Energy Optimization in Dual-RIS UAV-Aided MEC-Enabled Internet of Vehicles

Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 13; p. 4392
Main Authors Michailidis, Emmanouel T., Miridakis, Nikolaos I., Michalas, Angelos, Skondras, Emmanouil, Vergados, Dimitrios J.
Format Journal Article
LanguageEnglish
Published MDPI 27.06.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents an unmanned aerial vehicle (UAV)-aided network architecture. It is considered that the connected vehicles in a IoV ecosystem should fully offload latency-critical computation-intensive tasks to road side units (RSUs) that integrate MEC functionalities. In this regard, a UAV is deployed to serve as an aerial RSU (ARSU) and also operate as an aerial relay to offload part of the tasks to a ground RSU (GRSU). In order to further enhance the end-to-end communication during data offloading, the proposed architecture relies on reconfigurable intelligent surface (RIS) units consisting of arrays of reflecting elements. In particular, a dual-RIS configuration is presented, where each RIS unit serves its nearby network nodes. Since perfect phase estimation or high-precision configuration of the reflection phases is impractical in highly mobile IoV environments, data offloading via RIS units with phase errors is considered. As the efficient energy management of resource-constrained electric vehicles and battery-enabled RSUs is of outmost importance, this paper proposes an optimization approach that intends to minimize the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power constraints, timeslot scheduling, and task allocation. Extensive numerical calculations are carried out to verify the efficacy of the optimized dual-RIS-assisted wireless transmission.
AbstractList Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents an unmanned aerial vehicle (UAV)-aided network architecture. It is considered that the connected vehicles in a IoV ecosystem should fully offload latency-critical computation-intensive tasks to road side units (RSUs) that integrate MEC functionalities. In this regard, a UAV is deployed to serve as an aerial RSU (ARSU) and also operate as an aerial relay to offload part of the tasks to a ground RSU (GRSU). In order to further enhance the end-to-end communication during data offloading, the proposed architecture relies on reconfigurable intelligent surface (RIS) units consisting of arrays of reflecting elements. In particular, a dual-RIS configuration is presented, where each RIS unit serves its nearby network nodes. Since perfect phase estimation or high-precision configuration of the reflection phases is impractical in highly mobile IoV environments, data offloading via RIS units with phase errors is considered. As the efficient energy management of resource-constrained electric vehicles and battery-enabled RSUs is of outmost importance, this paper proposes an optimization approach that intends to minimize the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power constraints, timeslot scheduling, and task allocation. Extensive numerical calculations are carried out to verify the efficacy of the optimized dual-RIS-assisted wireless transmission.
Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents an unmanned aerial vehicle (UAV)-aided network architecture. It is considered that the connected vehicles in a IoV ecosystem should fully offload latency-critical computation-intensive tasks to road side units (RSUs) that integrate MEC functionalities. In this regard, a UAV is deployed to serve as an aerial RSU (ARSU) and also operate as an aerial relay to offload part of the tasks to a ground RSU (GRSU). In order to further enhance the end-to-end communication during data offloading, the proposed architecture relies on reconfigurable intelligent surface (RIS) units consisting of arrays of reflecting elements. In particular, a dual-RIS configuration is presented, where each RIS unit serves its nearby network nodes. Since perfect phase estimation or high-precision configuration of the reflection phases is impractical in highly mobile IoV environments, data offloading via RIS units with phase errors is considered. As the efficient energy management of resource-constrained electric vehicles and battery-enabled RSUs is of outmost importance, this paper proposes an optimization approach that intends to minimize the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power constraints, timeslot scheduling, and task allocation. Extensive numerical calculations are carried out to verify the efficacy of the optimized dual-RIS-assisted wireless transmission.Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents an unmanned aerial vehicle (UAV)-aided network architecture. It is considered that the connected vehicles in a IoV ecosystem should fully offload latency-critical computation-intensive tasks to road side units (RSUs) that integrate MEC functionalities. In this regard, a UAV is deployed to serve as an aerial RSU (ARSU) and also operate as an aerial relay to offload part of the tasks to a ground RSU (GRSU). In order to further enhance the end-to-end communication during data offloading, the proposed architecture relies on reconfigurable intelligent surface (RIS) units consisting of arrays of reflecting elements. In particular, a dual-RIS configuration is presented, where each RIS unit serves its nearby network nodes. Since perfect phase estimation or high-precision configuration of the reflection phases is impractical in highly mobile IoV environments, data offloading via RIS units with phase errors is considered. As the efficient energy management of resource-constrained electric vehicles and battery-enabled RSUs is of outmost importance, this paper proposes an optimization approach that intends to minimize the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power constraints, timeslot scheduling, and task allocation. Extensive numerical calculations are carried out to verify the efficacy of the optimized dual-RIS-assisted wireless transmission.
Author Vergados, Dimitrios J.
Michalas, Angelos
Miridakis, Nikolaos I.
Michailidis, Emmanouel T.
Skondras, Emmanouil
AuthorAffiliation 3 Department of Electrical and Computer Engineering, University of Western Macedonia, Karamanli & Ligeris, 50131 Kozani, Greece; amichalas@uowm.gr
2 Department of Informatics and Computer Engineering, University of West Attica, Egaleo Park Campus, Ag. Spyridonos Str, 12243 Egaleo, Greece; nikozm@uniwa.gr
4 Department of Informatics, University of Piraeus, 80 Karaoli & Dimitriou St., 18534 Piraeus, Greece; skondras@unipi.gr
5 Department of Informatics, University of Western Macedonia, Fourka Area, 52100 Kastoria, Greece; dvergados@uowm.gr
1 Department of Electrical and Electronics Engineering, University of West Attica, Ancient Olive Grove Campus, 250 Thivon & P. Ralli Str, 12241 Egaleo, Greece
AuthorAffiliation_xml – name: 2 Department of Informatics and Computer Engineering, University of West Attica, Egaleo Park Campus, Ag. Spyridonos Str, 12243 Egaleo, Greece; nikozm@uniwa.gr
– name: 3 Department of Electrical and Computer Engineering, University of Western Macedonia, Karamanli & Ligeris, 50131 Kozani, Greece; amichalas@uowm.gr
– name: 5 Department of Informatics, University of Western Macedonia, Fourka Area, 52100 Kastoria, Greece; dvergados@uowm.gr
– name: 1 Department of Electrical and Electronics Engineering, University of West Attica, Ancient Olive Grove Campus, 250 Thivon & P. Ralli Str, 12241 Egaleo, Greece
– name: 4 Department of Informatics, University of Piraeus, 80 Karaoli & Dimitriou St., 18534 Piraeus, Greece; skondras@unipi.gr
Author_xml – sequence: 1
  givenname: Emmanouel T.
  orcidid: 0000-0002-1077-0047
  surname: Michailidis
  fullname: Michailidis, Emmanouel T.
– sequence: 2
  givenname: Nikolaos I.
  surname: Miridakis
  fullname: Miridakis, Nikolaos I.
– sequence: 3
  givenname: Angelos
  surname: Michalas
  fullname: Michalas, Angelos
– sequence: 4
  givenname: Emmanouil
  surname: Skondras
  fullname: Skondras, Emmanouil
– sequence: 5
  givenname: Dimitrios J.
  orcidid: 0000-0003-3918-5236
  surname: Vergados
  fullname: Vergados, Dimitrios J.
BookMark eNplkU1vFDEMhiNURD_gwD-YIxyGxklmJ7kgrZalLCqqBLTXKJM421SzyZJkkcqv77RbEIWTLfv1o9f2MTmIKSIhr4G-41zR08IAuOCKPSNHIJhoJWP04K_8kByXckMp45zLF-SQC1BS9f0R-byMmNe3zcW2hk34ZWpIsQmx-bAzY_t19a25nF-18-DQNV-Wi3YZzTBO-SpWzBFrk3xzhdfBjlhekufejAVfPcYTcvlx-X3xqT2_OFst5uetFVLUdhi8E7JznlkwzAuLnQDLnPTGDkZ4Z0GhdM4hAE7rKRDgPUiFlEsvJD8hqz3XJXOjtzlsTL7VyQT9UEh5rU2u95b0YNRM9YxLMDNhbT94RdEJz1VvDZ_BxHq_Z213wwadxVizGZ9An3ZiuNbr9FNL1oPquwnw5hGQ048dlqo3oVgcRxMx7Ypm3bQ0dFTNJunpXmpzKiWj1zbUh4NP5DBqoPr-m_rPN6eJt_9M_Db2v_YOTxefWw
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3220682
crossref_primary_10_1109_TWC_2022_3146514
crossref_primary_10_1109_ACCESS_2023_3342320
crossref_primary_10_1109_TVT_2023_3331363
crossref_primary_10_32604_cmc_2022_023840
crossref_primary_10_1109_TCOMM_2024_3372877
crossref_primary_10_3390_signals4010012
crossref_primary_10_1016_j_jnca_2023_103670
crossref_primary_10_3233_IDT_220045
crossref_primary_10_1109_ACCESS_2022_3199408
crossref_primary_10_3390_drones6020041
crossref_primary_10_1007_s10586_024_04631_z
crossref_primary_10_1016_j_iswa_2023_200226
crossref_primary_10_1109_TITS_2024_3440391
crossref_primary_10_3390_s22186995
crossref_primary_10_1109_JIOT_2025_3527041
crossref_primary_10_1109_TMC_2024_3461719
crossref_primary_10_1109_ACCESS_2022_3149054
crossref_primary_10_3390_drones5030070
crossref_primary_10_1109_JIOT_2023_3270960
crossref_primary_10_4271_12_07_02_0014
crossref_primary_10_1109_JPROC_2024_3404491
crossref_primary_10_3390_s23052554
crossref_primary_10_1016_j_jksuci_2023_101837
crossref_primary_10_3390_fi15080254
crossref_primary_10_3390_drones7030214
crossref_primary_10_1145_3695882
crossref_primary_10_1109_ACCESS_2024_3431922
crossref_primary_10_1109_ACCESS_2021_3125431
crossref_primary_10_1109_ACCESS_2021_3106495
crossref_primary_10_3390_en15145143
Cites_doi 10.1109/MNET.2019.1800309
10.1109/JAS.2017.7510736
10.3390/s19030550
10.1109/TIV.2018.2873922
10.3390/s19204521
10.1109/ACCESS.2021.3106495
10.1109/TVT.2019.2917890
10.1109/TVT.2019.2935450
10.1109/JIOT.2020.2993260
10.1109/MWC.001.1800594
10.1109/JSAC.2018.2864426
10.1109/TWC.2020.3042977
10.1109/JPROC.2019.2952892
10.1109/ACCESS.2019.2949032
10.1109/JPROC.2019.2947490
10.1109/TCCN.2020.3012680
10.1109/ICC42927.2021.9500445
10.1109/JSAC.2020.3007035
10.1109/JIOT.2018.2878876
10.1109/LWC.2020.3040607
10.1002/9780470316979
10.1109/TWC.2013.072513.121842
10.1109/MWC.001.2000142
10.1109/TWC.2019.2928539
10.1109/LSP.2018.2880081
10.3390/s21010285
10.1109/LWC.2020.2966705
10.1109/MCS.2013.2287568
10.1109/TITS.2020.3023958
10.1109/ACCESS.2018.2872753
10.1109/JIOT.2018.2890133
10.1109/TITS.2020.3024186
10.1109/TGCN.2018.2866995
10.1109/TII.2019.2948406
10.1109/LWC.2020.3042189
10.3390/s19061303
10.1109/ACCESS.2019.2935217
10.1109/TVT.2019.2959410
10.1109/TVT.2015.2479942
10.1017/CBO9780511804441
10.1109/LWC.2019.2947445
10.1002/0471715220
10.1109/JIOT.2020.3005117
10.1109/GLOCOMW.2011.6162389
10.1109/JIOT.2020.3027149
10.1109/TVT.2017.2706308
10.1109/TITS.2020.2997832
10.1080/10652469.2017.1297438
10.1109/COMST.2019.2915069
10.1109/4234.752901
10.3390/iot1010003
10.1109/COMST.2020.3004197
10.1201/9781315116778
10.1007/BF02124750
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/s21134392
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ba96972381a64cc7bf90ed4f397ca361
PMC8271975
10_3390_s21134392
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c484t-bbfd485df2c1a2f4ce541c2d8facba4fdc19e8ddde11e3399141ff189e038f483
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:58 EDT 2025
Thu Aug 21 18:22:54 EDT 2025
Fri Jul 11 03:16:04 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
Tue Jul 01 03:56:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-bbfd485df2c1a2f4ce541c2d8facba4fdc19e8ddde11e3399141ff189e038f483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1077-0047
0000-0003-3918-5236
OpenAccessLink https://doaj.org/article/ba96972381a64cc7bf90ed4f397ca361
PMID 34198977
PQID 2548415096
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ba96972381a64cc7bf90ed4f397ca361
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8271975
proquest_miscellaneous_2548415096
crossref_citationtrail_10_3390_s21134392
crossref_primary_10_3390_s21134392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210627
PublicationDateYYYYMMDD 2021-06-27
PublicationDate_xml – month: 6
  year: 2021
  text: 20210627
  day: 27
PublicationDecade 2020
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Badiu (ref_50) 2020; 9
ref_58
Zhao (ref_6) 2019; 68
ref_57
ref_54
Lin (ref_4) 2021; 22
Brychkov (ref_56) 2017; 28
Jeong (ref_27) 2018; 67
ref_52
ref_51
Hu (ref_16) 2019; 18
Zhou (ref_22) 2018; 36
Michailidis (ref_15) 2020; 1
ref_17
ref_59
Zhou (ref_37) 2021; 10
Shao (ref_39) 2015; 64
Corless (ref_60) 1996; 5
Zhang (ref_20) 2020; 7
ref_61
Kong (ref_55) 1999; 3
Liu (ref_9) 2019; 68
Boukerche (ref_11) 2020; 21
Zhang (ref_28) 2019; 6
Mei (ref_40) 2019; 7
Gong (ref_30) 2020; 22
ref_29
Zhang (ref_24) 2020; 16
Chu (ref_36) 2021; 10
ref_26
Thibault (ref_2) 2018; 3
Zhan (ref_19) 2020; 7
Zhang (ref_10) 2020; 69
Zhang (ref_42) 2013; 12
Zhou (ref_5) 2019; 26
Han (ref_23) 2020; 6
Bai (ref_35) 2020; 38
Zhang (ref_25) 2018; 6
ref_38
Zhang (ref_21) 2019; 7
Zhang (ref_3) 2020; 108
Ning (ref_12) 2021; 22
Xu (ref_41) 2018; 5
Miridakis (ref_53) 2018; 2
Ning (ref_7) 2019; 33
ref_47
ref_46
Wei (ref_33) 2021; 20
ref_45
Nomikos (ref_14) 2020; 25
Hashida (ref_31) 2020; 27
ref_1
Zhou (ref_13) 2020; 27
Ranjha (ref_34) 2021; 8
Li (ref_32) 2020; 9
Zeng (ref_44) 2019; 107
ref_49
ref_48
Hu (ref_18) 2019; 6
ref_8
Sujit (ref_62) 2014; 34
Khawaja (ref_43) 2019; 21
References_xml – volume: 33
  start-page: 198
  year: 2019
  ident: ref_7
  article-title: Mobile Edge Computing-Enabled Internet of Vehicles: Toward Energy-Efficient Scheduling
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2019.1800309
– volume: 5
  start-page: 19
  year: 2018
  ident: ref_41
  article-title: Internet of vehicles in big data era
  publication-title: Ieee/Caa J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510736
– ident: ref_1
  doi: 10.3390/s19030550
– ident: ref_49
– volume: 3
  start-page: 463
  year: 2018
  ident: ref_2
  article-title: A Unified Approach for Electric Vehicles Range Maximization via Eco-Routing, Eco-Driving, and Energy Consumption Prediction
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2018.2873922
– ident: ref_17
  doi: 10.3390/s19204521
– ident: ref_29
  doi: 10.1109/ACCESS.2021.3106495
– volume: 68
  start-page: 7944
  year: 2019
  ident: ref_6
  article-title: Computation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing in Vehicular Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2917890
– volume: 68
  start-page: 11158
  year: 2019
  ident: ref_9
  article-title: Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2935450
– volume: 7
  start-page: 7808
  year: 2020
  ident: ref_19
  article-title: Completion Time and Energy Optimization in the UAV-Enabled Mobile-Edge Computing System
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2993260
– volume: 27
  start-page: 140
  year: 2020
  ident: ref_13
  article-title: Mobile Edge Computing in Unmanned Aerial Vehicle Networks
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.001.1800594
– volume: 36
  start-page: 1927
  year: 2018
  ident: ref_22
  article-title: Computation Rate Maximization in UAV-Enabled Wireless-Powered Mobile-Edge Computing Systems
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2018.2864426
– volume: 20
  start-page: 2530
  year: 2021
  ident: ref_33
  article-title: Sum-Rate Maximization for IRS-Assisted UAV OFDMA Communication Systems
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.3042977
– volume: 107
  start-page: 2327
  year: 2019
  ident: ref_44
  article-title: Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2019.2952892
– volume: 7
  start-page: 156476
  year: 2019
  ident: ref_40
  article-title: Joint Trajectory-Task-Cache Optimization in UAV-Enabled Mobile Edge Networks for Cyber-Physical System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949032
– volume: 108
  start-page: 246
  year: 2020
  ident: ref_3
  article-title: Mobile Edge Intelligence and Computing for the Internet of Vehicles
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2019.2947490
– volume: 6
  start-page: 1193
  year: 2020
  ident: ref_23
  article-title: Rate Splitting on Mobile Edge Computing for UAV-Aided IoT Systems
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2020.3012680
– ident: ref_61
– ident: ref_38
  doi: 10.1109/ICC42927.2021.9500445
– volume: 38
  start-page: 2666
  year: 2020
  ident: ref_35
  article-title: Latency Minimization for Intelligent Reflecting Surface Aided Mobile Edge Computing
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3007035
– volume: 6
  start-page: 1879
  year: 2019
  ident: ref_18
  article-title: Joint Offloading and Trajectory Design for UAV-Enabled Mobile Edge Computing Systems
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2878876
– volume: 10
  start-page: 619
  year: 2021
  ident: ref_36
  article-title: Intelligent Reflecting Surface Assisted Mobile Edge Computing for Internet of Things
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2020.3040607
– ident: ref_51
  doi: 10.1002/9780470316979
– ident: ref_58
– volume: 25
  start-page: 100250
  year: 2020
  ident: ref_14
  article-title: A UAV-Based Moving 5G RAN for Massive Connectivity of Mobile Users and IoT Devices
  publication-title: Veh. Commun.
– volume: 12
  start-page: 4569
  year: 2013
  ident: ref_42
  article-title: Energy-optimal mobile cloud computing under stochastic wireless channel
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2013.072513.121842
– volume: 21
  start-page: 2675
  year: 2020
  ident: ref_11
  article-title: An Efficient Mobility-Oriented Retrieval Protocol for Computation Offloading in Vehicular Edge Multi-Access Network
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 27
  start-page: 146
  year: 2020
  ident: ref_31
  article-title: Intelligent Reflecting Surface Placement Optimization in Air-Ground Communication Networks Toward 6G
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.001.2000142
– volume: 18
  start-page: 4738
  year: 2019
  ident: ref_16
  article-title: UAV-Assisted Relaying and Edge Computing: Scheduling and Trajectory Optimization
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2928539
– volume: 26
  start-page: 104
  year: 2019
  ident: ref_5
  article-title: Reliability-Oriented Optimization of Computation Offloading for Cooperative Vehicle-Infrastructure Systems
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2880081
– ident: ref_45
  doi: 10.3390/s21010285
– ident: ref_48
– volume: 9
  start-page: 716
  year: 2020
  ident: ref_32
  article-title: Reconfigurable Intelligent Surface Assisted UAV Communication: Joint Trajectory Design and Passive Beamforming
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2020.2966705
– volume: 34
  start-page: 42
  year: 2014
  ident: ref_62
  article-title: Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicles
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2013.2287568
– volume: 22
  start-page: 3730
  year: 2021
  ident: ref_4
  article-title: Distributed Learning for Vehicle Routing Decision in Software Defined Internet of Vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3023958
– volume: 6
  start-page: 56700
  year: 2018
  ident: ref_25
  article-title: Energy-Aware Dynamic Resource Allocation in UAV Assisted Mobile Edge Computing Over Social Internet of Vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872753
– volume: 6
  start-page: 3688
  year: 2019
  ident: ref_28
  article-title: Stochastic Computation Offloading and Trajectory Scheduling for UAV-Assisted Mobile Edge Computing
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2890133
– ident: ref_26
  doi: 10.1109/TITS.2020.3024186
– volume: 2
  start-page: 1101
  year: 2018
  ident: ref_53
  article-title: MIMO Underlay Cognitive Radio: Optimized Power Allocation, Effective Number of Transmit Antennas and Harvest-Transmit Tradeoff
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2018.2866995
– volume: 16
  start-page: 5505
  year: 2020
  ident: ref_24
  article-title: Joint Computation and Communication Design for UAV-Assisted Mobile Edge Computing in IoT
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2019.2948406
– volume: 10
  start-page: 740
  year: 2021
  ident: ref_37
  article-title: Delay-Optimal Scheduling for IRS-Aided Mobile Edge Computing
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2020.3042189
– ident: ref_8
  doi: 10.3390/s19061303
– volume: 7
  start-page: 113345
  year: 2019
  ident: ref_21
  article-title: Resource Allocation for a UAV-Enabled Mobile-Edge Computing System: Computation Efficiency Maximization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935217
– volume: 69
  start-page: 2092
  year: 2020
  ident: ref_10
  article-title: Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2959410
– volume: 64
  start-page: 5596
  year: 2015
  ident: ref_39
  article-title: Performance Analysis of Connectivity Probability and Connectivity-Aware MAC Protocol Design for Platoon-Based VANETs
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2479942
– ident: ref_59
  doi: 10.1017/CBO9780511804441
– volume: 9
  start-page: 184
  year: 2020
  ident: ref_50
  article-title: Communication Through a Large Reflecting Surface With Phase Errors
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2019.2947445
– ident: ref_52
  doi: 10.1002/0471715220
– volume: 7
  start-page: 10573
  year: 2020
  ident: ref_20
  article-title: Latency-Aware IoT Service Provisioning in UAV-Aided Mobile-Edge Computing Networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3005117
– ident: ref_46
  doi: 10.1109/GLOCOMW.2011.6162389
– volume: 8
  start-page: 4618
  year: 2021
  ident: ref_34
  article-title: URLLC Facilitated by Mobile UAV Relay and RIS: A Joint Design of Passive Beamforming, Blocklength, and UAV Positioning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3027149
– volume: 67
  start-page: 2049
  year: 2018
  ident: ref_27
  article-title: Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2706308
– volume: 22
  start-page: 2212
  year: 2021
  ident: ref_12
  article-title: Intelligent Edge Computing in Internet of Vehicles: A Joint Computation Offloading and Caching Solution
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2997832
– ident: ref_54
– volume: 28
  start-page: 350
  year: 2017
  ident: ref_56
  article-title: On new reduction formulas for the Humbert functions Ψ2, Φ2 and Φ3
  publication-title: Integral Transform. Spec. Funct.
  doi: 10.1080/10652469.2017.1297438
– volume: 21
  start-page: 2361
  year: 2019
  ident: ref_43
  article-title: A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2019.2915069
– volume: 3
  start-page: 57
  year: 1999
  ident: ref_55
  article-title: Average SNR of a generalized diversity selection combining scheme
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/4234.752901
– volume: 1
  start-page: 21
  year: 2020
  ident: ref_15
  article-title: AI-Inspired Non-Terrestrial Networks for IIoT: Review on Enabling Technologies and Applications
  publication-title: IoT
  doi: 10.3390/iot1010003
– ident: ref_57
– volume: 22
  start-page: 2283
  year: 2020
  ident: ref_30
  article-title: Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2020.3004197
– ident: ref_47
  doi: 10.1201/9781315116778
– volume: 5
  start-page: 329
  year: 1996
  ident: ref_60
  article-title: On the Lambert W function
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02124750
SSID ssj0023338
Score 2.4890623
Snippet Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4392
SubjectTerms computation offloading
energy efficiency
Internet of Vehicles (IoV)
mobile edge computing (MEC)
reconfigurable intelligent surface (RIS)
unmanned aerial vehicle (UAV)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_iJ84vonjwEtY0aZMe59yYgymoG7uVNB9sMDtx2__va9qNFQQvXtvQpu81fb9f-t7vIXQfBNqyKJYkVoEinGpKJMB84lQkbJhI43yF3OAl7g15fxyNt1p9FTlhpTxwabhmppLYd8aiKuZai8wlgTXcQRzVipXEB2LemkxVVIsB8yp1hBiQ-uYCaA6D0BvWoo8X6a8hy3pe5Fag6R6igwoh4lY5syO0Y_NjtL-lG3iC-h1fsYdfYb1_VoWUeJrjp5WakbfndzxsjUhraqzBg06bdHx9lMHl7p9d4rnDIzvxCXGnaNjtfLR7pGqKQDSXfEmyzBkuI-NCTVXouLYRWDg00imdKe6MpomVBr5alFp4-IRy6hyViQ2YdFyyM7Sbz3N7jjAXVsCFZAaQigumADsyI7gBhMc0xKkGelgbK9WVYnjRuGKWAnMo7Jpu7NpAd5uhX6VMxm-DHguLbwYUytb-APg7rfyd_uXvBrpd-yuFlVD83lC5na8WKVBdCXAEOFkDiZoja3esn8mnE6-pLUNBExFd_McUL9FeWGS-BDEJxRXaXX6v7DVAl2V249_SH2rm7Q4
  priority: 102
  providerName: Directory of Open Access Journals
Title Energy Optimization in Dual-RIS UAV-Aided MEC-Enabled Internet of Vehicles
URI https://www.proquest.com/docview/2548415096
https://pubmed.ncbi.nlm.nih.gov/PMC8271975
https://doaj.org/article/ba96972381a64cc7bf90ed4f397ca361
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gIHxFMslJVBHLgY4tiJnQNC25KlVNqCClvtLXL8oCstWboPqf33jL3ZVSP1wCWHxHGUccbf98WeGYB3SWIcz3JFc51oKphhVCHNp15n0qWFsj5GyI3O8pOxOJ1kkz3Y1thsDbi8U9qFelLjxezD9dXNZ3T4T0FxomT_uEQRwxFYcSY-QECSwT9HYreYkHIeC1qHmC6KeJhsEgx1b-3AUsze36Gc3Q2TtxBo-AgettSRDDZj_Rj2XPMEHtxKKPgUTssYyke-40Twp42wJNOGfFnrGT3_9pOMBxd0MLXOklF5TMsYOGXJ5regW5G5JxfuMu6UewbjYfnr-IS21RKoEUqsaF17K1RmfWqYTr0wLkPTp1Z5bWotvDWscMridMaYw5cvmGDeM1W4hCsvFH8O-828cS-ACOkkdqRq5FpCco2kklspLFI_bhDAevB-a6zKtKnEQ0WLWYWSIti12tm1B293Tf9u8mfc1egoWHzXIKS8jifmi99V60GI6kUeS6QxnQtjZO2LxFnhkVAZzXPWgzfb8arQRcK6h27cfL2sUAMr5Cko1nogOwPZeWL3SjO9jMm2VSpZIbOX_9H7K7ifhh0vSU5TeQj7q8XavUbKsqr7cE9OJB7V8GsfDo7Ksx_n_Sj_-_FT_QeNN-4B
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Optimization+in+Dual-RIS+UAV-Aided+MEC-Enabled+Internet+of+Vehicles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Michailidis%2C+Emmanouel+T&rft.au=Miridakis%2C+Nikolaos+I&rft.au=Michalas%2C+Angelos&rft.au=Skondras%2C+Emmanouil&rft.date=2021-06-27&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=13&rft_id=info:doi/10.3390%2Fs21134392&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon