SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf

We present SN2018kzr, the fastest declining supernova-like transient, second only to the kilonova, AT2017gfo. SN2018kzr is characterized by a peak magnitude of Mr = −17.98, a peak bolometric luminosity of ∼1.4 × 1043 erg s−1, and a rapid decline rate of 0.48 0.03 mag day−1 in the r band. The bolomet...

Full description

Saved in:
Bibliographic Details
Published inAstrophysical journal. Letters Vol. 885; no. 1; p. L23
Main Authors McBrien, Owen R., Smartt, Stephen J., Chen, Ting-Wan, Inserra, Cosimo, Gillanders, James H., Sim, Stuart A., Jerkstrand, Anders, Rest, Armin, Valenti, Stefano, Roy, Rupak, Gromadzki, Mariusz, Taubenberger, Stefan, Flörs, Andreas, Huber, Mark E., Chambers, Ken C., Gal-Yam, Avishay, Young, David R., Nicholl, Matt, Kankare, Erkki, Smith, Ken W., Maguire, Kate, Mandel, Ilya, Prentice, Simon, Rodríguez, Ósmar, Garcia, Jonathan Pineda, Gutiérrez, Claudia P., Galbany, Lluís, Barbarino, Cristina, Clark, Peter S. J., Sollerman, Jesper, Kulkarni, Shrinivas R., De, Kishalay, Buckley, David A. H., Rau, Arne
Format Journal Article
LanguageEnglish
Published Austin The American Astronomical Society 01.11.2019
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present SN2018kzr, the fastest declining supernova-like transient, second only to the kilonova, AT2017gfo. SN2018kzr is characterized by a peak magnitude of Mr = −17.98, a peak bolometric luminosity of ∼1.4 × 1043 erg s−1, and a rapid decline rate of 0.48 0.03 mag day−1 in the r band. The bolometric luminosity evolves too quickly to be explained by pure 56Ni heating, necessitating the inclusion of an alternative powering source. Incorporating the spin-down of a magnetized neutron star adequately describes the lightcurve and we estimate a small ejecta mass of Mej = 0.10 0.05 M . Our spectral modeling suggests the ejecta is composed of intermediate mass elements including O, Si, and Mg and trace amounts of Fe-peak elements, which disfavors a binary neutron star merger. We discuss three explosion scenarios for SN2018kzr, given the low ejecta mass, intermediate mass element composition, and high likelihood of additional powering-the core collapse of an ultra-stripped progenitor, the accretion induced collapse (AIC) of a white dwarf, and the merger of a white dwarf and neutron star. The requirement for an alternative input energy source favors either the AIC with magnetar powering or a white dwarf-neutron star merger with energy from disk wind shocks.
Bibliography:AAS19961
ISSN:2041-8205
2041-8213
2041-8213
DOI:10.3847/2041-8213/ab4dae