Excellent performance of W–Y2O3 composite via powder process improvement and Y2O3 refinement
[Display omitted] •An improved wet chemical method where the TEA surfactant addition and an appropriate calcination process are employed is developed to fabricate ultrafine W-Y2O3 composite powders.•The W-Y2O3 composites possess superior mechanical properties compared with the pure tungsten counterp...
Saved in:
Published in | Materials & design Vol. 212; p. 110249 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•An improved wet chemical method where the TEA surfactant addition and an appropriate calcination process are employed is developed to fabricate ultrafine W-Y2O3 composite powders.•The W-Y2O3 composites possess superior mechanical properties compared with the pure tungsten counterparts.•Molecular dynamics simulation analysis reveals the strengthening microscopic mechanism of second phase particles on the mechanical performances of W-Y2O3 composites.•The addition of Y2O3 second phase particles is capable of improving the helium ion irradiation resistance of tungsten-based composites.
In this article, Y2O3-reinforced tungsten composites are fabricated by using an improved wet chemical method combined with the spark plasma sintering (SPS). Triethanolamine (TEA) surfactant addition and an appropriate calcination process are innovatively introduced into this wet chemical method. The results show that ultrafine composite powders with nano-sized Y2O3 dispersions in the tungsten matrix can be obtained through the improved wet chemical method. Using the SPS, the average sizes of Y2O3 particles within tungsten grains and at grain boundaries are identified to be 13.5 and 50 nm, respectively. It is found that the phase interface between W and Y2O3 is a typical semicoherent interface. We observe that the W-Y2O3 composites possess superior mechanical properties compared with the pure tungsten counterparts. The results inferred from atomistic simulations reveal that the added Y2O3 particles can effectively pin the dislocation and impede the dislocation movement, thus enhancing the mechanical performances of W-Y2O3 composites. In addition, the addition of Y2O3 particles is also able to improve the helium ion irradiation resistance of tungsten-based composites. This study is expected to provide a certain reference for the manufacture of large-sized tungsten-based materials. |
---|---|
AbstractList | In this article, Y2O3-reinforced tungsten composites are fabricated by using an improved wet chemical method combined with the spark plasma sintering (SPS). Triethanolamine (TEA) surfactant addition and an appropriate calcination process are innovatively introduced into this wet chemical method. The results show that ultrafine composite powders with nano-sized Y2O3 dispersions in the tungsten matrix can be obtained through the improved wet chemical method. Using the SPS, the average sizes of Y2O3 particles within tungsten grains and at grain boundaries are identified to be 13.5 and 50 nm, respectively. It is found that the phase interface between W and Y2O3 is a typical semicoherent interface. We observe that the W-Y2O3 composites possess superior mechanical properties compared with the pure tungsten counterparts. The results inferred from atomistic simulations reveal that the added Y2O3 particles can effectively pin the dislocation and impede the dislocation movement, thus enhancing the mechanical performances of W-Y2O3 composites. In addition, the addition of Y2O3 particles is also able to improve the helium ion irradiation resistance of tungsten-based composites. This study is expected to provide a certain reference for the manufacture of large-sized tungsten-based materials. [Display omitted] •An improved wet chemical method where the TEA surfactant addition and an appropriate calcination process are employed is developed to fabricate ultrafine W-Y2O3 composite powders.•The W-Y2O3 composites possess superior mechanical properties compared with the pure tungsten counterparts.•Molecular dynamics simulation analysis reveals the strengthening microscopic mechanism of second phase particles on the mechanical performances of W-Y2O3 composites.•The addition of Y2O3 second phase particles is capable of improving the helium ion irradiation resistance of tungsten-based composites. In this article, Y2O3-reinforced tungsten composites are fabricated by using an improved wet chemical method combined with the spark plasma sintering (SPS). Triethanolamine (TEA) surfactant addition and an appropriate calcination process are innovatively introduced into this wet chemical method. The results show that ultrafine composite powders with nano-sized Y2O3 dispersions in the tungsten matrix can be obtained through the improved wet chemical method. Using the SPS, the average sizes of Y2O3 particles within tungsten grains and at grain boundaries are identified to be 13.5 and 50 nm, respectively. It is found that the phase interface between W and Y2O3 is a typical semicoherent interface. We observe that the W-Y2O3 composites possess superior mechanical properties compared with the pure tungsten counterparts. The results inferred from atomistic simulations reveal that the added Y2O3 particles can effectively pin the dislocation and impede the dislocation movement, thus enhancing the mechanical performances of W-Y2O3 composites. In addition, the addition of Y2O3 particles is also able to improve the helium ion irradiation resistance of tungsten-based composites. This study is expected to provide a certain reference for the manufacture of large-sized tungsten-based materials. |
ArticleNumber | 110249 |
Author | Yao, Gang Wang, Zumin Liu, Xuepeng Zan, Xiang Xu, Qiu Wu, Yucheng Zhao, Zhihao Cheng, Jigui Luo, Laima |
Author_xml | – sequence: 1 givenname: Gang surname: Yao fullname: Yao, Gang organization: School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 2 givenname: Xuepeng surname: Liu fullname: Liu, Xuepeng organization: Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China – sequence: 3 givenname: Zhihao surname: Zhao fullname: Zhao, Zhihao organization: School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 4 givenname: Laima surname: Luo fullname: Luo, Laima email: luolaima@126.com organization: School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 5 givenname: Jigui surname: Cheng fullname: Cheng, Jigui email: jgcheng63@sina.com organization: School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 6 givenname: Xiang surname: Zan fullname: Zan, Xiang organization: School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 7 givenname: Zumin surname: Wang fullname: Wang, Zumin organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China – sequence: 8 givenname: Qiu surname: Xu fullname: Xu, Qiu organization: Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka-fu 590-0494, Japan – sequence: 9 givenname: Yucheng surname: Wu fullname: Wu, Yucheng organization: School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China |
BookMark | eNqFkUGKFDEUQIOMYM_oDVzkAtXmJ6lKxYUgwzgODMxGETeGVPIjaaoqRRJa3XkHb-hJrO4SFy50lfDhPfjvX5KLOc1IyHNge2DQvTjsJ1s9lj1nHPYAjEv9iOygV6KRoNUF2THeyQa4ap-Qy1IOjHGuhNyRTzdfHY4jzpUumEPKk50d0hToh5_ff3zkD4K6NC2pxIr0GC1d0hePmS45OSyFxmn9HXE6Cezs6ZnIGOJ8nj0lj4MdCz77_V6R929u3l2_be4fbu-uX983TvayNk77YdAyyA6VBi7AeUAcvFCDgE44yUKvlLU9tCIA8n6QneeqF161wnoprsjd5vXJHsyS42TzN5NsNOdByp-NzTW6EQ22XIPXgx9aJ9EHywamUfc6hE60aFeX3Fwup1LWXf74gJlTb3MwW29z6m223iv28i_MxWprTHPNNo7_g19tMK6RjhGzKS7iegkfM7q6bhH_LfgFKf2iHQ |
CitedBy_id | crossref_primary_10_1016_j_ijrmhm_2022_106030 crossref_primary_10_1016_j_fusengdes_2023_113420 crossref_primary_10_1585_pfr_19_1405011 crossref_primary_10_1016_j_ceramint_2024_01_105 crossref_primary_10_1016_j_jallcom_2024_177042 crossref_primary_10_1016_j_matchar_2023_113460 crossref_primary_10_1016_j_scriptamat_2024_116439 crossref_primary_10_1016_j_mtcomm_2024_110044 crossref_primary_10_1016_j_net_2024_01_022 crossref_primary_10_1007_s42864_024_00291_z crossref_primary_10_1016_j_ijrmhm_2023_106534 crossref_primary_10_1016_j_mtcomm_2022_104955 crossref_primary_10_1016_j_ijrmhm_2023_106412 crossref_primary_10_1016_j_compositesb_2025_112204 crossref_primary_10_1016_j_ijrmhm_2024_107028 crossref_primary_10_1016_j_jnucmat_2022_153522 crossref_primary_10_3390_met15030294 crossref_primary_10_1007_s44251_025_00073_w crossref_primary_10_1016_j_msea_2024_147362 crossref_primary_10_1016_j_vacuum_2023_112912 crossref_primary_10_1016_j_ijrmhm_2024_106929 crossref_primary_10_3390_met14080842 crossref_primary_10_3390_met14091092 crossref_primary_10_1016_j_msea_2023_145867 crossref_primary_10_1016_j_ijrmhm_2023_106261 crossref_primary_10_1016_j_msea_2022_144238 crossref_primary_10_1016_j_jmrt_2022_08_127 crossref_primary_10_1016_j_ijrmhm_2023_106369 crossref_primary_10_3390_met12040686 crossref_primary_10_1007_s11665_023_08358_7 crossref_primary_10_1016_j_jallcom_2024_175815 crossref_primary_10_1016_j_nme_2024_101602 crossref_primary_10_1016_j_matchar_2024_113988 crossref_primary_10_1016_j_msea_2025_147854 crossref_primary_10_1016_j_jallcom_2024_178002 crossref_primary_10_1016_j_msea_2023_145455 crossref_primary_10_1016_j_jmst_2023_11_004 crossref_primary_10_1016_j_msea_2023_144585 |
Cites_doi | 10.1016/j.ijrmhm.2017.09.001 10.1016/j.jnucmat.2013.01.008 10.1016/j.jnucmat.2011.03.007 10.1016/j.ijrmhm.2014.04.005 10.1016/S0921-5093(00)00773-5 10.1007/s40195-019-00975-3 10.1016/j.apt.2019.08.024 10.1016/j.jnucmat.2012.11.017 10.1016/j.jnucmat.2014.06.024 10.1039/C4CE00361F 10.1038/srep12755 10.1016/j.jnucmat.2007.02.007 10.1016/j.msea.2012.01.011 10.1016/j.mtla.2019.100268 10.1016/j.apt.2015.01.015 10.1016/j.actamat.2018.04.048 10.1016/j.apt.2015.04.007 10.1016/j.apsusc.2018.10.268 10.1016/j.fusengdes.2015.08.006 10.1016/j.msea.2011.04.015 10.1134/S106377881607005X 10.1002/pssb.2221670216 10.1016/j.jnucmat.2016.07.049 10.1002/adfm.201002477 10.1016/j.ijrmhm.2009.11.010 10.1021/acsami.1c05639 10.1103/PhysRevB.73.020101 10.1038/srep04716 10.1016/S0920-3796(03)00174-1 10.1016/0022-4596(81)90026-8 10.1016/j.engfracmech.2012.07.021 10.1016/j.actamat.2018.01.015 10.1016/j.actamat.2021.116629 10.1016/j.jnucmat.2007.03.006 10.1016/j.fusengdes.2020.112198 10.1016/j.jallcom.2016.03.303 10.1111/j.1151-2916.2003.tb03535.x 10.1039/C6RA28015C 10.1080/14786436508223952 10.1007/s10562-012-0785-5 10.1016/j.ijrmhm.2018.11.014 10.1016/j.matdes.2016.07.104 10.1016/j.jallcom.2018.11.279 10.1016/j.powtec.2013.11.052 10.1016/j.matdes.2018.11.001 10.1016/j.jallcom.2015.10.059 10.1080/14786436508224943 10.1016/j.fusengdes.2018.10.009 10.1016/j.ijimpeng.2018.05.001 10.1016/j.jmst.2019.08.010 10.1111/j.1151-2916.1998.tb02784.x 10.1016/j.pnucene.2020.103241 10.1016/j.apt.2021.08.031 10.1039/c2jm30652b 10.1016/j.ijhydene.2019.05.008 10.1007/s10853-014-8289-x 10.1038/nmat3544 10.1111/j.1151-2916.2000.tb01473.x |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2021.110249 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_e5291d9bdb5c4edfa0b09e989ff635ea 10_1016_j_matdes_2021_110249 S0264127521008042 |
GroupedDBID | --K --M -~X .~1 0SF 1B1 1~. 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BCNDV BJAXD BKOJK BLXMC EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KOM M41 MO0 NCXOZ OAUVE OK1 P2P PC. Q38 ROL SDF SDG SDP SPC SSM SST SSZ T5K ~G- 0R~ 29M AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ JJJVA MAGPM O9- P-8 P-9 R2- RIG RNS RPZ SEW SMS SSH WUQ EFKBS |
ID | FETCH-LOGICAL-c484t-c9dbb94f46e791231cd1eebd37b3163c40f877aa8153f1e28b46d2783d753ad43 |
IEDL.DBID | DOA |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:24:42 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Tue Jul 01 02:24:05 EDT 2025 Fri Feb 23 02:40:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Powder process improvement Mechanical properties Helium ion irradiation W-Y2O3 composites nano-sized Y2O3 |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-c9dbb94f46e791231cd1eebd37b3163c40f877aa8153f1e28b46d2783d753ad43 |
OpenAccessLink | https://doaj.org/article/e5291d9bdb5c4edfa0b09e989ff635ea |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e5291d9bdb5c4edfa0b09e989ff635ea crossref_primary_10_1016_j_matdes_2021_110249 crossref_citationtrail_10_1016_j_matdes_2021_110249 elsevier_sciencedirect_doi_10_1016_j_matdes_2021_110249 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-15 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Sun, Ding, Yang, Zhang, Zhao (b0265) 2019; 44 Zhang, Yao, Zhou, Wang, Kaitasov, Daymond (b0260) 2014; 455 Cunningham, Hattar, Zhu, Edwards, Trelewic (b0280) 2021; 206 Bahrami, Ying, Wolff, Rodríguez, Schierning, Nielsch, He (b0120) 2021; 13 Yao, Tan, Fu, Luo, Zan, Xu, Liu, Zhu, Cheng, Wu (b0045) 2018; 137 Pokluda, Šandera (b0030) 1991; 167 Hu, Dong, Yu, Ma, Liu (b0050) 2020; 36 Sun, Chen, Huang, Lin, Tang (b0270) 2019; 467–468 Pitts, Carpentier, Escourbiac, Hirai, Komarov, Lisgo, Kukushkin, Loarte, Merola, Sashala Naik, Mitteau, Sugihara, Bazylev, Stangeby (b0025) 2013; 438 He, Hu, Yi, Wang, Hua, Li (b0175) 2012; 142 Pang, Luo, Guo, Guo, Hou (b0205) 2010; 28 Nguyen-Manh, Dudarev, Horsfield (b0245) 2007; 367-370 Zhu, Tan, Li, Yang, He (b0155) 2015; 26 de Groot, Ahmad, Dahiya, Engeln, Goedheer, Lopes Cardozo, Veremiyenko (b0015) 2003; 66–68 Zhu, Zhang, Luo, Chen, Cheng, Wu (b0055) 2015; 26 Bloom, Busby, Duty, Maziasz, McGreevy, Nelson, Pint, Tortorelli, Zinkle (b0005) 2007; 367–370 Yar, Wahlberg, Abuelnaga, Johnsson, Muhammed (b0160) 2014; 49 M.L. Zhao, L.M. Luo, J.S. Lin, X. Zan, X.Y. Zhu, G.N. Luo, Y.C. Wu, Thermal shock behavior of W-0.5wt% Y Xia, Yan, Xu, Guo, Zhu, Ge (b0210) 2013; 434 Song, Sanborn (b0145) 2018; 119 El-Atwani, Quach, Efe, Cantwell, Heim, Schultz, Stach, Groza, Allain (b0125) 2011; 528 Yao, Tan, Luo, Zan, Xu, Xu, Zhu, Tokunaga, Wu (b0140) 2020; 121 Ren, Gou, Yang (b0180) 2017; 7 Zhou, Zhao, Tan, Luo, Xu, Zan, Xu, Tokunaga, Zhu, Wu (b0130) 2019; 79 Dong, Liu, Ma, Liu, Guo, Yamauchi, Alamri, Alothman, Hossain, Liu (b0095) 2017; 69 Sun, Song, Yu, Zhuang, Niu, Liu, Zhang, Qi (b0225) 2014; 45 Qin, Ren, Doerner, Wei, Lv, Chang, Tang, Deng, Jiang, Wang (b0290) 2018; 153 Yar, Wahlberg, Bergqvist, Salem, Johnsson, Muhammed (b0195) 2011; 412 Liu, Zhang, Jiang, Ding, Sun, Sun, Ma (b0075) 2013; 12 Liu, Gao (b0105) 2003; 86 Eyre, Bullough (b0255) 1965; 12 Zhang, Yan, Lang, Wang, Ge (b0040) 2016; 109 Xu, Xu, Wu, Luo, Zan, Yao, Xi, Wang, Ding, Bi, Zhu, Xu, Wu, Wu (b0150) 2021; 164 Zheng, Ou, Strano, Kaner, Mitchell, Kalantar-zadeh (b0190) 2011; 21 El-Atwani, Hinks, Greaves, Gonderman, Qiu, Efe, Allain (b0295) 2014; 4 O Liu, Xie, Fang, Zhang, Wang, Hao, Liu, Dai (b0070) 2016; 657 Masters (b0250) 1965; 11 Gludovatz, Wurster, Hoffmann, Pippan (b0220) 2013; 100 Yar, Wahlberg, Bergqvist, Salem, Johnsson, Muhammed (b0235) 2011; 412 Nguyen-Manh, Horsfield, Dudarev (b0240) 2006; 73 Zhang, Wen, Zhang (b0035) 2014; 253 Wu, Hou, Luo, Zan, Zhu, Li, Xu, Cheng, Luo, Chen (b0215) 2019; 779 Tan, Luo, Chen, Zhu, Zan, Luo, Chen, Li, Cheng, Liu, Wu (b0230) 2015; 5 Tan, Li, Luo, Chen, Zan, Zhu, Luo, Wu (b0065) 2015; 100 Zheng, Chen, Yu, Sun, Zhou, Pei (b0185) 2014; 16 Chen, Niu, Wang, Tian, Kecskes, Zhu, Wei (b0275) 2018; 147 Wahlberg, Yar, Abuelnaga, Salem, Johnsson, Muhammed (b0165) 2012; 22 Das, Pathak, Pramanik (b0110) 1998; 81 alloy prepared via a novel chemical method. J. Nucl. Mater. 479 (2106) 616–622. Pati, Pramanik (b0100) 2000; 83 Kalyan Kamal, Sahoo, Vimala, Shanker, Ghosal, Durai (b0090) 2016; 678 Yao, Luo, Tan, Zan, Xu, Zhu, Lu, Cao, Cheng, Wu (b0285) 2019; 6 Lv, Liu, Wu, Zhang, Sun, Dang, Hu (b0085) 2019; 30 Gerand, Nowogrocki, Figlarz (b0170) 1981; 37 Salur, Aslan, Kuntoğlu, Acarer (b0060) 2021; 32 Liu, Dong, Ma, Qian, Ma, Yu, Liu (b0200) 2020; 33 Battabyal, Schäublin, Spätig, Baluc (b0135) 2012; 538 Omori (b0115) 2000; 287 Budaev (b0010) 2016; 79 Das, Liu, Xu, Hofmann (b0020) 2018; 160 Yar (10.1016/j.matdes.2021.110249_b0235) 2011; 412 Sun (10.1016/j.matdes.2021.110249_b0225) 2014; 45 Masters (10.1016/j.matdes.2021.110249_b0250) 1965; 11 Eyre (10.1016/j.matdes.2021.110249_b0255) 1965; 12 Chen (10.1016/j.matdes.2021.110249_b0275) 2018; 147 Liu (10.1016/j.matdes.2021.110249_b0105) 2003; 86 Liu (10.1016/j.matdes.2021.110249_b0200) 2020; 33 Pitts (10.1016/j.matdes.2021.110249_b0025) 2013; 438 Battabyal (10.1016/j.matdes.2021.110249_b0135) 2012; 538 Bahrami (10.1016/j.matdes.2021.110249_b0120) 2021; 13 Tan (10.1016/j.matdes.2021.110249_b0230) 2015; 5 Salur (10.1016/j.matdes.2021.110249_b0060) 2021; 32 Das (10.1016/j.matdes.2021.110249_b0110) 1998; 81 Cunningham (10.1016/j.matdes.2021.110249_b0280) 2021; 206 Pokluda (10.1016/j.matdes.2021.110249_b0030) 1991; 167 Hu (10.1016/j.matdes.2021.110249_b0050) 2020; 36 Lv (10.1016/j.matdes.2021.110249_b0085) 2019; 30 Song (10.1016/j.matdes.2021.110249_b0145) 2018; 119 de Groot (10.1016/j.matdes.2021.110249_b0015) 2003; 66–68 10.1016/j.matdes.2021.110249_b0080 Zheng (10.1016/j.matdes.2021.110249_b0185) 2014; 16 Zhang (10.1016/j.matdes.2021.110249_b0260) 2014; 455 Zhu (10.1016/j.matdes.2021.110249_b0055) 2015; 26 Qin (10.1016/j.matdes.2021.110249_b0290) 2018; 153 Zhu (10.1016/j.matdes.2021.110249_b0155) 2015; 26 Liu (10.1016/j.matdes.2021.110249_b0075) 2013; 12 He (10.1016/j.matdes.2021.110249_b0175) 2012; 142 Kalyan Kamal (10.1016/j.matdes.2021.110249_b0090) 2016; 678 Bloom (10.1016/j.matdes.2021.110249_b0005) 2007; 367–370 Sun (10.1016/j.matdes.2021.110249_b0270) 2019; 467–468 Gerand (10.1016/j.matdes.2021.110249_b0170) 1981; 37 Nguyen-Manh (10.1016/j.matdes.2021.110249_b0240) 2006; 73 Liu (10.1016/j.matdes.2021.110249_b0070) 2016; 657 Yar (10.1016/j.matdes.2021.110249_b0195) 2011; 412 Yar (10.1016/j.matdes.2021.110249_b0160) 2014; 49 Yao (10.1016/j.matdes.2021.110249_b0045) 2018; 137 Nguyen-Manh (10.1016/j.matdes.2021.110249_b0245) 2007; 367-370 Pang (10.1016/j.matdes.2021.110249_b0205) 2010; 28 Xia (10.1016/j.matdes.2021.110249_b0210) 2013; 434 Ren (10.1016/j.matdes.2021.110249_b0180) 2017; 7 Xu (10.1016/j.matdes.2021.110249_b0150) 2021; 164 Budaev (10.1016/j.matdes.2021.110249_b0010) 2016; 79 Tan (10.1016/j.matdes.2021.110249_b0065) 2015; 100 Wu (10.1016/j.matdes.2021.110249_b0215) 2019; 779 El-Atwani (10.1016/j.matdes.2021.110249_b0125) 2011; 528 Yao (10.1016/j.matdes.2021.110249_b0140) 2020; 121 Das (10.1016/j.matdes.2021.110249_b0020) 2018; 160 Dong (10.1016/j.matdes.2021.110249_b0095) 2017; 69 Pati (10.1016/j.matdes.2021.110249_b0100) 2000; 83 Omori (10.1016/j.matdes.2021.110249_b0115) 2000; 287 Zhang (10.1016/j.matdes.2021.110249_b0040) 2016; 109 El-Atwani (10.1016/j.matdes.2021.110249_b0295) 2014; 4 Zhang (10.1016/j.matdes.2021.110249_b0035) 2014; 253 Sun (10.1016/j.matdes.2021.110249_b0265) 2019; 44 Wahlberg (10.1016/j.matdes.2021.110249_b0165) 2012; 22 Gludovatz (10.1016/j.matdes.2021.110249_b0220) 2013; 100 Yao (10.1016/j.matdes.2021.110249_b0285) 2019; 6 Zheng (10.1016/j.matdes.2021.110249_b0190) 2011; 21 Zhou (10.1016/j.matdes.2021.110249_b0130) 2019; 79 |
References_xml | – volume: 81 start-page: 3357 year: 1998 end-page: 3360 ident: b0110 article-title: Low-temperature preparation of nanocrystalline lead zirconate titanate and lead lanthanum zirconate titanate powders using triethanolamine publication-title: J. Am. Ceram. Soc. – volume: 16 start-page: 6107 year: 2014 end-page: 6113 ident: b0185 article-title: Template and surfactant free synthesis of hierarchical WO publication-title: Cryst. Eng. Comm. – volume: 164 year: 2021 ident: b0150 article-title: Plasma-surface interaction experimental device: PSIEC and its first plasma exposure experiments on bulk tungsten and coatings publication-title: Fusion. Eng. Des. – volume: 455 start-page: 242 year: 2014 end-page: 247 ident: b0260 article-title: Radiation induced microstructures in ODS 316 austenitic steel under dual-beam ions publication-title: J. Nucl. Mater. – volume: 32 start-page: 3826 year: 2021 end-page: 3844 ident: b0060 article-title: Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y publication-title: Adv. Powder. Technol. – volume: 367–370 start-page: 1 year: 2007 end-page: 10 ident: b0005 article-title: Critical questions in materials science and engineering for successful development of fusion power publication-title: J. Nucl. Mater. – volume: 412 start-page: 227 year: 2011 end-page: 232 ident: b0235 article-title: Spark plasma sintering of tungsten–yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization publication-title: J. Nucl. Mater. – volume: 137 start-page: 325 year: 2018 end-page: 330 ident: b0045 article-title: Isotropic thermal conductivity in rolled large-sized W-Y publication-title: Fusion. Eng. Des. – volume: 12 start-page: 31 year: 1965 end-page: 39 ident: b0255 article-title: On the formation of interstitial loops in B.C.C. metals publication-title: Philos. Mag. – volume: 73 start-page: 20101 year: 2006 ident: b0240 article-title: Self-interstitial atom defects in bcc transition metals: group-specific trends publication-title: Phys. Rev. B – volume: 438 start-page: S48 year: 2013 end-page: S56 ident: b0025 article-title: A full tungsten divertor for ITER: Physics issues and design status publication-title: J. Nucl. Mater. – volume: 528 start-page: 5670 year: 2011 end-page: 5677 ident: b0125 article-title: Multimodal grain size distribution and high hardness in fine grained tungsten publication-title: Mat. Sci. Eng. A. – volume: 49 start-page: 5703 year: 2014 end-page: 5713 ident: b0160 article-title: Processing and sintering of yttrium-doped tungsten oxide nanopowders to tungsten-based composites publication-title: J. Mater. Sci. – volume: 153 start-page: 147 year: 2018 end-page: 155 ident: b0290 article-title: Nanochannel structures in W enhance radiation tolerance publication-title: Acta. Mater. – volume: 26 start-page: 640 year: 2015 end-page: 643 ident: b0055 article-title: Microstructure and properties of W/Sm publication-title: Adv. Powder. Technol. – volume: 206 year: 2021 ident: b0280 article-title: Suppressing irradiation induced grain growth and defect accumulation in nanocrystalline tungsten through grain boundary doping publication-title: Acta. Mater. – reference: alloy prepared via a novel chemical method. J. Nucl. Mater. 479 (2106) 616–622. – volume: 30 start-page: 2768 year: 2019 end-page: 2778 ident: b0085 article-title: Effect of Y(NO publication-title: Adv. Powder. Technol. – volume: 7 start-page: 12085 year: 2017 end-page: 12088 ident: b0180 article-title: Ultrathin Ag nanoparticles anchored on urchin-like WO publication-title: RSC. Adv. – volume: 5 start-page: 12755 year: 2015 ident: b0230 article-title: Mechanical properties and microstructural change of W-Y publication-title: Sci. Rep. – volume: 467–468 start-page: 1134 year: 2019 end-page: 1139 ident: b0270 article-title: Effects of interfaces on the helium bubble formation and radiation hardening of an austenitic stainless steel achieved by additive manufacturing publication-title: Appl. Surf. Sci. – volume: 434 start-page: 85 year: 2013 end-page: 89 ident: b0210 article-title: Bulk tungsten with uniformly dispersed La publication-title: J. Nucl. Mater. – volume: 79 start-page: 95 year: 2019 end-page: 101 ident: b0130 article-title: Densification and microstructure evolution of W-TiC-Y publication-title: Int. J. Refract. Met. H. – volume: 412 start-page: 227 year: 2011 end-page: 232 ident: b0195 article-title: Spark plasma sintering of tungsten–yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization publication-title: J. Nucl. Mater. – volume: 44 start-page: 17105 year: 2019 end-page: 17113 ident: b0265 article-title: First-principles investigation of hydrogen behavior in different oxides in ODS steels publication-title: Int. J. Hydrogen. Energ. – volume: 678 start-page: 403 year: 2016 end-page: 409 ident: b0090 article-title: Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route publication-title: J. Alloy. Compd. – reference: O – volume: 779 start-page: 926 year: 2019 end-page: 941 ident: b0215 article-title: Preparation of ultrafine-grained/ nanostructured tungsten materials: An overview publication-title: J. Alloy. Compd. – volume: 109 start-page: 443 year: 2016 end-page: 455 ident: b0040 article-title: Evolution of hot rolling texture in pure tungsten and lanthanum oxide doped tungsten with various reductions publication-title: Mater. Design. – volume: 657 start-page: 73 year: 2016 end-page: 80 ident: b0070 article-title: Nanostructured yttria dispersion-strengthened tungsten synthesized by sol-gel method publication-title: J. Alloy. Compd. – volume: 367-370 start-page: 257 year: 2007 end-page: 262 ident: b0245 article-title: Systematic group-specific trends for point defects in bcc transition metals: an ab initio study publication-title: J. Nucl. Mater. – volume: 11 start-page: 881 year: 1965 end-page: 893 ident: b0250 article-title: Dislocation loops in irradiated iron publication-title: Philos. Mag. – volume: 22 start-page: 12622 year: 2012 end-page: 12628 ident: b0165 article-title: Fabrication of nanostructured W-Y publication-title: J. Mater. Chem. – volume: 6 year: 2019 ident: b0285 article-title: Effect of Y publication-title: Materialia – volume: 160 start-page: 1226 year: 2018 end-page: 1237 ident: b0020 article-title: Helium-implantation-induced lattice strains and defects in tungsten probed by X-ray micro-diffraction publication-title: Mater. Design. – volume: 86 start-page: 1651 year: 2003 end-page: 1653 ident: b0105 article-title: Low-temperature synthesis of nanocrystalline yttrium aluminum garnet powder using triethanolamine publication-title: J. Am. Ceram. Soc. – volume: 167 start-page: 543 year: 1991 end-page: 550 ident: b0030 article-title: On the intrinsic ductility and brittleness of crystals publication-title: Phys. Status. Solidi. B. – volume: 66–68 start-page: 413 year: 2003 end-page: 417 ident: b0015 article-title: Magnum-psi, a new linear plasma generator for plasma-surface interaction studies in ITER relevant conditions publication-title: Fusion. Eng. Des. – volume: 12 start-page: 344 year: 2013 end-page: 350 ident: b0075 article-title: Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility publication-title: Nat. Mater. – volume: 142 start-page: 637 year: 2012 end-page: 645 ident: b0175 article-title: Preparation and improved photocatalytic activity of WO publication-title: Catal. Lett. – volume: 28 start-page: 343 year: 2010 end-page: 348 ident: b0205 article-title: Inhibition of tungsten particle growth during reduction of V-doped WO publication-title: Int. J. Refract. Met. H. – volume: 4 start-page: 4716 year: 2014 ident: b0295 article-title: In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments publication-title: Sci. Rep. – volume: 119 start-page: 40 year: 2018 end-page: 44 ident: b0145 article-title: Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates publication-title: Int. J. Impact. Eng. – volume: 26 start-page: 1013 year: 2015 end-page: 1020 ident: b0155 article-title: Refining mechanisms of arsenic in the hydrogen reduction process of tungsten oxide publication-title: Adv. Powder. Technol. – volume: 121 year: 2020 ident: b0140 article-title: Influence of helium ion irradiation damage behavior after laser thermal shock of W-2%vol Y publication-title: Prog. Nucl. Energ. – reference: M.L. Zhao, L.M. Luo, J.S. Lin, X. Zan, X.Y. Zhu, G.N. Luo, Y.C. Wu, Thermal shock behavior of W-0.5wt% Y – volume: 13 start-page: 38561 year: 2021 end-page: 38568 ident: b0120 article-title: Reduced lattice thermal conductivity for Half-Heusler ZrNiSn through cryogenic mechanical alloying publication-title: ACS Appl. Mater. Interfaces. – volume: 538 start-page: 53 year: 2012 end-page: 57 ident: b0135 article-title: W-2wt.%Y publication-title: Mat. Sci. Eng. A. – volume: 83 start-page: 1822 year: 2000 end-page: 1824 ident: b0100 article-title: Low-temperature chemical synthesis of nanocrystalline MgAl publication-title: J. Am. Ceram. Soc. – volume: 45 start-page: 76 year: 2014 end-page: 79 ident: b0225 article-title: Microstructural studies of W–10 wt.% Cu composites prepared by using ultrafine composite powder publication-title: Int. J. Refract. Met. H. – volume: 79 start-page: 1137 year: 2016 end-page: 1162 ident: b0010 article-title: Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review) publication-title: Phys. Atom. Nucl. – volume: 100 start-page: 571 year: 2015 end-page: 575 ident: b0065 article-title: Effect of mechanical milling on the microstructure of tungsten under He+ irradiation condition publication-title: Fusion. Eng. Des. – volume: 33 start-page: 275 year: 2020 end-page: 280 ident: b0200 article-title: Influence of yttrium addition on the reduction property of tungsten oxide prepared via wet chemical method publication-title: Acta, Metall. Sin-Engl. – volume: 37 start-page: 131 year: 1981 ident: b0170 article-title: A new tungsten trioxide hydrate, WO publication-title: J. Solid. State. Chem. – volume: 36 start-page: 84 year: 2020 end-page: 90 ident: b0050 article-title: Synthesis of W-Y publication-title: J. Mater. Sci. Technol. – volume: 69 start-page: 266 year: 2017 end-page: 272 ident: b0095 article-title: Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y publication-title: Int. J. Refract. Met. H. – volume: 147 start-page: 100 year: 2018 end-page: 112 ident: b0275 article-title: A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain publication-title: Acta. Mater. – volume: 287 start-page: 183 year: 2000 end-page: 188 ident: b0115 article-title: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) publication-title: Mat. Sci. Eng. A. – volume: 253 start-page: 464 year: 2014 end-page: 466 ident: b0035 article-title: Low temperature preparation of tungsten nanoparticles from molten salt publication-title: Powder. Technol. – volume: 100 start-page: 76 year: 2013 end-page: 85 ident: b0220 article-title: A study into the crack propagation resistance of pure tungsten publication-title: Eng. Fract. Mech. – volume: 21 start-page: 2175 year: 2011 end-page: 2196 ident: b0190 article-title: Nanostructured tungsten oxide-properties, synthesis, and applications publication-title: Adv. Funct. Mater. – volume: 69 start-page: 266 year: 2017 ident: 10.1016/j.matdes.2021.110249_b0095 article-title: Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y2O3 alloy publication-title: Int. J. Refract. Met. H. doi: 10.1016/j.ijrmhm.2017.09.001 – volume: 438 start-page: S48 year: 2013 ident: 10.1016/j.matdes.2021.110249_b0025 article-title: A full tungsten divertor for ITER: Physics issues and design status publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2013.01.008 – volume: 412 start-page: 227 issue: 2 year: 2011 ident: 10.1016/j.matdes.2021.110249_b0195 article-title: Spark plasma sintering of tungsten–yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2011.03.007 – volume: 45 start-page: 76 year: 2014 ident: 10.1016/j.matdes.2021.110249_b0225 article-title: Microstructural studies of W–10 wt.% Cu composites prepared by using ultrafine composite powder publication-title: Int. J. Refract. Met. H. doi: 10.1016/j.ijrmhm.2014.04.005 – volume: 287 start-page: 183 issue: 2 year: 2000 ident: 10.1016/j.matdes.2021.110249_b0115 article-title: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) publication-title: Mat. Sci. Eng. A. doi: 10.1016/S0921-5093(00)00773-5 – volume: 33 start-page: 275 issue: 2 year: 2020 ident: 10.1016/j.matdes.2021.110249_b0200 article-title: Influence of yttrium addition on the reduction property of tungsten oxide prepared via wet chemical method publication-title: Acta, Metall. Sin-Engl. doi: 10.1007/s40195-019-00975-3 – volume: 30 start-page: 2768 year: 2019 ident: 10.1016/j.matdes.2021.110249_b0085 article-title: Effect of Y(NO3)3 additive on morphologies and size of metallic W particles produced by hydrogen reduction publication-title: Adv. Powder. Technol. doi: 10.1016/j.apt.2019.08.024 – volume: 434 start-page: 85 issue: 1-3 year: 2013 ident: 10.1016/j.matdes.2021.110249_b0210 article-title: Bulk tungsten with uniformly dispersed La2O3 nanoparticles sintered from co-precipitated La2O3/W nanoparticles publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2012.11.017 – volume: 455 start-page: 242 issue: 1-3 year: 2014 ident: 10.1016/j.matdes.2021.110249_b0260 article-title: Radiation induced microstructures in ODS 316 austenitic steel under dual-beam ions publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.06.024 – volume: 16 start-page: 6107 issue: 27 year: 2014 ident: 10.1016/j.matdes.2021.110249_b0185 article-title: Template and surfactant free synthesis of hierarchical WO3·0.33H2O via a facile solvothermal route for photocatalytic RhB degradation publication-title: Cryst. Eng. Comm. doi: 10.1039/C4CE00361F – volume: 5 start-page: 12755 year: 2015 ident: 10.1016/j.matdes.2021.110249_b0230 article-title: Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation publication-title: Sci. Rep. doi: 10.1038/srep12755 – volume: 367–370 start-page: 1 year: 2007 ident: 10.1016/j.matdes.2021.110249_b0005 article-title: Critical questions in materials science and engineering for successful development of fusion power publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2007.02.007 – volume: 538 start-page: 53 issue: 15 year: 2012 ident: 10.1016/j.matdes.2021.110249_b0135 article-title: W-2wt.%Y2O3 composite: Microstructure and mechanical properties publication-title: Mat. Sci. Eng. A. doi: 10.1016/j.msea.2012.01.011 – volume: 6 year: 2019 ident: 10.1016/j.matdes.2021.110249_b0285 article-title: Effect of Y2O3 particles on the helium ion irradiation damage of W-2%Y2O3 composite prepared by wet chemical method publication-title: Materialia doi: 10.1016/j.mtla.2019.100268 – volume: 26 start-page: 640 year: 2015 ident: 10.1016/j.matdes.2021.110249_b0055 article-title: Microstructure and properties of W/Sm2O3 composites prepared spark plasma sintering publication-title: Adv. Powder. Technol. doi: 10.1016/j.apt.2015.01.015 – volume: 153 start-page: 147 year: 2018 ident: 10.1016/j.matdes.2021.110249_b0290 article-title: Nanochannel structures in W enhance radiation tolerance publication-title: Acta. Mater. doi: 10.1016/j.actamat.2018.04.048 – volume: 26 start-page: 1013 issue: 3 year: 2015 ident: 10.1016/j.matdes.2021.110249_b0155 article-title: Refining mechanisms of arsenic in the hydrogen reduction process of tungsten oxide publication-title: Adv. Powder. Technol. doi: 10.1016/j.apt.2015.04.007 – volume: 467–468 start-page: 1134 year: 2019 ident: 10.1016/j.matdes.2021.110249_b0270 article-title: Effects of interfaces on the helium bubble formation and radiation hardening of an austenitic stainless steel achieved by additive manufacturing publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.268 – volume: 100 start-page: 571 year: 2015 ident: 10.1016/j.matdes.2021.110249_b0065 article-title: Effect of mechanical milling on the microstructure of tungsten under He+ irradiation condition publication-title: Fusion. Eng. Des. doi: 10.1016/j.fusengdes.2015.08.006 – volume: 528 start-page: 5670 issue: 18 year: 2011 ident: 10.1016/j.matdes.2021.110249_b0125 article-title: Multimodal grain size distribution and high hardness in fine grained tungsten publication-title: Mat. Sci. Eng. A. doi: 10.1016/j.msea.2011.04.015 – volume: 79 start-page: 1137 issue: 7 year: 2016 ident: 10.1016/j.matdes.2021.110249_b0010 article-title: Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review) publication-title: Phys. Atom. Nucl. doi: 10.1134/S106377881607005X – volume: 167 start-page: 543 issue: 2 year: 1991 ident: 10.1016/j.matdes.2021.110249_b0030 article-title: On the intrinsic ductility and brittleness of crystals publication-title: Phys. Status. Solidi. B. doi: 10.1002/pssb.2221670216 – ident: 10.1016/j.matdes.2021.110249_b0080 doi: 10.1016/j.jnucmat.2016.07.049 – volume: 21 start-page: 2175 issue: 12 year: 2011 ident: 10.1016/j.matdes.2021.110249_b0190 article-title: Nanostructured tungsten oxide-properties, synthesis, and applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002477 – volume: 28 start-page: 343 issue: 3 year: 2010 ident: 10.1016/j.matdes.2021.110249_b0205 article-title: Inhibition of tungsten particle growth during reduction of V-doped WO3 nanoparticles prepared by co-precipitation method publication-title: Int. J. Refract. Met. H. doi: 10.1016/j.ijrmhm.2009.11.010 – volume: 13 start-page: 38561 issue: 32 year: 2021 ident: 10.1016/j.matdes.2021.110249_b0120 article-title: Reduced lattice thermal conductivity for Half-Heusler ZrNiSn through cryogenic mechanical alloying publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.1c05639 – volume: 73 start-page: 20101 year: 2006 ident: 10.1016/j.matdes.2021.110249_b0240 article-title: Self-interstitial atom defects in bcc transition metals: group-specific trends publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.020101 – volume: 4 start-page: 4716 year: 2014 ident: 10.1016/j.matdes.2021.110249_b0295 article-title: In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments publication-title: Sci. Rep. doi: 10.1038/srep04716 – volume: 66–68 start-page: 413 year: 2003 ident: 10.1016/j.matdes.2021.110249_b0015 article-title: Magnum-psi, a new linear plasma generator for plasma-surface interaction studies in ITER relevant conditions publication-title: Fusion. Eng. Des. doi: 10.1016/S0920-3796(03)00174-1 – volume: 37 start-page: 131 issue: 1 year: 1981 ident: 10.1016/j.matdes.2021.110249_b0170 article-title: A new tungsten trioxide hydrate, WO3·0.33H2O: Preparation, characterization, and crystallographie study publication-title: J. Solid. State. Chem. doi: 10.1016/0022-4596(81)90026-8 – volume: 100 start-page: 76 year: 2013 ident: 10.1016/j.matdes.2021.110249_b0220 article-title: A study into the crack propagation resistance of pure tungsten publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2012.07.021 – volume: 147 start-page: 100 year: 2018 ident: 10.1016/j.matdes.2021.110249_b0275 article-title: A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain publication-title: Acta. Mater. doi: 10.1016/j.actamat.2018.01.015 – volume: 206 year: 2021 ident: 10.1016/j.matdes.2021.110249_b0280 article-title: Suppressing irradiation induced grain growth and defect accumulation in nanocrystalline tungsten through grain boundary doping publication-title: Acta. Mater. doi: 10.1016/j.actamat.2021.116629 – volume: 367-370 start-page: 257 year: 2007 ident: 10.1016/j.matdes.2021.110249_b0245 article-title: Systematic group-specific trends for point defects in bcc transition metals: an ab initio study publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2007.03.006 – volume: 164 year: 2021 ident: 10.1016/j.matdes.2021.110249_b0150 article-title: Plasma-surface interaction experimental device: PSIEC and its first plasma exposure experiments on bulk tungsten and coatings publication-title: Fusion. Eng. Des. doi: 10.1016/j.fusengdes.2020.112198 – volume: 678 start-page: 403 year: 2016 ident: 10.1016/j.matdes.2021.110249_b0090 article-title: Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.03.303 – volume: 86 start-page: 1651 issue: 10 year: 2003 ident: 10.1016/j.matdes.2021.110249_b0105 article-title: Low-temperature synthesis of nanocrystalline yttrium aluminum garnet powder using triethanolamine publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2003.tb03535.x – volume: 7 start-page: 12085 year: 2017 ident: 10.1016/j.matdes.2021.110249_b0180 article-title: Ultrathin Ag nanoparticles anchored on urchin-like WO3·0.33H2O for enhanced photocatalytic performance publication-title: RSC. Adv. doi: 10.1039/C6RA28015C – volume: 11 start-page: 881 issue: 113 year: 1965 ident: 10.1016/j.matdes.2021.110249_b0250 article-title: Dislocation loops in irradiated iron publication-title: Philos. Mag. doi: 10.1080/14786436508223952 – volume: 142 start-page: 637 year: 2012 ident: 10.1016/j.matdes.2021.110249_b0175 article-title: Preparation and improved photocatalytic activity of WO3·0.33H2O nanonetworks publication-title: Catal. Lett. doi: 10.1007/s10562-012-0785-5 – volume: 79 start-page: 95 year: 2019 ident: 10.1016/j.matdes.2021.110249_b0130 article-title: Densification and microstructure evolution of W-TiC-Y2O3 during spark plasma sintering publication-title: Int. J. Refract. Met. H. doi: 10.1016/j.ijrmhm.2018.11.014 – volume: 109 start-page: 443 year: 2016 ident: 10.1016/j.matdes.2021.110249_b0040 article-title: Evolution of hot rolling texture in pure tungsten and lanthanum oxide doped tungsten with various reductions publication-title: Mater. Design. doi: 10.1016/j.matdes.2016.07.104 – volume: 779 start-page: 926 year: 2019 ident: 10.1016/j.matdes.2021.110249_b0215 article-title: Preparation of ultrafine-grained/ nanostructured tungsten materials: An overview publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.11.279 – volume: 253 start-page: 464 year: 2014 ident: 10.1016/j.matdes.2021.110249_b0035 article-title: Low temperature preparation of tungsten nanoparticles from molten salt publication-title: Powder. Technol. doi: 10.1016/j.powtec.2013.11.052 – volume: 160 start-page: 1226 year: 2018 ident: 10.1016/j.matdes.2021.110249_b0020 article-title: Helium-implantation-induced lattice strains and defects in tungsten probed by X-ray micro-diffraction publication-title: Mater. Design. doi: 10.1016/j.matdes.2018.11.001 – volume: 657 start-page: 73 year: 2016 ident: 10.1016/j.matdes.2021.110249_b0070 article-title: Nanostructured yttria dispersion-strengthened tungsten synthesized by sol-gel method publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.10.059 – volume: 12 start-page: 31 issue: 115 year: 1965 ident: 10.1016/j.matdes.2021.110249_b0255 article-title: On the formation of interstitial loops in B.C.C. metals publication-title: Philos. Mag. doi: 10.1080/14786436508224943 – volume: 137 start-page: 325 year: 2018 ident: 10.1016/j.matdes.2021.110249_b0045 article-title: Isotropic thermal conductivity in rolled large-sized W-Y2O3 bulk material prepared by powder metallurgy route and rolling deformation technology publication-title: Fusion. Eng. Des. doi: 10.1016/j.fusengdes.2018.10.009 – volume: 119 start-page: 40 year: 2018 ident: 10.1016/j.matdes.2021.110249_b0145 article-title: Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates publication-title: Int. J. Impact. Eng. doi: 10.1016/j.ijimpeng.2018.05.001 – volume: 36 start-page: 84 year: 2020 ident: 10.1016/j.matdes.2021.110249_b0050 article-title: Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.08.010 – volume: 81 start-page: 3357 issue: 12 year: 1998 ident: 10.1016/j.matdes.2021.110249_b0110 article-title: Low-temperature preparation of nanocrystalline lead zirconate titanate and lead lanthanum zirconate titanate powders using triethanolamine publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1998.tb02784.x – volume: 121 year: 2020 ident: 10.1016/j.matdes.2021.110249_b0140 article-title: Influence of helium ion irradiation damage behavior after laser thermal shock of W-2%vol Y2O3 composites publication-title: Prog. Nucl. Energ. doi: 10.1016/j.pnucene.2020.103241 – volume: 32 start-page: 3826 year: 2021 ident: 10.1016/j.matdes.2021.110249_b0060 article-title: Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route publication-title: Adv. Powder. Technol. doi: 10.1016/j.apt.2021.08.031 – volume: 22 start-page: 12622 issue: 25 year: 2012 ident: 10.1016/j.matdes.2021.110249_b0165 article-title: Fabrication of nanostructured W-Y2O3 materials by chemical methods publication-title: J. Mater. Chem. doi: 10.1039/c2jm30652b – volume: 412 start-page: 227 year: 2011 ident: 10.1016/j.matdes.2021.110249_b0235 article-title: Spark plasma sintering of tungsten–yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2011.03.007 – volume: 44 start-page: 17105 issue: 31 year: 2019 ident: 10.1016/j.matdes.2021.110249_b0265 article-title: First-principles investigation of hydrogen behavior in different oxides in ODS steels publication-title: Int. J. Hydrogen. Energ. doi: 10.1016/j.ijhydene.2019.05.008 – volume: 49 start-page: 5703 issue: 16 year: 2014 ident: 10.1016/j.matdes.2021.110249_b0160 article-title: Processing and sintering of yttrium-doped tungsten oxide nanopowders to tungsten-based composites publication-title: J. Mater. Sci. doi: 10.1007/s10853-014-8289-x – volume: 12 start-page: 344 issue: 4 year: 2013 ident: 10.1016/j.matdes.2021.110249_b0075 article-title: Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility publication-title: Nat. Mater. doi: 10.1038/nmat3544 – volume: 83 start-page: 1822 issue: 7 year: 2000 ident: 10.1016/j.matdes.2021.110249_b0100 article-title: Low-temperature chemical synthesis of nanocrystalline MgAl2O4 spinel powder publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2000.tb01473.x |
SSID | ssj0022734 |
Score | 2.5512614 |
Snippet | [Display omitted]
•An improved wet chemical method where the TEA surfactant addition and an appropriate calcination process are employed is developed to... In this article, Y2O3-reinforced tungsten composites are fabricated by using an improved wet chemical method combined with the spark plasma sintering (SPS).... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 110249 |
SubjectTerms | Helium ion irradiation Mechanical properties nano-sized Y2O3 Powder process improvement W-Y2O3 composites |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QUOqA8QWwrygWu0ie1s7GOpulqouhzaqu2FyI8xCkLZaLUFjvwH_iG_BE8ey3IBqcdYdmyNR_PSN58B3kgnPSqBicyCT6TNTUIsZEmMZXNveaGCoTrkxWI6v5bvb_PbHTgdemEIVtnb_s6mt9a6H5n00pw0VTW5jNmDJHpyTvw0UfcewS6P3jUdwe7Ju_P5YpN3EYNLV2ohir4iHzroWphXjAs9Em83zwgSz4lUc8tDtUT-W45qy_nM9uBpHzWyk-5g-7CD9QE82eISPISPZ9_bIny9Zs2fZgC2DOzm14-fd_yDYAQfJ4wWsq-VYc3ym8cVa7pOAVa11YW2WMhM7Vm7Ih4u7kBjz-B6dnZ1Ok_6xxMSJ5VcJ057a7UMcoqFju4pcz5DtF4UVsQYzMk0qKIwRkWTFzLkysqpp2c3fExgjJfiOYzqZY0vgHGrHLowLZwKMvXCuFzExMdm3KVWcD0GMQisdD2zOD1w8aUcIGSfy07MJYm57MQ8hmSzqumYNf4z_y3dxWYu8WK3A8vVp7JXjBJzrjOvrbe5k-iDSW2qUSsdQoys0IyhGG6y_EvN4q-qf25_9OCVL-ExfREGJsuPYbRe3eOrGMms7eteU38DHIfyuw priority: 102 providerName: Elsevier |
Title | Excellent performance of W–Y2O3 composite via powder process improvement and Y2O3 refinement |
URI | https://dx.doi.org/10.1016/j.matdes.2021.110249 https://doaj.org/article/e5291d9bdb5c4edfa0b09e989ff635ea |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXQcoFDBaWILS3ygWtEYjsb-7hFixZQ4QKCXoj8MZYWVdkV2rYc-Q_9h_wSPHay5AQXrpZjW-NR5s3o-Q0hh8IKB5JDJgrvMmFKnaEKWRawbOkMq6TXWIf8eTGaXouz2_K21-oLOWFJHjgZ7ghKpgqnjDOlFeC8zk2uQEnlfYiVEKFRiHldMtWmWijakqorqMpXld2jucjsClDQAUp1swJZ8Ax1NHtBKWr392JTL96cbJFPLVCk43TAbbIGzWey2ZMP3CF3k8dYd2-WdPHK_6dzT2-en_7_YpecImMcaVlA_840Xcz_OXigi_Q4gM5iQSHWB6luHI1fhMOFHXDsC7k-mVwdT7O2X0JmhRTLzCpnjBJejKBSISIV1hUAxvHK8AC7rMi9rCqtZfjL-QKYNGLksNOGCzmLdoLvkkEzb2CPUGakBetHlZVe5I5rW_KQ65iC2dxwpoaEdwarbSsmjj0tftcda-y-Tmau0cx1MvOQZKuvFklM4535P_AuVnNRCjsOBAepWwep33OQIam6m6xbVJHQQlhq9ub2Xz9i-32ygUsiA6Yov5HB8uEPfA84ZmkOyPr49Hx6cRBd9wVVd_O2 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbhQxEC2F5AAcIlYxrD5wbU237Z62jyFKNCHJcCAR4YLlpYwaoZ7WaFiO_AN_mC_B1cswXEDi6rbbVrlUm149A7yUXgZUAjNZxJBJV9qMWMiyFMuWwfFKRUt1yPPFbH4pX1-VVztwOPbCEKxysP29Te-s9TAyHaQ5bet6-jZlD5LoyTnx0yTduwF7xE6V1Hzv4OR0vtjkXcTg0pdaiKKvKscOug7mleLCgMTbzQuCxHMi1dzyUB2R_5aj2nI-x3dgf4ga2UF_sLuwg809uL3FJXgfPhx974rwzZq1v5sB2DKyd9c_fr7nbwQj-DhhtJB9rS1rl98CrljbdwqwuqsudMVCZpvAuhXpcGkHGnsAl8dHF4fzbHg8IfNSyXXmdXBOyyhnWOnkngofCkQXROVEisG8zKOqKmtVMnmxQK6cnAV6diOkBMYGKR7CbrNs8BEw7pRHH2eVV1HmQVhfipT4uIL73AmuJyBGgRk_MIvTAxefzQgh-2R6MRsSs-nFPIFss6rtmTX-Mf8V3cVmLvFidwPL1UczKIbBkusiaBdc6SWGaHOXa9RKx5giK7QTqMabNH-oWfpV_dftH__3yhdwc35xfmbOThanT-AWfSE8TFE-hd316gs-S1HN2j0ftPYXq6H1qg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excellent+performance+of+W%E2%80%93Y2O3+composite+via+powder+process+improvement+and+Y2O3+refinement&rft.jtitle=Materials+%26+design&rft.au=Gang+Yao&rft.au=Xuepeng+Liu&rft.au=Zhihao+Zhao&rft.au=Laima+Luo&rft.date=2021-12-15&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=212&rft.spage=110249&rft_id=info:doi/10.1016%2Fj.matdes.2021.110249&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e5291d9bdb5c4edfa0b09e989ff635ea |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |