Human gait recognition subject to different covariate factors in a multi-view environment
Gait recognition provides the opportunity to identify different walking styles of people without physical intervention. However, covariates such as changing clothes and carrying conditions may influence recognition accuracy. Our objective was to identify the walking patterns of people for different...
Saved in:
Published in | Results in engineering Vol. 15; p. 100556 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2590-1230 2590-1230 |
DOI | 10.1016/j.rineng.2022.100556 |
Cover
Loading…
Abstract | Gait recognition provides the opportunity to identify different walking styles of people without physical intervention. However, covariates such as changing clothes and carrying conditions may influence recognition accuracy. Our objective was to identify the walking patterns of people for different covariates through analyzing images from publicly available data set CASIA-B on gait. On the dataset, the proposed method was evaluated by using GEI (gait energy image) as inputs for normal walking, changing clothes, and carrying conditions in a multi-view environment. A support vector machine (SVM) and a histogram of oriented gradients (HOG) were applied to classify images of the human gait in order to meet the objectives. Observations show that, under consideration of the mean of the individual accuracies, the accuracy of recognition is in the following order: clothing > normal walk > carrying at a 90° angle. Measurement accuracy of 87.9% was achieved for the coat-wearing people and measurement accuracy of 83.33% was achieved for all the mentioned covariates. The accuracy of the clothing covariate stated as 87.9% is a useful for people especially for different season like winter.
•Recognition accuracy order is clothing > normal walk > carrying at a 90° angle.•The overall accuracy of 83.33% was achieved for all the mentioned covariates.•The accuracy was 87.9% for the coat-wearing people. |
---|---|
AbstractList | Gait recognition provides the opportunity to identify different walking styles of people without physical intervention. However, covariates such as changing clothes and carrying conditions may influence recognition accuracy. Our objective was to identify the walking patterns of people for different covariates through analyzing images from publicly available data set CASIA-B on gait. On the dataset, the proposed method was evaluated by using GEI (gait energy image) as inputs for normal walking, changing clothes, and carrying conditions in a multi-view environment. A support vector machine (SVM) and a histogram of oriented gradients (HOG) were applied to classify images of the human gait in order to meet the objectives. Observations show that, under consideration of the mean of the individual accuracies, the accuracy of recognition is in the following order: clothing > normal walk > carrying at a 90° angle. Measurement accuracy of 87.9% was achieved for the coat-wearing people and measurement accuracy of 83.33% was achieved for all the mentioned covariates. The accuracy of the clothing covariate stated as 87.9% is a useful for people especially for different season like winter.
•Recognition accuracy order is clothing > normal walk > carrying at a 90° angle.•The overall accuracy of 83.33% was achieved for all the mentioned covariates.•The accuracy was 87.9% for the coat-wearing people. Gait recognition provides the opportunity to identify different walking styles of people without physical intervention. However, covariates such as changing clothes and carrying conditions may influence recognition accuracy. Our objective was to identify the walking patterns of people for different covariates through analyzing images from publicly available data set CASIA-B on gait. On the dataset, the proposed method was evaluated by using GEI (gait energy image) as inputs for normal walking, changing clothes, and carrying conditions in a multi-view environment. A support vector machine (SVM) and a histogram of oriented gradients (HOG) were applied to classify images of the human gait in order to meet the objectives. Observations show that, under consideration of the mean of the individual accuracies, the accuracy of recognition is in the following order: clothing > normal walk > carrying at a 90° angle. Measurement accuracy of 87.9% was achieved for the coat-wearing people and measurement accuracy of 83.33% was achieved for all the mentioned covariates. The accuracy of the clothing covariate stated as 87.9% is a useful for people especially for different season like winter. |
ArticleNumber | 100556 |
Author | Iqbal, Javaid Ahmad, Muhammad W. Tiwana, Mohsin I. Asif, Muhammad Qureshi, Waqar S. Khan, Umar S. |
Author_xml | – sequence: 1 givenname: Muhammad surname: Asif fullname: Asif, Muhammad email: m.asif@ceme.nust.edu.pk organization: Department of Mechatronics Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan – sequence: 2 givenname: Mohsin I. surname: Tiwana fullname: Tiwana, Mohsin I. email: mohsintiwana@ceme.nust.edu.pk organization: Department of Mechatronics Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan – sequence: 3 givenname: Umar S. surname: Khan fullname: Khan, Umar S. email: u.shahbaz@ceme.nust.edu.pk organization: Department of Mechatronics Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan – sequence: 4 givenname: Muhammad W. surname: Ahmad fullname: Ahmad, Muhammad W. email: waqas@ceme.nust.edu.pk organization: Department of Computer and Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan – sequence: 5 givenname: Waqar S. surname: Qureshi fullname: Qureshi, Waqar S. email: waqar.shahid@ceme.nust.edu.pk organization: Department of Mechatronics Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan – sequence: 6 givenname: Javaid surname: Iqbal fullname: Iqbal, Javaid email: j.iqbal@ceme.nust.edu.pk organization: National Centre of Robotics and Automation (NCRA), National University of Sciences and Technology (NUST), Islamabad, Pakistan |
BookMark | eNqFkcFq3DAQhkVJIJtk3yAHvYA3sizLUg-FEpomEMilPeQkxvJ4GbMrFVm7pW9fbdxC6SE5aRj0_Rp9c8nOQgzI2E0tNrWo9e20SRQwbDdSSFlaom31B7aSrRVVLRtx9k99wdbzPAkhpCls063Yy8NhD4FvgTJP6OM2UKYY-HzoJ_SZ58gHGkdMGDL38QiJICMfweeYZk6BA98fdpmqI-FPjuFIKYZ9uX3NzkfYzbj-c16x7_dfvt09VE_PXx_vPj9VXhmVq14Psh-U7nuNHrxvEDqJ1tZK-UaB6TsLplW2H-wIsjF2tLrvWi2lUK1odXPFHpfcIcLkfiTaQ_rlIpB7bcS0dZAy-R26xoCRUg2AqNQwStNaI1SntK5PD4iS9XHJ8inOc8LRecpwEpIT0M7Vwp2cu8ktzt3JuVucF1j9B_8d5h3s04JhkVQkJjd7wuBxoLKQXH5Bbwf8Bg62n7Y |
CitedBy_id | crossref_primary_10_1016_j_future_2023_02_005 crossref_primary_10_1016_j_rineng_2023_101027 crossref_primary_10_1016_j_rineng_2024_101984 crossref_primary_10_3233_JIFS_224114 crossref_primary_10_1016_j_rineng_2023_101026 crossref_primary_10_1016_j_rineng_2023_101025 crossref_primary_10_1007_s00521_023_09154_z crossref_primary_10_1007_s11042_024_20132_y crossref_primary_10_1016_j_future_2023_05_011 crossref_primary_10_1016_j_rineng_2023_101724 crossref_primary_10_1016_j_rineng_2022_100636 crossref_primary_10_32604_cmc_2023_043061 crossref_primary_10_1007_s11042_023_15079_5 crossref_primary_10_3390_app13042273 crossref_primary_10_1007_s11416_023_00499_6 crossref_primary_10_3390_s23052754 crossref_primary_10_1186_s13677_023_00569_6 crossref_primary_10_1109_ACCESS_2022_3222859 crossref_primary_10_3390_technologies12120264 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_1109_JSEN_2023_3260846 crossref_primary_10_1007_s11760_024_03260_8 crossref_primary_10_1016_j_rineng_2025_104091 crossref_primary_10_1007_s11760_023_02851_1 |
Cites_doi | 10.1109/TIFS.2011.2176118 10.1109/TCSVT.2006.877418 10.1007/s11042-013-1770-8 10.1016/j.imavis.2013.04.001 10.1016/j.neucom.2019.02.025 10.1016/j.rineng.2021.100225 10.1016/j.asoc.2017.07.041 10.1007/s11042-019-7638-9 10.1016/j.patrec.2010.05.027 10.1016/j.patrec.2019.04.010 10.1109/TPAMI.2020.2998790 10.1007/s11760-017-1066-y 10.1109/ACCESS.2021.3086807 10.1016/j.patcog.2017.05.021 10.1109/ACCESS.2020.2986554 10.1016/j.neucom.2016.08.139 10.1109/TCSVT.2003.821972 10.1109/LSP.2011.2157143 10.1109/TSMCB.2009.2031091 10.1109/TPAMI.2006.38 10.1109/TPAMI.2007.1096 10.1109/JAS.2019.1911345 10.1016/j.rineng.2019.100061 10.1049/iet-bmt.2018.5046 10.1016/j.imavis.2014.10.004 10.1016/j.rineng.2020.100109 10.1049/iet-bmt.2019.0001 10.1016/j.rineng.2020.100163 10.1016/j.neucom.2017.12.040 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rineng.2022.100556 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1230 |
ExternalDocumentID | oai_doaj_org_article_38a8224daee44df28598047466149bd0 10_1016_j_rineng_2022_100556 S2590123022002262 |
GroupedDBID | 0SF 6I. AAEDW AAFTH AALRI AAXUO ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c484t-b6d2bd46bb6ecacc3ea72e99144c34a8b79a8549bd9fa2389f96b756220450563 |
IEDL.DBID | DOA |
ISSN | 2590-1230 |
IngestDate | Wed Aug 27 01:23:15 EDT 2025 Tue Jul 01 01:37:14 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Tue Jul 25 20:56:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gait energy image CASIA-B Human gait recognition SVM Classification rate |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-b6d2bd46bb6ecacc3ea72e99144c34a8b79a8549bd9fa2389f96b756220450563 |
OpenAccessLink | https://doaj.org/article/38a8224daee44df28598047466149bd0 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_38a8224daee44df28598047466149bd0 crossref_citationtrail_10_1016_j_rineng_2022_100556 crossref_primary_10_1016_j_rineng_2022_100556 elsevier_sciencedirect_doi_10_1016_j_rineng_2022_100556 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Results in engineering |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Abdulqader, Rizos (bib10) Jun. 2020; 6 Zhang, Wang, Chai, Li, Jain (bib5) 13 Jan 2022 Lishani, Boubchir, Khalifa, Bouridane (bib43) 2017; 11 Asif, Tayyab, Shahid, Zafar, Bhatti, Murtaza, Tiwana (bib51) Oct, 2021 Huang, Lu, Pun, Cheng (bib49) May 2020; 8 Han, Bhanu (bib39) Feb. 2006; 28 Nguyen, Fookes, Jillela, Sridharan, Ross (bib3) December 2017; 72 Wu, Hou, Su, Wu, Huang, Zhu (bib45) 2020 Liao, Yu, An, Huang (bib46) Feb. 2020; 98 Zhang, Wang, Zhuang, Wang (bib16) 22 Jan 2022 Zhang, Tran, Yin, Atoum, Liu, Wan, Wang (bib33) June 2019 Huang, Lu, Pun, Cheng (bib29) May 2020 Thapar, Nigam (bib21) 2018 Min, Sayeed, Ong (bib23) 2019 Zhang, Tran, Liu, Liu (bib34) January 2022; 44 Kusakunniran (bib40) 2014; 32 Xu, Yan, Tao, Zhang, Li, Zhang (bib19) 2006; 16 Liu, Liu, Tan (bib20) 2011; 18 Wang, Song, Huang, Wang, Wang (bib26) Apr. 2019; 339 Nixon, Carter, Nash, Huang, Cunado, Stevenage (bib6) 1999 . Rokanujjaman, Islam, Hossain, Islam, Makihara, Yagi (bib48) 2015; 74 Rida, Almaadeed, Bouridane (bib41) 2015 Yeoh, Daolio, Aguirre, Tanaka (bib27) Dec. 2017; 61 Goffredo, Bouchrika, Carter, Nixon (bib25) 2010; 40 Cheheb, Al-Maadeed, Al-Madeed, Bouridane (bib22) 2018 Kumar, Aravind, Hossiney (bib9) Dec. 2019; 4 Kumar, Nagendraswamy (bib17) 2014 Moghaddam, Etemad (bib11) 2022 Momeny, Latif, Sarram, Sheikhpour, Zhang (bib12) Jun. 2021; 10 Asif, Tiwana, Khan, Qureshi, Iqbal, Rashid, Naseer (bib50) Jun. 2021; 9 Vinuesa, Theodorou, Battaglini, Dignum (bib15) Dec. 2020; 8 Sokolova, Konushin (bib32) February 2019; 8 Matovski, Nixon, Mahmoodi, Carter (bib37) 2012; 7 D. Tao, X. Li, X. Wu, and S. J. Maybank, “General tensor discriminant analysis and gabor features for gait recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 10, pp. 1700–1715.. Hawas, Khobby, Elnabi, El-Samie (bib31) Jun. 2019; 78 Rida, Almaadeed, Bouridane (bib42) Mar. 2015 CASIA-B dataset, Center for Biometrics and Security Research. Accessed: Dec. 11, 2021. [Online]. Available Tanawongsuwan, Bobick (bib7) 2001 Isaac, Elias, Rajagopalan, Easwarakumar (bib24) 2019; 6 Sepas-Moghaddam, Pereira, Correia (bib1) March 2020; 9 Dupuis, Savatier, Vasseur (bib38) Aug. 2013; 31 Shen, Yu, Wang, Huang, Wang (bib4) 28 Jun 2022 Wang, Ning, Tan, Hu (bib8) 2004; 14 Su, Zhao, Li (bib28) May 2020 Kukreja, Kumar, Kaur (bib13) 2021 Bashir, Xiang, Gong (bib47) Oct. 2010; 31 Mahfouf, Merouani, Bouchrika, Harrati (bib30) Mar. 2018; 283 Nithyakani, Ukrit (bib35) 2021 Tong, Fu, Ling (bib44) Jul. 2019; 125 Apostolidis, Amanatidis, Papakostas (bib14) 2020 Emersic, Struc, Peer (bib2) September 2017; 255 Nixon (10.1016/j.rineng.2022.100556_bib6) 1999 10.1016/j.rineng.2022.100556_bib36 Sepas-Moghaddam (10.1016/j.rineng.2022.100556_bib1) 2020; 9 Huang (10.1016/j.rineng.2022.100556_bib29) 2020 Bashir (10.1016/j.rineng.2022.100556_bib47) 2010; 31 Zhang (10.1016/j.rineng.2022.100556_bib5) 2022 Zhang (10.1016/j.rineng.2022.100556_bib34) 2022; 44 Kusakunniran (10.1016/j.rineng.2022.100556_bib40) 2014; 32 Shen (10.1016/j.rineng.2022.100556_bib4) 2022 Nguyen (10.1016/j.rineng.2022.100556_bib3) 2017; 72 Thapar (10.1016/j.rineng.2022.100556_bib21) 2018 Su (10.1016/j.rineng.2022.100556_bib28) 2020 Xu (10.1016/j.rineng.2022.100556_bib19) 2006; 16 Apostolidis (10.1016/j.rineng.2022.100556_bib14) 2020 Goffredo (10.1016/j.rineng.2022.100556_bib25) 2010; 40 Wang (10.1016/j.rineng.2022.100556_bib8) 2004; 14 Rokanujjaman (10.1016/j.rineng.2022.100556_bib48) 2015; 74 Yeoh (10.1016/j.rineng.2022.100556_bib27) 2017; 61 Zhang (10.1016/j.rineng.2022.100556_bib16) 2022 Han (10.1016/j.rineng.2022.100556_bib39) 2006; 28 Mahfouf (10.1016/j.rineng.2022.100556_bib30) 2018; 283 Dupuis (10.1016/j.rineng.2022.100556_bib38) 2013; 31 Zhang (10.1016/j.rineng.2022.100556_bib33) 2019 Moghaddam (10.1016/j.rineng.2022.100556_bib11) 2022 Rida (10.1016/j.rineng.2022.100556_bib41) 2015 Kumar (10.1016/j.rineng.2022.100556_bib17) 2014 Abdulqader (10.1016/j.rineng.2022.100556_bib10) 2020; 6 Huang (10.1016/j.rineng.2022.100556_bib49) 2020; 8 Matovski (10.1016/j.rineng.2022.100556_bib37) 2012; 7 Liao (10.1016/j.rineng.2022.100556_bib46) 2020; 98 Asif (10.1016/j.rineng.2022.100556_bib50) 2021; 9 Hawas (10.1016/j.rineng.2022.100556_bib31) 2019; 78 10.1016/j.rineng.2022.100556_bib18 Cheheb (10.1016/j.rineng.2022.100556_bib22) 2018 Asif (10.1016/j.rineng.2022.100556_bib51) 2021 Wang (10.1016/j.rineng.2022.100556_bib26) 2019; 339 Emersic (10.1016/j.rineng.2022.100556_bib2) 2017; 255 Vinuesa (10.1016/j.rineng.2022.100556_bib15) 2020; 8 Kumar (10.1016/j.rineng.2022.100556_bib9) 2019; 4 Min (10.1016/j.rineng.2022.100556_bib23) 2019 Nithyakani (10.1016/j.rineng.2022.100556_bib35) 2021 Rida (10.1016/j.rineng.2022.100556_bib42) 2015 Lishani (10.1016/j.rineng.2022.100556_bib43) 2017; 11 Tong (10.1016/j.rineng.2022.100556_bib44) 2019; 125 Isaac (10.1016/j.rineng.2022.100556_bib24) 2019; 6 Tanawongsuwan (10.1016/j.rineng.2022.100556_bib7) 2001 Wu (10.1016/j.rineng.2022.100556_bib45) 2020 Liu (10.1016/j.rineng.2022.100556_bib20) 2011; 18 Momeny (10.1016/j.rineng.2022.100556_bib12) 2021; 10 Sokolova (10.1016/j.rineng.2022.100556_bib32) 2019; 8 Kukreja (10.1016/j.rineng.2022.100556_bib13) 2021 |
References_xml | – volume: 6 start-page: 1 year: Jun. 2020 end-page: 5 ident: bib10 article-title: Advantages of using digital image correlation techniques in uniaxial compression tests publication-title: Results in Engineering – volume: 18 start-page: 431 year: 2011 end-page: 434 ident: bib20 article-title: Joint subspace learning for view-invariant gait recognition publication-title: IEEE Signal Process. Lett. – reference: CASIA-B dataset, Center for Biometrics and Security Research. Accessed: Dec. 11, 2021. [Online]. Available: – start-page: 1 year: 2022 end-page: 20 ident: bib11 article-title: Deep Gait Recognition: A Survey”. IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 31 start-page: 2052 year: Oct. 2010 end-page: 2060 ident: bib47 article-title: Gait recognition without subject cooperation publication-title: Elsevier Journal of Pattern Recognition Letters – volume: 283 start-page: 140 year: Mar. 2018 end-page: 149 ident: bib30 article-title: Investigating the use of motion-based features from optical flow for gait recognition publication-title: Elsevier Journal of Neurocomputing – volume: 339 start-page: 245 year: Apr. 2019 end-page: 254 ident: bib26 article-title: Learning view invariant gait features with two-stream GAN publication-title: Neurocomputing – start-page: 9 year: 2021 end-page: 13 ident: bib13 article-title: Deep learning in human gait recognition: an overview publication-title: International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) Mar 4 – start-page: 1 year: 22 Jan 2022 end-page: 13 ident: bib16 article-title: Motion Gait: Gait Recognition via Motion Excitation – volume: 9 start-page: 1 year: March 2020 end-page: 12 ident: bib1 article-title: Face recognition: a novel multi-level taxonomy based survey publication-title: IET Biom. – volume: 8 start-page: 134 year: February 2019 end-page: 143 ident: bib32 article-title: Pose-based deep gait recognition publication-title: IET Biom. – volume: 78 start-page: 25873 year: Jun. 2019 end-page: 25888 ident: bib31 article-title: Gait identification by convolutional neural networks and optical flow publication-title: Multimed. Tool. Appl. – volume: 74 start-page: 3099 year: 2015 end-page: 3120 ident: bib48 article-title: Effective part-based gait identification using frequency-domain gait entropy features publication-title: Multimed. Tool. Appl. – start-page: 1 year: 13 Jan 2022 end-page: 16 ident: bib5 article-title: RealGait: Gait Recognition for Person Re-identification – start-page: 3/1 year: 1999 end-page: 3/6 ident: bib6 article-title: Automatic Gait Recognition,” Motion Analysis and Tracking (Ref. No. 1999/103) – start-page: 155 year: 2020 end-page: 160 ident: bib45 article-title: Gait recognition based on feedback weight capsule network publication-title: Conference (ITNEC 2020) – volume: 72 start-page: 123 year: December 2017 end-page: 143 ident: bib3 article-title: Long range iris recognition: a survey publication-title: Pattern Recogn. – volume: 16 start-page: 896 year: 2006 end-page: 903 ident: bib19 article-title: Human gait recognition with matrix representation publication-title: IEEE Trans. Circ. Syst. Video Technol. – volume: 44 start-page: 1 year: January 2022 end-page: 16 ident: bib34 article-title: On learning disentangled representations for gait recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 14 start-page: 149 year: 2004 end-page: 158 ident: bib8 article-title: Fusion of static and dynamic body biometrics for gait recognition publication-title: IEEE Trans. Circ. Syst. Video Technol. – start-page: 463 year: Mar. 2015 end-page: 470 ident: bib42 article-title: Gait recognition based on modified phase-only correlation publication-title: Journal of Signal, Image and Video Processing – volume: 9 start-page: 85956 year: Jun. 2021 end-page: 85977 ident: bib50 article-title: Advancements, trends and future prospects of lower limb prosthesis publication-title: IEEE Access – volume: 8 start-page: 1 year: Dec. 2020 end-page: 4 ident: bib15 article-title: A socio-technical framework for digital contact tracing publication-title: Results in Engineering – volume: 40 start-page: 997 year: 2010 end-page: 2010 ident: bib25 article-title: Self-calibrating view-invariant gait biometrics publication-title: IEEE Trans. on Systems, Man, and Cybernetics – start-page: 1128 year: 2015 end-page: 1132 ident: bib41 article-title: Unsupervised feature selection method for improved human gait recognition publication-title: 23rd European Signal Processing Conference (EUSIPCO) – volume: 4 start-page: 1 year: Dec. 2019 end-page: 4 ident: bib9 article-title: Digital image correlation (DIC) for measuring strain in brick masonry specimen using Ncorr open source 2D MATLAB program publication-title: Results in Engineering – volume: 6 start-page: 209 year: 2019 end-page: 219 ident: bib24 article-title: Template-based gait authentication through Bayesian thresholding publication-title: IEEE/CAA Journal of Automatica Sinica – start-page: 4077 year: May 2020 end-page: 4081 ident: bib28 article-title: ‘Deep metric learning based on center-ranked loss for gait recognition publication-title: Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP) – volume: 10 start-page: 1 year: Jun. 2021 end-page: 12 ident: bib12 article-title: A noise robust convolutional neural network for image classification publication-title: Results in Engineering – volume: 32 start-page: 1117 year: 2014 end-page: 1126, Dec ident: bib40 article-title: Attribute-based learning for gait recognition using spatio-temporal interest points publication-title: Elsevier Journal of Image and Visio Computing – start-page: 1 year: 28 Jun 2022 end-page: 20 ident: bib4 article-title: A Comprehensive Survey on Deep Gait Recognition: Algorithms, Datasets and Challenges – start-page: 148 year: 2018 end-page: 151 ident: bib22 article-title: Investigating the use of autoencoders for gait-based person recognition publication-title: NASA/ESA Conference on Adaptive Hardware and Systems (AHS) – volume: 98 start-page: 1 year: Feb. 2020 end-page: 11 ident: bib46 article-title: A model-based gait recognition method with body pose and human prior knowledge publication-title: Elsevier Journal of Pattern Recognition – start-page: 471 year: 2021 end-page: 478 ident: bib35 article-title: Person identification using histogram of gradient and support vector machine on GEI publication-title: Data Intelligence and Cognitive Informatics – volume: 28 start-page: 316 year: Feb. 2006 end-page: 322 ident: bib39 article-title: Individual recognition using gait energy image publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 255 start-page: 26 year: September 2017 end-page: 39 ident: bib2 article-title: Ear recognition: more than a survey publication-title: Neurocomputing – volume: 11 start-page: 1123 year: 2017 end-page: 1130, Feb ident: bib43 article-title: Human gait recognition based on Haralick features publication-title: Journal of Signal, Image and Video Processing – reference: D. Tao, X. Li, X. Wu, and S. J. Maybank, “General tensor discriminant analysis and gabor features for gait recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 10, pp. 1700–1715.. – volume: 7 start-page: 543 year: 2012 end-page: 552 ident: bib37 article-title: The effect of time on gait recognition performance publication-title: IEEE Trans. Inf. Forensics Secur. – start-page: 1 year: 2018 end-page: 8 ident: bib21 article-title: VGR-net: a view invariant gait recognition network – reference: . – start-page: 1 year: 2014 end-page: 5 ident: bib17 article-title: LBP for gait recognition: a symbolic approach based on GEI plus RBL of GEI publication-title: International Conference on Electronics and Communication Systems (ICECS’2014) – start-page: 1 year: Oct, 2021 end-page: 6 ident: bib51 article-title: Computation of human body equilibrium for leg based on gait cycle publication-title: 4 – start-page: 61 year: 2020 end-page: 63 ident: bib14 article-title: Performance evaluation of convolutional neural networks for gait recognition publication-title: 24 – start-page: 1 year: 2019 end-page: 5 ident: bib23 article-title: Gait recognition using deep convolutional features publication-title: International Conference on Information and Communication Technology (ICoICT) – volume: 61 start-page: 42 year: Dec. 2017 end-page: 57 ident: bib27 article-title: On the effectiveness of feature selection methods for gait classification under different covariate factors publication-title: Appl. Soft Comput. – volume: 125 start-page: 212 year: Jul. 2019 end-page: 219 ident: bib44 article-title: Cross-view gait recognition based on a restrictive triplet network publication-title: Elsevier Journal of Pattern Recognition Letters – start-page: 75381 year: May 2020 end-page: 75392 ident: bib29 article-title: Flexible Gait Recognition Based on Flow Regulation of Local Features between Key Frames – year: June 2019 ident: bib33 article-title: Gait recognition via disentangled representation learning publication-title: Computer Vision and Pattern Recognition, Long Beach, CA, USA – volume: 8 start-page: 75381 year: May 2020 end-page: 75392 ident: bib49 article-title: ‘Flexible gait recognition based on flow regulation of local features between key frames publication-title: IEEE Access – volume: 31 start-page: 580 year: Aug. 2013 end-page: 591 ident: bib38 article-title: Feature subset selection applied to model-free gait recognition publication-title: Image Vis Comput. – year: 2001 ident: bib7 article-title: Gait recognition from time-normalized joint-angle trajectories in the walking plane publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2022 ident: 10.1016/j.rineng.2022.100556_bib4 – start-page: 1 year: 2022 ident: 10.1016/j.rineng.2022.100556_bib5 – start-page: 1 year: 2018 ident: 10.1016/j.rineng.2022.100556_bib21 article-title: VGR-net: a view invariant gait recognition network – start-page: 1128 year: 2015 ident: 10.1016/j.rineng.2022.100556_bib41 article-title: Unsupervised feature selection method for improved human gait recognition – start-page: 1 year: 2019 ident: 10.1016/j.rineng.2022.100556_bib23 article-title: Gait recognition using deep convolutional features – start-page: 1 year: 2021 ident: 10.1016/j.rineng.2022.100556_bib51 article-title: Computation of human body equilibrium for leg based on gait cycle – start-page: 148 year: 2018 ident: 10.1016/j.rineng.2022.100556_bib22 article-title: Investigating the use of autoencoders for gait-based person recognition – start-page: 1 year: 2014 ident: 10.1016/j.rineng.2022.100556_bib17 article-title: LBP for gait recognition: a symbolic approach based on GEI plus RBL of GEI – start-page: 9 year: 2021 ident: 10.1016/j.rineng.2022.100556_bib13 article-title: Deep learning in human gait recognition: an overview – start-page: 75381 year: 2020 ident: 10.1016/j.rineng.2022.100556_bib29 – volume: 7 start-page: 543 issue: 2 year: 2012 ident: 10.1016/j.rineng.2022.100556_bib37 article-title: The effect of time on gait recognition performance publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2011.2176118 – volume: 16 start-page: 896 issue: 7 year: 2006 ident: 10.1016/j.rineng.2022.100556_bib19 article-title: Human gait recognition with matrix representation publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2006.877418 – volume: 74 start-page: 3099 issue: 9 year: 2015 ident: 10.1016/j.rineng.2022.100556_bib48 article-title: Effective part-based gait identification using frequency-domain gait entropy features publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-013-1770-8 – volume: 31 start-page: 580 issue: 8 year: 2013 ident: 10.1016/j.rineng.2022.100556_bib38 article-title: Feature subset selection applied to model-free gait recognition publication-title: Image Vis Comput. doi: 10.1016/j.imavis.2013.04.001 – year: 2019 ident: 10.1016/j.rineng.2022.100556_bib33 article-title: Gait recognition via disentangled representation learning – volume: 339 start-page: 245 year: 2019 ident: 10.1016/j.rineng.2022.100556_bib26 article-title: Learning view invariant gait features with two-stream GAN publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.025 – volume: 10 start-page: 1 year: 2021 ident: 10.1016/j.rineng.2022.100556_bib12 article-title: A noise robust convolutional neural network for image classification publication-title: Results in Engineering doi: 10.1016/j.rineng.2021.100225 – volume: 61 start-page: 42 year: 2017 ident: 10.1016/j.rineng.2022.100556_bib27 article-title: On the effectiveness of feature selection methods for gait classification under different covariate factors publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.07.041 – volume: 78 start-page: 25873 issue: 18 year: 2019 ident: 10.1016/j.rineng.2022.100556_bib31 article-title: Gait identification by convolutional neural networks and optical flow publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-019-7638-9 – start-page: 1 year: 2022 ident: 10.1016/j.rineng.2022.100556_bib16 – volume: 31 start-page: 2052 issue: 13 year: 2010 ident: 10.1016/j.rineng.2022.100556_bib47 article-title: Gait recognition without subject cooperation publication-title: Elsevier Journal of Pattern Recognition Letters doi: 10.1016/j.patrec.2010.05.027 – volume: 125 start-page: 212 year: 2019 ident: 10.1016/j.rineng.2022.100556_bib44 article-title: Cross-view gait recognition based on a restrictive triplet network publication-title: Elsevier Journal of Pattern Recognition Letters doi: 10.1016/j.patrec.2019.04.010 – volume: 44 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.rineng.2022.100556_bib34 article-title: On learning disentangled representations for gait recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2998790 – volume: 98 start-page: 1 year: 2020 ident: 10.1016/j.rineng.2022.100556_bib46 article-title: A model-based gait recognition method with body pose and human prior knowledge publication-title: Elsevier Journal of Pattern Recognition – volume: 11 start-page: 1123 year: 2017 ident: 10.1016/j.rineng.2022.100556_bib43 article-title: Human gait recognition based on Haralick features publication-title: Journal of Signal, Image and Video Processing doi: 10.1007/s11760-017-1066-y – start-page: 61 year: 2020 ident: 10.1016/j.rineng.2022.100556_bib14 article-title: Performance evaluation of convolutional neural networks for gait recognition – start-page: 471 year: 2021 ident: 10.1016/j.rineng.2022.100556_bib35 article-title: Person identification using histogram of gradient and support vector machine on GEI – volume: 9 start-page: 85956 year: 2021 ident: 10.1016/j.rineng.2022.100556_bib50 article-title: Advancements, trends and future prospects of lower limb prosthesis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3086807 – volume: 72 start-page: 123 issue: 1 year: 2017 ident: 10.1016/j.rineng.2022.100556_bib3 article-title: Long range iris recognition: a survey publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2017.05.021 – start-page: 3/1 year: 1999 ident: 10.1016/j.rineng.2022.100556_bib6 – volume: 8 start-page: 75381 year: 2020 ident: 10.1016/j.rineng.2022.100556_bib49 article-title: ‘Flexible gait recognition based on flow regulation of local features between key frames publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986554 – start-page: 155 year: 2020 ident: 10.1016/j.rineng.2022.100556_bib45 article-title: Gait recognition based on feedback weight capsule network – start-page: 1 year: 2022 ident: 10.1016/j.rineng.2022.100556_bib11 – start-page: 4077 year: 2020 ident: 10.1016/j.rineng.2022.100556_bib28 article-title: ‘Deep metric learning based on center-ranked loss for gait recognition – volume: 255 start-page: 26 year: 2017 ident: 10.1016/j.rineng.2022.100556_bib2 article-title: Ear recognition: more than a survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.139 – volume: 14 start-page: 149 issue: 2 year: 2004 ident: 10.1016/j.rineng.2022.100556_bib8 article-title: Fusion of static and dynamic body biometrics for gait recognition publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2003.821972 – volume: 18 start-page: 431 issue: 7 year: 2011 ident: 10.1016/j.rineng.2022.100556_bib20 article-title: Joint subspace learning for view-invariant gait recognition publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2011.2157143 – volume: 40 start-page: 997 issue: 4 year: 2010 ident: 10.1016/j.rineng.2022.100556_bib25 article-title: Self-calibrating view-invariant gait biometrics publication-title: IEEE Trans. on Systems, Man, and Cybernetics doi: 10.1109/TSMCB.2009.2031091 – volume: 28 start-page: 316 issue: 2 year: 2006 ident: 10.1016/j.rineng.2022.100556_bib39 article-title: Individual recognition using gait energy image publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.38 – ident: 10.1016/j.rineng.2022.100556_bib18 doi: 10.1109/TPAMI.2007.1096 – volume: 6 start-page: 209 issue: 1 year: 2019 ident: 10.1016/j.rineng.2022.100556_bib24 article-title: Template-based gait authentication through Bayesian thresholding publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2019.1911345 – volume: 4 start-page: 1 year: 2019 ident: 10.1016/j.rineng.2022.100556_bib9 article-title: Digital image correlation (DIC) for measuring strain in brick masonry specimen using Ncorr open source 2D MATLAB program publication-title: Results in Engineering doi: 10.1016/j.rineng.2019.100061 – volume: 8 start-page: 134 issue: 2 year: 2019 ident: 10.1016/j.rineng.2022.100556_bib32 article-title: Pose-based deep gait recognition publication-title: IET Biom. doi: 10.1049/iet-bmt.2018.5046 – ident: 10.1016/j.rineng.2022.100556_bib36 – volume: 32 start-page: 1117 issue: 12 year: 2014 ident: 10.1016/j.rineng.2022.100556_bib40 article-title: Attribute-based learning for gait recognition using spatio-temporal interest points publication-title: Elsevier Journal of Image and Visio Computing doi: 10.1016/j.imavis.2014.10.004 – start-page: 463 year: 2015 ident: 10.1016/j.rineng.2022.100556_bib42 article-title: Gait recognition based on modified phase-only correlation publication-title: Journal of Signal, Image and Video Processing – volume: 6 start-page: 1 year: 2020 ident: 10.1016/j.rineng.2022.100556_bib10 article-title: Advantages of using digital image correlation techniques in uniaxial compression tests publication-title: Results in Engineering doi: 10.1016/j.rineng.2020.100109 – volume: 9 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.rineng.2022.100556_bib1 article-title: Face recognition: a novel multi-level taxonomy based survey publication-title: IET Biom. doi: 10.1049/iet-bmt.2019.0001 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.rineng.2022.100556_bib15 article-title: A socio-technical framework for digital contact tracing publication-title: Results in Engineering doi: 10.1016/j.rineng.2020.100163 – year: 2001 ident: 10.1016/j.rineng.2022.100556_bib7 article-title: Gait recognition from time-normalized joint-angle trajectories in the walking plane – volume: 283 start-page: 140 year: 2018 ident: 10.1016/j.rineng.2022.100556_bib30 article-title: Investigating the use of motion-based features from optical flow for gait recognition publication-title: Elsevier Journal of Neurocomputing doi: 10.1016/j.neucom.2017.12.040 |
SSID | ssj0002810137 |
Score | 2.3742752 |
Snippet | Gait recognition provides the opportunity to identify different walking styles of people without physical intervention. However, covariates such as changing... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100556 |
SubjectTerms | CASIA-B Classification rate Gait energy image Human gait recognition SVM |
Title | Human gait recognition subject to different covariate factors in a multi-view environment |
URI | https://dx.doi.org/10.1016/j.rineng.2022.100556 https://doaj.org/article/38a8224daee44df28598047466149bd0 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAakThu4oyAWlVIZaJSmSy_UrVCCYKUkd_OnZ1UmejC4iFy7Oh80n13-fwdIXdJUia2zJPIqFhH3Kk40hwGcAXFUpUnhcN6x-wlm87582K06LX6Qk5YkAcOhrtPhUKio1XOcW5L1FsTMc85xpVCW5-tQ8zrJVNrXzJKWsFMgPdIP0jj7t6cJ3fhzbpqCekhY8gTGGH_6l5c8vL9vfDUCzmTI3LYYkX6EL7xmOy56oQc9BQET8mbL8LTpVo1dMsFqiv6tdFYYKFNTbsWKA019TdkxgAuadtlh64qqqjnFEb4i4D2rr2dkflk_Po0jdpuCZHhgjeRzizTlmdaZ84oY1KncuYA_nFuUq6EzgslRmizooRjEEVZZDoH-IOC9ACD0nMyqOrKXRCqmLGsLBLrFAQvQAkCs0RmeJkIG6d6SNLOVtK0UuLY0eJddpyxtQwWlmhhGSw8JNH2rY8gpbFj_iMew3YuCmH7B-AesnUPucs9hiTvDlG2mCJgBVhq9ef2l_-x_RXZxyUDKe2aDJrPjbsBFNPoW--wMM5-xr85Mu4L |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+gait+recognition+subject+to+different+covariate+factors+in+a+multi-view+environment&rft.jtitle=Results+in+engineering&rft.au=Asif%2C+Muhammad&rft.au=Tiwana%2C+Mohsin+I.&rft.au=Khan%2C+Umar+S.&rft.au=Ahmad%2C+Muhammad+W.&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=15&rft_id=info:doi/10.1016%2Fj.rineng.2022.100556&rft.externalDocID=S2590123022002262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |