Energy Optimization in Dual-RIS UAV-Aided MEC-Enabled Internet of Vehicles
Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 13; p. 4392 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI
27.06.2021
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents an unmanned aerial vehicle (UAV)-aided network architecture. It is considered that the connected vehicles in a IoV ecosystem should fully offload latency-critical computation-intensive tasks to road side units (RSUs) that integrate MEC functionalities. In this regard, a UAV is deployed to serve as an aerial RSU (ARSU) and also operate as an aerial relay to offload part of the tasks to a ground RSU (GRSU). In order to further enhance the end-to-end communication during data offloading, the proposed architecture relies on reconfigurable intelligent surface (RIS) units consisting of arrays of reflecting elements. In particular, a dual-RIS configuration is presented, where each RIS unit serves its nearby network nodes. Since perfect phase estimation or high-precision configuration of the reflection phases is impractical in highly mobile IoV environments, data offloading via RIS units with phase errors is considered. As the efficient energy management of resource-constrained electric vehicles and battery-enabled RSUs is of outmost importance, this paper proposes an optimization approach that intends to minimize the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power constraints, timeslot scheduling, and task allocation. Extensive numerical calculations are carried out to verify the efficacy of the optimized dual-RIS-assisted wireless transmission. |
---|---|
AbstractList | Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents an unmanned aerial vehicle (UAV)-aided network architecture. It is considered that the connected vehicles in a IoV ecosystem should fully offload latency-critical computation-intensive tasks to road side units (RSUs) that integrate MEC functionalities. In this regard, a UAV is deployed to serve as an aerial RSU (ARSU) and also operate as an aerial relay to offload part of the tasks to a ground RSU (GRSU). In order to further enhance the end-to-end communication during data offloading, the proposed architecture relies on reconfigurable intelligent surface (RIS) units consisting of arrays of reflecting elements. In particular, a dual-RIS configuration is presented, where each RIS unit serves its nearby network nodes. Since perfect phase estimation or high-precision configuration of the reflection phases is impractical in highly mobile IoV environments, data offloading via RIS units with phase errors is considered. As the efficient energy management of resource-constrained electric vehicles and battery-enabled RSUs is of outmost importance, this paper proposes an optimization approach that intends to minimize the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power constraints, timeslot scheduling, and task allocation. Extensive numerical calculations are carried out to verify the efficacy of the optimized dual-RIS-assisted wireless transmission. Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents an unmanned aerial vehicle (UAV)-aided network architecture. It is considered that the connected vehicles in a IoV ecosystem should fully offload latency-critical computation-intensive tasks to road side units (RSUs) that integrate MEC functionalities. In this regard, a UAV is deployed to serve as an aerial RSU (ARSU) and also operate as an aerial relay to offload part of the tasks to a ground RSU (GRSU). In order to further enhance the end-to-end communication during data offloading, the proposed architecture relies on reconfigurable intelligent surface (RIS) units consisting of arrays of reflecting elements. In particular, a dual-RIS configuration is presented, where each RIS unit serves its nearby network nodes. Since perfect phase estimation or high-precision configuration of the reflection phases is impractical in highly mobile IoV environments, data offloading via RIS units with phase errors is considered. As the efficient energy management of resource-constrained electric vehicles and battery-enabled RSUs is of outmost importance, this paper proposes an optimization approach that intends to minimize the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power constraints, timeslot scheduling, and task allocation. Extensive numerical calculations are carried out to verify the efficacy of the optimized dual-RIS-assisted wireless transmission.Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation environment may hinder computation offloading. To this end, this paper proposes a novel computation offloading framework for IoV and presents an unmanned aerial vehicle (UAV)-aided network architecture. It is considered that the connected vehicles in a IoV ecosystem should fully offload latency-critical computation-intensive tasks to road side units (RSUs) that integrate MEC functionalities. In this regard, a UAV is deployed to serve as an aerial RSU (ARSU) and also operate as an aerial relay to offload part of the tasks to a ground RSU (GRSU). In order to further enhance the end-to-end communication during data offloading, the proposed architecture relies on reconfigurable intelligent surface (RIS) units consisting of arrays of reflecting elements. In particular, a dual-RIS configuration is presented, where each RIS unit serves its nearby network nodes. Since perfect phase estimation or high-precision configuration of the reflection phases is impractical in highly mobile IoV environments, data offloading via RIS units with phase errors is considered. As the efficient energy management of resource-constrained electric vehicles and battery-enabled RSUs is of outmost importance, this paper proposes an optimization approach that intends to minimize the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power constraints, timeslot scheduling, and task allocation. Extensive numerical calculations are carried out to verify the efficacy of the optimized dual-RIS-assisted wireless transmission. |
Author | Vergados, Dimitrios J. Michalas, Angelos Miridakis, Nikolaos I. Michailidis, Emmanouel T. Skondras, Emmanouil |
AuthorAffiliation | 3 Department of Electrical and Computer Engineering, University of Western Macedonia, Karamanli & Ligeris, 50131 Kozani, Greece; amichalas@uowm.gr 2 Department of Informatics and Computer Engineering, University of West Attica, Egaleo Park Campus, Ag. Spyridonos Str, 12243 Egaleo, Greece; nikozm@uniwa.gr 4 Department of Informatics, University of Piraeus, 80 Karaoli & Dimitriou St., 18534 Piraeus, Greece; skondras@unipi.gr 5 Department of Informatics, University of Western Macedonia, Fourka Area, 52100 Kastoria, Greece; dvergados@uowm.gr 1 Department of Electrical and Electronics Engineering, University of West Attica, Ancient Olive Grove Campus, 250 Thivon & P. Ralli Str, 12241 Egaleo, Greece |
AuthorAffiliation_xml | – name: 2 Department of Informatics and Computer Engineering, University of West Attica, Egaleo Park Campus, Ag. Spyridonos Str, 12243 Egaleo, Greece; nikozm@uniwa.gr – name: 3 Department of Electrical and Computer Engineering, University of Western Macedonia, Karamanli & Ligeris, 50131 Kozani, Greece; amichalas@uowm.gr – name: 5 Department of Informatics, University of Western Macedonia, Fourka Area, 52100 Kastoria, Greece; dvergados@uowm.gr – name: 1 Department of Electrical and Electronics Engineering, University of West Attica, Ancient Olive Grove Campus, 250 Thivon & P. Ralli Str, 12241 Egaleo, Greece – name: 4 Department of Informatics, University of Piraeus, 80 Karaoli & Dimitriou St., 18534 Piraeus, Greece; skondras@unipi.gr |
Author_xml | – sequence: 1 givenname: Emmanouel T. orcidid: 0000-0002-1077-0047 surname: Michailidis fullname: Michailidis, Emmanouel T. – sequence: 2 givenname: Nikolaos I. surname: Miridakis fullname: Miridakis, Nikolaos I. – sequence: 3 givenname: Angelos surname: Michalas fullname: Michalas, Angelos – sequence: 4 givenname: Emmanouil surname: Skondras fullname: Skondras, Emmanouil – sequence: 5 givenname: Dimitrios J. orcidid: 0000-0003-3918-5236 surname: Vergados fullname: Vergados, Dimitrios J. |
BookMark | eNplkU1vFDEMhiNURD_gwD-YIxyGxklmJ7kgrZalLCqqBLTXKJM421SzyZJkkcqv77RbEIWTLfv1o9f2MTmIKSIhr4G-41zR08IAuOCKPSNHIJhoJWP04K_8kByXckMp45zLF-SQC1BS9f0R-byMmNe3zcW2hk34ZWpIsQmx-bAzY_t19a25nF-18-DQNV-Wi3YZzTBO-SpWzBFrk3xzhdfBjlhekufejAVfPcYTcvlx-X3xqT2_OFst5uetFVLUdhi8E7JznlkwzAuLnQDLnPTGDkZ4Z0GhdM4hAE7rKRDgPUiFlEsvJD8hqz3XJXOjtzlsTL7VyQT9UEh5rU2u95b0YNRM9YxLMDNhbT94RdEJz1VvDZ_BxHq_Z213wwadxVizGZ9An3ZiuNbr9FNL1oPquwnw5hGQ048dlqo3oVgcRxMx7Ypm3bQ0dFTNJunpXmpzKiWj1zbUh4NP5DBqoPr-m_rPN6eJt_9M_Db2v_YOTxefWw |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3220682 crossref_primary_10_1109_TWC_2022_3146514 crossref_primary_10_1109_ACCESS_2023_3342320 crossref_primary_10_1109_TVT_2023_3331363 crossref_primary_10_32604_cmc_2022_023840 crossref_primary_10_1109_TCOMM_2024_3372877 crossref_primary_10_3390_signals4010012 crossref_primary_10_1016_j_jnca_2023_103670 crossref_primary_10_3233_IDT_220045 crossref_primary_10_1109_ACCESS_2022_3199408 crossref_primary_10_3390_drones6020041 crossref_primary_10_1007_s10586_024_04631_z crossref_primary_10_1016_j_iswa_2023_200226 crossref_primary_10_1109_TITS_2024_3440391 crossref_primary_10_3390_s22186995 crossref_primary_10_1109_JIOT_2025_3527041 crossref_primary_10_1109_TMC_2024_3461719 crossref_primary_10_1109_ACCESS_2022_3149054 crossref_primary_10_3390_drones5030070 crossref_primary_10_1109_JIOT_2023_3270960 crossref_primary_10_4271_12_07_02_0014 crossref_primary_10_1109_JPROC_2024_3404491 crossref_primary_10_3390_s23052554 crossref_primary_10_1016_j_jksuci_2023_101837 crossref_primary_10_3390_fi15080254 crossref_primary_10_3390_drones7030214 crossref_primary_10_1145_3695882 crossref_primary_10_1109_ACCESS_2024_3431922 crossref_primary_10_1109_ACCESS_2021_3125431 crossref_primary_10_1109_ACCESS_2021_3106495 crossref_primary_10_3390_en15145143 |
Cites_doi | 10.1109/MNET.2019.1800309 10.1109/JAS.2017.7510736 10.3390/s19030550 10.1109/TIV.2018.2873922 10.3390/s19204521 10.1109/ACCESS.2021.3106495 10.1109/TVT.2019.2917890 10.1109/TVT.2019.2935450 10.1109/JIOT.2020.2993260 10.1109/MWC.001.1800594 10.1109/JSAC.2018.2864426 10.1109/TWC.2020.3042977 10.1109/JPROC.2019.2952892 10.1109/ACCESS.2019.2949032 10.1109/JPROC.2019.2947490 10.1109/TCCN.2020.3012680 10.1109/ICC42927.2021.9500445 10.1109/JSAC.2020.3007035 10.1109/JIOT.2018.2878876 10.1109/LWC.2020.3040607 10.1002/9780470316979 10.1109/TWC.2013.072513.121842 10.1109/MWC.001.2000142 10.1109/TWC.2019.2928539 10.1109/LSP.2018.2880081 10.3390/s21010285 10.1109/LWC.2020.2966705 10.1109/MCS.2013.2287568 10.1109/TITS.2020.3023958 10.1109/ACCESS.2018.2872753 10.1109/JIOT.2018.2890133 10.1109/TITS.2020.3024186 10.1109/TGCN.2018.2866995 10.1109/TII.2019.2948406 10.1109/LWC.2020.3042189 10.3390/s19061303 10.1109/ACCESS.2019.2935217 10.1109/TVT.2019.2959410 10.1109/TVT.2015.2479942 10.1017/CBO9780511804441 10.1109/LWC.2019.2947445 10.1002/0471715220 10.1109/JIOT.2020.3005117 10.1109/GLOCOMW.2011.6162389 10.1109/JIOT.2020.3027149 10.1109/TVT.2017.2706308 10.1109/TITS.2020.2997832 10.1080/10652469.2017.1297438 10.1109/COMST.2019.2915069 10.1109/4234.752901 10.3390/iot1010003 10.1109/COMST.2020.3004197 10.1201/9781315116778 10.1007/BF02124750 |
ContentType | Journal Article |
Copyright | 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3390/s21134392 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_ba96972381a64cc7bf90ed4f397ca361 PMC8271975 10_3390_s21134392 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c484t-bbfd485df2c1a2f4ce541c2d8facba4fdc19e8ddde11e3399141ff189e038f483 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:58 EDT 2025 Thu Aug 21 18:22:54 EDT 2025 Fri Jul 11 03:16:04 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 Tue Jul 01 03:56:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-bbfd485df2c1a2f4ce541c2d8facba4fdc19e8ddde11e3399141ff189e038f483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1077-0047 0000-0003-3918-5236 |
OpenAccessLink | https://doaj.org/article/ba96972381a64cc7bf90ed4f397ca361 |
PMID | 34198977 |
PQID | 2548415096 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ba96972381a64cc7bf90ed4f397ca361 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8271975 proquest_miscellaneous_2548415096 crossref_citationtrail_10_3390_s21134392 crossref_primary_10_3390_s21134392 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210627 |
PublicationDateYYYYMMDD | 2021-06-27 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210627 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Badiu (ref_50) 2020; 9 ref_58 Zhao (ref_6) 2019; 68 ref_57 ref_54 Lin (ref_4) 2021; 22 Brychkov (ref_56) 2017; 28 Jeong (ref_27) 2018; 67 ref_52 ref_51 Hu (ref_16) 2019; 18 Zhou (ref_22) 2018; 36 Michailidis (ref_15) 2020; 1 ref_17 ref_59 Zhou (ref_37) 2021; 10 Shao (ref_39) 2015; 64 Corless (ref_60) 1996; 5 Zhang (ref_20) 2020; 7 ref_61 Kong (ref_55) 1999; 3 Liu (ref_9) 2019; 68 Boukerche (ref_11) 2020; 21 Zhang (ref_28) 2019; 6 Mei (ref_40) 2019; 7 Gong (ref_30) 2020; 22 ref_29 Zhang (ref_24) 2020; 16 Chu (ref_36) 2021; 10 ref_26 Thibault (ref_2) 2018; 3 Zhan (ref_19) 2020; 7 Zhang (ref_10) 2020; 69 Zhang (ref_42) 2013; 12 Zhou (ref_5) 2019; 26 Han (ref_23) 2020; 6 Bai (ref_35) 2020; 38 Zhang (ref_25) 2018; 6 ref_38 Zhang (ref_21) 2019; 7 Zhang (ref_3) 2020; 108 Ning (ref_12) 2021; 22 Xu (ref_41) 2018; 5 Miridakis (ref_53) 2018; 2 Ning (ref_7) 2019; 33 ref_47 ref_46 Wei (ref_33) 2021; 20 ref_45 Nomikos (ref_14) 2020; 25 Hashida (ref_31) 2020; 27 ref_1 Zhou (ref_13) 2020; 27 Ranjha (ref_34) 2021; 8 Li (ref_32) 2020; 9 Zeng (ref_44) 2019; 107 ref_49 ref_48 Hu (ref_18) 2019; 6 ref_8 Sujit (ref_62) 2014; 34 Khawaja (ref_43) 2019; 21 |
References_xml | – volume: 33 start-page: 198 year: 2019 ident: ref_7 article-title: Mobile Edge Computing-Enabled Internet of Vehicles: Toward Energy-Efficient Scheduling publication-title: IEEE Netw. doi: 10.1109/MNET.2019.1800309 – volume: 5 start-page: 19 year: 2018 ident: ref_41 article-title: Internet of vehicles in big data era publication-title: Ieee/Caa J. Autom. Sin. doi: 10.1109/JAS.2017.7510736 – ident: ref_1 doi: 10.3390/s19030550 – ident: ref_49 – volume: 3 start-page: 463 year: 2018 ident: ref_2 article-title: A Unified Approach for Electric Vehicles Range Maximization via Eco-Routing, Eco-Driving, and Energy Consumption Prediction publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2018.2873922 – ident: ref_17 doi: 10.3390/s19204521 – ident: ref_29 doi: 10.1109/ACCESS.2021.3106495 – volume: 68 start-page: 7944 year: 2019 ident: ref_6 article-title: Computation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing in Vehicular Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2917890 – volume: 68 start-page: 11158 year: 2019 ident: ref_9 article-title: Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2935450 – volume: 7 start-page: 7808 year: 2020 ident: ref_19 article-title: Completion Time and Energy Optimization in the UAV-Enabled Mobile-Edge Computing System publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2993260 – volume: 27 start-page: 140 year: 2020 ident: ref_13 article-title: Mobile Edge Computing in Unmanned Aerial Vehicle Networks publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.001.1800594 – volume: 36 start-page: 1927 year: 2018 ident: ref_22 article-title: Computation Rate Maximization in UAV-Enabled Wireless-Powered Mobile-Edge Computing Systems publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2018.2864426 – volume: 20 start-page: 2530 year: 2021 ident: ref_33 article-title: Sum-Rate Maximization for IRS-Assisted UAV OFDMA Communication Systems publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.3042977 – volume: 107 start-page: 2327 year: 2019 ident: ref_44 article-title: Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond publication-title: Proc. IEEE doi: 10.1109/JPROC.2019.2952892 – volume: 7 start-page: 156476 year: 2019 ident: ref_40 article-title: Joint Trajectory-Task-Cache Optimization in UAV-Enabled Mobile Edge Networks for Cyber-Physical System publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949032 – volume: 108 start-page: 246 year: 2020 ident: ref_3 article-title: Mobile Edge Intelligence and Computing for the Internet of Vehicles publication-title: Proc. IEEE doi: 10.1109/JPROC.2019.2947490 – volume: 6 start-page: 1193 year: 2020 ident: ref_23 article-title: Rate Splitting on Mobile Edge Computing for UAV-Aided IoT Systems publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2020.3012680 – ident: ref_61 – ident: ref_38 doi: 10.1109/ICC42927.2021.9500445 – volume: 38 start-page: 2666 year: 2020 ident: ref_35 article-title: Latency Minimization for Intelligent Reflecting Surface Aided Mobile Edge Computing publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3007035 – volume: 6 start-page: 1879 year: 2019 ident: ref_18 article-title: Joint Offloading and Trajectory Design for UAV-Enabled Mobile Edge Computing Systems publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2878876 – volume: 10 start-page: 619 year: 2021 ident: ref_36 article-title: Intelligent Reflecting Surface Assisted Mobile Edge Computing for Internet of Things publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2020.3040607 – ident: ref_51 doi: 10.1002/9780470316979 – ident: ref_58 – volume: 25 start-page: 100250 year: 2020 ident: ref_14 article-title: A UAV-Based Moving 5G RAN for Massive Connectivity of Mobile Users and IoT Devices publication-title: Veh. Commun. – volume: 12 start-page: 4569 year: 2013 ident: ref_42 article-title: Energy-optimal mobile cloud computing under stochastic wireless channel publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2013.072513.121842 – volume: 21 start-page: 2675 year: 2020 ident: ref_11 article-title: An Efficient Mobility-Oriented Retrieval Protocol for Computation Offloading in Vehicular Edge Multi-Access Network publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 27 start-page: 146 year: 2020 ident: ref_31 article-title: Intelligent Reflecting Surface Placement Optimization in Air-Ground Communication Networks Toward 6G publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.001.2000142 – volume: 18 start-page: 4738 year: 2019 ident: ref_16 article-title: UAV-Assisted Relaying and Edge Computing: Scheduling and Trajectory Optimization publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2928539 – volume: 26 start-page: 104 year: 2019 ident: ref_5 article-title: Reliability-Oriented Optimization of Computation Offloading for Cooperative Vehicle-Infrastructure Systems publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2880081 – ident: ref_45 doi: 10.3390/s21010285 – ident: ref_48 – volume: 9 start-page: 716 year: 2020 ident: ref_32 article-title: Reconfigurable Intelligent Surface Assisted UAV Communication: Joint Trajectory Design and Passive Beamforming publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2020.2966705 – volume: 34 start-page: 42 year: 2014 ident: ref_62 article-title: Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicles publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2013.2287568 – volume: 22 start-page: 3730 year: 2021 ident: ref_4 article-title: Distributed Learning for Vehicle Routing Decision in Software Defined Internet of Vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3023958 – volume: 6 start-page: 56700 year: 2018 ident: ref_25 article-title: Energy-Aware Dynamic Resource Allocation in UAV Assisted Mobile Edge Computing Over Social Internet of Vehicles publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2872753 – volume: 6 start-page: 3688 year: 2019 ident: ref_28 article-title: Stochastic Computation Offloading and Trajectory Scheduling for UAV-Assisted Mobile Edge Computing publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2890133 – ident: ref_26 doi: 10.1109/TITS.2020.3024186 – volume: 2 start-page: 1101 year: 2018 ident: ref_53 article-title: MIMO Underlay Cognitive Radio: Optimized Power Allocation, Effective Number of Transmit Antennas and Harvest-Transmit Tradeoff publication-title: IEEE Trans. Green Commun. Netw. doi: 10.1109/TGCN.2018.2866995 – volume: 16 start-page: 5505 year: 2020 ident: ref_24 article-title: Joint Computation and Communication Design for UAV-Assisted Mobile Edge Computing in IoT publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2019.2948406 – volume: 10 start-page: 740 year: 2021 ident: ref_37 article-title: Delay-Optimal Scheduling for IRS-Aided Mobile Edge Computing publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2020.3042189 – ident: ref_8 doi: 10.3390/s19061303 – volume: 7 start-page: 113345 year: 2019 ident: ref_21 article-title: Resource Allocation for a UAV-Enabled Mobile-Edge Computing System: Computation Efficiency Maximization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935217 – volume: 69 start-page: 2092 year: 2020 ident: ref_10 article-title: Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2959410 – volume: 64 start-page: 5596 year: 2015 ident: ref_39 article-title: Performance Analysis of Connectivity Probability and Connectivity-Aware MAC Protocol Design for Platoon-Based VANETs publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2479942 – ident: ref_59 doi: 10.1017/CBO9780511804441 – volume: 9 start-page: 184 year: 2020 ident: ref_50 article-title: Communication Through a Large Reflecting Surface With Phase Errors publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2019.2947445 – ident: ref_52 doi: 10.1002/0471715220 – volume: 7 start-page: 10573 year: 2020 ident: ref_20 article-title: Latency-Aware IoT Service Provisioning in UAV-Aided Mobile-Edge Computing Networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3005117 – ident: ref_46 doi: 10.1109/GLOCOMW.2011.6162389 – volume: 8 start-page: 4618 year: 2021 ident: ref_34 article-title: URLLC Facilitated by Mobile UAV Relay and RIS: A Joint Design of Passive Beamforming, Blocklength, and UAV Positioning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3027149 – volume: 67 start-page: 2049 year: 2018 ident: ref_27 article-title: Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2706308 – volume: 22 start-page: 2212 year: 2021 ident: ref_12 article-title: Intelligent Edge Computing in Internet of Vehicles: A Joint Computation Offloading and Caching Solution publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2997832 – ident: ref_54 – volume: 28 start-page: 350 year: 2017 ident: ref_56 article-title: On new reduction formulas for the Humbert functions Ψ2, Φ2 and Φ3 publication-title: Integral Transform. Spec. Funct. doi: 10.1080/10652469.2017.1297438 – volume: 21 start-page: 2361 year: 2019 ident: ref_43 article-title: A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2019.2915069 – volume: 3 start-page: 57 year: 1999 ident: ref_55 article-title: Average SNR of a generalized diversity selection combining scheme publication-title: IEEE Commun. Lett. doi: 10.1109/4234.752901 – volume: 1 start-page: 21 year: 2020 ident: ref_15 article-title: AI-Inspired Non-Terrestrial Networks for IIoT: Review on Enabling Technologies and Applications publication-title: IoT doi: 10.3390/iot1010003 – ident: ref_57 – volume: 22 start-page: 2283 year: 2020 ident: ref_30 article-title: Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2020.3004197 – ident: ref_47 doi: 10.1201/9781315116778 – volume: 5 start-page: 329 year: 1996 ident: ref_60 article-title: On the Lambert W function publication-title: Adv. Comput. Math. doi: 10.1007/BF02124750 |
SSID | ssj0023338 |
Score | 2.4890623 |
Snippet | Mobile edge computing (MEC) represents an enabling technology for prospective Internet of Vehicles (IoV) networks. However, the complex vehicular propagation... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4392 |
SubjectTerms | computation offloading energy efficiency Internet of Vehicles (IoV) mobile edge computing (MEC) reconfigurable intelligent surface (RIS) unmanned aerial vehicle (UAV) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_iJ84vonjwEtY0aZMe59yYgymoG7uVNB9sMDtx2__va9qNFQQvXtvQpu81fb9f-t7vIXQfBNqyKJYkVoEinGpKJMB84lQkbJhI43yF3OAl7g15fxyNt1p9FTlhpTxwabhmppLYd8aiKuZai8wlgTXcQRzVipXEB2LemkxVVIsB8yp1hBiQ-uYCaA6D0BvWoo8X6a8hy3pe5Fag6R6igwoh4lY5syO0Y_NjtL-lG3iC-h1fsYdfYb1_VoWUeJrjp5WakbfndzxsjUhraqzBg06bdHx9lMHl7p9d4rnDIzvxCXGnaNjtfLR7pGqKQDSXfEmyzBkuI-NCTVXouLYRWDg00imdKe6MpomVBr5alFp4-IRy6hyViQ2YdFyyM7Sbz3N7jjAXVsCFZAaQigumADsyI7gBhMc0xKkGelgbK9WVYnjRuGKWAnMo7Jpu7NpAd5uhX6VMxm-DHguLbwYUytb-APg7rfyd_uXvBrpd-yuFlVD83lC5na8WKVBdCXAEOFkDiZoja3esn8mnE6-pLUNBExFd_McUL9FeWGS-BDEJxRXaXX6v7DVAl2V249_SH2rm7Q4 priority: 102 providerName: Directory of Open Access Journals |
Title | Energy Optimization in Dual-RIS UAV-Aided MEC-Enabled Internet of Vehicles |
URI | https://www.proquest.com/docview/2548415096 https://pubmed.ncbi.nlm.nih.gov/PMC8271975 https://doaj.org/article/ba96972381a64cc7bf90ed4f397ca361 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gIHxFMslJVBHLgY4tiJnQNC25KlVNqCClvtLXL8oCstWboPqf33jL3ZVSP1wCWHxHGUccbf98WeGYB3SWIcz3JFc51oKphhVCHNp15n0qWFsj5GyI3O8pOxOJ1kkz3Y1thsDbi8U9qFelLjxezD9dXNZ3T4T0FxomT_uEQRwxFYcSY-QECSwT9HYreYkHIeC1qHmC6KeJhsEgx1b-3AUsze36Gc3Q2TtxBo-AgettSRDDZj_Rj2XPMEHtxKKPgUTssYyke-40Twp42wJNOGfFnrGT3_9pOMBxd0MLXOklF5TMsYOGXJ5regW5G5JxfuMu6UewbjYfnr-IS21RKoEUqsaF17K1RmfWqYTr0wLkPTp1Z5bWotvDWscMridMaYw5cvmGDeM1W4hCsvFH8O-828cS-ACOkkdqRq5FpCco2kklspLFI_bhDAevB-a6zKtKnEQ0WLWYWSIti12tm1B293Tf9u8mfc1egoWHzXIKS8jifmi99V60GI6kUeS6QxnQtjZO2LxFnhkVAZzXPWgzfb8arQRcK6h27cfL2sUAMr5Cko1nogOwPZeWL3SjO9jMm2VSpZIbOX_9H7K7ifhh0vSU5TeQj7q8XavUbKsqr7cE9OJB7V8GsfDo7Ksx_n_Sj_-_FT_QeNN-4B |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Optimization+in+Dual-RIS+UAV-Aided+MEC-Enabled+Internet+of+Vehicles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Michailidis%2C+Emmanouel+T&rft.au=Miridakis%2C+Nikolaos+I&rft.au=Michalas%2C+Angelos&rft.au=Skondras%2C+Emmanouil&rft.date=2021-06-27&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=13&rft_id=info:doi/10.3390%2Fs21134392&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |