Redox and Hormonal Changes in the Transcriptome of Grape (Vitis vinifera) Berries during Natural Noble Rot Development

Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Fu...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 11; no. 7; p. 864
Main Authors Pogány, Miklós, Dankó, Tamás, Hegyi-Kaló, Júlia, Kámán-Tóth, Evelin, Szám, Dorottya Réka, Hamow, Kamirán Áron, Kalapos, Balázs, Kiss, Levente, Fodor, József, Gullner, Gábor, Váczy, Kálmán Zoltán, Barna, Balázs
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.03.2022
MDPI
Subjects
Online AccessGet full text
ISSN2223-7747
2223-7747
DOI10.3390/plants11070864

Cover

Loading…
Abstract Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.
AbstractList Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.
Noble rot is a favorable form of the interaction between grape ( spp.) berries and the phytopathogenic fungus . The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.
Noble rot is a favorable form of the interaction between grape ( Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea . The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.
Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.
Author Kiss, Levente
Kámán-Tóth, Evelin
Barna, Balázs
Kalapos, Balázs
Fodor, József
Hegyi-Kaló, Júlia
Szám, Dorottya Réka
Dankó, Tamás
Hamow, Kamirán Áron
Gullner, Gábor
Pogány, Miklós
Váczy, Kálmán Zoltán
AuthorAffiliation 4 Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
3 Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; szam.dorottya.reka@gmail.com
2 Food and Wine Research Institute, Eszterházy Károly Catholic University, 3300 Eger, Hungary; hegyi-kalo.julia@uni-eszterhazy.hu (J.H.-K.); vaczy.kalman@uni-eszterhazy.hu (K.Z.V.)
1 Centre for Agricultural Research, 2462 Martonvásár, Hungary; tamas.danko89@gmail.com (T.D.); toth.evelin@atk.hu (E.K.-T.); hamow.kamiran@atk.hu (K.Á.H.); kalapos.balazs@atk.hu (B.K.); or levente.kiss@usq.edu.au (L.K.); fodor.jozsef@atk.hu (J.F.); gullner.gabor@atk.hu (G.G.); barna.balazs@atk.hu (B.B.)
AuthorAffiliation_xml – name: 3 Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; szam.dorottya.reka@gmail.com
– name: 1 Centre for Agricultural Research, 2462 Martonvásár, Hungary; tamas.danko89@gmail.com (T.D.); toth.evelin@atk.hu (E.K.-T.); hamow.kamiran@atk.hu (K.Á.H.); kalapos.balazs@atk.hu (B.K.); or levente.kiss@usq.edu.au (L.K.); fodor.jozsef@atk.hu (J.F.); gullner.gabor@atk.hu (G.G.); barna.balazs@atk.hu (B.B.)
– name: 2 Food and Wine Research Institute, Eszterházy Károly Catholic University, 3300 Eger, Hungary; hegyi-kalo.julia@uni-eszterhazy.hu (J.H.-K.); vaczy.kalman@uni-eszterhazy.hu (K.Z.V.)
– name: 4 Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
Author_xml – sequence: 1
  givenname: Miklós
  surname: Pogány
  fullname: Pogány, Miklós
– sequence: 2
  givenname: Tamás
  surname: Dankó
  fullname: Dankó, Tamás
– sequence: 3
  givenname: Júlia
  surname: Hegyi-Kaló
  fullname: Hegyi-Kaló, Júlia
– sequence: 4
  givenname: Evelin
  surname: Kámán-Tóth
  fullname: Kámán-Tóth, Evelin
– sequence: 5
  givenname: Dorottya Réka
  surname: Szám
  fullname: Szám, Dorottya Réka
– sequence: 6
  givenname: Kamirán Áron
  orcidid: 0000-0002-7089-1078
  surname: Hamow
  fullname: Hamow, Kamirán Áron
– sequence: 7
  givenname: Balázs
  orcidid: 0000-0003-2340-4270
  surname: Kalapos
  fullname: Kalapos, Balázs
– sequence: 8
  givenname: Levente
  orcidid: 0000-0002-4785-4308
  surname: Kiss
  fullname: Kiss, Levente
– sequence: 9
  givenname: József
  surname: Fodor
  fullname: Fodor, József
– sequence: 10
  givenname: Gábor
  surname: Gullner
  fullname: Gullner, Gábor
– sequence: 11
  givenname: Kálmán Zoltán
  orcidid: 0000-0002-8303-5887
  surname: Váczy
  fullname: Váczy, Kálmán Zoltán
– sequence: 12
  givenname: Balázs
  surname: Barna
  fullname: Barna, Balázs
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35406844$$D View this record in MEDLINE/PubMed
BookMark eNp1ktFrFDEQxoNUbK199VECvtSHq9kku8m-CHpqWygVSvU1zCbZu5TdZE2yh_735rxWegVDIEPyfT9mMvMSHfjgLUKvK3LGWEveTwP4nKqKCCIb_gwdUUrZQgguDh7Fh-gkpTtSliy7al6gQ1Zz0kjOj9DmxprwC4M3-CLEMXgY8HINfmUTdh7ntcW3EXzS0U05jBaHHp9HmCw-_eGyS3jjvOtthHf4k43RFZuZo_MrfA15joV2HbrB4puQ8We7sUOYRuvzK_S8hyHZk_vzGH3_-uV2ebG4-nZ-ufx4tdBc8rww1hImoW65rikQxvreMNHJihpOKCN91QvNQILgGij0tanaBjSpCRFCG8mO0eWOawLcqSm6EeJvFcCpvxchrhTE7PRgVVNzClWnOSOMtx2RUsvC4NJ0lPWyKawPO9Y0d6M1upRR6tuD7r94t1arsFEtKURBC-D0HhDDz9mmrEaXtB1KF22Yk6INb2spJKmL9O0T6V2YY2nOTkXK78gt8M3jjP6l8tDeIuA7gY4hpWh7pV2G7MI2QTeoiqjtIKn9QSq2sye2B_J_DH8AXyDLng
CitedBy_id crossref_primary_10_3389_fpls_2024_1433161
crossref_primary_10_3390_jof11010031
crossref_primary_10_3389_fpls_2024_1351008
crossref_primary_10_3390_horticulturae9090994
crossref_primary_10_3389_fpls_2023_1266807
crossref_primary_10_3389_fpls_2023_1124298
crossref_primary_10_3390_plants11162115
Cites_doi 10.1074/jbc.M113.514794
10.1002/pmic.200600443
10.1093/jxb/erh183
10.1023/A:1015557300450
10.1093/mp/ssn017
10.1006/meth.2001.1262
10.1186/1471-2229-6-27
10.1016/j.molp.2017.07.010
10.1093/mp/ssp089
10.1104/pp.010605
10.1016/j.plaphy.2012.05.024
10.1186/1471-2229-12-130
10.1016/j.mimet.2017.09.006
10.1038/s41598-018-24452-6
10.1104/pp.105.4.1075
10.1104/pp.105.062539
10.1186/1471-2229-10-281
10.1074/jbc.RA118.003496
10.1016/j.plaphy.2019.02.013
10.1126/science.1239705
10.1016/j.fct.2019.05.017
10.1016/j.plantsci.2012.07.014
10.1002/pmic.200900654
10.1021/jf053117l
10.1016/j.plantsci.2017.05.013
10.1016/j.freeradbiomed.2017.12.028
10.1111/j.1399-3054.2008.01103.x
10.1074/jbc.M309882200
10.1007/s00425-004-1299-1
10.1021/pr200918f
10.3389/fpls.2018.01836
10.1104/pp.17.00555
10.1111/bph.13625
10.1007/s11105-014-0799-9
10.1016/j.plantsci.2019.01.024
10.1038/nchembio.1840
10.1007/s00425-007-0667-z
10.3389/fpls.2017.01457
10.1105/tpc.019000
10.1016/j.freeradbiomed.2018.01.011
10.1021/jf2051569
10.1016/j.molp.2015.03.011
10.1071/FP03118
10.1104/pp.110.169797
10.1002/9781118569184
10.1042/BJ20140390
10.1111/tpj.13178
10.1093/jxb/ers210
10.1111/j.1469-8137.2008.02511.x
10.1104/pp.010063
10.1126/science.1194980
10.3390/molecules24132452
10.1111/j.1365-313X.2010.04387.x
10.1016/j.plaphy.2012.06.017
10.1016/j.jprot.2009.01.003
10.1016/j.microc.2019.01.073
10.3389/fpls.2018.01301
10.1038/s41477-019-0408-x
10.1093/jxb/ern217
10.1038/s41598-021-00002-5
10.1186/1471-2164-9-118
10.1038/ncomms4425
10.1073/pnas.1103010108
10.1111/j.1364-3703.2007.00399.x
10.1146/annurev.phyto.43.040204.135923
10.1111/j.1365-313X.2008.03618.x
10.1104/pp.108.117457
10.3389/fpls.2013.00054
10.1016/j.pmpp.2021.101626
10.1371/journal.pone.0204530
10.1186/s12870-020-02773-x
10.1016/j.postharvbio.2019.05.025
10.1016/j.plantsci.2016.06.019
10.1094/MPMI-02-15-0039-R
10.1073/pnas.1701101114
10.1016/j.tplants.2009.03.006
10.1111/mpp.12769
10.1016/j.bbrc.2011.09.039
10.1111/tpj.12958
10.1093/nar/gky1131
10.1093/treephys/23.5.325
10.1016/j.str.2012.12.001
10.1186/1471-2229-13-167
10.1093/jxb/ert395
10.1111/tpj.12538
10.1104/pp.108.128488
10.1007/s11103-007-9274-4
10.1002/0470010398
10.1093/jxb/eru517
10.1111/j.1365-313X.2008.03783.x
10.1038/cdd.2014.50
10.1093/mp/ssn078
10.1021/jf400641r
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOA
DOI 10.3390/plants11070864
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Agricultural Science Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_6542a1bc430349b088c87cd48db23f86
PMC9003472
35406844
10_3390_plants11070864
Genre Journal Article
GeographicLocations Hungary
GeographicLocations_xml – name: Hungary
GrantInformation_xml – fundername: Széchenyi 2020 programme, the European Regional Development Fund and the Hungarian Government
  grantid: GINOP-2.3.2-15-2016-00061
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAG
IAO
IGH
ISR
ITC
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RPM
NPM
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c484t-dee038a594c52a033ffd37b812d40230f1f7c3a8a74ca2af5d196ac050077cd83
IEDL.DBID M48
ISSN 2223-7747
IngestDate Wed Aug 27 01:26:23 EDT 2025
Thu Aug 21 18:33:32 EDT 2025
Thu Jul 10 17:32:06 EDT 2025
Fri Jul 25 09:36:27 EDT 2025
Thu Jan 02 22:54:55 EST 2025
Tue Jul 01 02:33:09 EDT 2025
Thu Apr 24 22:55:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Furmint
Botrytis
grapevine
noble rot
abscisic acid
Tokaj
hormone
redox
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-dee038a594c52a033ffd37b812d40230f1f7c3a8a74ca2af5d196ac050077cd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7089-1078
0000-0003-2340-4270
0000-0002-4785-4308
0000-0002-8303-5887
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants11070864
PMID 35406844
PQID 2649048482
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_6542a1bc430349b088c87cd48db23f86
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9003472
proquest_miscellaneous_2649587805
proquest_journals_2649048482
pubmed_primary_35406844
crossref_citationtrail_10_3390_plants11070864
crossref_primary_10_3390_plants11070864
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220324
PublicationDateYYYYMMDD 2022-03-24
PublicationDate_xml – month: 3
  year: 2022
  text: 20220324
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Plants (Basel)
PublicationTitleAlternate Plants (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_92
Janda (ref_6) 2021; 114
ref_91
Kuhn (ref_9) 2013; 65
Mehterov (ref_29) 2012; 59
ref_14
Glaring (ref_74) 2012; 58
Ding (ref_90) 2015; 84
Weiberg (ref_1) 2013; 342
Loreti (ref_12) 2008; 179
Pandey (ref_99) 1977; 16
Noshi (ref_68) 2016; 252
Kilili (ref_42) 2004; 279
White (ref_33) 2018; 293
Hebelstrup (ref_35) 2012; 63
ref_20
AbuQamar (ref_23) 2009; 58
Lindahl (ref_76) 2009; 72
(ref_45) 2016; 7
Coll (ref_72) 2010; 330
Amrine (ref_7) 2015; 169
Kalapos (ref_96) 2021; 11
Bahieldin (ref_25) 2018; 8
Gullner (ref_93) 2019; 20
Hurtado (ref_43) 2017; 8
Hall (ref_80) 2010; 10
Wang (ref_83) 2012; 11
Deavours (ref_58) 2005; 138
Matsuo (ref_28) 2015; 8
Owens (ref_55) 2008; 147
Vlot (ref_38) 2008; 56
Steel (ref_5) 2013; 61
Coll (ref_73) 2014; 21
Audenaert (ref_22) 2002; 128
Khandelwal (ref_27) 2008; 148
Klein (ref_39) 2004; 55
Chern (ref_65) 2008; 1
Thirugnanasambantham (ref_24) 2015; 33
Ton (ref_21) 2009; 14
Wagner (ref_40) 2002; 49
ref_82
Agati (ref_51) 2012; 196
Caarls (ref_56) 2017; 114
Shi (ref_84) 2017; 262
ref_86
Wang (ref_69) 2009; 2
Dolferus (ref_37) 1994; 105
Jain (ref_11) 2015; 2
Sauter (ref_32) 2017; 175
Moraga (ref_47) 2004; 219
Barreau (ref_52) 2016; 7
Ding (ref_89) 2014; 79
Ren (ref_95) 2017; 142
ref_54
ref_53
Costantini (ref_19) 2006; 54
Seung (ref_78) 2013; 288
Ivanovska (ref_98) 2019; 137
Zhang (ref_26) 2019; 5
Smirnova (ref_57) 2017; 10
Schaberg (ref_61) 2003; 23
Czarnocka (ref_71) 2018; 122
Scarpeci (ref_87) 2008; 66
Hashemi (ref_50) 2019; 130
Lallement (ref_46) 2014; 462
Marchand (ref_81) 2006; 6
Glazebrook (ref_67) 2005; 43
Gullner (ref_41) 2018; 9
(ref_64) 2018; 122
Muthuramalingam (ref_77) 2009; 2
Weits (ref_36) 2014; 5
Leonhardt (ref_17) 2004; 16
Rosenwasser (ref_101) 2011; 156
Hebelstrup (ref_34) 2008; 227
Pandey (ref_88) 2010; 64
Livak (ref_94) 2001; 25
Kelloniemi (ref_2) 2015; 28
Marcheafave (ref_48) 2019; 146
Erban (ref_16) 2015; 66
Muthuramalingam (ref_79) 2013; 4
Milani (ref_49) 2017; 174
Feild (ref_60) 2001; 127
Lovato (ref_8) 2019; 156
Zwicker (ref_66) 2007; 8
Dietz (ref_75) 2008; 133
West (ref_18) 2013; 21
Neill (ref_62) 2003; 30
Park (ref_31) 2011; 414
ref_100
Yin (ref_30) 2016; 86
Conn (ref_44) 2008; 59
Vrhovsek (ref_97) 2012; 60
ref_3
Coelho (ref_10) 2019; 283
Gould (ref_63) 2004; 5
Szklarczyk (ref_85) 2019; 47
Salinas (ref_70) 2015; 6
Lackman (ref_13) 2011; 108
Lim (ref_15) 2018; 9
ref_4
Kloss (ref_59) 2015; 11
References_xml – volume: 288
  start-page: 33620
  year: 2013
  ident: ref_78
  article-title: Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic α-amylase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.514794
– volume: 6
  start-page: 6528
  year: 2006
  ident: ref_81
  article-title: Comparative proteomic approaches for the isolation of proteins interacting with thioredoxin
  publication-title: Proteomics
  doi: 10.1002/pmic.200600443
– volume: 55
  start-page: 1809
  year: 2004
  ident: ref_39
  article-title: The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh183
– volume: 49
  start-page: 515
  year: 2002
  ident: ref_40
  article-title: Probing the diversity of the Arabidopsis glutathione S-transferase gene family
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1015557300450
– volume: 1
  start-page: 552
  year: 2008
  ident: ref_65
  article-title: Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1and its putative repression domain
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssn017
– volume: 25
  start-page: 402
  year: 2001
  ident: ref_94
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 5
  start-page: 314
  year: 2004
  ident: ref_63
  article-title: Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves
  publication-title: J. Biomed. Biotechnol.
– ident: ref_92
  doi: 10.1186/1471-2229-6-27
– volume: 10
  start-page: 1159
  year: 2017
  ident: ref_57
  article-title: Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.07.010
– volume: 2
  start-page: 1273
  year: 2009
  ident: ref_77
  article-title: Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssp089
– volume: 128
  start-page: 491
  year: 2002
  ident: ref_22
  article-title: Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010605
– volume: 59
  start-page: 20
  year: 2012
  ident: ref_29
  article-title: Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2012.05.024
– ident: ref_54
  doi: 10.1186/1471-2229-12-130
– volume: 142
  start-page: 71
  year: 2017
  ident: ref_95
  article-title: Selection of reliable reference genes for gene expression studies in Botrytis cinerea
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2017.09.006
– volume: 7
  start-page: 566
  year: 2016
  ident: ref_52
  article-title: Antioxidant secondary metabolites in cereals: Potential involvement in resistance to Fusarium and mycotoxin accumulation
  publication-title: Front. Microbiol.
– volume: 6
  start-page: 171
  year: 2015
  ident: ref_70
  article-title: Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression
  publication-title: Front. Plant Sci.
– volume: 8
  start-page: 6403
  year: 2018
  ident: ref_25
  article-title: Multifunctional activities of ERF109 as affected by salt stress in Arabidopsis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24452-6
– volume: 105
  start-page: 1075
  year: 1994
  ident: ref_37
  article-title: Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.4.1075
– volume: 138
  start-page: 2245
  year: 2005
  ident: ref_58
  article-title: Metabolic engineering of isoflavonoid biosynthesis in alfalfa
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.062539
– ident: ref_91
  doi: 10.1186/1471-2229-10-281
– volume: 293
  start-page: 11786
  year: 2018
  ident: ref_33
  article-title: The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.003496
– volume: 137
  start-page: 189
  year: 2019
  ident: ref_98
  article-title: Role of polyamines in plant growth regulation of Rht wheat mutants
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.02.013
– volume: 342
  start-page: 118
  year: 2013
  ident: ref_1
  article-title: Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways
  publication-title: Science
  doi: 10.1126/science.1239705
– volume: 130
  start-page: 44
  year: 2019
  ident: ref_50
  article-title: A comprehensive review on biological activities and toxicology of crocetin
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2019.05.017
– volume: 196
  start-page: 67
  year: 2012
  ident: ref_51
  article-title: Flavonoids as antioxidants in plants: Location and functional significance
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2012.07.014
– volume: 10
  start-page: 987
  year: 2010
  ident: ref_80
  article-title: Thioredoxin targets of the plant chloroplast lumen and their implications for plastid function
  publication-title: Proteomics
  doi: 10.1002/pmic.200900654
– volume: 54
  start-page: 3334
  year: 2006
  ident: ref_19
  article-title: Metabolic changes of Malvasia grapes for wine production during postharvest drying
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf053117l
– volume: 262
  start-page: 24
  year: 2017
  ident: ref_84
  article-title: Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2017.05.013
– ident: ref_86
– volume: 122
  start-page: 171
  year: 2018
  ident: ref_64
  article-title: Priming plant resistance by activation of redox-sensitive genes
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.12.028
– volume: 133
  start-page: 566
  year: 2008
  ident: ref_75
  article-title: The dynamic thiol–disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differential electrophoretic mobility
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2008.01103.x
– volume: 279
  start-page: 24540
  year: 2004
  ident: ref_42
  article-title: Differential roles of tau class glutathione S-transferases in oxidative stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M309882200
– volume: 219
  start-page: 955
  year: 2004
  ident: ref_47
  article-title: Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas
  publication-title: Planta
  doi: 10.1007/s00425-004-1299-1
– volume: 11
  start-page: 412
  year: 2012
  ident: ref_83
  article-title: Proteomic analysis of early-responsive redox-sensitive proteins in Arabidopsis
  publication-title: J. Proteome Res.
  doi: 10.1021/pr200918f
– volume: 9
  start-page: 1836
  year: 2018
  ident: ref_41
  article-title: Glutathione S-transferase enzymes in plant-pathogen interactions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01836
– volume: 175
  start-page: 412
  year: 2017
  ident: ref_32
  article-title: Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00555
– volume: 174
  start-page: 1290
  year: 2017
  ident: ref_49
  article-title: Carotenoids: Biochemistry, pharmacology and treatment
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.13625
– volume: 33
  start-page: 347
  year: 2015
  ident: ref_24
  article-title: Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants
  publication-title: Plant Mol. Biol. Rep.
  doi: 10.1007/s11105-014-0799-9
– volume: 283
  start-page: 266
  year: 2019
  ident: ref_10
  article-title: The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.01.024
– volume: 11
  start-page: 598
  year: 2015
  ident: ref_59
  article-title: Control of carotenoid biosynthesis through a heme-based cis-trans isomerase
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1840
– volume: 227
  start-page: 917
  year: 2008
  ident: ref_34
  article-title: Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana
  publication-title: Planta
  doi: 10.1007/s00425-007-0667-z
– volume: 8
  start-page: 1457
  year: 2017
  ident: ref_43
  article-title: A tau class glutathione-S-transferase is involved in trans-resveratrol transport out of grapevine cells
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01457
– volume: 2
  start-page: 305
  year: 2015
  ident: ref_11
  article-title: The pathogenesis related class 10 proteins in plant defense against biotic and abiotic stresses
  publication-title: Adv. Plants Agric. Res.
– volume: 16
  start-page: 596
  year: 2004
  ident: ref_17
  article-title: Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant
  publication-title: Plant Cell
  doi: 10.1105/tpc.019000
– volume: 122
  start-page: 4
  year: 2018
  ident: ref_71
  article-title: Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.01.011
– volume: 60
  start-page: 8831
  year: 2012
  ident: ref_97
  article-title: A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf2051569
– volume: 8
  start-page: 1253
  year: 2015
  ident: ref_28
  article-title: High Redox Responsive Transcription Factor1 levels result in accumulation of reactive oxygen species in Arabidopsis thaliana shoots and roots
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2015.03.011
– volume: 30
  start-page: 865
  year: 2003
  ident: ref_62
  article-title: Anthocyanins in leaves: Light attenuators or antioxidants?
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP03118
– volume: 156
  start-page: 185
  year: 2011
  ident: ref_101
  article-title: Organelles contribute differentially to reactive oxygen species-related events during extended darkness
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.169797
– ident: ref_4
  doi: 10.1002/9781118569184
– volume: 462
  start-page: 39
  year: 2014
  ident: ref_46
  article-title: Structural and enzymatic insights into Lambda glutathione transferases from Populus trichocarpa, monomeric enzymes constituting an early divergent class specific to terrestrial plants
  publication-title: Biochem. J.
  doi: 10.1042/BJ20140390
– volume: 169
  start-page: 2422
  year: 2015
  ident: ref_7
  article-title: Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot
  publication-title: Plant Physiol.
– volume: 86
  start-page: 403
  year: 2016
  ident: ref_30
  article-title: Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening
  publication-title: Plant J.
  doi: 10.1111/tpj.13178
– volume: 63
  start-page: 5581
  year: 2012
  ident: ref_35
  article-title: Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers210
– volume: 179
  start-page: 1004
  year: 2008
  ident: ref_12
  article-title: Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02511.x
– volume: 127
  start-page: 566
  year: 2001
  ident: ref_60
  article-title: Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010063
– volume: 330
  start-page: 1393
  year: 2010
  ident: ref_72
  article-title: Arabidopsis type I metacaspases control cell death
  publication-title: Science
  doi: 10.1126/science.1194980
– volume: 7
  start-page: 1166
  year: 2016
  ident: ref_45
  article-title: Differential roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinifera
  publication-title: Front. Plant Sci.
– ident: ref_53
  doi: 10.3390/molecules24132452
– volume: 64
  start-page: 912
  year: 2010
  ident: ref_88
  article-title: Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04387.x
– volume: 58
  start-page: 89
  year: 2012
  ident: ref_74
  article-title: Comprehensive survey of redox sensitive starch metabolising enzymes in Arabidopsis thaliana
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2012.06.017
– volume: 72
  start-page: 416
  year: 2009
  ident: ref_76
  article-title: Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2009.01.003
– volume: 146
  start-page: 713
  year: 2019
  ident: ref_48
  article-title: Experimental mixture design solvent effects on pigment extraction and antioxidant activity from Coffea arabica L. leaves
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2019.01.073
– volume: 9
  start-page: 1301
  year: 2018
  ident: ref_15
  article-title: The pepper Late Embryogenesis Abundant protein, CaDIL1, positively regulates drought tolerance and ABA signaling
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01301
– volume: 5
  start-page: 491
  year: 2019
  ident: ref_26
  article-title: Jasmonate-mediated wound signalling promotes plant regeneration
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0408-x
– volume: 59
  start-page: 3621
  year: 2008
  ident: ref_44
  article-title: Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ern217
– volume: 11
  start-page: 20680
  year: 2021
  ident: ref_96
  article-title: Transcriptome profiling of pepper leaves by RNA-Seq during an incompatible and a compatible pepper-tobamovirus interaction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-00002-5
– ident: ref_14
  doi: 10.1186/1471-2164-9-118
– volume: 5
  start-page: 3425
  year: 2014
  ident: ref_36
  article-title: Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4425
– volume: 108
  start-page: 5891
  year: 2011
  ident: ref_13
  article-title: Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1103010108
– volume: 8
  start-page: 385
  year: 2007
  ident: ref_66
  article-title: Tobacco NIMIN2 proteins control PR gene induction through transient repression early in systemic acquired resistance
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2007.00399.x
– volume: 43
  start-page: 205
  year: 2005
  ident: ref_67
  article-title: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.43.040204.135923
– volume: 56
  start-page: 445
  year: 2008
  ident: ref_38
  article-title: Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03618.x
– volume: 147
  start-page: 1046
  year: 2008
  ident: ref_55
  article-title: Functional analysis of a predicted flavonol synthase gene family in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.117457
– volume: 4
  start-page: 54
  year: 2013
  ident: ref_79
  article-title: The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00054
– volume: 114
  start-page: 101626
  year: 2021
  ident: ref_6
  article-title: Distinct volatile signatures of bunch rot and noble rot
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2021.101626
– ident: ref_82
  doi: 10.1371/journal.pone.0204530
– ident: ref_20
  doi: 10.1186/s12870-020-02773-x
– volume: 156
  start-page: 110924
  year: 2019
  ident: ref_8
  article-title: Specific molecular interactions between Vitis vinifera and Botrytis cinerea are required for noble rot development in grape berries
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2019.05.025
– volume: 252
  start-page: 12
  year: 2016
  ident: ref_68
  article-title: Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flg22
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2016.06.019
– volume: 28
  start-page: 1167
  year: 2015
  ident: ref_2
  article-title: Analysis of the molecular dialogue between gray mold (Botrytis cinerea) and grapevine (Vitis vinifera) reveals a clear shift in defense mechanisms during berry ripening
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-02-15-0039-R
– volume: 114
  start-page: 6388
  year: 2017
  ident: ref_56
  article-title: Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1701101114
– volume: 14
  start-page: 310
  year: 2009
  ident: ref_21
  article-title: The multifaceted role of ABA in disease resistance
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2009.03.006
– volume: 20
  start-page: 485
  year: 2019
  ident: ref_93
  article-title: Contribution of cell wall peroxidase-and NADPH oxidase-derived reactive oxygen species to Alternaria brassicicola-induced oxidative burst in Arabidopsis
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12769
– volume: 414
  start-page: 135
  year: 2011
  ident: ref_31
  article-title: AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.09.039
– volume: 84
  start-page: 56
  year: 2015
  ident: ref_90
  article-title: Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis
  publication-title: Plant J.
  doi: 10.1111/tpj.12958
– volume: 47
  start-page: D607
  year: 2019
  ident: ref_85
  article-title: STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1131
– volume: 23
  start-page: 325
  year: 2003
  ident: ref_61
  article-title: Factors influencing red expression in autumn foliage of sugar maple trees
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/23.5.325
– volume: 21
  start-page: 229
  year: 2013
  ident: ref_18
  article-title: Protein conformation ensembles monitored by HDX reveal a structural rationale for abscisic acid signaling protein affinities and activities
  publication-title: Structure
  doi: 10.1016/j.str.2012.12.001
– ident: ref_100
  doi: 10.1186/1471-2229-13-167
– volume: 65
  start-page: 4543
  year: 2013
  ident: ref_9
  article-title: Berry ripening: Recently heard through the grapevine
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert395
– volume: 79
  start-page: 13
  year: 2014
  ident: ref_89
  article-title: Transcription factor WRKY 46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/tpj.12538
– volume: 148
  start-page: 2050
  year: 2008
  ident: ref_27
  article-title: Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.128488
– volume: 66
  start-page: 361
  year: 2008
  ident: ref_87
  article-title: Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: A focus on rapidly induced genes
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-007-9274-4
– ident: ref_3
  doi: 10.1002/0470010398
– volume: 66
  start-page: 1769
  year: 2015
  ident: ref_16
  article-title: Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru517
– volume: 16
  start-page: 106
  year: 1977
  ident: ref_99
  article-title: Changes in the rate of photosynthesis and respiration in leaves and berries of Vitis vinifera grapevines at various stages of berry development
  publication-title: Vitis
– volume: 58
  start-page: 347
  year: 2009
  ident: ref_23
  article-title: Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03783.x
– volume: 21
  start-page: 1399
  year: 2014
  ident: ref_73
  article-title: The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: Functional linkage with autophagy
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.50
– volume: 2
  start-page: 323
  year: 2009
  ident: ref_69
  article-title: Conserved Functions of Arabidopsis and Rice CC-Type Glutaredoxins in Flower Development and Pathogen Response
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssn078
– volume: 61
  start-page: 5189
  year: 2013
  ident: ref_5
  article-title: Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf400641r
SSID ssj0000800816
Score 2.225996
Snippet Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern...
Noble rot is a favorable form of the interaction between grape ( spp.) berries and the phytopathogenic fungus . The transcriptome pattern of grapevine cells...
Noble rot is a favorable form of the interaction between grape ( Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea . The transcriptome...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 864
SubjectTerms Abscisic acid
Berries
Biosynthesis
Botrytis
Botrytis cinerea
Fruits
Furmint
Gene expression
Glutathione
Glutathione transferase
Grapes
grapevine
Grapevines
Isoforms
noble rot
Phytopathogenic fungi
redox
Rot
Tokaj
Transcription
Transcription factors
Transcriptomes
Vitis vinifera
Wineries & vineyards
Wines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF5K6aEXUVs1WmWEQvUQmmQnL5ujr9g-Cn2H0kpvYbM_8EmbFPta9L93Zjd9vIjixWt2A5udmcw3uzPfCLFfK68NX7LqWmOKRpepyl2WovRYtr6W2PKB_tl8MrvE06vyaq3VF-eERXrguHGH3FBJ561ByUwqLRmFUZWxqGxbSK8C2Tb5vLVg6tuAg1Q-iSyNkuL6w9trzivhaIdAPI68UCDr_xPC_D1Rcs3zHD8VTwbICJ_iUp-JDdc9F1vTnmDdzx3xcO5s_wN0Z2FG-JOBNcSSgTtYdED4DoI_Cn-H_sZB7-GES67gwxfmM4KHRUhv0R9hyiyN9FosXYS5DpwcMOeWM3DeL2Etw2hXXB5_vjiapUMzhdSgwmVqncuk0mWNpix0JqX3VlYt-XeLHIf43FdGaqUrElihfWnJNkmMJRP-GKvkC7HZ9Z17JYAitJp2PvemlWil5st7QiUZalJLCoASkT5ubmMGpnFueHHdUMTBwmjGwkjEwWr-beTY-OvMKctqNYu5scMD0phm0JjmXxqTiL1HSTeDwd41hAtr-pmhKhLxfjVMpsb3J7pz_X2cUypuApGIl1ExVivh47OJQlphNVKZ0VLHI93ia6Dz5rNkrIrX_-Pb3ojtguszMpkWuCc2l9_v3VtCTcv2XTCQX_CpFjo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdg44EXxDcZAx0SEvBgLYmdxnlCFG1USFSoYmhvkeOPUWnE3dpN8N9zl7hhQcBr40jX3Pnud-fz7xh7WSmvDR2y6kpLLo0uuMpcyqXwsmh8JWRDBf1P88nsWH48KU5iwW0d2yq3PrFz1DYYqpEfYOCu0Nqkyt-uzjlNjaLT1ThC4ybbRRes0MJ3p4fzz4uhykJ4SGWTnq1RYH5_sDqj_hLKehDMy1E06kj7_4Y0_2yYvBaBju6yOxE6wrte1_fYDdfeZ7emAeHdzwfsauFs-AG6tTBDHEoAG_qrA2tYtoA4D7q41HmJ8N1B8PCBrl7B66_EawRXy67NRb-BKbE14mv9FUaY646bA-Y0egYWYQPXOo0esuOjwy_vZzwOVeAGv96GW-dSoXRRSVPkOhXCeyvKBuO8lZSP-MyXRmilS1Rcrn1hcY-iOgsi_jFWiUdspw2te8IAM7XKq0nmTSOkFZoO8RGdpFKjeWIilDC-_bi1iYzjNPjirMbMg5RRj5WRsFfD-lXPtfHPlVPS1bCKOLK7H8LFaR23XE2juHTWGCmIg6dBd2oU_gOpbJMLlDth-1tN13HjruvfZpawF8Nj3HJ0jqJbFy77NYWiYRAJe9wbxiAJldEmSqKE5chkRqKOn7TLbx2tN9WUZZnv_V-sp-x2TjcwUsFzuc92NheX7hniok3zPBr_LwlOD8o
  priority: 102
  providerName: ProQuest
Title Redox and Hormonal Changes in the Transcriptome of Grape (Vitis vinifera) Berries during Natural Noble Rot Development
URI https://www.ncbi.nlm.nih.gov/pubmed/35406844
https://www.proquest.com/docview/2649048482
https://www.proquest.com/docview/2649587805
https://pubmed.ncbi.nlm.nih.gov/PMC9003472
https://doaj.org/article/6542a1bc430349b088c87cd48db23f86
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BhtBeEN8ERmUkJOAhkMSXxnlAiKKNCmkVqijaW-T4A4pKMrpu2v577pK0LKi88BrbkuO78_3OPv8O4HmuvDZ8yapzjSEanYYqdlGI0mNa-lxiyQf6R5PheIafjtPjP_lP3QKebg3tuJ7UbLl4ffHr8h0Z_FuOOClkf3Oy4JQRDmQIn-N12CWvlHEZh6MO6v_okJGKhy1v45Zhe3CTj0CGCrHnohom_23w8-8syitu6fA23OrwpHjfKsAduOaqu3BjVBPmu7wH51Nn6wuhKyvGBE4ZdYv2PcGpmFeCwJ9onFWzddQ_nai9-MjvscTLr0x2JM7nTe6LfiVGTOFIw9p3jWKiG8IOMeF6NGJar8SV9KP7MDs8-PJhHHaVFkKDClehdS6SSqc5mjTRkZTeW5mV5PwtcpDiY58ZqZXOSJqJ9qklwyUZp8wGZKySD2Cnqiv3CASFb7lXw9ibUqKVmm_2CbJEqElnKToKIFwvbmE6GnKuhrEoKBxhuRR9uQTwYtP_pCXg-GfPEctq04uJs5sP9fJb0dlhwfW5dFwalEzMU9IeaxT9ASpbJpLmHcD-WtLFWhkLAo057XSokgCebZrJDvlyRVeuPmv7pIorRATwsFWMzUzWihVA1lOZ3lT7LdX8e8P1zQfNmCWP_3vkE9hL-MVGJMME92FntTxzTwlHrcoB7I4OJp-ng-YcYtCYy2_FySHC
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAkuiDeGAosEAg5Wbe86WR8QItCS0tZCUVv1Ztb7gEjFDk1a6J_iNzLjFzUCbr3aa2vseX2zOw-Ap4l0StMhq0qU8IVWsS9DG_iCOxHnLuEipw393XQ42RcfDuPDFfjZ1sJQWmVrEytDbUpNe-Tr6LgTlDYho9fzbz5NjaLT1XaERi0W2_bsO4Zsi1db75C_z6Joc2Pv7cRvpgr4Gh9f-sbagEsVJ0LHkQo4d87wUY6OzggC5C50I82VVCOkPFIuNiik-D0xdb7RRnJ87yVYFRyhwgBWxxvpx2m3q0P4S4bDujsk50mwPj-ifBaKsjB4ED3vVw0J-Buy_TNB85zH27wO1xqoyt7UsnUDVmxxEy6PS4STZ7fgdGpN-YOpwrAJ4l4C9KwuVViwWcEQV7LKD1ZWqfxqWenYeyr1Yi8OqI8SO51VaTXqJRtTd0h8rC6ZZKmqeoGwlEbdsGm5ZOcym27D_oX87jswKMrC3gOGkWHi5DB0OufCcEVJA4iGAqFQHTDw8sBvf26mmw7nNGjjKMNIh5iR9ZnhwfNu_bzu7fHPlWPiVbeKenJXF8rjz1mj4hmN_lJhrgWnnj85mm8t8QuENHnEkW4P1lpOZ42hWGS_xdqDJ91tVHE6t1GFLU_qNbGk4RMe3K0Fo6OEtu2GUiCFo57I9Ejt3ylmX6o24rSHLUbR_f-T9RiuTPZ2d7KdrXT7AVyNqPoj4H4k1mCwPD6xDxGTLfNHjSIw-HTRuvcLmlBMow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFKFeEG8MBRYJBBys2N51vD4gRGhDSsGqIop6M-tdb4lU7NCkhf41fh0zflEj4NZrvLF2Pa9vZucB8CSWVmm6ZFWxEq7QKnSln3uu4FaEmY25yCig_yEZTffFu4PwYA1-trUwlFbZ6sRKUZtSU4x8iIY7Rm4TMhjaJi1ib2vyavHNpQlSdNPajtOoWWQ3P_uO7tvy5c4W0vppEEy2P76Zus2EAVfjq1auyXOPSxXGQoeB8ji31vAoQ6NnBIFz69tIcyVVhKcIlA0NMiyeLaQuONpIju-9BOsRlY8OYH28nezNuggPYTHpj-pOkZzH3nBxRLkt5HGhIyF6lrAaGPA3lPtnsuY56ze5Blcb2Mpe13x2Hdby4gZcHpcILc9uwuksN-UPpgrDpoiBCdyzumxhyeYFQ4zJKptYaajya85Ky95S2Rd7_ol6KrHTeZVio16wMXWKxL_V5ZMsUVVfEJbQ2Bs2K1fsXJbTLdi_kM99GwZFWeR3gaGXGFs58q3OuDBcUQIBIiNPKBQNdMIccNuPm-qm2zkN3ThK0eshYqR9YjjwrFu_qPt8_HPlmGjVraL-3NUP5fFh2oh7SmPAlJ9pwan_T4aqXEs8gZAmCzju24HNltJpozSW6W8Wd-Bx9xjFne5wVJGXJ_WaUNIgCgfu1IzR7YRCeCMpcIdRj2V6W-0_KeZfqpbiFM8WUXDv_9t6BFdQ5tL3O8nufdgIqBDE424gNmGwOj7JHyA8W2UPGzlg8PmiRe8XBTtQ4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox+and+Hormonal+Changes+in+the+Transcriptome+of+Grape+%28Vitis+vinifera%29+Berries+during+Natural+Noble+Rot+Development&rft.jtitle=Plants+%28Basel%29&rft.au=Pog%C3%A1ny%2C+Mikl%C3%B3s&rft.au=Dank%C3%B3%2C+Tam%C3%A1s&rft.au=Hegyi-Kal%C3%B3%2C+J%C3%BAlia&rft.au=K%C3%A1m%C3%A1n-T%C3%B3th%2C+Evelin&rft.date=2022-03-24&rft.pub=MDPI&rft.eissn=2223-7747&rft.volume=11&rft.issue=7&rft_id=info:doi/10.3390%2Fplants11070864&rft_id=info%3Apmid%2F35406844&rft.externalDocID=PMC9003472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon