The Global Signal and Observed Anticorrelated Resting State Brain Networks
1 Departments of Radiology, 2 Neurology, 3 Anatomy and Neurobiology, and 4 Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri Submitted 17 July 2008; accepted in final form 23 March 2009 Resting state studies of spontaneous fluctuations in the functional MRI (fMRI) blood...
Saved in:
Published in | Journal of neurophysiology Vol. 101; no. 6; pp. 3270 - 3283 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Phys Soc
01.06.2009
American Physiological Society |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3077 1522-1598 |
DOI | 10.1152/jn.90777.2008 |
Cover
Loading…
Abstract | 1 Departments of Radiology, 2 Neurology, 3 Anatomy and Neurobiology, and 4 Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
Submitted 17 July 2008;
accepted in final form 23 March 2009
Resting state studies of spontaneous fluctuations in the functional MRI (fMRI) blood oxygen level dependent (BOLD) signal have shown great promise in mapping the brain's intrinsic, large-scale functional architecture. An important data preprocessing step used to enhance the quality of these observations has been removal of spontaneous BOLD fluctuations common to the whole brain (the so-called global signal). One reproducible consequence of global signal removal has been the finding that spontaneous BOLD fluctuations in the default mode network and an extended dorsal attention system are consistently anticorrelated, a relationship that these two systems exhibit during task performance. The dependence of these resting-state anticorrelations on global signal removal has raised important questions regarding the nature of the global signal, the validity of global signal removal, and the appropriate interpretation of observed anticorrelated brain networks. In this study, we investigate several properties of the global signal and find that it is, indeed, global, not residing preferentially in systems exhibiting anticorrelations. We detail the influence of global signal removal on resting state correlation maps both mathematically and empirically, showing an enhancement in detection of system-specific correlations and improvement in the correspondence between resting-state correlations and anatomy. Finally, we show that several characteristics of anticorrelated networks including their spatial distribution, cross-subject consistency, presence with modified whole brain masks, and existence before global regression are not attributable to global signal removal and therefore suggest a biological basis.
Address for reprint requests and other correspondence: (E-mail: foxmdphd{at}gmail.com ) |
---|---|
AbstractList | Resting state studies of spontaneous fluctuations in the functional MRI (fMRI) blood oxygen level dependent (BOLD) signal have shown great promise in mapping the brain's intrinsic, large-scale functional architecture. An important data preprocessing step used to enhance the quality of these observations has been removal of spontaneous BOLD fluctuations common to the whole brain (the so-called global signal). One reproducible consequence of global signal removal has been the finding that spontaneous BOLD fluctuations in the default mode network and an extended dorsal attention system are consistently anticorrelated, a relationship that these two systems exhibit during task performance. The dependence of these resting-state anticorrelations on global signal removal has raised important questions regarding the nature of the global signal, the validity of global signal removal, and the appropriate interpretation of observed anticorrelated brain networks. In this study, we investigate several properties of the global signal and find that it is, indeed, global, not residing preferentially in systems exhibiting anticorrelations. We detail the influence of global signal removal on resting state correlation maps both mathematically and empirically, showing an enhancement in detection of system-specific correlations and improvement in the correspondence between resting-state correlations and anatomy. Finally, we show that several characteristics of anticorrelated networks including their spatial distribution, cross-subject consistency, presence with modified whole brain masks, and existence before global regression are not attributable to global signal removal and therefore suggest a biological basis. Resting state studies of spontaneous fluctuations in the functional MRI (fMRI) blood oxygen level dependent (BOLD) signal have shown great promise in mapping the brain's intrinsic, large-scale functional architecture. An important data preprocessing step used to enhance the quality of these observations has been removal of spontaneous BOLD fluctuations common to the whole brain (the so-called global signal). One reproducible consequence of global signal removal has been the finding that spontaneous BOLD fluctuations in the default mode network and an extended dorsal attention system are consistently anticorrelated, a relationship that these two systems exhibit during task performance. The dependence of these resting-state anticorrelations on global signal removal has raised important questions regarding the nature of the global signal, the validity of global signal removal, and the appropriate interpretation of observed anticorrelated brain networks. In this study, we investigate several properties of the global signal and find that it is, indeed, global, not residing preferentially in systems exhibiting anticorrelations. We detail the influence of global signal removal on resting state correlation maps both mathematically and empirically, showing an enhancement in detection of system-specific correlations and improvement in the correspondence between resting-state correlations and anatomy. Finally, we show that several characteristics of anticorrelated networks including their spatial distribution, cross-subject consistency, presence with modified whole brain masks, and existence before global regression are not attributable to global signal removal and therefore suggest a biological basis.Resting state studies of spontaneous fluctuations in the functional MRI (fMRI) blood oxygen level dependent (BOLD) signal have shown great promise in mapping the brain's intrinsic, large-scale functional architecture. An important data preprocessing step used to enhance the quality of these observations has been removal of spontaneous BOLD fluctuations common to the whole brain (the so-called global signal). One reproducible consequence of global signal removal has been the finding that spontaneous BOLD fluctuations in the default mode network and an extended dorsal attention system are consistently anticorrelated, a relationship that these two systems exhibit during task performance. The dependence of these resting-state anticorrelations on global signal removal has raised important questions regarding the nature of the global signal, the validity of global signal removal, and the appropriate interpretation of observed anticorrelated brain networks. In this study, we investigate several properties of the global signal and find that it is, indeed, global, not residing preferentially in systems exhibiting anticorrelations. We detail the influence of global signal removal on resting state correlation maps both mathematically and empirically, showing an enhancement in detection of system-specific correlations and improvement in the correspondence between resting-state correlations and anatomy. Finally, we show that several characteristics of anticorrelated networks including their spatial distribution, cross-subject consistency, presence with modified whole brain masks, and existence before global regression are not attributable to global signal removal and therefore suggest a biological basis. 1 Departments of Radiology, 2 Neurology, 3 Anatomy and Neurobiology, and 4 Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri Submitted 17 July 2008; accepted in final form 23 March 2009 Resting state studies of spontaneous fluctuations in the functional MRI (fMRI) blood oxygen level dependent (BOLD) signal have shown great promise in mapping the brain's intrinsic, large-scale functional architecture. An important data preprocessing step used to enhance the quality of these observations has been removal of spontaneous BOLD fluctuations common to the whole brain (the so-called global signal). One reproducible consequence of global signal removal has been the finding that spontaneous BOLD fluctuations in the default mode network and an extended dorsal attention system are consistently anticorrelated, a relationship that these two systems exhibit during task performance. The dependence of these resting-state anticorrelations on global signal removal has raised important questions regarding the nature of the global signal, the validity of global signal removal, and the appropriate interpretation of observed anticorrelated brain networks. In this study, we investigate several properties of the global signal and find that it is, indeed, global, not residing preferentially in systems exhibiting anticorrelations. We detail the influence of global signal removal on resting state correlation maps both mathematically and empirically, showing an enhancement in detection of system-specific correlations and improvement in the correspondence between resting-state correlations and anatomy. Finally, we show that several characteristics of anticorrelated networks including their spatial distribution, cross-subject consistency, presence with modified whole brain masks, and existence before global regression are not attributable to global signal removal and therefore suggest a biological basis. Address for reprint requests and other correspondence: (E-mail: foxmdphd{at}gmail.com ) |
Author | Zhang, Dongyang Raichle, Marcus E Snyder, Abraham Z Fox, Michael D |
AuthorAffiliation | 1 Departments of Radiology, 2 Neurology, 3 Anatomy and Neurobiology, and 4 Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri |
AuthorAffiliation_xml | – name: 1 Departments of Radiology, 2 Neurology, 3 Anatomy and Neurobiology, and 4 Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri |
Author_xml | – sequence: 1 fullname: Fox, Michael D – sequence: 2 fullname: Zhang, Dongyang – sequence: 3 fullname: Snyder, Abraham Z – sequence: 4 fullname: Raichle, Marcus E |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19339462$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1P3DAQhi0EggV67LXKqeoli-3EsX2pRFFLi1CR-DhbjjObeOu1FzsL2n9fbxcoReppPJ5n3rHnPUS7PnhA6D3BU0IYPZn7qcSc8ynFWOygSb6jJWFS7KIJxvlc5eoBOkxpjjHmDNN9dEBkVcm6oRN0cTtAce5Cq11xY3ufg_ZdcdUmiA_QFad-tCbECE6POb2GNFrfFzdjTosvUVtf_ITxMcRf6RjtzbRL8O4pHqG7b19vz76Xl1fnP85OL0tTi3osW8ooZ6Rra0Og0xxqNuugYfVMM4qpEVICiLphssO0aTthhKYARhDDKtyy6gh93uouV-0COgN-jNqpZbQLHdcqaKv-rXg7qD48KNrImmCZBT4-CcRwv8o_UgubDDinPYRVUg2nklMuMvjh9aSXEc_ry0C5BUwMKUWY_UWw2tij5l79sUdt7Ml89YY3Nm_Shs1Drftv16dt12D74dFGUMthnWxwoV9vUIKJalRFOa5-A6Cvohc |
CitedBy_id | crossref_primary_10_1016_j_cortex_2014_04_006 crossref_primary_10_1002_hbm_24580 crossref_primary_10_1007_s10548_013_0277_y crossref_primary_10_3389_fpsyt_2017_00246 crossref_primary_10_1016_j_neuroimage_2013_09_006 crossref_primary_10_1002_hbm_21076 crossref_primary_10_1002_brb3_1031 crossref_primary_10_1038_nn_3919 crossref_primary_10_3389_fneur_2020_00018 crossref_primary_10_1016_j_neuroimage_2009_10_080 crossref_primary_10_1371_journal_pcbi_1004533 crossref_primary_10_1016_j_neures_2010_12_018 crossref_primary_10_1371_journal_pone_0060085 crossref_primary_10_1016_j_schres_2019_01_035 crossref_primary_10_4236_jbbs_2015_51001 crossref_primary_10_1073_pnas_1119969109 crossref_primary_10_18632_oncotarget_11289 crossref_primary_10_1016_j_neuropsychologia_2021_107994 crossref_primary_10_1016_j_ynstr_2020_100231 crossref_primary_10_1038_s41598_023_43178_8 crossref_primary_10_1093_cercor_bhab520 crossref_primary_10_1002_hbm_23240 crossref_primary_10_1016_j_neuroimage_2014_04_019 crossref_primary_10_1016_j_neuropsychologia_2014_11_033 crossref_primary_10_1016_j_brainres_2022_147801 crossref_primary_10_3389_fnins_2014_00411 crossref_primary_10_1002_hbm_26751 crossref_primary_10_1016_j_nicl_2017_03_017 crossref_primary_10_1016_j_nicl_2020_102377 crossref_primary_10_1016_j_neurobiolaging_2014_07_004 crossref_primary_10_1016_j_neuropharm_2013_12_021 crossref_primary_10_1093_cercor_bhr100 crossref_primary_10_1364_BOE_5_001262 crossref_primary_10_1111_pcn_12502 crossref_primary_10_1016_j_neuroimage_2017_10_022 crossref_primary_10_1038_s41598_020_60406_7 crossref_primary_10_1093_cercor_bhq005 crossref_primary_10_1016_j_pscychresns_2017_04_010 crossref_primary_10_1371_journal_pone_0118143 crossref_primary_10_1038_srep13720 crossref_primary_10_1088_1741_2552_ac0b33 crossref_primary_10_1007_s00429_019_01850_8 crossref_primary_10_1016_j_neuropsychologia_2020_107489 crossref_primary_10_1016_j_neuroimage_2016_08_037 crossref_primary_10_1016_j_neuroimage_2013_09_029 crossref_primary_10_1016_j_neuroimage_2012_01_035 crossref_primary_10_1016_j_neuroimage_2014_05_051 crossref_primary_10_1111_adb_12515 crossref_primary_10_3389_fnhum_2016_00114 crossref_primary_10_1002_hbm_21090 crossref_primary_10_1007_s11065_014_9252_y crossref_primary_10_1002_hbm_22181 crossref_primary_10_1038_s41514_024_00150_8 crossref_primary_10_3389_fnins_2019_00204 crossref_primary_10_1016_j_neuroimage_2020_117205 crossref_primary_10_1016_j_heares_2016_02_016 crossref_primary_10_1016_j_mri_2020_12_004 crossref_primary_10_1016_j_neuroimage_2019_06_050 crossref_primary_10_1016_j_neuroimage_2021_117965 crossref_primary_10_1016_j_neuroimage_2017_02_036 crossref_primary_10_1176_appi_neuropsych_20100255 crossref_primary_10_31083_j_jin2203074 crossref_primary_10_1073_pnas_1604977113 crossref_primary_10_1016_j_neuroimage_2017_12_089 crossref_primary_10_1016_j_neuroimage_2020_117680 crossref_primary_10_1002_hbm_23268 crossref_primary_10_1007_s13571_017_0138_x crossref_primary_10_1016_j_neuroimage_2019_06_058 crossref_primary_10_1038_srep39906 crossref_primary_10_1523_JNEUROSCI_5709_09_2010 crossref_primary_10_3389_fnins_2017_00345 crossref_primary_10_1089_brain_2020_0969 crossref_primary_10_1371_journal_pone_0078830 crossref_primary_10_3389_fnins_2015_00269 crossref_primary_10_1016_j_neuroimage_2014_12_016 crossref_primary_10_1002_hbm_23024 crossref_primary_10_1016_j_neuroimage_2012_01_044 crossref_primary_10_1002_ana_24690 crossref_primary_10_1186_s12868_023_00841_0 crossref_primary_10_1002_jmri_29148 crossref_primary_10_1093_cercor_bhp182 crossref_primary_10_1016_j_neuroimage_2011_07_086 crossref_primary_10_1016_j_neuroimage_2012_10_061 crossref_primary_10_1088_2057_1976_ac63f0 crossref_primary_10_1111_nmo_13138 crossref_primary_10_1016_j_nicl_2017_12_017 crossref_primary_10_1016_j_ynstr_2018_06_001 crossref_primary_10_1016_j_neuroimage_2009_10_067 crossref_primary_10_1016_j_tins_2014_03_006 crossref_primary_10_1523_JNEUROSCI_2789_15_2016 crossref_primary_10_1016_j_neuroimage_2017_12_073 crossref_primary_10_1111_sjop_12422 crossref_primary_10_1093_cercor_bhac407 crossref_primary_10_1007_s11332_021_00887_9 crossref_primary_10_1016_j_neuroimage_2020_116580 crossref_primary_10_1002_hbm_21079 crossref_primary_10_1016_j_schres_2021_06_010 crossref_primary_10_1016_j_neuroimage_2016_08_059 crossref_primary_10_1016_j_dcn_2015_10_007 crossref_primary_10_1093_cercor_bhaa221 crossref_primary_10_3389_fnins_2017_00358 crossref_primary_10_1007_s11682_016_9524_7 crossref_primary_10_1016_j_neuroimage_2017_01_015 crossref_primary_10_1017_S1461145714000674 crossref_primary_10_1111_nmo_13141 crossref_primary_10_1002_hbm_21034 crossref_primary_10_1002_hbm_23693 crossref_primary_10_1016_j_neuroimage_2014_05_030 crossref_primary_10_1371_journal_pbio_3001457 crossref_primary_10_1016_j_intell_2016_11_001 crossref_primary_10_3389_fnins_2024_1223230 crossref_primary_10_1016_j_neuroimage_2013_09_041 crossref_primary_10_1016_j_yebeh_2013_11_019 crossref_primary_10_1371_journal_pone_0063151 crossref_primary_10_1016_j_neuroimage_2011_05_024 crossref_primary_10_1016_j_bbr_2015_10_040 crossref_primary_10_1371_journal_pone_0025031 crossref_primary_10_1016_j_neuroimage_2020_117667 crossref_primary_10_1016_j_jns_2020_116702 crossref_primary_10_1371_journal_pone_0016322 crossref_primary_10_3389_fnins_2019_00856 crossref_primary_10_3389_fnins_2017_00320 crossref_primary_10_1016_j_biopsycho_2014_02_003 crossref_primary_10_1016_j_neuroimage_2012_01_016 crossref_primary_10_1016_j_neuroimage_2017_02_053 crossref_primary_10_1016_j_neuroimage_2020_116571 crossref_primary_10_1007_s10334_010_0228_5 crossref_primary_10_1080_17470919_2016_1150341 crossref_primary_10_1093_brain_aww107 crossref_primary_10_1016_j_cortex_2011_07_006 crossref_primary_10_1038_nrneurol_2009_198 crossref_primary_10_1002_hbm_24770 crossref_primary_10_1016_j_jaac_2016_01_010 crossref_primary_10_1016_j_neuroimage_2017_11_011 crossref_primary_10_1002_hbm_21265 crossref_primary_10_1016_j_neuroimage_2019_05_028 crossref_primary_10_1111_jon_12408 crossref_primary_10_1016_j_neuroimage_2016_09_038 crossref_primary_10_1038_s41596_018_0065_y crossref_primary_10_1093_cercor_bhq296 crossref_primary_10_7554_eLife_60336 crossref_primary_10_1017_S003329171900237X crossref_primary_10_1111_cns_12431 crossref_primary_10_3389_fneur_2022_1029669 crossref_primary_10_1016_j_neuroimage_2014_11_009 crossref_primary_10_1162_jocn_a_00281 crossref_primary_10_1016_j_neuroimage_2013_09_057 crossref_primary_10_1016_j_neuroimage_2019_06_063 crossref_primary_10_1016_j_neuroimage_2012_02_060 crossref_primary_10_1371_journal_pone_0064466 crossref_primary_10_1016_j_neuroscience_2024_08_018 crossref_primary_10_1038_s42003_025_07889_0 crossref_primary_10_1016_j_neuroimage_2013_08_017 crossref_primary_10_1016_j_nicl_2020_102188 crossref_primary_10_1093_cercor_bht313 crossref_primary_10_1016_j_tics_2009_04_004 crossref_primary_10_1016_j_bbi_2020_11_003 crossref_primary_10_1093_schbul_sbae054 crossref_primary_10_1007_s13311_022_01294_9 crossref_primary_10_1093_schbul_sby166 crossref_primary_10_2196_24208 crossref_primary_10_1002_hbm_24528 crossref_primary_10_1016_j_neuroimage_2012_02_064 crossref_primary_10_1016_j_neuroimage_2012_02_061 crossref_primary_10_1016_j_pscychresns_2017_05_003 crossref_primary_10_1016_j_bandl_2021_104983 crossref_primary_10_1073_pnas_1405289111 crossref_primary_10_1016_j_neuroimage_2023_120450 crossref_primary_10_1155_2021_8831379 crossref_primary_10_1002_hbm_22140 crossref_primary_10_1007_s11682_021_00593_7 crossref_primary_10_1016_j_neuroimage_2023_120453 crossref_primary_10_1002_brb3_1494 crossref_primary_10_1016_j_neuroimage_2012_02_037 crossref_primary_10_1111_psyp_14702 crossref_primary_10_1155_2016_4680972 crossref_primary_10_1007_s00406_024_01872_2 crossref_primary_10_1016_j_neuropsychologia_2019_03_020 crossref_primary_10_1080_17470919_2020_1714718 crossref_primary_10_1093_cercor_bhr171 crossref_primary_10_1016_j_ijpsycho_2020_11_014 crossref_primary_10_3389_fneur_2021_690300 crossref_primary_10_1093_schbul_sby138 crossref_primary_10_1055_s_0043_1771214 crossref_primary_10_1371_journal_pone_0257580 crossref_primary_10_1155_2018_6815040 crossref_primary_10_1097_YCO_0b013e328337d78d crossref_primary_10_1038_s42003_024_07160_y crossref_primary_10_1002_hbm_23460 crossref_primary_10_1523_JNEUROSCI_1634_14_2014 crossref_primary_10_1016_j_neuroscience_2017_01_031 crossref_primary_10_1016_j_nicl_2017_05_024 crossref_primary_10_1002_hbm_23462 crossref_primary_10_1007_s00429_016_1286_x crossref_primary_10_1016_j_neuroimage_2017_01_021 crossref_primary_10_1073_pnas_1019750108 crossref_primary_10_1093_cercor_bhq071 crossref_primary_10_1016_j_tics_2010_01_008 crossref_primary_10_1111_biom_12433 crossref_primary_10_1016_j_neuroimage_2017_02_066 crossref_primary_10_1016_j_neuroimage_2017_12_030 crossref_primary_10_1038_srep38866 crossref_primary_10_1016_j_neuroimage_2019_04_016 crossref_primary_10_1002_hbm_24305 crossref_primary_10_1016_j_neuroimage_2023_120215 crossref_primary_10_1038_s41598_018_34672_5 crossref_primary_10_1016_j_neuroimage_2011_04_010 crossref_primary_10_1093_schbul_sbx051 crossref_primary_10_1002_hbm_23890 crossref_primary_10_1002_nbm_3080 crossref_primary_10_1016_j_neuroimage_2017_01_059 crossref_primary_10_1073_pnas_0913110107 crossref_primary_10_3389_fnsys_2014_00045 crossref_primary_10_1038_s41598_021_88368_4 crossref_primary_10_1093_cercor_bhx297 crossref_primary_10_1007_s11682_016_9570_1 crossref_primary_10_1016_j_neuroimage_2011_08_048 crossref_primary_10_1002_hbm_25828 crossref_primary_10_1038_s41467_022_34720_9 crossref_primary_10_3389_fnagi_2021_755931 crossref_primary_10_1371_journal_pone_0128117 crossref_primary_10_1016_j_neuroimage_2014_02_014 crossref_primary_10_3389_fnana_2017_00099 crossref_primary_10_1007_s11042_023_17962_7 crossref_primary_10_1007_s11682_020_00419_y crossref_primary_10_1093_cercor_bhab126 crossref_primary_10_3758_s13415_018_0606_4 crossref_primary_10_1002_hbm_23887 crossref_primary_10_22172_cogbio_2014_26_4_007 crossref_primary_10_31829_2578_4870_IJNR_1_1__e101 crossref_primary_10_1016_j_neuroimage_2011_08_044 crossref_primary_10_1007_s11682_017_9729_4 crossref_primary_10_1016_j_neuroimage_2024_120585 crossref_primary_10_1016_j_neuroimage_2014_10_008 crossref_primary_10_1523_JNEUROSCI_2737_11_2011 crossref_primary_10_1111_ejn_12659 crossref_primary_10_3389_fphar_2022_833518 crossref_primary_10_3389_fnins_2022_825547 crossref_primary_10_1016_j_neulet_2011_08_059 crossref_primary_10_1016_j_jad_2016_04_046 crossref_primary_10_1111_jon_13136 crossref_primary_10_18502_jsp_v2i2_12678 crossref_primary_10_1371_journal_pone_0067778 crossref_primary_10_3389_fnsys_2014_00051 crossref_primary_10_3389_fnins_2019_00823 crossref_primary_10_1007_s10548_017_0546_2 crossref_primary_10_1016_j_neuroimage_2018_09_028 crossref_primary_10_1155_2017_3530723 crossref_primary_10_1016_j_neuroimage_2017_12_011 crossref_primary_10_1038_s41598_024_53051_x crossref_primary_10_1371_journal_pone_0233780 crossref_primary_10_1002_hbm_24720 crossref_primary_10_1093_schbul_sbx034 crossref_primary_10_1523_JNEUROSCI_0837_22_2023 crossref_primary_10_1007_s11682_017_9793_9 crossref_primary_10_1523_JNEUROSCI_4837_12_2013 crossref_primary_10_1016_j_bbr_2017_06_005 crossref_primary_10_1007_s11682_024_00849_y crossref_primary_10_3389_fnetp_2022_946380 crossref_primary_10_3389_fninf_2018_00056 crossref_primary_10_3389_fninf_2018_00052 crossref_primary_10_3389_fncom_2019_00094 crossref_primary_10_1016_j_neuropsychologia_2015_09_003 crossref_primary_10_1371_journal_pone_0088476 crossref_primary_10_1007_s00247_015_3365_1 crossref_primary_10_1089_brain_2016_0465 crossref_primary_10_1002_hbm_23665 crossref_primary_10_1002_hbm_21249 crossref_primary_10_1002_hbm_25847 crossref_primary_10_1016_j_nicl_2013_08_015 crossref_primary_10_1073_pnas_1109144108 crossref_primary_10_1016_j_cortex_2020_04_032 crossref_primary_10_1093_schbul_sbaa117 crossref_primary_10_1016_j_cortex_2024_08_012 crossref_primary_10_1016_j_neuroimage_2011_12_032 crossref_primary_10_3389_fneur_2020_00645 crossref_primary_10_3233_JAD_191127 crossref_primary_10_1016_j_schres_2012_07_007 crossref_primary_10_1016_j_neuroimage_2019_05_081 crossref_primary_10_1089_brain_2012_0110 crossref_primary_10_1002_hipo_22156 crossref_primary_10_1093_cercor_bhy153 crossref_primary_10_3389_fnsys_2018_00068 crossref_primary_10_2196_34854 crossref_primary_10_1016_j_heares_2015_09_010 crossref_primary_10_1111_jne_12822 crossref_primary_10_1016_j_neuroscience_2025_02_050 crossref_primary_10_3389_fnbeh_2016_00027 crossref_primary_10_1063_1_4979282 crossref_primary_10_3389_fnagi_2020_00071 crossref_primary_10_1371_journal_pbio_1002260 crossref_primary_10_1016_j_neuropsychologia_2011_02_013 crossref_primary_10_1177_0706743720904815 crossref_primary_10_1523_JNEUROSCI_4366_09_2009 crossref_primary_10_7554_eLife_69320 crossref_primary_10_1371_journal_pone_0226816 crossref_primary_10_3389_fpsyt_2017_00200 crossref_primary_10_1038_srep22491 crossref_primary_10_1089_brain_2016_0446 crossref_primary_10_1523_JNEUROSCI_0415_15_2015 crossref_primary_10_1371_journal_pone_0106768 crossref_primary_10_7554_eLife_03952 crossref_primary_10_1038_s41380_024_02778_0 crossref_primary_10_1016_j_nicl_2019_101802 crossref_primary_10_3389_fnagi_2018_00107 crossref_primary_10_1007_s00429_022_02510_0 crossref_primary_10_1089_ham_2021_0029 crossref_primary_10_1093_cercor_bhr305 crossref_primary_10_1016_j_neuroimage_2022_118907 crossref_primary_10_1016_j_neuroimage_2021_118630 crossref_primary_10_1038_srep23577 crossref_primary_10_3389_fnagi_2018_00344 crossref_primary_10_3389_fnagi_2015_00006 crossref_primary_10_1016_j_neuroimage_2019_116289 crossref_primary_10_3389_fnhum_2021_644892 crossref_primary_10_1016_j_neuroimage_2009_05_080 crossref_primary_10_1016_j_neuroimage_2011_08_094 crossref_primary_10_1089_brain_2016_0435 crossref_primary_10_1089_neu_2018_5739 crossref_primary_10_1016_j_neuron_2011_09_006 crossref_primary_10_1016_j_cortex_2022_06_009 crossref_primary_10_3390_brainsci12091163 crossref_primary_10_3389_fnagi_2017_00152 crossref_primary_10_1016_j_brainres_2014_12_042 crossref_primary_10_1016_j_neuroimage_2021_118649 crossref_primary_10_3389_fnagi_2017_00385 crossref_primary_10_1016_j_conb_2014_08_006 crossref_primary_10_1093_schbul_sbw145 crossref_primary_10_1002_jnr_23608 crossref_primary_10_1016_j_clinph_2018_06_022 crossref_primary_10_1016_j_neurobiolaging_2018_11_005 crossref_primary_10_1016_j_neuroimage_2011_08_096 crossref_primary_10_1038_s41598_019_46859_5 crossref_primary_10_1016_j_neuroimage_2019_116042 crossref_primary_10_1002_hbm_22740 crossref_primary_10_1038_s41398_021_01284_z crossref_primary_10_1186_s12888_021_03503_9 crossref_primary_10_3389_fphys_2021_761232 crossref_primary_10_1212_WNL_0b013e31821ccc83 crossref_primary_10_1038_nrn2961 crossref_primary_10_1016_j_dcn_2014_08_002 crossref_primary_10_1089_brain_2014_0332 crossref_primary_10_1016_j_cortex_2018_08_004 crossref_primary_10_1002_hbm_23871 crossref_primary_10_3389_fnagi_2015_00256 crossref_primary_10_3389_fninf_2018_00011 crossref_primary_10_1016_j_neuroimage_2012_01_079 crossref_primary_10_1371_journal_pone_0104366 crossref_primary_10_1111_j_1749_6632_2010_05947_x crossref_primary_10_1016_j_pnpbp_2022_110574 crossref_primary_10_1093_cercor_bhq237 crossref_primary_10_1016_j_neurobiolaging_2020_08_007 crossref_primary_10_3389_fpsyg_2018_01027 crossref_primary_10_1016_j_neuroimage_2009_10_016 crossref_primary_10_3389_fpsyg_2020_01189 crossref_primary_10_1089_brain_2016_0422 crossref_primary_10_1002_hbm_24954 crossref_primary_10_1016_j_pscychresns_2015_03_003 crossref_primary_10_1038_s41598_023_48160_y crossref_primary_10_1093_cercor_bhac432 crossref_primary_10_1002_hbm_21204 crossref_primary_10_1007_s11357_023_00944_w crossref_primary_10_1007_s11682_016_9572_z crossref_primary_10_1152_jn_00293_2018 crossref_primary_10_1016_j_pscychresns_2015_03_001 crossref_primary_10_1002_hbm_21448 crossref_primary_10_1016_j_neuroimage_2016_12_019 crossref_primary_10_1093_cercor_bhaa260 crossref_primary_10_1089_brain_2016_0418 crossref_primary_10_3389_fnins_2021_602170 crossref_primary_10_3389_fnhum_2018_00094 crossref_primary_10_1016_j_neuroimage_2014_03_034 crossref_primary_10_3389_fninf_2018_00007 crossref_primary_10_1016_j_mri_2012_05_004 crossref_primary_10_1007_s12264_013_1300_8 crossref_primary_10_1016_j_nicl_2013_09_002 crossref_primary_10_3389_fninf_2014_00066 crossref_primary_10_1016_j_neuroimage_2014_03_038 crossref_primary_10_1007_s00234_024_03300_7 crossref_primary_10_1016_j_neuroimage_2014_04_079 crossref_primary_10_1007_s10334_010_0213_z crossref_primary_10_1038_s41467_019_11353_z crossref_primary_10_1016_j_neuroimage_2016_12_018 crossref_primary_10_1016_j_clinph_2017_07_398 crossref_primary_10_1093_scan_nsy077 crossref_primary_10_1016_j_neuroimage_2016_04_028 crossref_primary_10_1523_JNEUROSCI_0492_14_2014 crossref_primary_10_1007_s11065_015_9294_9 crossref_primary_10_1016_j_neuroimage_2022_119526 crossref_primary_10_1093_cercor_bhv275 crossref_primary_10_1016_j_jpsychires_2022_07_040 crossref_primary_10_1088_1741_2560_13_1_016012 crossref_primary_10_1016_j_jneumeth_2018_07_001 crossref_primary_10_3389_fneur_2020_00819 crossref_primary_10_1002_hbm_22838 crossref_primary_10_1007_s11682_017_9688_9 crossref_primary_10_1016_j_neuroimage_2011_03_069 crossref_primary_10_1162_jocn_a_00512 crossref_primary_10_1007_s11065_014_9249_6 crossref_primary_10_1371_journal_pone_0203067 crossref_primary_10_1016_j_bandc_2018_09_007 crossref_primary_10_1002_hbm_23929 crossref_primary_10_1016_j_bandl_2017_07_003 crossref_primary_10_1007_s11481_015_9634_9 crossref_primary_10_3389_fpsyt_2025_1479283 crossref_primary_10_1016_j_neuroimage_2019_116354 crossref_primary_10_1162_jocn_a_00517 crossref_primary_10_1016_j_bandc_2014_10_005 crossref_primary_10_1016_j_neurobiolaging_2020_10_027 crossref_primary_10_1016_j_neuroscience_2021_07_010 crossref_primary_10_1152_jn_00893_2014 crossref_primary_10_3389_fpsyt_2022_1016807 crossref_primary_10_1016_j_jpsychires_2024_11_038 crossref_primary_10_1016_j_neuroimage_2015_09_010 crossref_primary_10_1007_s00787_023_02165_0 crossref_primary_10_1038_s41598_017_09242_w crossref_primary_10_3233_JAD_160353 crossref_primary_10_1097_RMR_0000000000000075 crossref_primary_10_1016_j_dcn_2017_01_007 crossref_primary_10_1186_1744_9081_6_58 crossref_primary_10_1016_j_neuroimage_2016_04_010 crossref_primary_10_1016_j_cortex_2014_08_011 crossref_primary_10_1093_gerona_gly027 crossref_primary_10_1089_brain_2012_0080 crossref_primary_10_1016_j_neuroimage_2013_07_058 crossref_primary_10_1016_j_neuroimage_2013_07_057 crossref_primary_10_1093_cercor_bhx232 crossref_primary_10_1111_ejn_15651 crossref_primary_10_3389_fnhum_2019_00429 crossref_primary_10_1093_schbul_sbt165 crossref_primary_10_1371_journal_pone_0039701 crossref_primary_10_1002_nbm_4679 crossref_primary_10_1093_cercor_bhw139 crossref_primary_10_1109_TAC_2018_2879597 crossref_primary_10_3389_fnagi_2020_00246 crossref_primary_10_3389_fnhum_2024_1486770 crossref_primary_10_1016_j_bandc_2011_04_005 crossref_primary_10_1155_2022_1560748 crossref_primary_10_1523_JNEUROSCI_2135_15_2015 crossref_primary_10_1162_netn_a_00137 crossref_primary_10_1093_cercor_bhu199 crossref_primary_10_1162_netn_a_00138 crossref_primary_10_1089_brain_2015_0354 crossref_primary_10_1111_ejn_15663 crossref_primary_10_1016_j_ynstr_2023_100515 crossref_primary_10_1089_brain_2012_0073 crossref_primary_10_1016_j_neuroimage_2015_10_041 crossref_primary_10_1016_j_cortex_2015_11_020 crossref_primary_10_1016_j_physa_2016_01_001 crossref_primary_10_1016_j_bbr_2018_10_039 crossref_primary_10_1093_brain_awr263 crossref_primary_10_1162_jocn_a_00504 crossref_primary_10_1016_j_jpsychires_2024_10_012 crossref_primary_10_3389_fnhum_2016_00616 crossref_primary_10_3389_fpsyt_2021_685754 crossref_primary_10_2214_AJR_24_32163 crossref_primary_10_1007_s00213_010_2111_5 crossref_primary_10_1017_S0033291718004002 crossref_primary_10_1523_JNEUROSCI_2827_16_2016 crossref_primary_10_1111_tops_12548 crossref_primary_10_1016_j_neuroimage_2019_116316 crossref_primary_10_1016_j_nicl_2014_08_022 crossref_primary_10_1016_j_nicl_2015_12_007 crossref_primary_10_1016_j_neuroimage_2013_07_036 crossref_primary_10_1080_17470919_2016_1168314 crossref_primary_10_1016_j_bandl_2017_08_009 crossref_primary_10_1007_s00429_020_02174_8 crossref_primary_10_1016_j_neuroimage_2013_07_030 crossref_primary_10_1016_j_neuroimage_2018_09_059 crossref_primary_10_3389_fncom_2021_663408 crossref_primary_10_1109_TMI_2020_2990823 crossref_primary_10_3389_fnagi_2016_00330 crossref_primary_10_1016_j_neuroimage_2016_03_029 crossref_primary_10_1017_S0033291717000101 crossref_primary_10_1152_jn_00174_2019 crossref_primary_10_1016_j_neuroimage_2015_10_057 crossref_primary_10_1371_journal_pone_0150757 crossref_primary_10_1142_S0129065714500105 crossref_primary_10_1109_TBME_2016_2600248 crossref_primary_10_1073_pnas_1906694116 crossref_primary_10_1016_j_neuroscience_2010_07_012 crossref_primary_10_1016_j_dib_2019_104411 crossref_primary_10_1016_j_neuroimage_2012_11_006 crossref_primary_10_1016_j_biopsych_2012_04_028 crossref_primary_10_1038_s41598_017_03777_8 crossref_primary_10_4306_pi_2017_14_3_325 crossref_primary_10_1093_schbul_sbt153 crossref_primary_10_1371_journal_pone_0039731 crossref_primary_10_1017_S0033291715002755 crossref_primary_10_1038_s41598_020_76211_1 crossref_primary_10_1016_j_neuroimage_2018_06_001 crossref_primary_10_1016_j_bandc_2014_01_018 crossref_primary_10_1007_s00259_020_05183_1 crossref_primary_10_3389_fnagi_2016_00306 crossref_primary_10_1080_2326263X_2022_2057757 crossref_primary_10_1017_S0033291718004221 crossref_primary_10_1073_pnas_0913863107 crossref_primary_10_3233_JAD_181097 crossref_primary_10_1002_hbm_26183 crossref_primary_10_7717_peerj_11692 crossref_primary_10_1111_ene_15233 crossref_primary_10_1007_s11682_019_00205_5 crossref_primary_10_1016_j_neuroimage_2012_12_007 crossref_primary_10_1016_j_bbr_2019_112048 crossref_primary_10_1016_j_neuroimage_2016_04_047 crossref_primary_10_1016_j_neuroimage_2010_08_063 crossref_primary_10_3174_ajnr_A8067 crossref_primary_10_1111_adb_13121 crossref_primary_10_1007_s11682_018_9976_z crossref_primary_10_1038_s41598_017_09744_7 crossref_primary_10_1038_srep23153 crossref_primary_10_1523_ENEURO_0551_19_2020 crossref_primary_10_1016_j_neuroscience_2021_07_034 crossref_primary_10_1631_jzus_B2300401 crossref_primary_10_3389_fpsyt_2018_00244 crossref_primary_10_1093_cercor_bhy117 crossref_primary_10_3389_fped_2017_00159 crossref_primary_10_3389_fpsyg_2020_570030 crossref_primary_10_1177_1073858418805427 crossref_primary_10_1007_s11682_018_9843_y crossref_primary_10_1093_brain_awz192 crossref_primary_10_1111_jnp_12090 crossref_primary_10_3389_fnagi_2021_758053 crossref_primary_10_1016_j_neuroimage_2018_07_019 crossref_primary_10_1016_j_neuroimage_2015_10_081 crossref_primary_10_3389_fpsyt_2020_00836 crossref_primary_10_1177_10870547241233207 crossref_primary_10_1016_j_dcn_2013_10_008 crossref_primary_10_1038_tp_2017_117 crossref_primary_10_1093_brain_awr223 crossref_primary_10_1371_journal_pone_0071210 crossref_primary_10_1111_jon_12834 crossref_primary_10_1016_j_jneuroling_2016_09_007 crossref_primary_10_1212_WNL_0b013e318233b33d crossref_primary_10_1371_journal_pbio_3000602 crossref_primary_10_3389_fnins_2019_01111 crossref_primary_10_1016_j_neuroimage_2022_119125 crossref_primary_10_1016_j_pscychresns_2013_06_009 crossref_primary_10_1016_j_neuroimage_2016_03_062 crossref_primary_10_1089_brain_2023_0032 crossref_primary_10_1016_j_jneumeth_2018_09_017 crossref_primary_10_1016_j_neubiorev_2013_03_013 crossref_primary_10_1093_cercor_bhs157 crossref_primary_10_3390_diagnostics5040577 crossref_primary_10_1016_j_neuroimage_2012_11_051 crossref_primary_10_1016_j_neuroimage_2013_08_048 crossref_primary_10_1093_sleep_zsy108 crossref_primary_10_1038_srep09763 crossref_primary_10_3389_fneur_2021_712071 crossref_primary_10_1016_j_bandc_2017_10_005 crossref_primary_10_1016_j_biopsych_2012_03_026 crossref_primary_10_1523_JNEUROSCI_3188_14_2015 crossref_primary_10_1016_j_neuroimage_2012_10_017 crossref_primary_10_1016_j_neuroimage_2015_08_053 crossref_primary_10_3390_brainsci11030310 crossref_primary_10_1002_ca_22280 crossref_primary_10_3389_fnhum_2014_00228 crossref_primary_10_1016_j_neuroimage_2016_02_029 crossref_primary_10_1007_s11682_018_9845_9 crossref_primary_10_3389_fnins_2024_1458897 crossref_primary_10_1038_s41598_019_55738_y crossref_primary_10_1017_S1355617713000817 crossref_primary_10_1038_s41598_017_16437_8 crossref_primary_10_1162_imag_a_00257 crossref_primary_10_1093_scan_nsx133 crossref_primary_10_18632_oncotarget_22358 crossref_primary_10_1017_S0033291713002742 crossref_primary_10_1016_j_neuroimage_2013_04_007 crossref_primary_10_1093_cercor_bhaf063 crossref_primary_10_1016_j_pscychresns_2017_10_009 crossref_primary_10_1016_j_cobeha_2016_11_003 crossref_primary_10_1016_j_neubiorev_2016_02_024 crossref_primary_10_3389_fnins_2019_01377 crossref_primary_10_1007_s40473_019_0170_4 crossref_primary_10_1523_JNEUROSCI_0257_12_2012 crossref_primary_10_1016_j_neuroimage_2011_01_030 crossref_primary_10_1002_mrm_24201 crossref_primary_10_1109_TVCG_2013_114 crossref_primary_10_1186_s13041_020_00674_6 crossref_primary_10_1016_j_neuroimage_2020_116756 crossref_primary_10_1093_cercor_bhv207 crossref_primary_10_1016_j_neuroimage_2015_09_060 crossref_primary_10_1016_j_psyneuen_2019_03_007 crossref_primary_10_1016_j_neuroimage_2013_04_001 crossref_primary_10_1016_j_jad_2020_05_053 crossref_primary_10_3389_fpsyt_2019_00252 crossref_primary_10_5143_JESK_2014_33_5_377 crossref_primary_10_1016_j_neuroimage_2011_02_073 crossref_primary_10_1016_j_neuroimage_2018_06_010 crossref_primary_10_1097_j_pain_0000000000001252 crossref_primary_10_1073_pnas_1311868111 crossref_primary_10_3389_fnhum_2015_00478 crossref_primary_10_1002_hbm_24195 crossref_primary_10_1093_brain_awv228 crossref_primary_10_1152_jn_00651_2012 crossref_primary_10_3389_fnhum_2015_00474 crossref_primary_10_3389_fpsyt_2018_00046 crossref_primary_10_1016_j_ijpsycho_2015_02_009 crossref_primary_10_1109_TMI_2024_3351907 crossref_primary_10_1007_s00429_017_1539_3 crossref_primary_10_1523_ENEURO_0163_16_2016 crossref_primary_10_1111_cns_14037 crossref_primary_10_1002_hbm_24190 crossref_primary_10_1038_srep26209 crossref_primary_10_1093_cercor_bhr088 crossref_primary_10_1016_j_bbr_2012_01_058 crossref_primary_10_1523_JNEUROSCI_2744_15_2016 crossref_primary_10_1523_JNEUROSCI_2817_11_2012 crossref_primary_10_1016_j_neuroimage_2013_05_046 crossref_primary_10_1016_j_jad_2014_05_061 crossref_primary_10_3389_fnins_2017_00075 crossref_primary_10_1002_nbm_1556 crossref_primary_10_1371_journal_pone_0123354 crossref_primary_10_1016_j_neuroimage_2018_06_024 crossref_primary_10_1016_j_biopsych_2022_07_013 crossref_primary_10_1227_NEU_0b013e318258e5d1 crossref_primary_10_1016_j_pscychresns_2018_05_001 crossref_primary_10_3174_ajnr_A3263 crossref_primary_10_1146_annurev_clinpsy_032511_143049 crossref_primary_10_1002_hbm_24383 crossref_primary_10_1016_j_neuropsychologia_2016_11_003 crossref_primary_10_1371_journal_pone_0111554 crossref_primary_10_1523_JNEUROSCI_3987_10_2010 crossref_primary_10_1017_S0033291712002759 crossref_primary_10_1371_journal_pone_0050359 crossref_primary_10_1097_PSY_0000000000001136 crossref_primary_10_1016_j_clinph_2018_09_006 crossref_primary_10_1186_1471_2202_13_3 crossref_primary_10_1007_s11682_016_9645_z crossref_primary_10_1523_JNEUROSCI_3662_11_2012 crossref_primary_10_1017_S0954579423001013 crossref_primary_10_1007_s10548_020_00809_x crossref_primary_10_1111_jopy_12605 crossref_primary_10_1176_appi_neuropsych_20220160 crossref_primary_10_1016_j_neuroimage_2011_01_017 crossref_primary_10_1007_s00429_013_0641_4 crossref_primary_10_1093_cercor_bhw317 crossref_primary_10_1016_j_neulet_2018_11_047 crossref_primary_10_1016_j_neuroimage_2013_05_039 crossref_primary_10_1523_JNEUROSCI_4135_11_2012 crossref_primary_10_1089_brain_2021_0184 crossref_primary_10_1016_j_neuroimage_2016_02_051 crossref_primary_10_1097_j_pain_0000000000000340 crossref_primary_10_1523_JNEUROSCI_1853_13_2014 crossref_primary_10_1002_hbm_25462 crossref_primary_10_1002_hbm_25461 crossref_primary_10_3389_fnins_2022_975299 crossref_primary_10_1016_j_neuroimage_2009_09_037 crossref_primary_10_1016_j_neuroimage_2011_03_033 crossref_primary_10_1002_da_23238 crossref_primary_10_1093_cercor_bht040 crossref_primary_10_1371_journal_pone_0083045 crossref_primary_10_1016_j_neurobiolaging_2014_10_041 crossref_primary_10_1007_s12264_020_00580_w crossref_primary_10_1016_j_addbeh_2019_106202 crossref_primary_10_1016_j_biopsycho_2017_09_003 crossref_primary_10_1016_j_neulet_2017_03_035 crossref_primary_10_1007_s00787_019_01414_5 crossref_primary_10_2463_mrms_rev_2015_0060 crossref_primary_10_1371_journal_pone_0205690 crossref_primary_10_1038_srep09710 crossref_primary_10_1089_brain_2020_0854 crossref_primary_10_1002_hbm_25458 crossref_primary_10_1002_hbm_70021 crossref_primary_10_1371_journal_pone_0166022 crossref_primary_10_1038_s41598_020_80330_0 crossref_primary_10_1002_hbm_26587 crossref_primary_10_1016_j_neuroimage_2011_02_038 crossref_primary_10_3389_fnhum_2022_788729 crossref_primary_10_1002_jnr_24115 crossref_primary_10_1109_JSTSP_2016_2599010 crossref_primary_10_1111_acps_13786 crossref_primary_10_1016_j_tics_2012_02_004 crossref_primary_10_3389_fpsyt_2019_00052 crossref_primary_10_1016_j_neuroimage_2013_05_016 crossref_primary_10_1093_cercor_bhv007 crossref_primary_10_1002_hbm_25009 crossref_primary_10_1007_s00422_009_0350_5 crossref_primary_10_1016_j_jpain_2024_104618 crossref_primary_10_1016_j_neuroimage_2016_01_005 crossref_primary_10_1016_j_neuroimage_2013_06_045 crossref_primary_10_3389_fnhum_2015_00676 crossref_primary_10_1016_j_neuropsychologia_2016_11_014 crossref_primary_10_3389_fpsyg_2023_1283585 crossref_primary_10_3389_fnhum_2015_00430 crossref_primary_10_1523_JNEUROSCI_0969_15_2015 crossref_primary_10_1177_1352458519888881 crossref_primary_10_1371_journal_pcbi_1012099 crossref_primary_10_1016_j_neurobiolaging_2010_06_020 crossref_primary_10_1038_ncomms6023 crossref_primary_10_1007_s10548_014_0413_3 crossref_primary_10_3233_JAD_200066 crossref_primary_10_1016_j_neuroimage_2011_03_052 crossref_primary_10_1038_s41598_017_12993_1 crossref_primary_10_31887_DCNS_2013_15_3_osporns crossref_primary_10_1016_j_bandc_2019_103629 crossref_primary_10_3389_fnins_2020_00185 crossref_primary_10_52294_001c_124565 crossref_primary_10_1097_j_pain_0000000000002534 crossref_primary_10_1093_cercor_bhw327 crossref_primary_10_1371_journal_pcbi_1007983 crossref_primary_10_3389_fneur_2019_00248 crossref_primary_10_1016_j_neuroimage_2021_118187 crossref_primary_10_3233_JAD_180847 crossref_primary_10_1155_2017_7543686 crossref_primary_10_1088_1741_2552_aa8b27 crossref_primary_10_3389_fnins_2020_560878 crossref_primary_10_1016_j_neuroimage_2010_04_268 crossref_primary_10_1016_j_neuropsychologia_2015_04_007 crossref_primary_10_1016_j_nicl_2021_102789 crossref_primary_10_1016_j_biopsych_2024_10_007 crossref_primary_10_1038_s41598_018_36329_9 crossref_primary_10_1371_journal_pone_0120345 crossref_primary_10_3389_fpsyt_2022_843254 crossref_primary_10_3389_fnins_2015_00171 crossref_primary_10_3389_fnagi_2020_607445 crossref_primary_10_1002_hbm_22278 crossref_primary_10_1007_s11682_018_9936_7 crossref_primary_10_1093_schbul_sby079 crossref_primary_10_1016_j_jadr_2021_100299 crossref_primary_10_1016_j_neuroimage_2013_10_013 crossref_primary_10_3389_fnagi_2018_00025 crossref_primary_10_1016_j_biopsych_2018_12_002 crossref_primary_10_1002_hbm_25308 crossref_primary_10_1016_j_neuroimage_2023_120108 crossref_primary_10_1016_j_neuroimage_2013_10_029 crossref_primary_10_3389_fphys_2018_01378 crossref_primary_10_1007_s10548_022_00897_x crossref_primary_10_1111_epi_12580 crossref_primary_10_3389_fnhum_2016_00006 crossref_primary_10_1016_j_intell_2021_101527 crossref_primary_10_1073_pnas_1612278113 crossref_primary_10_1152_jn_00804_2013 crossref_primary_10_1016_j_nicl_2019_101731 crossref_primary_10_7717_peerj_367 crossref_primary_10_1038_s41467_019_14166_2 crossref_primary_10_31829_2578_4870_ijnr2018_2_1__e104 crossref_primary_10_1016_j_neuroimage_2012_08_039 crossref_primary_10_1016_j_neubiorev_2018_11_005 crossref_primary_10_3233_JAD_180541 crossref_primary_10_3389_fneur_2018_00838 crossref_primary_10_1073_pnas_1216856110 crossref_primary_10_1016_j_neurobiolaging_2015_09_010 crossref_primary_10_1016_j_neubiorev_2018_03_025 crossref_primary_10_1016_j_neuroimage_2015_06_022 crossref_primary_10_1016_j_pnpbp_2019_109665 crossref_primary_10_1016_j_neuroimage_2012_08_036 crossref_primary_10_1002_brb3_1172 crossref_primary_10_1186_alzrt100 crossref_primary_10_1002_hbm_25330 crossref_primary_10_1152_jn_00184_2012 crossref_primary_10_1002_hbm_25333 crossref_primary_10_3389_fnagi_2021_790632 crossref_primary_10_1016_j_pnpbp_2021_110379 crossref_primary_10_1016_j_pscychresns_2016_10_005 crossref_primary_10_1016_j_neuroimage_2012_07_015 crossref_primary_10_1212_WNL_0b013e3182887970 crossref_primary_10_1016_j_neuroimage_2009_07_006 crossref_primary_10_1016_j_neuroimage_2016_02_077 crossref_primary_10_1038_srep23639 crossref_primary_10_1016_j_eurpsy_2015_02_010 crossref_primary_10_1016_j_neuroimage_2013_04_081 crossref_primary_10_1016_j_neuroimage_2015_05_015 crossref_primary_10_1002_hbm_22059 crossref_primary_10_1093_cercor_bhaa335 crossref_primary_10_1016_j_neuroimage_2013_04_083 crossref_primary_10_1016_j_neuroimage_2013_04_087 crossref_primary_10_1093_scan_nsab080 crossref_primary_10_1016_j_neuroimage_2018_12_007 crossref_primary_10_1146_annurev_neuro_071013_014030 crossref_primary_10_1002_hbm_23142 crossref_primary_10_1093_ntr_ntw088 crossref_primary_10_31083_j_jin_2020_01_1188 crossref_primary_10_1038_srep24543 crossref_primary_10_1007_s10548_020_00792_3 crossref_primary_10_1016_j_ctim_2014_12_010 crossref_primary_10_1038_srep37617 crossref_primary_10_1016_j_jpsychires_2018_01_012 crossref_primary_10_1016_j_dscb_2023_100071 crossref_primary_10_1016_j_neuropsychologia_2020_107393 crossref_primary_10_1007_s13365_017_0607_z crossref_primary_10_1016_j_jneumeth_2015_05_020 crossref_primary_10_1016_j_neuroimage_2010_05_073 crossref_primary_10_1016_j_nicl_2020_102480 crossref_primary_10_1016_j_yebeh_2014_12_013 crossref_primary_10_1016_j_nicl_2015_07_018 crossref_primary_10_1186_s12888_023_05223_8 crossref_primary_10_1038_s41467_023_43627_y crossref_primary_10_1002_aur_2029 crossref_primary_10_1016_j_neuroimage_2012_08_052 crossref_primary_10_1016_j_nicl_2016_02_018 crossref_primary_10_1097_MD_0000000000001417 crossref_primary_10_3389_fphys_2020_00827 crossref_primary_10_1016_j_neubiorev_2018_03_008 crossref_primary_10_1007_s11065_010_9145_7 crossref_primary_10_3389_fnagi_2018_00039 crossref_primary_10_1016_j_medengphy_2013_04_013 crossref_primary_10_1002_hbm_21151 crossref_primary_10_1089_brain_2014_0277 crossref_primary_10_1007_s11682_020_00340_4 crossref_primary_10_1002_hbm_22241 crossref_primary_10_1152_jn_00611_2013 crossref_primary_10_1371_journal_pone_0032766 crossref_primary_10_1093_cercor_bhr273 crossref_primary_10_1152_jn_00125_2016 crossref_primary_10_1007_s00429_013_0619_2 crossref_primary_10_1002_brb3_1358 crossref_primary_10_1089_brain_2023_0078 crossref_primary_10_1117_1_NPh_4_3_031223 crossref_primary_10_1016_j_neuroimage_2020_116699 crossref_primary_10_1016_j_neuroimage_2015_07_048 crossref_primary_10_3389_fnins_2019_00736 crossref_primary_10_1016_j_bbr_2011_01_008 crossref_primary_10_1016_j_bpsc_2016_08_003 crossref_primary_10_1002_hbm_25986 crossref_primary_10_1038_srep11635 crossref_primary_10_1002_ana_23643 crossref_primary_10_1016_j_neuroimage_2018_04_062 crossref_primary_10_3389_fnins_2021_742973 crossref_primary_10_1212_WNL_0000000000200034 crossref_primary_10_1002_aur_2433 crossref_primary_10_1002_jmri_24831 crossref_primary_10_1007_s11682_015_9490_5 crossref_primary_10_1523_JNEUROSCI_2532_12_2013 crossref_primary_10_3758_s13415_013_0224_0 crossref_primary_10_1002_brb3_1341 crossref_primary_10_1002_hbm_22230 crossref_primary_10_1111_bdi_12693 crossref_primary_10_1002_hbm_24892 crossref_primary_10_1117_1_NPh_4_3_031210 crossref_primary_10_1016_j_neuroimage_2015_07_053 crossref_primary_10_1371_journal_pbio_3002653 crossref_primary_10_1016_j_neuroimage_2020_116687 crossref_primary_10_1016_j_neuroimage_2020_116688 crossref_primary_10_1177_01461672211040677 crossref_primary_10_1007_s00330_021_08002_9 crossref_primary_10_1038_ncomms8738 crossref_primary_10_1177_0271678X17726625 crossref_primary_10_1016_j_neuroimage_2013_10_062 crossref_primary_10_1038_srep10532 crossref_primary_10_1002_hbm_25734 crossref_primary_10_1080_13803395_2014_908825 crossref_primary_10_1002_hbm_22226 crossref_primary_10_1016_j_neuroimage_2013_04_071 crossref_primary_10_3389_fneur_2019_00420 crossref_primary_10_1016_j_jad_2017_12_012 crossref_primary_10_1002_hbm_21138 crossref_primary_10_1371_journal_pone_0132518 crossref_primary_10_1002_hbm_25737 crossref_primary_10_1007_s11682_016_9527_4 crossref_primary_10_1038_s41598_023_29321_5 crossref_primary_10_1523_JNEUROSCI_0451_17_2017 crossref_primary_10_1002_hipo_22480 crossref_primary_10_1038_mp_2011_177 crossref_primary_10_1002_hbm_23596 crossref_primary_10_1002_hbm_23113 crossref_primary_10_1088_2632_072X_abb4c6 crossref_primary_10_1371_journal_pone_0065470 crossref_primary_10_1089_brain_2014_0291 crossref_primary_10_1093_cercor_bhr291 crossref_primary_10_3390_brainsci12111562 crossref_primary_10_1016_j_neuroimage_2015_07_021 crossref_primary_10_1016_j_neuroimage_2019_01_074 crossref_primary_10_1016_j_neuroimage_2013_03_004 crossref_primary_10_1038_s41467_017_02815_3 crossref_primary_10_1038_s41467_023_36042_w crossref_primary_10_1016_j_dcn_2015_07_007 crossref_primary_10_1007_s10551_016_3264_x crossref_primary_10_1212_WNL_0b013e318288792b crossref_primary_10_1016_j_neuroimage_2012_01_117 crossref_primary_10_1007_s11682_021_00570_0 crossref_primary_10_3389_fpsyt_2019_00692 crossref_primary_10_1007_s11682_014_9347_3 crossref_primary_10_1016_j_neuroimage_2012_06_011 crossref_primary_10_1038_srep43089 crossref_primary_10_1016_j_neuroimage_2024_120884 crossref_primary_10_1002_hbm_22492 crossref_primary_10_1093_cercor_bhq190 crossref_primary_10_1016_j_tins_2010_02_006 crossref_primary_10_1016_j_neuroimage_2009_07_051 crossref_primary_10_1016_j_neurobiolaging_2016_05_020 crossref_primary_10_1016_j_neuron_2013_07_035 crossref_primary_10_1017_S0033291719003374 crossref_primary_10_1016_j_neuroimage_2018_04_076 crossref_primary_10_1159_000356964 crossref_primary_10_1016_j_eplepsyres_2016_10_011 crossref_primary_10_1016_j_neuropsychologia_2013_02_016 crossref_primary_10_1371_journal_pone_0179823 crossref_primary_10_1016_j_neuroimage_2015_07_039 crossref_primary_10_3389_fnins_2020_601063 crossref_primary_10_1007_s11682_017_9715_x crossref_primary_10_1093_brain_awu297 crossref_primary_10_1016_j_neuropsychologia_2015_06_036 crossref_primary_10_1002_hbm_25754 crossref_primary_10_1016_j_neuroimage_2013_10_046 crossref_primary_10_3389_fnhum_2020_564272 crossref_primary_10_1016_j_neuroimage_2015_06_001 crossref_primary_10_1212_WNL_0000000000006738 crossref_primary_10_1016_j_neuroimage_2022_119051 crossref_primary_10_1093_cercor_bhy023 crossref_primary_10_1007_s00429_013_0519_5 crossref_primary_10_1016_j_dcn_2021_100927 crossref_primary_10_1016_j_neuroimage_2015_04_027 crossref_primary_10_1016_j_dcn_2013_11_004 crossref_primary_10_3390_brainsci11111535 crossref_primary_10_1007_s00429_013_0681_9 crossref_primary_10_1016_j_mri_2011_03_006 crossref_primary_10_3233_JAD_150727 crossref_primary_10_1016_j_jneumeth_2014_09_004 crossref_primary_10_1016_j_neuroimage_2013_01_050 crossref_primary_10_1162_jocn_a_00358 crossref_primary_10_3389_fnagi_2017_00211 crossref_primary_10_1016_j_neucom_2015_01_079 crossref_primary_10_1523_JNEUROSCI_1759_16_2016 crossref_primary_10_1038_sdata_2015_56 crossref_primary_10_1002_hbm_23764 crossref_primary_10_1098_rsta_2011_0078 crossref_primary_10_1186_s12993_014_0046_4 crossref_primary_10_1016_j_resp_2020_103427 crossref_primary_10_1088_1741_2560_8_4_046025 crossref_primary_10_1016_j_bbr_2023_114463 crossref_primary_10_1016_j_neuroimage_2017_08_043 crossref_primary_10_1371_journal_pone_0055454 crossref_primary_10_1089_brain_2014_0236 crossref_primary_10_1016_j_pscychresns_2018_08_006 crossref_primary_10_1016_j_cortex_2023_06_021 crossref_primary_10_1089_brain_2014_0244 crossref_primary_10_1111_desc_12407 crossref_primary_10_1523_JNEUROSCI_0187_16_2016 crossref_primary_10_1016_j_neuroimage_2013_01_046 crossref_primary_10_1093_ijnp_pyu112 crossref_primary_10_1016_j_neuroimage_2015_12_011 crossref_primary_10_1016_j_neuroimage_2010_11_049 crossref_primary_10_1002_mp_15210 crossref_primary_10_1016_j_celrep_2019_10_067 crossref_primary_10_1016_j_ecns_2022_08_003 crossref_primary_10_1038_s41467_023_37330_1 crossref_primary_10_1016_j_neuroimage_2018_02_029 crossref_primary_10_1073_pnas_1121329109 crossref_primary_10_1371_journal_pone_0232570 crossref_primary_10_1002_hbm_23996 crossref_primary_10_1007_s00406_016_0726_1 crossref_primary_10_1002_hbm_22663 crossref_primary_10_1002_hbm_24602 crossref_primary_10_3389_fpsyt_2020_00732 crossref_primary_10_1177_1073858409354384 crossref_primary_10_1002_hbm_23516 crossref_primary_10_1038_nmeth_2482 crossref_primary_10_1186_1471_2202_10_138 crossref_primary_10_1016_j_biopsych_2018_11_011 crossref_primary_10_1093_cercor_bhab263 crossref_primary_10_3389_fnins_2015_00316 crossref_primary_10_1016_j_neuroimage_2015_05_093 crossref_primary_10_1002_hbm_23553 crossref_primary_10_1002_hbm_21132 crossref_primary_10_1038_s41598_020_59195_w crossref_primary_10_1016_j_jad_2012_11_023 crossref_primary_10_1016_j_neulet_2016_06_047 crossref_primary_10_1016_j_neuroimage_2013_01_072 crossref_primary_10_1371_journal_pone_0196860 crossref_primary_10_1016_j_neuroimage_2018_02_039 crossref_primary_10_1152_japplphysiol_00715_2021 crossref_primary_10_1152_jn_00783_2009 crossref_primary_10_7554_eLife_13451 crossref_primary_10_1016_j_tics_2016_10_005 crossref_primary_10_3389_fphar_2015_00231 crossref_primary_10_3389_fnagi_2016_00110 crossref_primary_10_1038_s41598_019_40345_8 crossref_primary_10_1038_srep23239 crossref_primary_10_1016_j_dcn_2022_101087 crossref_primary_10_1016_j_neuroimage_2018_02_036 crossref_primary_10_3389_fncom_2022_940922 crossref_primary_10_1016_j_bandc_2024_106222 crossref_primary_10_1016_j_yhbeh_2013_02_008 crossref_primary_10_1007_s10548_014_0386_2 crossref_primary_10_1002_hbm_22456 crossref_primary_10_1523_JNEUROSCI_3069_13_2014 crossref_primary_10_1038_s41598_017_00678_8 crossref_primary_10_1016_j_bandl_2022_105149 crossref_primary_10_1038_s41467_018_04614_w crossref_primary_10_1016_j_pnpbp_2019_109837 crossref_primary_10_3389_fnins_2015_00304 crossref_primary_10_1002_hbm_22450 crossref_primary_10_1088_1741_2552_acbb2d crossref_primary_10_1016_j_mri_2018_05_006 crossref_primary_10_1016_j_jns_2018_07_008 crossref_primary_10_3389_fnagi_2019_00307 crossref_primary_10_1002_hbm_25955 crossref_primary_10_1007_s00234_017_1973_1 crossref_primary_10_1002_hbm_24866 crossref_primary_10_1002_hbm_23532 crossref_primary_10_1002_hbm_24863 crossref_primary_10_1016_j_neuroimage_2019_02_062 crossref_primary_10_3389_fninf_2017_00061 crossref_primary_10_1089_brain_2019_0693 crossref_primary_10_1093_cercor_bhz157 crossref_primary_10_1016_j_bandc_2024_106240 crossref_primary_10_1016_j_jad_2018_10_364 crossref_primary_10_1016_j_neuroimage_2012_09_040 crossref_primary_10_1017_S0033291723001356 crossref_primary_10_1002_sim_6757 crossref_primary_10_1007_s11682_022_00741_7 crossref_primary_10_1162_netn_a_00243 crossref_primary_10_3233_BPL_190083 crossref_primary_10_1162_netn_a_00244 crossref_primary_10_1016_j_neuroimage_2021_118758 crossref_primary_10_1162_jocn_a_01645 crossref_primary_10_1162_jocn_a_01405 crossref_primary_10_1371_journal_pcbi_1012870 crossref_primary_10_1371_journal_pone_0028817 crossref_primary_10_1016_j_neuroimage_2019_116150 crossref_primary_10_1017_S1355617715001393 crossref_primary_10_1007_s13365_014_0257_3 crossref_primary_10_1111_bju_12399 crossref_primary_10_1002_hbm_22871 crossref_primary_10_1038_srep19190 crossref_primary_10_1038_tp_2015_69 crossref_primary_10_1016_j_bspc_2019_101612 crossref_primary_10_1016_j_neuroimage_2018_01_023 crossref_primary_10_1523_JNEUROSCI_2592_09_2009 crossref_primary_10_1371_journal_pone_0185759 crossref_primary_10_1093_cercor_bhy295 crossref_primary_10_1038_s41598_017_08565_y crossref_primary_10_1016_j_clinph_2013_12_120 crossref_primary_10_1192_j_eurpsy_2023_19 crossref_primary_10_1007_s10548_014_0399_x crossref_primary_10_1016_j_pnpbp_2015_06_014 crossref_primary_10_1016_j_bbr_2019_112216 crossref_primary_10_1016_j_jad_2019_09_084 crossref_primary_10_1075_lab_18036_das crossref_primary_10_1016_j_neuroimage_2021_118763 crossref_primary_10_1089_brain_2018_0619 crossref_primary_10_1093_brain_awx142 crossref_primary_10_3758_s13415_016_0480_x crossref_primary_10_3389_fnagi_2014_00288 crossref_primary_10_1111_jsr_12147 crossref_primary_10_1073_pnas_1419837112 crossref_primary_10_1371_journal_pone_0268752 crossref_primary_10_3389_fnagi_2014_00280 crossref_primary_10_1371_journal_pone_0115131 crossref_primary_10_1371_journal_pone_0083931 crossref_primary_10_7554_eLife_81869 crossref_primary_10_1093_gerona_glad048 crossref_primary_10_1002_hbm_22418 crossref_primary_10_1073_pnas_1405003111 crossref_primary_10_1007_s00381_018_3770_5 crossref_primary_10_1016_j_bpsgos_2022_11_003 crossref_primary_10_1093_ijnp_pyaa056 crossref_primary_10_1371_journal_pone_0013311 crossref_primary_10_1016_j_ebiom_2018_09_012 crossref_primary_10_1002_hbm_23501 crossref_primary_10_1016_j_neuroimage_2010_12_047 crossref_primary_10_1016_j_neuroimage_2020_117361 crossref_primary_10_1016_j_bpsc_2019_06_013 crossref_primary_10_1093_cercor_bhaa138 crossref_primary_10_3389_fneur_2022_1055437 crossref_primary_10_1038_s41380_020_00993_z crossref_primary_10_1016_j_neuroscience_2021_11_036 crossref_primary_10_1073_pnas_1920475117 crossref_primary_10_1162_NETN_a_00013 crossref_primary_10_1016_j_neuroimage_2012_09_052 crossref_primary_10_1016_j_neuroimage_2015_05_046 crossref_primary_10_1371_journal_pone_0150351 crossref_primary_10_1016_j_neuroimage_2018_01_041 crossref_primary_10_1111_epi_13456 crossref_primary_10_1148_radiol_12111280 crossref_primary_10_3389_fnetp_2023_1090502 crossref_primary_10_1093_cercor_bhq105 crossref_primary_10_1002_brb3_1516 crossref_primary_10_1016_j_jneumeth_2021_109410 crossref_primary_10_1016_j_neuroimage_2021_118743 crossref_primary_10_1007_s11042_017_4670_5 crossref_primary_10_1038_s42003_022_04297_6 crossref_primary_10_1556_2006_2020_00065 crossref_primary_10_1007_s00429_016_1243_8 crossref_primary_10_3389_fnhum_2019_00199 crossref_primary_10_1007_s00429_012_0382_9 crossref_primary_10_1093_cercor_bhaa143 crossref_primary_10_1016_j_neuroimage_2013_02_064 crossref_primary_10_1002_hbm_23976 crossref_primary_10_1371_journal_pone_0091322 crossref_primary_10_1177_0271678X18791070 crossref_primary_10_1016_j_jad_2015_04_050 crossref_primary_10_1016_j_dcn_2018_03_003 crossref_primary_10_1016_j_neuroscience_2022_10_023 crossref_primary_10_1148_radiol_13130982 crossref_primary_10_1016_j_brs_2018_10_004 crossref_primary_10_3389_fnhum_2014_00516 crossref_primary_10_1016_j_neuroimage_2015_02_018 crossref_primary_10_1523_ENEURO_0512_24_2025 crossref_primary_10_1162_netn_a_00286 crossref_primary_10_1093_cercor_bhx331 crossref_primary_10_1016_j_neuroimage_2015_03_062 crossref_primary_10_1002_brb3_1705 crossref_primary_10_1162_jocn_a_01964 crossref_primary_10_12677_AP_2021_119235 crossref_primary_10_1016_j_neuroimage_2020_116810 crossref_primary_10_1088_1361_6579_aac033 crossref_primary_10_1016_j_neuroimage_2013_05_118 crossref_primary_10_3389_fnhum_2017_00344 crossref_primary_10_1016_j_neuroimage_2011_10_018 crossref_primary_10_1016_j_neuroimage_2019_116230 crossref_primary_10_1097_WNR_0000000000000407 crossref_primary_10_1017_S0033291719001934 crossref_primary_10_3389_fnagi_2022_847223 crossref_primary_10_1038_srep26148 crossref_primary_10_1016_j_dcn_2020_100814 crossref_primary_10_1016_j_neuroimage_2011_09_018 crossref_primary_10_3389_fnhum_2014_00503 crossref_primary_10_1111_epi_17233 crossref_primary_10_1155_2014_947252 crossref_primary_10_1016_j_neuroimage_2010_01_062 crossref_primary_10_1016_j_ejpn_2023_09_005 crossref_primary_10_1162_netn_a_00034 crossref_primary_10_1016_j_neuroimage_2011_12_090 crossref_primary_10_1016_j_neuroimage_2015_02_001 crossref_primary_10_1002_mrm_29824 crossref_primary_10_3390_ijms24010510 crossref_primary_10_1016_j_neuroimage_2021_118047 crossref_primary_10_1016_j_neuroimage_2021_118289 crossref_primary_10_1016_j_neuroimage_2013_05_108 crossref_primary_10_1093_cercor_bhae008 crossref_primary_10_1093_cercor_bhv172 crossref_primary_10_1073_pnas_1707050114 crossref_primary_10_1093_cercor_bhy201 crossref_primary_10_1007_s11682_020_00381_9 crossref_primary_10_1162_netn_a_00268 crossref_primary_10_1371_journal_pone_0060652 crossref_primary_10_1162_netn_a_00029 crossref_primary_10_1177_1073858416635986 crossref_primary_10_1007_s00429_014_0803_z crossref_primary_10_1111_ejn_15532 crossref_primary_10_1089_brain_2018_0644 crossref_primary_10_1007_s00406_017_0851_5 crossref_primary_10_1089_brain_2018_0645 crossref_primary_10_1007_s11065_014_9248_7 crossref_primary_10_1093_cercor_bhx107 crossref_primary_10_1002_jmri_26320 crossref_primary_10_1038_npp_2010_160 crossref_primary_10_1016_j_jad_2017_08_084 crossref_primary_10_1038_s41598_018_26317_4 crossref_primary_10_1093_scan_nsx088 crossref_primary_10_1016_j_neuroimage_2014_08_022 crossref_primary_10_1523_JNEUROSCI_1453_11_2011 crossref_primary_10_1002_hbm_21405 crossref_primary_10_1371_journal_pone_0057257 crossref_primary_10_1186_1471_2202_11_54 crossref_primary_10_1038_jcbfm_2015_124 crossref_primary_10_1162_jocn_2011_21624 crossref_primary_10_1016_j_jrp_2021_104064 crossref_primary_10_1002_hbm_26091 crossref_primary_10_1016_j_psychres_2024_115794 crossref_primary_10_1038_s41583_019_0212_7 crossref_primary_10_1007_s11682_015_9408_2 crossref_primary_10_1016_j_neuroimage_2014_09_058 crossref_primary_10_1155_2016_1938292 crossref_primary_10_1371_journal_pone_0036568 crossref_primary_10_3389_fnins_2021_768418 crossref_primary_10_1093_brain_awaa384 crossref_primary_10_1007_s11682_022_00636_7 crossref_primary_10_1016_j_neuroimage_2010_01_092 crossref_primary_10_1016_j_neuroimage_2019_116435 crossref_primary_10_1016_j_nicl_2018_02_002 crossref_primary_10_1002_hbm_26044 crossref_primary_10_1016_j_schres_2017_07_020 crossref_primary_10_1093_cercor_bhz314 crossref_primary_10_1016_j_neuroimage_2009_11_001 crossref_primary_10_1016_j_neuroimage_2022_118993 crossref_primary_10_1371_journal_pone_0163952 crossref_primary_10_1016_j_neuroimage_2011_11_019 crossref_primary_10_1016_j_nicl_2013_06_013 crossref_primary_10_1016_j_nicl_2013_06_011 crossref_primary_10_1038_s41593_023_01404_6 crossref_primary_10_3945_ajcn_112_043307 crossref_primary_10_1176_appi_neuropsych_20220203 crossref_primary_10_1016_j_neuroimage_2017_07_046 crossref_primary_10_1016_j_neuroimage_2017_05_031 crossref_primary_10_1016_j_nicl_2014_10_004 crossref_primary_10_1111_acps_12752 crossref_primary_10_1038_nn_4406 crossref_primary_10_1038_srep43743 crossref_primary_10_1016_j_bbr_2015_03_016 crossref_primary_10_1371_journal_pone_0121085 crossref_primary_10_1016_j_acra_2013_12_003 crossref_primary_10_1016_j_neuroimage_2011_08_009 crossref_primary_10_1089_brain_2011_0019 crossref_primary_10_1371_journal_pone_0025701 crossref_primary_10_7554_eLife_10762 crossref_primary_10_1155_2015_343720 crossref_primary_10_1016_j_dcn_2014_12_005 crossref_primary_10_3389_fnins_2019_00194 crossref_primary_10_1007_s00429_013_0524_8 crossref_primary_10_1038_s41598_021_81767_7 crossref_primary_10_1038_s41598_023_46040_z crossref_primary_10_1016_j_neuropsychologia_2011_07_007 crossref_primary_10_1016_j_nic_2014_07_009 crossref_primary_10_1016_j_tics_2012_10_008 crossref_primary_10_1093_cercor_bhw038 crossref_primary_10_1016_j_nicl_2023_103449 crossref_primary_10_1002_hbm_26030 crossref_primary_10_1007_s00787_025_02685_x crossref_primary_10_1093_cercor_bhx121 crossref_primary_10_1016_j_neuroimage_2011_11_023 crossref_primary_10_1016_j_bbr_2017_10_030 crossref_primary_10_3389_fnins_2022_972730 crossref_primary_10_1111_cns_14171 crossref_primary_10_1155_2016_9803165 crossref_primary_10_1016_j_neuroimage_2016_12_073 crossref_primary_10_1111_jon_12085 crossref_primary_10_1002_jbio_201700024 crossref_primary_10_1089_brain_2011_0008 crossref_primary_10_1016_j_jad_2022_09_125 crossref_primary_10_1089_brain_2011_0007 crossref_primary_10_3389_fnins_2023_1123797 crossref_primary_10_1002_hbm_22900 crossref_primary_10_1093_cercor_bhae204 crossref_primary_10_1016_j_neuropsychologia_2022_108418 crossref_primary_10_1109_TMI_2014_2341732 crossref_primary_10_1186_1475_925X_11_50 crossref_primary_10_1177_0333102415583144 crossref_primary_10_1186_s12915_022_01286_3 crossref_primary_10_1016_j_bbi_2022_03_004 crossref_primary_10_1093_cercor_bhaa098 crossref_primary_10_1007_s00787_013_0480_0 crossref_primary_10_1038_s41598_020_78276_4 crossref_primary_10_1016_j_neuroimage_2014_09_027 crossref_primary_10_1016_j_psychres_2020_113436 crossref_primary_10_3758_s13415_017_0547_3 crossref_primary_10_1093_cercor_bhy242 crossref_primary_10_1523_JNEUROSCI_0298_23_2024 crossref_primary_10_1007_s11682_021_00510_y crossref_primary_10_1016_j_jad_2022_12_088 crossref_primary_10_1016_j_brainres_2011_03_018 crossref_primary_10_3389_fnhum_2019_00101 crossref_primary_10_1007_s10548_012_0249_7 crossref_primary_10_1093_brain_awae315 crossref_primary_10_7554_eLife_10781 crossref_primary_10_1016_j_media_2016_03_003 crossref_primary_10_1007_s00429_014_0758_0 crossref_primary_10_1093_cercor_bhac044 crossref_primary_10_1007_s00429_021_02304_w crossref_primary_10_1146_annurev_bioeng_071516_044511 crossref_primary_10_1016_j_neuroimage_2016_11_052 crossref_primary_10_1371_journal_pone_0051975 crossref_primary_10_1007_s12264_021_00812_7 crossref_primary_10_1038_nrn3084 crossref_primary_10_1523_JNEUROSCI_4939_12_2013 crossref_primary_10_1016_j_jad_2018_04_065 crossref_primary_10_1016_j_neuroimage_2009_12_011 crossref_primary_10_3389_fpsyt_2021_609458 crossref_primary_10_1038_s41598_020_80346_6 crossref_primary_10_1093_cercor_bhw297 crossref_primary_10_1016_j_neuroscience_2017_05_011 crossref_primary_10_18632_oncotarget_11775 crossref_primary_10_3389_fnins_2018_00788 crossref_primary_10_1016_j_neuroimage_2017_05_007 crossref_primary_10_1016_j_neuropsychologia_2012_11_011 crossref_primary_10_1007_s11682_022_00658_1 crossref_primary_10_1093_braincomms_fcac110 crossref_primary_10_1038_s41598_017_17738_8 crossref_primary_10_1016_j_tics_2009_09_005 crossref_primary_10_1016_j_clinph_2014_11_014 crossref_primary_10_1186_s13010_015_0026_9 crossref_primary_10_1002_hbm_26484 crossref_primary_10_3389_fpsyt_2020_00284 crossref_primary_10_1016_j_ebiom_2023_104455 crossref_primary_10_1089_brain_2011_0050 crossref_primary_10_1016_j_neuroimage_2016_09_008 crossref_primary_10_1177_1545968318818902 crossref_primary_10_1016_j_neuroimage_2013_12_022 crossref_primary_10_1093_cercor_bhs043 crossref_primary_10_1007_s11434_014_0698_3 crossref_primary_10_1016_j_neuroimage_2012_03_067 crossref_primary_10_1016_j_pscychresns_2019_06_004 crossref_primary_10_1016_j_neuroimage_2010_03_062 crossref_primary_10_1017_S0033291719002198 crossref_primary_10_1007_s10072_019_04109_6 crossref_primary_10_1001_archneurol_2011_108 crossref_primary_10_1016_j_neuroimage_2019_07_006 crossref_primary_10_1038_s41467_018_07725_6 crossref_primary_10_1002_mds_26375 crossref_primary_10_1016_j_mad_2021_111493 crossref_primary_10_1162_imag_a_00124 crossref_primary_10_1016_j_neuroimage_2012_06_035 crossref_primary_10_1016_j_nicl_2012_11_006 crossref_primary_10_1016_j_cortex_2021_09_013 crossref_primary_10_1093_cercor_bhae088 crossref_primary_10_1093_cercor_bhq090 crossref_primary_10_1007_s00429_015_1116_6 crossref_primary_10_1016_j_neuroimage_2017_05_060 crossref_primary_10_3389_fncir_2020_570583 crossref_primary_10_3389_fpsyt_2024_1364271 crossref_primary_10_1016_j_nicl_2013_05_006 crossref_primary_10_1016_j_neuroimage_2019_07_015 crossref_primary_10_3389_fnint_2014_00041 crossref_primary_10_1007_s12671_020_01502_7 crossref_primary_10_1093_cercor_bhr181 crossref_primary_10_3389_fneur_2016_00132 crossref_primary_10_1371_journal_pone_0198349 crossref_primary_10_1371_journal_pone_0104947 crossref_primary_10_1016_j_clp_2013_10_001 crossref_primary_10_1093_cercor_bhs268 crossref_primary_10_3389_fnins_2020_00288 crossref_primary_10_1038_npp_2009_192 crossref_primary_10_1016_j_neuroimage_2019_07_018 crossref_primary_10_1093_cercor_bhu204 crossref_primary_10_1016_j_jneumeth_2010_06_024 crossref_primary_10_1016_j_bandl_2012_12_016 crossref_primary_10_1162_jocn_a_00802 crossref_primary_10_1152_jn_01000_2012 crossref_primary_10_3945_ajcn_113_080671 crossref_primary_10_1089_brain_2013_0191 crossref_primary_10_1093_brain_aws059 crossref_primary_10_1371_journal_pone_0055902 crossref_primary_10_1016_j_neuroimage_2013_04_127 crossref_primary_10_1038_s41598_022_07578_6 crossref_primary_10_1089_brain_2013_0167 crossref_primary_10_1093_cercor_bhs065 crossref_primary_10_1093_cercor_bhu246 crossref_primary_10_1093_schbul_sbq168 crossref_primary_10_1016_j_jad_2013_02_028 crossref_primary_10_3389_fnhum_2016_00510 crossref_primary_10_1016_j_biopsych_2010_06_029 crossref_primary_10_1111_psyp_13495 crossref_primary_10_1093_texcom_tgaa073 crossref_primary_10_1016_j_jneumeth_2023_110011 crossref_primary_10_1089_brain_2013_0166 crossref_primary_10_1016_j_ijpsycho_2020_01_002 crossref_primary_10_1371_journal_pone_0139819 crossref_primary_10_1148_radiol_2017162929 crossref_primary_10_1002_sim_10162 crossref_primary_10_1007_s00429_015_1060_5 crossref_primary_10_1212_WNL_0000000000201264 crossref_primary_10_1016_j_neubiorev_2014_05_009 crossref_primary_10_1016_j_neuroimage_2012_06_062 crossref_primary_10_1007_s40261_017_0501_8 crossref_primary_10_1016_j_neuroimage_2017_05_048 crossref_primary_10_1016_j_schres_2018_01_006 crossref_primary_10_1016_j_neuron_2014_09_007 crossref_primary_10_1371_journal_pbio_3000733 crossref_primary_10_1016_j_mri_2015_07_011 crossref_primary_10_1016_j_neuroimage_2020_116614 crossref_primary_10_1016_j_pscychresns_2023_111601 crossref_primary_10_31829_2578_4870_ijnr2018_1_1__e101 crossref_primary_10_1016_j_neuroimage_2012_03_035 crossref_primary_10_1016_j_neubiorev_2019_07_004 crossref_primary_10_1093_cercor_bhs047 crossref_primary_10_3389_fnhum_2020_00244 crossref_primary_10_1523_JNEUROSCI_6046_11_2012 crossref_primary_10_1017_S0033291715002615 crossref_primary_10_1089_brain_2011_0025 crossref_primary_10_1016_j_neuroimage_2015_02_061 crossref_primary_10_1016_j_neuroimage_2011_10_059 crossref_primary_10_1002_hbm_25357 crossref_primary_10_1111_j_1468_0017_2011_01418_x crossref_primary_10_1093_scan_nsv040 crossref_primary_10_1162_jocn_a_01087 crossref_primary_10_1371_journal_pone_0027050 crossref_primary_10_1016_j_neuroimage_2013_12_060 crossref_primary_10_1089_brain_2013_0146 crossref_primary_10_1093_cercor_bhu023 crossref_primary_10_1016_j_neuroimage_2013_04_109 crossref_primary_10_1016_j_neuroimage_2020_116603 crossref_primary_10_1002_da_22014 crossref_primary_10_1016_j_neuroimage_2017_03_020 crossref_primary_10_1289_EHP9737 crossref_primary_10_1117_1_NPh_6_2_025005 crossref_primary_10_1016_j_jneumeth_2021_109084 crossref_primary_10_1016_j_jad_2011_12_002 crossref_primary_10_1016_j_pscychresns_2020_111134 crossref_primary_10_1089_brain_2020_0740 crossref_primary_10_1007_s00415_021_10817_x crossref_primary_10_1016_j_neuroimage_2012_03_027 crossref_primary_10_1007_s11682_021_00476_x crossref_primary_10_1111_jon_12909 crossref_primary_10_1523_ENEURO_0329_22_2023 crossref_primary_10_1016_j_mri_2020_10_013 crossref_primary_10_1152_jn_00339_2011 crossref_primary_10_1093_ijnp_pyv094 crossref_primary_10_1016_j_neuroimage_2017_04_062 crossref_primary_10_1186_s12888_022_03782_w crossref_primary_10_1016_j_jneumeth_2010_07_028 crossref_primary_10_1371_journal_pone_0071163 crossref_primary_10_1016_j_neuroimage_2017_03_033 crossref_primary_10_1002_aur_1636 crossref_primary_10_1002_hbm_25102 crossref_primary_10_1007_s10548_012_0267_5 crossref_primary_10_1523_JNEUROSCI_4229_13_2014 crossref_primary_10_1089_brain_2013_0156 crossref_primary_10_1016_j_neuroimage_2011_10_062 crossref_primary_10_1093_cercor_bht165 crossref_primary_10_3389_fnagi_2022_1035746 crossref_primary_10_1093_cercor_bhu012 crossref_primary_10_1371_journal_pone_0021976 crossref_primary_10_1016_j_neuroimage_2013_11_022 crossref_primary_10_1089_brain_2013_0153 crossref_primary_10_1007_s11682_020_00333_3 crossref_primary_10_1002_hbm_24247 crossref_primary_10_1038_s41386_020_0785_x crossref_primary_10_1002_mds_27017 crossref_primary_10_1016_j_neuroimage_2022_119460 crossref_primary_10_1177_2167702614530113 crossref_primary_10_1093_scan_nst083 crossref_primary_10_1007_s10508_013_0103_3 crossref_primary_10_3389_fnhum_2016_00311 crossref_primary_10_1016_j_neuroimage_2022_119228 crossref_primary_10_1093_scan_nsab048 crossref_primary_10_1093_cercor_bhu044 crossref_primary_10_3389_fneur_2021_637542 crossref_primary_10_1016_j_biopsych_2013_02_011 crossref_primary_10_1016_j_neurobiolaging_2013_10_081 crossref_primary_10_1093_cercor_bhx307 crossref_primary_10_1093_brain_aws281 crossref_primary_10_1002_mds_28376 crossref_primary_10_1371_journal_pone_0188122 crossref_primary_10_1089_brain_2017_0517 crossref_primary_10_1016_j_cortex_2015_08_005 crossref_primary_10_1002_hbm_70131 crossref_primary_10_1007_s00429_022_02508_8 crossref_primary_10_1371_journal_pone_0038131 crossref_primary_10_1089_brain_2017_0514 crossref_primary_10_1002_hbm_24032 crossref_primary_10_1007_s11065_012_9199_9 crossref_primary_10_1080_17470919_2017_1361864 crossref_primary_10_1089_brain_2011_0065 crossref_primary_10_1111_jsm_12639 crossref_primary_10_1186_s12916_021_01962_1 crossref_primary_10_1371_journal_pone_0295428 crossref_primary_10_1089_brain_2017_0500 crossref_primary_10_1111_jcpp_12335 crossref_primary_10_1016_j_neuroimage_2019_06_007 crossref_primary_10_1097_j_pain_0000000000000238 crossref_primary_10_1038_s41562_020_0863_4 crossref_primary_10_3390_brainsci14090935 crossref_primary_10_1111_psyp_13462 crossref_primary_10_3389_fneur_2020_00053 crossref_primary_10_3389_fnins_2018_00149 crossref_primary_10_1016_j_eplepsyres_2009_10_018 crossref_primary_10_1016_j_bbr_2021_113586 crossref_primary_10_1111_acer_12024 crossref_primary_10_1162_imag_a_00314 crossref_primary_10_1093_scan_nsu165 crossref_primary_10_1111_head_12081 crossref_primary_10_1016_j_nic_2017_06_011 crossref_primary_10_1016_j_jneumeth_2015_06_021 |
Cites_doi | 10.1162/jocn.1997.9.5.648 10.1016/j.neuroimage.2008.07.063 10.1371/journal.pbio.0060159 10.1016/j.neuroimage.2005.07.005 10.1073/pnas.0135058100 10.1152/jn.90355.2008 10.1016/S1053-8119(03)00097-1 10.1097/01.wnr.0000129997.95055.15 10.1002/mrm.20817 10.1002/hbm.20300 10.1002/cne.20749 10.1002/hbm.20580 10.1002/hbm.20113 10.1016/j.neuroimage.2005.06.025 10.1006/nimg.1997.0315 10.1073/pnas.0704320104 10.1006/nimg.1997.0289 10.1038/nrn755 10.1016/j.neuroimage.2006.02.048 10.1016/j.neuroimage.2007.08.008 10.1098/rstb.2005.1634 10.1196/annals.1440.011 10.1038/nrn2201 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1073/pnas.0811168106 10.1523/JNEUROSCI.4867-08.2009 10.1006/nimg.1997.0302 10.1162/0898929042568596 10.1007/11866763_42 10.1016/j.neuroimage.2003.11.025 10.1523/JNEUROSCI.0573-08.2008 10.1093/cercor/bhk030 10.1016/j.neuroimage.2003.12.042 10.1016/j.neuroimage.2008.09.029 10.1006/nimg.2000.0654 10.1016/j.neuroimage.2004.01.007 10.1152/jn.00048.2006 10.1073/pnas.0807010105 10.1006/nimg.2002.1226 10.1523/JNEUROSCI.5587-06.2007 10.1007/s00221-005-0059-1 10.1016/j.neuroimage.2008.09.036 10.1038/nn1616 10.1073/pnas.0712231105 10.1073/pnas.0701519104 10.1006/nimg.1998.0367 10.1073/pnas.98.2.676 10.1097/WAD.0b013e31815c0f14 10.1073/pnas.0504136102 10.1016/S1053-8119(01)91541-1 10.1016/S1053-8119(03)00386-0 10.1002/mrm.1910340409 10.1006/nimg.2000.0719 10.1152/jn.90463.2008 10.1016/j.neuroimage.2007.03.044 10.1002/hbm.10022 10.1093/schbul/sbm043 10.1016/j.neuron.2007.08.023 10.1006/nimg.1997.0263 10.1073/pnas.0800005105 10.1002/hbm.20531 |
ContentType | Journal Article |
Copyright | Copyright © 2009, American Physiological Society 2009 |
Copyright_xml | – notice: Copyright © 2009, American Physiological Society 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.90777.2008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 3283 |
ExternalDocumentID | PMC2694109 19339462 10_1152_jn_90777_2008 jn_101_6_3270 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: F30 NS-054398 – fundername: NIMH NIH HHS grantid: F30 MH-083483 – fundername: NINDS NIH HHS grantid: NS-06833 |
GroupedDBID | - 0VX 29L 2WC 39C 3O- 4.4 41 53G 55 5GY 5VS AALRV ABFLS ABIVO ABPTK ABUFD ABZEH ACGFS ACNCT ADACO ADBBV ADKLL AENEX AETEA AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FH7 FRP GX1 H~9 KQ8 L7B O0- OK1 P2P RAP RHF RHI RPL SJN UHB UPT UQL WH7 WOQ WOW X X7M ZA5 --- -DZ -~X .55 .GJ 18M 1CY 1Z7 41~ 8M5 AAYXX ABCQX ABHWK ABJNI ABKWE ACGFO ADFNX ADHGD ADIYS AFOSN AI. AIZAD BKKCC BTFSW CITATION EMOBN H13 ITBOX MVM NEJ OHT RPRKH TR2 VH1 W8F XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c484t-b252751db4c1eda7e45fde654fa5202c899ee84659d026bd8c8a2eec81c530b53 |
ISSN | 0022-3077 |
IngestDate | Thu Aug 21 14:27:53 EDT 2025 Thu Jul 10 22:02:05 EDT 2025 Mon Jul 21 06:02:22 EDT 2025 Thu Apr 24 23:00:47 EDT 2025 Tue Jul 01 01:17:08 EDT 2025 Tue Jan 05 17:53:06 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c484t-b252751db4c1eda7e45fde654fa5202c899ee84659d026bd8c8a2eec81c530b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 M. D. Fox and D. Zhang contributed equally to this study. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2694109 |
PMID | 19339462 |
PQID | 67297278 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_19339462 crossref_primary_10_1152_jn_90777_2008 proquest_miscellaneous_67297278 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2694109 crossref_citationtrail_10_1152_jn_90777_2008 highwire_physiology_jn_101_6_3270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2009 |
Publisher | Am Phys Soc American Physiological Society |
Publisher_xml | – name: Am Phys Soc – name: American Physiological Society |
References | R61 R60 R63 R62 R21 R20 R64 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 R59 R18 R17 R19 15167557 - Neuroreport. 2004 Jun 7;15(8):1315-9 17354790 - Med Image Comput Comput Assist Interv. 2006;9(Pt 2):340-7 18843113 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44 18090425 - Alzheimer Dis Assoc Disord. 2007 Oct-Dec;21(4):S50-7 18292226 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8 10893535 - Magn Reson Med. 2000 Jul;44(1):162-7 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56 18219617 - Hum Brain Mapp. 2009 Feb;30(2):625-37 16099175 - Neuroimage. 2006 Jan 1;29(1):54-66 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 11034865 - Neuroimage. 2000 Nov;12(5):582-7 15110027 - Neuroimage. 2004 May;22(1):360-6 16470596 - Magn Reson Med. 2006 Mar;55(3):626-32 16254997 - J Comp Neurol. 2005 Dec 5;493(1):154-66 18799601 - J Neurophysiol. 2008 Dec;100(6):3328-42 17499519 - Neuroimage. 2007 Jul 1;36(3):684-90 9344820 - Neuroimage. 1997 Oct;6(3):156-67 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 11835612 - Hum Brain Mapp. 2002 Apr;15(4):247-62 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 18562616 - J Neurosci. 2008 Jun 18;28(25):6453-8 17266102 - Hum Brain Mapp. 2007 Jul;28(7):681-90 16284751 - Exp Brain Res. 2005 Dec;167(4):587-94 17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8 9758743 - Neuroimage. 1998 Oct;8(3):302-6 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 11039342 - AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44 15050588 - Neuroimage. 2004 Apr;21(4):1652-64 23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63 15110035 - Neuroimage. 2004 May;22(1):419-33 11498421 - AJNR Am J Neuroradiol. 2001 Aug;22(7):1326-33 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 18723676 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74 16699080 - Cereb Cortex. 2007 Apr;17(4):766-77 9558644 - Neuroimage. 1998 Feb;7(2):119-32 18951982 - Neuroimage. 2009 Feb 1;44(3):857-69 16632379 - Neuroimage. 2006 Jul 15;31(4):1536-48 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 18465799 - Hum Brain Mapp. 2008 Jul;29(7):751-61 14568492 - Neuroimage. 2003 Oct;20(2):1236-45 17919929 - Neuroimage. 2008 Jan 1;39(1):527-37 17920023 - Neuron. 2007 Oct 4;56(1):171-84 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003 15601512 - J Cogn Neurosci. 2004 Nov;16(9):1481-3 16899645 - J Neurophysiol. 2006 Dec;96(6):3517-31 18976716 - Neuroimage. 2009 Feb 1;44(3):893-905 11305902 - Neuroimage. 2001 Apr;13(4):751-8 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 9345548 - Neuroimage. 1997 Apr;5(3):179-97 12377132 - Neuroimage. 2002 Oct;17(2):532-42 18701759 - J Neurophysiol. 2008 Oct;100(4):1740-8 16341210 - Nat Neurosci. 2006 Jan;9(1):23-5 11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15 9453855 - Neuroimage. 1997 Nov;6(4):237-44 18771736 - Neuroimage. 2008 Nov 15;43(3):554-61 16043368 - Neuroimage. 2005 Dec;28(4):956-66 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60 19176827 - J Neurosci. 2009 Jan 28;29(4):1191-201 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159 |
References_xml | – ident: R51 doi: 10.1162/jocn.1997.9.5.648 – ident: R52 doi: 10.1016/j.neuroimage.2008.07.063 – ident: R28 doi: 10.1371/journal.pbio.0060159 – ident: R40 doi: 10.1016/j.neuroimage.2005.07.005 – ident: R27 doi: 10.1073/pnas.0135058100 – ident: R58 doi: 10.1152/jn.90355.2008 – ident: R36 doi: 10.1016/S1053-8119(03)00097-1 – ident: R29 doi: 10.1097/01.wnr.0000129997.95055.15 – ident: R15 doi: 10.1002/mrm.20817 – ident: R55 doi: 10.1002/hbm.20300 – ident: R13 doi: 10.1002/cne.20749 – ident: R50 doi: 10.1002/hbm.20580 – ident: R23 doi: 10.1002/hbm.20113 – ident: R19 doi: 10.1016/j.neuroimage.2005.06.025 – ident: R39 doi: 10.1006/nimg.1997.0315 – ident: R12 – ident: R17 doi: 10.1073/pnas.0704320104 – ident: R44 doi: 10.1006/nimg.1997.0289 – ident: R10 doi: 10.1038/nrn755 – ident: R5 doi: 10.1016/j.neuroimage.2006.02.048 – ident: R9 doi: 10.1016/j.neuroimage.2007.08.008 – ident: R4 doi: 10.1098/rstb.2005.1634 – ident: R7 doi: 10.1196/annals.1440.011 – ident: R18 doi: 10.1038/nrn2201 – ident: R25 doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – ident: R32 doi: 10.1073/pnas.0811168106 – ident: R45 doi: 10.1523/JNEUROSCI.4867-08.2009 – ident: R2 doi: 10.1006/nimg.1997.0302 – ident: R11 – ident: R37 doi: 10.1162/0898929042568596 – ident: R60 doi: 10.1007/11866763_42 – ident: R62 doi: 10.1016/j.neuroimage.2003.11.025 – ident: R35 doi: 10.1523/JNEUROSCI.0573-08.2008 – ident: R26 doi: 10.1093/cercor/bhk030 – ident: R41 doi: 10.1016/j.neuroimage.2003.12.042 – ident: R8 doi: 10.1016/j.neuroimage.2008.09.029 – ident: R38 doi: 10.1006/nimg.2000.0654 – ident: R3 doi: 10.1016/j.neuroimage.2004.01.007 – ident: R59 doi: 10.1152/jn.00048.2006 – ident: R31 doi: 10.1073/pnas.0807010105 – ident: R24 doi: 10.1006/nimg.2002.1226 – ident: R49 doi: 10.1523/JNEUROSCI.5587-06.2007 – ident: R14 doi: 10.1007/s00221-005-0059-1 – ident: R43 doi: 10.1016/j.neuroimage.2008.09.036 – ident: R22 doi: 10.1038/nn1616 – ident: R54 – ident: R34 doi: 10.1073/pnas.0712231105 – ident: R33 doi: 10.1073/pnas.0701519104 – ident: R1 doi: 10.1006/nimg.1998.0367 – ident: R46 doi: 10.1073/pnas.98.2.676 – ident: R48 doi: 10.1097/WAD.0b013e31815c0f14 – ident: R20 doi: 10.1073/pnas.0504136102 – ident: R42 doi: 10.1016/S1053-8119(01)91541-1 – ident: R47 doi: 10.1016/S1053-8119(03)00386-0 – ident: R6 doi: 10.1002/mrm.1910340409 – ident: R16 doi: 10.1006/nimg.2000.0719 – ident: R64 doi: 10.1152/jn.90463.2008 – ident: R56 doi: 10.1016/j.neuroimage.2007.03.044 – ident: R30 doi: 10.1002/hbm.10022 – ident: R61 doi: 10.1093/schbul/sbm043 – ident: R21 doi: 10.1016/j.neuron.2007.08.023 – ident: R63 doi: 10.1006/nimg.1997.0263 – ident: R53 doi: 10.1073/pnas.0800005105 – ident: R57 doi: 10.1002/hbm.20531 – reference: 18465799 - Hum Brain Mapp. 2008 Jul;29(7):751-61 – reference: 11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15 – reference: 11034865 - Neuroimage. 2000 Nov;12(5):582-7 – reference: 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29 – reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 – reference: 16699080 - Cereb Cortex. 2007 Apr;17(4):766-77 – reference: 16632379 - Neuroimage. 2006 Jul 15;31(4):1536-48 – reference: 18976716 - Neuroimage. 2009 Feb 1;44(3):893-905 – reference: 18799601 - J Neurophysiol. 2008 Dec;100(6):3328-42 – reference: 15050588 - Neuroimage. 2004 Apr;21(4):1652-64 – reference: 18562616 - J Neurosci. 2008 Jun 18;28(25):6453-8 – reference: 18843113 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44 – reference: 18951982 - Neuroimage. 2009 Feb 1;44(3):857-69 – reference: 16470596 - Magn Reson Med. 2006 Mar;55(3):626-32 – reference: 17919929 - Neuroimage. 2008 Jan 1;39(1):527-37 – reference: 11039342 - AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44 – reference: 15110035 - Neuroimage. 2004 May;22(1):419-33 – reference: 16899645 - J Neurophysiol. 2006 Dec;96(6):3517-31 – reference: 9453855 - Neuroimage. 1997 Nov;6(4):237-44 – reference: 16341210 - Nat Neurosci. 2006 Jan;9(1):23-5 – reference: 18701759 - J Neurophysiol. 2008 Oct;100(4):1740-8 – reference: 16043368 - Neuroimage. 2005 Dec;28(4):956-66 – reference: 11835612 - Hum Brain Mapp. 2002 Apr;15(4):247-62 – reference: 15167557 - Neuroreport. 2004 Jun 7;15(8):1315-9 – reference: 23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63 – reference: 12377132 - Neuroimage. 2002 Oct;17(2):532-42 – reference: 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159 – reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 – reference: 11305902 - Neuroimage. 2001 Apr;13(4):751-8 – reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 – reference: 18723676 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74 – reference: 18090425 - Alzheimer Dis Assoc Disord. 2007 Oct-Dec;21(4):S50-7 – reference: 16099175 - Neuroimage. 2006 Jan 1;29(1):54-66 – reference: 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 – reference: 17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8 – reference: 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56 – reference: 9344820 - Neuroimage. 1997 Oct;6(3):156-67 – reference: 15601512 - J Cogn Neurosci. 2004 Nov;16(9):1481-3 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 – reference: 17266102 - Hum Brain Mapp. 2007 Jul;28(7):681-90 – reference: 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60 – reference: 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 – reference: 15110027 - Neuroimage. 2004 May;22(1):360-6 – reference: 18771736 - Neuroimage. 2008 Nov 15;43(3):554-61 – reference: 18219617 - Hum Brain Mapp. 2009 Feb;30(2):625-37 – reference: 17920023 - Neuron. 2007 Oct 4;56(1):171-84 – reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 – reference: 18292226 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8 – reference: 16284751 - Exp Brain Res. 2005 Dec;167(4):587-94 – reference: 9758743 - Neuroimage. 1998 Oct;8(3):302-6 – reference: 11498421 - AJNR Am J Neuroradiol. 2001 Aug;22(7):1326-33 – reference: 19176827 - J Neurosci. 2009 Jan 28;29(4):1191-201 – reference: 10893535 - Magn Reson Med. 2000 Jul;44(1):162-7 – reference: 17499519 - Neuroimage. 2007 Jul 1;36(3):684-90 – reference: 9558644 - Neuroimage. 1998 Feb;7(2):119-32 – reference: 17354790 - Med Image Comput Comput Assist Interv. 2006;9(Pt 2):340-7 – reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 – reference: 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003 – reference: 9345548 - Neuroimage. 1997 Apr;5(3):179-97 – reference: 16254997 - J Comp Neurol. 2005 Dec 5;493(1):154-66 – reference: 14568492 - Neuroimage. 2003 Oct;20(2):1236-45 |
SSID | ssj0007502 |
Score | 2.551553 |
Snippet | 1 Departments of Radiology, 2 Neurology, 3 Anatomy and Neurobiology, and 4 Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri... Resting state studies of spontaneous fluctuations in the functional MRI (fMRI) blood oxygen level dependent (BOLD) signal have shown great promise in mapping... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3270 |
SubjectTerms | Brain - blood supply Brain - physiology Brain Mapping Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Models, Neurological Movement - physiology Nerve Net - blood supply Nerve Net - physiology Neural Pathways - blood supply Neural Pathways - physiology Oxygen - blood Perceptual Masking - physiology Regression Analysis Rest - physiology Statistics as Topic |
Title | The Global Signal and Observed Anticorrelated Resting State Brain Networks |
URI | http://jn.physiology.org/cgi/content/abstract/101/6/3270 https://www.ncbi.nlm.nih.gov/pubmed/19339462 https://www.proquest.com/docview/67297278 https://pubmed.ncbi.nlm.nih.gov/PMC2694109 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBbOOjbDAjoV1KSurY-ThWbGga4mvapIlLZDv21mm4aE0P5cwfzrPjJE3XSYNL1Ka2o-b38j6c934Pobdg4WgGdjHgUicBpYIEWVyIgPBIxzwUUma2UPjzl_jojB6fs_Ne789S1tK8FEP5e21dyf-gCucAV1sl-w_INovCCfgM-MIREIbj_TH2jB6TC-PL_r8Ku9MKjuTYwAzbfeOaW7_yxBJqOP5t-Aqg8omx9b42M2t2h4_q2C7d5kdn992bLJ9yPzgY3tp-PpiaiwX3VtFu4JhF4ftmC1ebPfjRTDrhsI7PaobHbj4bHA47mxFZmzS1XBwQ-s4syutUOAdeU9pRuu2sFRUakaqTiDfHEaka3dxW9cxSx16ZIYT3SeKyYlubVr_HXzF1TQKiC30Yya9M7qa7bpwP0EMCwYZV75--t5zz4FO1nPMwuGZqZeR95-pdz6Zmm14Xuawm4C55NKdP0GMPMx5XcrWJespsoe2x4eX05wLv428N7tvoGEQNV6KGK1HDIGq4FjXcFTXsRQ07UcNO1HAtak_R2cfD0w9HgW_DEUia0jIQhJGEjQpB5UgVPFGU6ULFjGrOSEgkROxKgRvLsgICelGkMuVEKZmOJItCwaJnaMNMjXqBsEx1AjcukpoUVKpIgDlQOhSaaMsjKfvoXX0Lc-k56m2rlOt8LWB9tN8M_1WRs9w18E2NR94-NHYMyGEe51bm-mivBioHFWvfm3GjpvNZHkMACuoMVnlewdZeLIuijMakj5IOoM0AS97e_cVMLh2Ju6sgD7OX9_0LO-hR-8Dtoo3yZq5egT9citdOXP8CaLK11Q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Global+Signal+and+Observed+Anticorrelated+Resting+State+Brain+Networks&rft.jtitle=Journal+of+neurophysiology&rft.au=Fox%2C+Michael+D.&rft.au=Zhang%2C+Dongyang&rft.au=Snyder%2C+Abraham+Z.&rft.au=Raichle%2C+Marcus+E.&rft.date=2009-06-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=101&rft.issue=6&rft.spage=3270&rft.epage=3283&rft_id=info:doi/10.1152%2Fjn.90777.2008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_90777_2008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |