009; 58 Lindahl (ref_76) 2009; 72 (ref_45) 2016; 7 Coll (ref_72) 2010; 330 Amrine (ref_7) 2015; 169 Kalapos (ref_96) 2021; 11 Bahieldin (ref_25) 2018; 8 Gullner (ref_93) 2019; 20 Hurtado (ref_43) 2017; 8 Hall (ref_80) 2010; 10 Wang (ref_83) 2012; 11 Deavours (ref_58) 2005; 138 Matsuo (ref_28) 2015; 8 Owens (ref_55) 2008; 147 Vlot (ref_38) 2008; 56 Steel (ref_5) 2013; 61 Coll (ref_73) 2014; 21 Audenaert (ref_22) 2002; 128 Khandelwal (ref_27) 2008; 148 Klein (ref_39) 2004; 55 Chern (ref_65) 2008; 1 Thirugnanasambantham (ref_24) 2015; 33 Ton (ref_21) 2009; 14 Wagner (ref_40) 2002; 49 ref_82 Agati (ref_51) 2012; 196 Caarls (ref_56) 2017; 114 Shi (ref_84) 2017; 262 ref_86 Wang (ref_69) 2009; 2 Dolferus (ref_37) 1994; 105 Jain (ref_11) 2015; 2 Sauter (ref_32) 2017; 175 Moraga (ref_47) 2004; 219 Barreau (ref_52) 2016; 7 Ding (ref_89) 2014; 79 Ren (ref_95) 2017; 142 ref_54 ref_53 Costantini (ref_19) 2006; 54 Seung (ref_78) 2013; 288 Ivanovska (ref_98) 2019; 137 Zhang (ref_26) 2019; 5 Smirnova (ref_57) 2017; 10 Schaberg (ref_61) 2003; 23 Czarnocka (ref_71) 2018; 122 Scarpeci (ref_87) 2008; 66 Hashemi (ref_50) 2019; 130 Lallement (ref_46) 2014; 462 Marchand (ref_81) 2006; 6 Glazebrook (ref_67) 2005; 43 Gullner (ref_41) 2018; 9 (ref_64) 2018; 122 Muthuramalingam (ref_77) 2009; 2 Weits (ref_36) 2014; 5 Leonhardt (ref_17) 2004; 16 Rosenwasser (ref_101) 2011; 156 Hebelstrup (ref_34) 2008; 227 Pandey (ref_88) 2010; 64 Livak (ref_94) 2001; 25 Kelloniemi (ref_2) 2015; 28 Marcheafave (ref_48) 2019; 146 Erban (ref_16) 2015; 66 Muthuramalingam (ref_79) 2013; 4 Milani (ref_49) 2017; 174 Feild (ref_60) 2001; 127 Lovato (ref_8) 2019; 156 Zwicker (ref_66) 2007; 8 Dietz (ref_75) 2008; 133 West (ref_18) 2013; 21 Neill (ref_62) 2003; 30 Park (ref_31) 2011; 414 ref_100 Yin (ref_30) 2016; 86 Conn (ref_44) 2008; 59 Vrhovsek (ref_97) 2012; 60 ref_3 Coelho (ref_10) 2019; 283 Gould (ref_63) 2004; 5 Szklarczyk (ref_85) 2019; 47 Salinas (ref_70) 2015; 6 Lackman (ref_13) 2011; 108 Lim (ref_15) 2018; 9 ref_4 Kloss (ref_59) 2015; 11 |
References_xml | – volume: 288 start-page: 33620 year: 2013 ident: ref_78 article-title: Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic α-amylase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.514794 – volume: 6 start-page: 6528 year: 2006 ident: ref_81 article-title: Comparative proteomic approaches for the isolation of proteins interacting with thioredoxin publication-title: Proteomics doi: 10.1002/pmic.200600443 – volume: 55 start-page: 1809 year: 2004 ident: ref_39 article-title: The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh183 – volume: 49 start-page: 515 year: 2002 ident: ref_40 article-title: Probing the diversity of the Arabidopsis glutathione S-transferase gene family publication-title: Plant Mol. Biol. doi: 10.1023/A:1015557300450 – volume: 1 start-page: 552 year: 2008 ident: ref_65 article-title: Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1and its putative repression domain publication-title: Mol. Plant doi: 10.1093/mp/ssn017 – volume: 25 start-page: 402 year: 2001 ident: ref_94 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 5 start-page: 314 year: 2004 ident: ref_63 article-title: Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves publication-title: J. Biomed. Biotechnol. – ident: ref_92 doi: 10.1186/1471-2229-6-27 – volume: 10 start-page: 1159 year: 2017 ident: ref_57 article-title: Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection publication-title: Mol. Plant doi: 10.1016/j.molp.2017.07.010 – volume: 2 start-page: 1273 year: 2009 ident: ref_77 article-title: Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast publication-title: Mol. Plant doi: 10.1093/mp/ssp089 – volume: 128 start-page: 491 year: 2002 ident: ref_22 article-title: Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms publication-title: Plant Physiol. doi: 10.1104/pp.010605 – volume: 59 start-page: 20 year: 2012 ident: ref_29 article-title: Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.05.024 – ident: ref_54 doi: 10.1186/1471-2229-12-130 – volume: 142 start-page: 71 year: 2017 ident: ref_95 article-title: Selection of reliable reference genes for gene expression studies in Botrytis cinerea publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2017.09.006 – volume: 7 start-page: 566 year: 2016 ident: ref_52 article-title: Antioxidant secondary metabolites in cereals: Potential involvement in resistance to Fusarium and mycotoxin accumulation publication-title: Front. Microbiol. – volume: 6 start-page: 171 year: 2015 ident: ref_70 article-title: Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression publication-title: Front. Plant Sci. – volume: 8 start-page: 6403 year: 2018 ident: ref_25 article-title: Multifunctional activities of ERF109 as affected by salt stress in Arabidopsis publication-title: Sci. Rep. doi: 10.1038/s41598-018-24452-6 – volume: 105 start-page: 1075 year: 1994 ident: ref_37 article-title: Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene publication-title: Plant Physiol. doi: 10.1104/pp.105.4.1075 – volume: 138 start-page: 2245 year: 2005 ident: ref_58 article-title: Metabolic engineering of isoflavonoid biosynthesis in alfalfa publication-title: Plant Physiol. doi: 10.1104/pp.105.062539 – ident: ref_91 doi: 10.1186/1471-2229-10-281 – volume: 293 start-page: 11786 year: 2018 ident: ref_33 article-title: The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.003496 – volume: 137 start-page: 189 year: 2019 ident: ref_98 article-title: Role of polyamines in plant growth regulation of Rht wheat mutants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.02.013 – volume: 342 start-page: 118 year: 2013 ident: ref_1 article-title: Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways publication-title: Science doi: 10.1126/science.1239705 – volume: 130 start-page: 44 year: 2019 ident: ref_50 article-title: A comprehensive review on biological activities and toxicology of crocetin publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2019.05.017 – volume: 196 start-page: 67 year: 2012 ident: ref_51 article-title: Flavonoids as antioxidants in plants: Location and functional significance publication-title: Plant Sci. doi: 10.1016/j.plantsci.2012.07.014 – volume: 10 start-page: 987 year: 2010 ident: ref_80 article-title: Thioredoxin targets of the plant chloroplast lumen and their implications for plastid function publication-title: Proteomics doi: 10.1002/pmic.200900654 – volume: 54 start-page: 3334 year: 2006 ident: ref_19 article-title: Metabolic changes of Malvasia grapes for wine production during postharvest drying publication-title: J. Agric. Food Chem. doi: 10.1021/jf053117l – volume: 262 start-page: 24 year: 2017 ident: ref_84 article-title: Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.05.013 – ident: ref_86 – volume: 122 start-page: 171 year: 2018 ident: ref_64 article-title: Priming plant resistance by activation of redox-sensitive genes publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.12.028 – volume: 133 start-page: 566 year: 2008 ident: ref_75 article-title: The dynamic thiol–disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differential electrophoretic mobility publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2008.01103.x – volume: 279 start-page: 24540 year: 2004 ident: ref_42 article-title: Differential roles of tau class glutathione S-transferases in oxidative stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M309882200 – volume: 219 start-page: 955 year: 2004 ident: ref_47 article-title: Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas publication-title: Planta doi: 10.1007/s00425-004-1299-1 – volume: 11 start-page: 412 year: 2012 ident: ref_83 article-title: Proteomic analysis of early-responsive redox-sensitive proteins in Arabidopsis publication-title: J. Proteome Res. doi: 10.1021/pr200918f – volume: 9 start-page: 1836 year: 2018 ident: ref_41 article-title: Glutathione S-transferase enzymes in plant-pathogen interactions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01836 – volume: 175 start-page: 412 year: 2017 ident: ref_32 article-title: Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling publication-title: Plant Physiol. doi: 10.1104/pp.17.00555 – volume: 174 start-page: 1290 year: 2017 ident: ref_49 article-title: Carotenoids: Biochemistry, pharmacology and treatment publication-title: Br. J. Pharmacol. doi: 10.1111/bph.13625 – volume: 33 start-page: 347 year: 2015 ident: ref_24 article-title: Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants publication-title: Plant Mol. Biol. Rep. doi: 10.1007/s11105-014-0799-9 – volume: 283 start-page: 266 year: 2019 ident: ref_10 article-title: The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.01.024 – volume: 11 start-page: 598 year: 2015 ident: ref_59 article-title: Control of carotenoid biosynthesis through a heme-based cis-trans isomerase publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1840 – volume: 227 start-page: 917 year: 2008 ident: ref_34 article-title: Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana publication-title: Planta doi: 10.1007/s00425-007-0667-z – volume: 8 start-page: 1457 year: 2017 ident: ref_43 article-title: A tau class glutathione-S-transferase is involved in trans-resveratrol transport out of grapevine cells publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01457 – volume: 2 start-page: 305 year: 2015 ident: ref_11 article-title: The pathogenesis related class 10 proteins in plant defense against biotic and abiotic stresses publication-title: Adv. Plants Agric. Res. – volume: 16 start-page: 596 year: 2004 ident: ref_17 article-title: Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant publication-title: Plant Cell doi: 10.1105/tpc.019000 – volume: 122 start-page: 4 year: 2018 ident: ref_71 article-title: Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.01.011 – volume: 60 start-page: 8831 year: 2012 ident: ref_97 article-title: A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages publication-title: J. Agric. Food Chem. doi: 10.1021/jf2051569 – volume: 8 start-page: 1253 year: 2015 ident: ref_28 article-title: High Redox Responsive Transcription Factor1 levels result in accumulation of reactive oxygen species in Arabidopsis thaliana shoots and roots publication-title: Mol. Plant doi: 10.1016/j.molp.2015.03.011 – volume: 30 start-page: 865 year: 2003 ident: ref_62 article-title: Anthocyanins in leaves: Light attenuators or antioxidants? publication-title: Funct. Plant Biol. doi: 10.1071/FP03118 – volume: 156 start-page: 185 year: 2011 ident: ref_101 article-title: Organelles contribute differentially to reactive oxygen species-related events during extended darkness publication-title: Plant Physiol. doi: 10.1104/pp.110.169797 – ident: ref_4 doi: 10.1002/9781118569184 – volume: 462 start-page: 39 year: 2014 ident: ref_46 article-title: Structural and enzymatic insights into Lambda glutathione transferases from Populus trichocarpa, monomeric enzymes constituting an early divergent class specific to terrestrial plants publication-title: Biochem. J. doi: 10.1042/BJ20140390 – volume: 169 start-page: 2422 year: 2015 ident: ref_7 article-title: Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot publication-title: Plant Physiol. – volume: 86 start-page: 403 year: 2016 ident: ref_30 article-title: Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening publication-title: Plant J. doi: 10.1111/tpj.13178 – volume: 63 start-page: 5581 year: 2012 ident: ref_35 article-title: Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers210 – volume: 179 start-page: 1004 year: 2008 ident: ref_12 article-title: Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02511.x – volume: 127 start-page: 566 year: 2001 ident: ref_60 article-title: Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood publication-title: Plant Physiol. doi: 10.1104/pp.010063 – volume: 330 start-page: 1393 year: 2010 ident: ref_72 article-title: Arabidopsis type I metacaspases control cell death publication-title: Science doi: 10.1126/science.1194980 – volume: 7 start-page: 1166 year: 2016 ident: ref_45 article-title: Differential roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinifera publication-title: Front. Plant Sci. – ident: ref_53 doi: 10.3390/molecules24132452 – volume: 64 start-page: 912 year: 2010 ident: ref_88 article-title: Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04387.x – volume: 58 start-page: 89 year: 2012 ident: ref_74 article-title: Comprehensive survey of redox sensitive starch metabolising enzymes in Arabidopsis thaliana publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.06.017 – volume: 72 start-page: 416 year: 2009 ident: ref_76 article-title: Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria publication-title: J. Proteom. doi: 10.1016/j.jprot.2009.01.003 – volume: 146 start-page: 713 year: 2019 ident: ref_48 article-title: Experimental mixture design solvent effects on pigment extraction and antioxidant activity from Coffea arabica L. leaves publication-title: Microchem. J. doi: 10.1016/j.microc.2019.01.073 – volume: 9 start-page: 1301 year: 2018 ident: ref_15 article-title: The pepper Late Embryogenesis Abundant protein, CaDIL1, positively regulates drought tolerance and ABA signaling publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01301 – volume: 5 start-page: 491 year: 2019 ident: ref_26 article-title: Jasmonate-mediated wound signalling promotes plant regeneration publication-title: Nat. Plants doi: 10.1038/s41477-019-0408-x – volume: 59 start-page: 3621 year: 2008 ident: ref_44 article-title: Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins publication-title: J. Exp. Bot. doi: 10.1093/jxb/ern217 – volume: 11 start-page: 20680 year: 2021 ident: ref_96 article-title: Transcriptome profiling of pepper leaves by RNA-Seq during an incompatible and a compatible pepper-tobamovirus interaction publication-title: Sci. Rep. doi: 10.1038/s41598-021-00002-5 – ident: ref_14 doi: 10.1186/1471-2164-9-118 – volume: 5 start-page: 3425 year: 2014 ident: ref_36 article-title: Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway publication-title: Nat. Commun. doi: 10.1038/ncomms4425 – volume: 108 start-page: 5891 year: 2011 ident: ref_13 article-title: Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1103010108 – volume: 8 start-page: 385 year: 2007 ident: ref_66 article-title: Tobacco NIMIN2 proteins control PR gene induction through transient repression early in systemic acquired resistance publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2007.00399.x – volume: 43 start-page: 205 year: 2005 ident: ref_67 article-title: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.43.040204.135923 – volume: 56 start-page: 445 year: 2008 ident: ref_38 article-title: Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03618.x – volume: 147 start-page: 1046 year: 2008 ident: ref_55 article-title: Functional analysis of a predicted flavonol synthase gene family in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.108.117457 – volume: 4 start-page: 54 year: 2013 ident: ref_79 article-title: The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00054 – volume: 114 start-page: 101626 year: 2021 ident: ref_6 article-title: Distinct volatile signatures of bunch rot and noble rot publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2021.101626 – ident: ref_82 doi: 10.1371/journal.pone.0204530 – ident: ref_20 doi: 10.1186/s12870-020-02773-x – volume: 156 start-page: 110924 year: 2019 ident: ref_8 article-title: Specific molecular interactions between Vitis vinifera and Botrytis cinerea are required for noble rot development in grape berries publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2019.05.025 – volume: 252 start-page: 12 year: 2016 ident: ref_68 article-title: Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flg22 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.06.019 – volume: 28 start-page: 1167 year: 2015 ident: ref_2 article-title: Analysis of the molecular dialogue between gray mold (Botrytis cinerea) and grapevine (Vitis vinifera) reveals a clear shift in defense mechanisms during berry ripening publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-02-15-0039-R – volume: 114 start-page: 6388 year: 2017 ident: ref_56 article-title: Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1701101114 – volume: 14 start-page: 310 year: 2009 ident: ref_21 article-title: The multifaceted role of ABA in disease resistance publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.03.006 – volume: 20 start-page: 485 year: 2019 ident: ref_93 article-title: Contribution of cell wall peroxidase-and NADPH oxidase-derived reactive oxygen species to Alternaria brassicicola-induced oxidative burst in Arabidopsis publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12769 – volume: 414 start-page: 135 year: 2011 ident: ref_31 article-title: AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.09.039 – volume: 84 start-page: 56 year: 2015 ident: ref_90 article-title: Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis publication-title: Plant J. doi: 10.1111/tpj.12958 – volume: 47 start-page: D607 year: 2019 ident: ref_85 article-title: STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1131 – volume: 23 start-page: 325 year: 2003 ident: ref_61 article-title: Factors influencing red expression in autumn foliage of sugar maple trees publication-title: Tree Physiol. doi: 10.1093/treephys/23.5.325 – volume: 21 start-page: 229 year: 2013 ident: ref_18 article-title: Protein conformation ensembles monitored by HDX reveal a structural rationale for abscisic acid signaling protein affinities and activities publication-title: Structure doi: 10.1016/j.str.2012.12.001 – ident: ref_100 doi: 10.1186/1471-2229-13-167 – volume: 65 start-page: 4543 year: 2013 ident: ref_9 article-title: Berry ripening: Recently heard through the grapevine publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert395 – volume: 79 start-page: 13 year: 2014 ident: ref_89 article-title: Transcription factor WRKY 46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis publication-title: Plant J. doi: 10.1111/tpj.12538 – volume: 148 start-page: 2050 year: 2008 ident: ref_27 article-title: Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor publication-title: Plant Physiol. doi: 10.1104/pp.108.128488 – volume: 66 start-page: 361 year: 2008 ident: ref_87 article-title: Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: A focus on rapidly induced genes publication-title: Plant Mol. Biol. doi: 10.1007/s11103-007-9274-4 – ident: ref_3 doi: 10.1002/0470010398 – volume: 66 start-page: 1769 year: 2015 ident: ref_16 article-title: Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru517 – volume: 16 start-page: 106 year: 1977 ident: ref_99 article-title: Changes in the rate of photosynthesis and respiration in leaves and berries of Vitis vinifera grapevines at various stages of berry development publication-title: Vitis – volume: 58 start-page: 347 year: 2009 ident: ref_23 article-title: Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03783.x – volume: 21 start-page: 1399 year: 2014 ident: ref_73 article-title: The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: Functional linkage with autophagy publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.50 – volume: 2 start-page: 323 year: 2009 ident: ref_69 article-title: Conserved Functions of Arabidopsis and Rice CC-Type Glutaredoxins in Flower Development and Pathogen Response publication-title: Mol. Plant doi: 10.1093/mp/ssn078 – volume: 61 start-page: 5189 year: 2013 ident: ref_5 article-title: Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults publication-title: J. Agric. Food Chem. doi: 10.1021/jf400641r |
SSID | ssj0000800816 |
Score | 2.225996 |
Snippet | Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern... Noble rot is a favorable form of the interaction between grape ( spp.) berries and the phytopathogenic fungus . The transcriptome pattern of grapevine cells... Noble rot is a favorable form of the interaction between grape ( Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea . The transcriptome... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 864 |
SubjectTerms | Abscisic acid Berries Biosynthesis Botrytis Botrytis cinerea Fruits Furmint Gene expression Glutathione Glutathione transferase Grapes grapevine Grapevines Isoforms noble rot Phytopathogenic fungi redox Rot Tokaj Transcription Transcription factors Transcriptomes Vitis vinifera Wineries & vineyards Wines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF5K6aEXUVs1WmWEQvUQmmQnL5ujr9g-Cn2H0kpvYbM_8EmbFPta9L93Zjd9vIjixWt2A5udmcw3uzPfCLFfK68NX7LqWmOKRpepyl2WovRYtr6W2PKB_tl8MrvE06vyaq3VF-eERXrguHGH3FBJ561ByUwqLRmFUZWxqGxbSK8C2Tb5vLVg6tuAg1Q-iSyNkuL6w9trzivhaIdAPI68UCDr_xPC_D1Rcs3zHD8VTwbICJ_iUp-JDdc9F1vTnmDdzx3xcO5s_wN0Z2FG-JOBNcSSgTtYdED4DoI_Cn-H_sZB7-GES67gwxfmM4KHRUhv0R9hyiyN9FosXYS5DpwcMOeWM3DeL2Etw2hXXB5_vjiapUMzhdSgwmVqncuk0mWNpix0JqX3VlYt-XeLHIf43FdGaqUrElihfWnJNkmMJRP-GKvkC7HZ9Z17JYAitJp2PvemlWil5st7QiUZalJLCoASkT5ubmMGpnFueHHdUMTBwmjGwkjEwWr-beTY-OvMKctqNYu5scMD0phm0JjmXxqTiL1HSTeDwd41hAtr-pmhKhLxfjVMpsb3J7pz_X2cUypuApGIl1ExVivh47OJQlphNVKZ0VLHI93ia6Dz5rNkrIrX_-Pb3ojtguszMpkWuCc2l9_v3VtCTcv2XTCQX_CpFjo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdg44EXxDcZAx0SEvBgLYmdxnlCFG1USFSoYmhvkeOPUWnE3dpN8N9zl7hhQcBr40jX3Pnud-fz7xh7WSmvDR2y6kpLLo0uuMpcyqXwsmh8JWRDBf1P88nsWH48KU5iwW0d2yq3PrFz1DYYqpEfYOCu0Nqkyt-uzjlNjaLT1ThC4ybbRRes0MJ3p4fzz4uhykJ4SGWTnq1RYH5_sDqj_hLKehDMy1E06kj7_4Y0_2yYvBaBju6yOxE6wrte1_fYDdfeZ7emAeHdzwfsauFs-AG6tTBDHEoAG_qrA2tYtoA4D7q41HmJ8N1B8PCBrl7B66_EawRXy67NRb-BKbE14mv9FUaY646bA-Y0egYWYQPXOo0esuOjwy_vZzwOVeAGv96GW-dSoXRRSVPkOhXCeyvKBuO8lZSP-MyXRmilS1Rcrn1hcY-iOgsi_jFWiUdspw2te8IAM7XKq0nmTSOkFZoO8RGdpFKjeWIilDC-_bi1iYzjNPjirMbMg5RRj5WRsFfD-lXPtfHPlVPS1bCKOLK7H8LFaR23XE2juHTWGCmIg6dBd2oU_gOpbJMLlDth-1tN13HjruvfZpawF8Nj3HJ0jqJbFy77NYWiYRAJe9wbxiAJldEmSqKE5chkRqKOn7TLbx2tN9WUZZnv_V-sp-x2TjcwUsFzuc92NheX7hniok3zPBr_LwlOD8o priority: 102 providerName: ProQuest |
Title | Redox and Hormonal Changes in the Transcriptome of Grape (Vitis vinifera) Berries during Natural Noble Rot Development |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35406844 https://www.proquest.com/docview/2649048482 https://www.proquest.com/docview/2649587805 https://pubmed.ncbi.nlm.nih.gov/PMC9003472 https://doaj.org/article/6542a1bc430349b088c87cd48db23f86 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BhtBeEN8ERmUkJOAhkMSXxnlAiKKNCmkVqijaW-T4A4pKMrpu2v577pK0LKi88BrbkuO78_3OPv8O4HmuvDZ8yapzjSEanYYqdlGI0mNa-lxiyQf6R5PheIafjtPjP_lP3QKebg3tuJ7UbLl4ffHr8h0Z_FuOOClkf3Oy4JQRDmQIn-N12CWvlHEZh6MO6v_okJGKhy1v45Zhe3CTj0CGCrHnohom_23w8-8syitu6fA23OrwpHjfKsAduOaqu3BjVBPmu7wH51Nn6wuhKyvGBE4ZdYv2PcGpmFeCwJ9onFWzddQ_nai9-MjvscTLr0x2JM7nTe6LfiVGTOFIw9p3jWKiG8IOMeF6NGJar8SV9KP7MDs8-PJhHHaVFkKDClehdS6SSqc5mjTRkZTeW5mV5PwtcpDiY58ZqZXOSJqJ9qklwyUZp8wGZKySD2Cnqiv3CASFb7lXw9ibUqKVmm_2CbJEqElnKToKIFwvbmE6GnKuhrEoKBxhuRR9uQTwYtP_pCXg-GfPEctq04uJs5sP9fJb0dlhwfW5dFwalEzMU9IeaxT9ASpbJpLmHcD-WtLFWhkLAo057XSokgCebZrJDvlyRVeuPmv7pIorRATwsFWMzUzWihVA1lOZ3lT7LdX8e8P1zQfNmCWP_3vkE9hL-MVGJMME92FntTxzTwlHrcoB7I4OJp-ng-YcYtCYy2_FySHC |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAkuiDeGAosEAg5Wbe86WR8QItCS0tZCUVv1Ztb7gEjFDk1a6J_iNzLjFzUCbr3aa2vseX2zOw-Ap4l0StMhq0qU8IVWsS9DG_iCOxHnLuEipw393XQ42RcfDuPDFfjZ1sJQWmVrEytDbUpNe-Tr6LgTlDYho9fzbz5NjaLT1XaERi0W2_bsO4Zsi1db75C_z6Joc2Pv7cRvpgr4Gh9f-sbagEsVJ0LHkQo4d87wUY6OzggC5C50I82VVCOkPFIuNiik-D0xdb7RRnJ87yVYFRyhwgBWxxvpx2m3q0P4S4bDujsk50mwPj-ifBaKsjB4ED3vVw0J-Buy_TNB85zH27wO1xqoyt7UsnUDVmxxEy6PS4STZ7fgdGpN-YOpwrAJ4l4C9KwuVViwWcEQV7LKD1ZWqfxqWenYeyr1Yi8OqI8SO51VaTXqJRtTd0h8rC6ZZKmqeoGwlEbdsGm5ZOcym27D_oX87jswKMrC3gOGkWHi5DB0OufCcEVJA4iGAqFQHTDw8sBvf26mmw7nNGjjKMNIh5iR9ZnhwfNu_bzu7fHPlWPiVbeKenJXF8rjz1mj4hmN_lJhrgWnnj85mm8t8QuENHnEkW4P1lpOZ42hWGS_xdqDJ91tVHE6t1GFLU_qNbGk4RMe3K0Fo6OEtu2GUiCFo57I9Ejt3ylmX6o24rSHLUbR_f-T9RiuTPZ2d7KdrXT7AVyNqPoj4H4k1mCwPD6xDxGTLfNHjSIw-HTRuvcLmlBMow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFKFeEG8MBRYJBBys2N51vD4gRGhDSsGqIop6M-tdb4lU7NCkhf41fh0zflEj4NZrvLF2Pa9vZucB8CSWVmm6ZFWxEq7QKnSln3uu4FaEmY25yCig_yEZTffFu4PwYA1-trUwlFbZ6sRKUZtSU4x8iIY7Rm4TMhjaJi1ib2vyavHNpQlSdNPajtOoWWQ3P_uO7tvy5c4W0vppEEy2P76Zus2EAVfjq1auyXOPSxXGQoeB8ji31vAoQ6NnBIFz69tIcyVVhKcIlA0NMiyeLaQuONpIju-9BOsRlY8OYH28nezNuggPYTHpj-pOkZzH3nBxRLkt5HGhIyF6lrAaGPA3lPtnsuY56ze5Blcb2Mpe13x2Hdby4gZcHpcILc9uwuksN-UPpgrDpoiBCdyzumxhyeYFQ4zJKptYaajya85Ky95S2Rd7_ol6KrHTeZVio16wMXWKxL_V5ZMsUVVfEJbQ2Bs2K1fsXJbTLdi_kM99GwZFWeR3gaGXGFs58q3OuDBcUQIBIiNPKBQNdMIccNuPm-qm2zkN3ThK0eshYqR9YjjwrFu_qPt8_HPlmGjVraL-3NUP5fFh2oh7SmPAlJ9pwan_T4aqXEs8gZAmCzju24HNltJpozSW6W8Wd-Bx9xjFne5wVJGXJ_WaUNIgCgfu1IzR7YRCeCMpcIdRj2V6W-0_KeZfqpbiFM8WUXDv_9t6BFdQ5tL3O8nufdgIqBDE424gNmGwOj7JHyA8W2UPGzlg8PmiRe8XBTtQ4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox+and+Hormonal+Changes+in+the+Transcriptome+of+Grape+%28Vitis+vinifera%29+Berries+during+Natural+Noble+Rot+Development&rft.jtitle=Plants+%28Basel%29&rft.au=Pog%C3%A1ny%2C+Mikl%C3%B3s&rft.au=Dank%C3%B3%2C+Tam%C3%A1s&rft.au=Hegyi-Kal%C3%B3%2C+J%C3%BAlia&rft.au=K%C3%A1m%C3%A1n-T%C3%B3th%2C+Evelin&rft.date=2022-03-24&rft.pub=MDPI&rft.eissn=2223-7747&rft.volume=11&rft.issue=7&rft_id=info:doi/10.3390%2Fplants11070864&rft_id=info%3Apmid%2F35406844&rft.externalDocID=PMC9003472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |