A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing

[Display omitted] •A review is presented on recent research on precipitation-hardened high-entropy alloys that can be produced by additive manufacturing.•The different strengthening mechanisms of AMed HEAs were reviewed with emphasis on precipitation strengthening.•The advantages of using applying p...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 211; p. 110161
Main Authors Haftlang, Farahnaz, Kim, Hyoung Seop
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Elsevier
Subjects
Online AccessGet full text
ISSN0264-1275
1873-4197
DOI10.1016/j.matdes.2021.110161

Cover

Loading…
Abstract [Display omitted] •A review is presented on recent research on precipitation-hardened high-entropy alloys that can be produced by additive manufacturing.•The different strengthening mechanisms of AMed HEAs were reviewed with emphasis on precipitation strengthening.•The advantages of using applying post-printing heat-treatment for enhancing the strength-ductility relationship of HEAs are discussed.•Dynamic responses of precipitation during deformation are explained through the interaction between dislocations and precipitates.•The future prospects of precipitation-hardened high-entropy alloys fabricated by additive manufacturing are presented. The growing demand for advanced metallic materials with optimum mechanical properties has led to the creation of next-generation materials based on the alloying of multiple-principal elements in high concentrations. High-entropy alloys (HEAs) have a high potential for industrial applications due to their extraordinary properties under elevated, ambient, and cryogenic conditions. Due to several limitations of conventional manufacturing methods, to develop HEAs of the maximum capability, a novel metal additive manufacturing (MAM) technique has been developed to produce defect-free HEA components with the desirable performance. The unique microstructures of MAMed HEAs provide an optimum strength-ductility relationship, even in extreme environments, by the simultaneous activation of several strengthening mechanisms. In particular, applying post-printing heat-treatment can significantly enhance the strength-ductility relationship of HEAs. Herein, a comprehensive review based on the process-microstructure-properties relationship in precipitation-hardenable HEAs fabricated by 3D printing is provided. Different kinds of precipitates formed in the microstructures of MAM-processed HEAs after applying a proper post-MAM heat treatment are presented. Moreover, the corresponding mechanical properties of these components are discussed in detail. Also, the improvement in the mechanical properties of precipitation-hardened MAM-processed HEAs due to the interaction between dislocations and precipitates is introduced, resulting in precipitate shearing and creation of Orowan/Hirsch loops.
AbstractList The growing demand for advanced metallic materials with optimum mechanical properties has led to the creation of next-generation materials based on the alloying of multiple-principal elements in high concentrations. High-entropy alloys (HEAs) have a high potential for industrial applications due to their extraordinary properties under elevated, ambient, and cryogenic conditions. Due to several limitations of conventional manufacturing methods, to develop HEAs of the maximum capability, a novel metal additive manufacturing (MAM) technique has been developed to produce defect-free HEA components with the desirable performance. The unique microstructures of MAMed HEAs provide an optimum strength-ductility relationship, even in extreme environments, by the simultaneous activation of several strengthening mechanisms. In particular, applying post-printing heat-treatment can significantly enhance the strength-ductility relationship of HEAs. Herein, a comprehensive review based on the process-microstructure-properties relationship in precipitation-hardenable HEAs fabricated by 3D printing is provided. Different kinds of precipitates formed in the microstructures of MAM-processed HEAs after applying a proper post-MAM heat treatment are presented. Moreover, the corresponding mechanical properties of these components are discussed in detail. Also, the improvement in the mechanical properties of precipitation-hardened MAM-processed HEAs due to the interaction between dislocations and precipitates is introduced, resulting in precipitate shearing and creation of Orowan/Hirsch loops.
[Display omitted] •A review is presented on recent research on precipitation-hardened high-entropy alloys that can be produced by additive manufacturing.•The different strengthening mechanisms of AMed HEAs were reviewed with emphasis on precipitation strengthening.•The advantages of using applying post-printing heat-treatment for enhancing the strength-ductility relationship of HEAs are discussed.•Dynamic responses of precipitation during deformation are explained through the interaction between dislocations and precipitates.•The future prospects of precipitation-hardened high-entropy alloys fabricated by additive manufacturing are presented. The growing demand for advanced metallic materials with optimum mechanical properties has led to the creation of next-generation materials based on the alloying of multiple-principal elements in high concentrations. High-entropy alloys (HEAs) have a high potential for industrial applications due to their extraordinary properties under elevated, ambient, and cryogenic conditions. Due to several limitations of conventional manufacturing methods, to develop HEAs of the maximum capability, a novel metal additive manufacturing (MAM) technique has been developed to produce defect-free HEA components with the desirable performance. The unique microstructures of MAMed HEAs provide an optimum strength-ductility relationship, even in extreme environments, by the simultaneous activation of several strengthening mechanisms. In particular, applying post-printing heat-treatment can significantly enhance the strength-ductility relationship of HEAs. Herein, a comprehensive review based on the process-microstructure-properties relationship in precipitation-hardenable HEAs fabricated by 3D printing is provided. Different kinds of precipitates formed in the microstructures of MAM-processed HEAs after applying a proper post-MAM heat treatment are presented. Moreover, the corresponding mechanical properties of these components are discussed in detail. Also, the improvement in the mechanical properties of precipitation-hardened MAM-processed HEAs due to the interaction between dislocations and precipitates is introduced, resulting in precipitate shearing and creation of Orowan/Hirsch loops.
ArticleNumber 110161
Author Kim, Hyoung Seop
Haftlang, Farahnaz
Author_xml – sequence: 1
  givenname: Farahnaz
  surname: Haftlang
  fullname: Haftlang, Farahnaz
  organization: Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
– sequence: 2
  givenname: Hyoung Seop
  surname: Kim
  fullname: Kim, Hyoung Seop
  email: hskim@postech.ac.kr
  organization: Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
BookMark eNqFkctq3DAUhkVJoJPLG2ThF_BUN1tyF4UQ2jQQ6KZdi2PpaEaDRzaSEpi3ryZON120K8Evvv8cfboiF3GOSMgdo1tGWf_psD1CcZi3nHK2ZeeMfSAbppVoJRvUBdlQ3suWcdV9JFc5HyjlXAm5IXDfLJjygraEV2zm2CwJbVhCgRLm2O4hOYwh7pp92O1bjCXNy6mBaZpPufEwpmChoGvGGjoX3lqOEF882PKSKnhDLj1MGW_fz2vy69vXnw_f2-cfj08P98-tlVqWFqweKUeupPO6x5GxTtBuUMCtRZC9Eqxe0w5H7JTw2LMBQYuOeu8Hj1Zck6e1181wMEsKR0gnM0Mwb8GcdgZSCXZCw5gUGkfpVKflYHWdgoPyCr1wjmlduz6vXTbNOSf0xr4LKQnCZBg1Z8nmYFbx5izerOIrLP-C_yzzH-zLimGV9BowmWwDRosu1B8p9RXh3wW_ASqDo3o
CitedBy_id crossref_primary_10_1080_02670836_2022_2130530
crossref_primary_10_1016_j_msea_2024_147438
crossref_primary_10_1016_j_surfcoat_2022_128802
crossref_primary_10_1016_j_ijrmhm_2022_105836
crossref_primary_10_1016_j_intermet_2025_108725
crossref_primary_10_1016_j_jallcom_2024_177527
crossref_primary_10_1016_j_addma_2023_103421
crossref_primary_10_1016_j_actamat_2023_119115
crossref_primary_10_1039_D3TA01476B
crossref_primary_10_1007_s11661_024_07448_y
crossref_primary_10_1016_j_jallcom_2023_171384
crossref_primary_10_1016_j_jmat_2021_12_010
crossref_primary_10_1080_14686996_2022_2158043
crossref_primary_10_1007_s11661_024_07300_3
crossref_primary_10_1016_j_ijfatigue_2025_108818
crossref_primary_10_1021_acsaenm_4c00280
crossref_primary_10_1007_s10853_024_10270_x
crossref_primary_10_1016_j_vacuum_2023_112601
crossref_primary_10_1016_j_msea_2024_147172
crossref_primary_10_1016_j_mtcomm_2023_106422
crossref_primary_10_1016_j_msea_2024_147057
crossref_primary_10_3390_coatings13081301
crossref_primary_10_1016_j_jmrt_2024_07_060
crossref_primary_10_1016_j_jallcom_2022_164304
crossref_primary_10_1016_j_msea_2022_144346
crossref_primary_10_1016_j_jmst_2023_11_053
crossref_primary_10_1016_j_msea_2022_144348
crossref_primary_10_1016_j_msea_2022_142720
crossref_primary_10_1016_j_jmapro_2022_04_014
crossref_primary_10_1007_s11661_025_07731_6
crossref_primary_10_1016_j_jmrt_2024_09_146
crossref_primary_10_1016_j_jallcom_2023_171089
crossref_primary_10_1016_j_jmrt_2025_03_074
crossref_primary_10_1016_j_matchar_2023_112841
crossref_primary_10_1016_j_addma_2023_103443
crossref_primary_10_2139_ssrn_4181220
crossref_primary_10_1016_j_jallcom_2024_177494
crossref_primary_10_1016_j_matdes_2022_110774
crossref_primary_10_1016_j_scriptamat_2023_115617
crossref_primary_10_1016_j_jallcom_2023_170443
crossref_primary_10_1016_j_jallcom_2023_172502
crossref_primary_10_1016_j_corsci_2023_111599
crossref_primary_10_1016_j_matdes_2022_110685
crossref_primary_10_1016_j_msea_2025_147914
crossref_primary_10_1016_j_jmst_2023_05_045
crossref_primary_10_1002_adfm_202412071
crossref_primary_10_1016_j_mser_2024_100834
crossref_primary_10_1016_j_surfcoat_2023_129538
crossref_primary_10_1016_j_jmst_2024_02_077
crossref_primary_10_1007_s11665_023_08171_2
crossref_primary_10_1007_s10853_022_07400_8
crossref_primary_10_1016_j_jmrt_2022_11_137
crossref_primary_10_1016_j_msea_2024_147245
crossref_primary_10_1016_j_jalmes_2024_100054
crossref_primary_10_1007_s10853_022_07137_4
crossref_primary_10_1016_j_jallcom_2022_164415
crossref_primary_10_1016_j_pmatsci_2024_101295
crossref_primary_10_1016_j_jmst_2023_12_006
crossref_primary_10_1007_s10853_022_07110_1
crossref_primary_10_1080_21663831_2025_2466779
crossref_primary_10_1016_j_jallcom_2023_171870
crossref_primary_10_1016_j_jallcom_2024_176103
crossref_primary_10_1016_j_jmrt_2022_11_027
crossref_primary_10_1016_j_cossms_2022_100992
crossref_primary_10_1016_j_intermet_2025_108650
crossref_primary_10_1063_5_0168668
crossref_primary_10_1016_j_addma_2023_103914
crossref_primary_10_1016_j_msea_2022_144425
crossref_primary_10_1016_j_addma_2024_104408
crossref_primary_10_1080_21663831_2024_2309271
crossref_primary_10_1016_j_matchar_2024_114191
crossref_primary_10_3390_jmmp8060269
crossref_primary_10_1007_s10853_023_09244_2
crossref_primary_10_1016_j_mser_2024_100853
crossref_primary_10_1016_j_jallcom_2024_175849
crossref_primary_10_1016_j_vacuum_2023_112115
crossref_primary_10_1016_j_jallcom_2023_170631
crossref_primary_10_1038_s41467_024_50078_6
crossref_primary_10_1016_j_jallcom_2023_172093
crossref_primary_10_1016_j_msea_2023_145164
crossref_primary_10_1016_j_jmrt_2024_02_232
crossref_primary_10_1016_j_msea_2023_145042
crossref_primary_10_1016_j_msea_2022_144156
crossref_primary_10_1016_j_msea_2022_144398
crossref_primary_10_1007_s12540_022_01225_5
crossref_primary_10_1016_j_jallcom_2022_165601
crossref_primary_10_1016_j_heliyon_2024_e28006
crossref_primary_10_1016_j_jallcom_2024_173929
crossref_primary_10_1016_j_jmatprotec_2022_117733
crossref_primary_10_1016_j_jmrt_2023_10_266
crossref_primary_10_1016_j_jallcom_2023_171213
crossref_primary_10_1016_j_jmrt_2022_12_084
crossref_primary_10_1016_j_mtcomm_2022_104686
crossref_primary_10_3390_ma17174215
crossref_primary_10_1016_j_scriptamat_2023_115384
crossref_primary_10_1016_j_jmrt_2024_02_226
crossref_primary_10_1016_j_msea_2024_147631
Cites_doi 10.1016/j.msea.2018.12.005
10.1016/j.matchemphys.2017.09.014
10.1016/j.actamat.2015.08.076
10.1016/j.ijplas.2018.09.009
10.1038/s41467-018-06600-8
10.1016/j.jallcom.2019.153273
10.1016/j.actamat.2014.08.026
10.1016/j.mattod.2021.02.022
10.1016/j.intermet.2012.09.022
10.1016/j.actamat.2019.10.015
10.1016/j.matdes.2020.108966
10.1016/j.jallcom.2020.157625
10.1016/j.scriptamat.2020.07.023
10.1016/j.scriptamat.2018.01.028
10.1016/j.msea.2008.01.064
10.1016/j.actamat.2018.12.032
10.1016/j.corsci.2021.109663
10.1016/j.jallcom.2020.154707
10.1016/j.corsci.2021.109365
10.1016/j.actamat.2020.05.015
10.1016/j.actamat.2019.01.048
10.1016/j.matlet.2016.11.026
10.1016/j.intermet.2018.01.002
10.1016/j.triboint.2021.107031
10.1016/j.msea.2021.141264
10.1016/j.jmatprotec.2020.116806
10.1016/j.jallcom.2018.12.040
10.1016/j.apsusc.2019.06.087
10.1007/s12540-019-00565-z
10.1016/j.matlet.2006.03.140
10.1038/s41467-020-16085-z
10.1080/14686996.2017.1361305
10.1016/j.scriptamat.2020.06.019
10.1016/j.msea.2018.11.118
10.1016/j.ijmachtools.2019.103475
10.1016/j.actamat.2020.07.006
10.1016/j.jallcom.2019.03.403
10.1016/j.scriptamat.2018.05.015
10.1016/j.actamat.2013.04.058
10.1016/j.msea.2020.139802
10.1080/21663831.2014.912690
10.1016/j.matdes.2018.107576
10.1016/j.msea.2018.08.038
10.1016/j.actamat.2020.04.052
10.1016/j.jallcom.2019.04.121
10.1016/j.actamat.2011.06.041
10.1016/j.corsci.2021.109479
10.1080/21663831.2019.1638844
10.1016/j.jallcom.2019.01.213
10.1016/j.msea.2021.141249
10.1016/j.msea.2020.140551
10.1016/j.jallcom.2020.155074
10.1016/j.msea.2010.05.052
10.1016/j.commatsci.2021.110462
10.1016/j.jallcom.2018.12.267
10.1016/j.scriptamat.2016.10.023
10.1016/j.jmapro.2016.11.006
10.1016/j.actamat.2016.07.038
10.1016/j.scriptamat.2014.11.037
10.1016/j.actamat.2021.117121
10.1016/j.msea.2016.08.118
10.1016/j.apmt.2021.101040
10.1016/j.msea.2015.03.109
10.1016/j.actamat.2019.12.003
10.1016/j.matdes.2015.05.027
10.1016/j.msea.2019.138056
10.1002/adma.201903855
10.1016/j.jallcom.2020.155997
10.1016/j.intermet.2012.07.001
10.1016/j.msea.2015.02.072
10.1038/srep16707
10.1016/j.msea.2019.138243
10.1016/j.pmatsci.2020.100736
10.1016/j.ijmachtools.2021.103729
10.1016/j.jallcom.2019.152750
10.1007/s10853-017-0975-z
10.1016/j.matlet.2019.127175
10.1007/s12540-019-00332-0
10.1016/S0966-9795(01)00131-5
10.1016/j.msea.2021.141386
10.1016/j.jallcom.2019.06.204
10.1016/j.intermet.2021.107212
10.1016/j.mtla.2019.100310
10.1016/j.matdes.2012.04.049
10.1016/j.mattod.2021.03.020
10.1016/j.jallcom.2016.12.209
10.1016/j.matchar.2017.10.022
10.1016/j.msea.2020.139184
10.1016/j.mattod.2020.09.029
10.1016/j.ijplas.2020.102819
10.1016/j.msea.2016.10.038
10.1016/0956-7151(94)90036-1
10.1016/j.actamat.2019.06.032
10.1016/j.actamat.2016.12.074
10.1007/s12540-019-00466-1
10.1016/j.matlet.2021.130391
10.1126/sciadv.aat8712
10.1016/j.scriptamat.2021.114013
10.1016/j.scriptamat.2018.01.025
10.1016/j.pmatsci.2013.10.001
10.1016/j.actamat.2017.02.053
10.1016/j.jmst.2020.11.029
10.1016/j.jallcom.2016.10.138
10.1007/s12540-020-00923-2
10.1016/S1002-0071(12)60080-X
10.1016/j.actamat.2019.04.018
10.1016/j.scriptamat.2006.05.002
10.1016/j.actamat.2018.01.050
10.1016/j.msea.2003.10.257
10.1016/j.msea.2021.141763
10.1016/j.jmst.2019.05.062
10.1016/j.intermet.2020.106813
10.1016/j.jallcom.2020.156909
10.1016/j.scriptamat.2020.04.035
10.1080/02670836.2017.1342367
10.1016/j.scriptamat.2019.07.008
10.1016/j.scriptamat.2020.03.030
10.1016/j.matchar.2018.08.019
10.1016/j.corsci.2020.108954
10.1016/j.actamat.2020.10.071
10.1016/j.scriptamat.2021.114066
10.1016/j.scriptamat.2020.07.010
10.1080/21663831.2014.951493
10.1016/j.mtla.2019.100522
10.1007/s12540-020-00823-5
10.1557/jmr.2018.186
10.1016/j.msea.2017.04.111
10.1016/j.actamat.2018.01.049
10.1016/j.actamat.2019.12.015
10.1016/j.mtla.2019.100282
10.3390/met11030486
10.1038/srep40704
10.1016/j.jallcom.2020.155305
10.1016/j.intermet.2021.107202
10.1016/j.matchemphys.2017.09.057
10.1016/j.msea.2019.01.050
10.1080/21663831.2019.1650131
10.1016/j.matlet.2019.127004
10.1016/j.actamat.2013.06.040
10.3390/e20110878
10.1016/0025-5416(74)90020-2
10.1016/j.msea.2013.08.005
10.1007/s11837-014-1085-x
10.1016/j.jallcom.2014.11.085
10.1016/j.actamat.2015.11.040
10.1016/j.jallcom.2021.160102
10.1016/j.actamat.2018.12.012
10.1007/s40843-020-1291-9
10.1016/j.intermet.2015.10.022
10.1016/j.scriptamat.2017.05.019
10.1080/21663831.2018.1434250
10.1016/j.jmst.2019.10.025
10.1016/j.jallcom.2019.07.106
10.1016/j.mtla.2018.11.022
10.1016/j.msea.2020.140056
10.1063/1.3587228
10.1007/s12540-020-00818-2
10.1016/j.powtec.2019.10.068
10.1103/PhysRevB.74.020102
10.1016/j.msea.2019.138241
10.1016/j.msea.2020.139275
10.1016/j.wear.2005.12.008
10.1016/j.actamat.2016.06.063
10.1016/j.intermet.2018.12.001
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2021.110161
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_11438eb4d75849c897ae97f7ef3dd188
10_1016_j_matdes_2021_110161
S0264127521007164
GroupedDBID --K
--M
-~X
.~1
0SF
1B1
1~.
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KOM
M41
MO0
NCXOZ
OAUVE
OK1
P2P
PC.
Q38
ROL
SDF
SDG
SDP
SPC
SSM
SST
SSZ
T5K
~G-
0R~
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
JJJVA
MAGPM
O9-
P-8
P-9
R2-
RIG
RNS
RPZ
SEW
SMS
SSH
WUQ
EFKBS
ID FETCH-LOGICAL-c484t-ac8b02e274df86eb11530597a2ccea4673102e05ebe573fe619ea8350fff9fec3
IEDL.DBID AIKHN
ISSN 0264-1275
IngestDate Wed Aug 27 01:20:03 EDT 2025
Tue Jul 01 02:24:04 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
Fri Feb 23 02:41:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords High entropy alloys
Mechanical properties
Precipitation hardening
Metal additive manufacturing
Strengthening micro-mechanisms
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-ac8b02e274df86eb11530597a2ccea4673102e05ebe573fe619ea8350fff9fec3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0264127521007164
ParticipantIDs doaj_primary_oai_doaj_org_article_11438eb4d75849c897ae97f7ef3dd188
crossref_citationtrail_10_1016_j_matdes_2021_110161
crossref_primary_10_1016_j_matdes_2021_110161
elsevier_sciencedirect_doi_10_1016_j_matdes_2021_110161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hatano (b0925) 2006; 74
Zhao, Chen, Lu, Nieh (b0900) 2018; 147
Luo, Zhao, Su, Liu, Wang (b0510) 2020; 31
Zaddach, Scattergood, Koch (b0625) 2015; 636
Zhu, Nguyen, Ng, An, Liao, Liaw, Nai, Wei (b0460) 2018; 154
He, Chen, Han, Wu, Wang, Wei, Wei, Wang, Liu, Kai (b0635) 2019; 167
Tsai, Yeh (b0155) 2014; 2
Xu, Zhang, Du, He, Luo, Song, Mao, Zhou, Wang (b0505) 2020; 177
Z. Niu, Y. Wang, C. Geng, J. Xu, Y. Wang, Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x = 0, 0.2, 0.5, 0.8, 1) high entropy alloys, J. Alloys Compd. 820 (2020) 153273. https://doi.org/10.1016/j.jallcom.2019.153273.
Li, Gao, Wang, Chen, Xin, Tang, Liu, Liu, Song (b0685) 2019; 792
Cantor, Chang, Knight, Vincent (b0030) 2004; 375–377
Kwon, Moon, Bae, Park, Son, Do, Lee, Kim (b0225) 2020; 188
Svetlizky, Das, Zheng, Vyatskikh, Bose, Bandyopadhyay, Schoenung, Lavernia, Eliaz (b0290) 2021
Cheng, Wang, Xie, Tang, Dai (b0695) 2017; 33
Haftlang, Asghari-Rad, Moon, Lee, Kato, Kim (b0050) 2021; 302
Hutchinson, Ridley (b0440) 2006; 55
Guan, Wan, Solberg, Berto, Welo, Yue, Chan (b0445) 2019; 761
Tsai, Tsai, Yeh (b0520) 2013; 61
Chen, Yang, Li, Attallah, Yan (b0910) 2020; 194
Wang, Baker, Guo, Poplawsky (b0690) 2017; 126
Bae, Park, Moon, Choi, Lee, Kim (b0650) 2019; 781
Kim, Choe, Lee (b0450) 2019; 805
Park, Choe, Kim, Bae, Moon, Yang, Kim, Yu, Kim (b0255) 2020; 8
Chuang, Tsai, Wang, Lin, Yeh (b0160) 2011; 59
Yi, Yang, Wang, Xu (b0070) 2021; 27
Motaman, Roters, Haase (b0325) 2020; 185
Dasari, Sarkar, Sharma, Gwalani, Choudhuri, Soni, Manda, Samajdar, Banerjee (b0580) 2021; 202
Zhao, Yang, Zhu, Chen, Yang, Hu, Liu, Kai (b0645) 2018; 148
Ding, Cao, Luan, Jiao (b0545) 2021; 184
Tsai, Yuan, Cheng, Xu, Jian, Chuang, Juan, Yeh, Lin, Zhua (b0755) 2013; 33
Zhang, Huo, Wang, Du, Zhang, Li, Zou, Wan, Duan, Wu (b0605) 2020; 122
Guo, Ou, Ni, Liu, Song (b0680) 2019; 746
Sanchez, Smith, Xu, Gaspard, Hyde, Wits, Ashcroft, Chen, Clare (b0265) 2021; 165
Yang, Zhao, Liu, Kai, Liu (b0530) 2018; 33
Bhardwaj, Zhou, Zhang, Han, Du, Hua, Wang (b0185) 2021; 160
Lin, Xu, Jing, Han, Zhao, Zhang, Li (b0515) 2020; 36
Zhang, Gao (b0135) 2016
Wang, Wang, Zhou, Xiao, Xiao, Wang, Cao, Ren, Liang, Wang, Xue (b0565) 2021; 216
Zhang, Xiang, Han, Srolovitz (b0360) 2019; 166
Dasari, Jagetia, Chang, Soni, Gwalani, Gorsse, Yeh, Banerjee (b0210) 2020; 830
Lu, Lu, Xu, Yao, Cai, Luo (b0315) 2020; 148
Tong, Ren, Jiao, Zhou, Ren, Ye, Larson, Gu (b0405) 2019; 785
Ma, Wang, Jiang, Li, Hao, Li, Dong, Nieh (b0780) 2018; 147
Moghaddam, Shaburova, Samodurova, Abdollahzadeh, Trofimov (b0240) 2021; 77
Zhao (b0090) 2020; 44
Li, Chen, Fang, Jiang, Liu, Liaw (b0905) 2020; 133
Wang, Zhang, Davies, Wu (b0825) 2017; 694
Wu, Lin, Yeh, Chen, Huang, Chen (b0190) 2006; 261
Gypen, Deruyttere (b0875) 1981; 15
George, Curtin, Tasan (b0150) 2020; 188
Ma, Hao, Jie, Wang, Dong (b0060) 2019; 764
Kim, Park, Asghari-Rad, Jung, Moon, Kim (b0385) 2021; 27
Ming, Bi, Wang (b0655) 2017; 137
Gao, Lu, Zhao, Liu, Liu, Wu, Liu, Fan, Lu, George (b0710) 2019; 792
Han, Fang, Shi, Tor, Chua, Zhou (b0310) 2020; 32
Pegues, Melia, Puckett, Whetten, Argibay, Kustas (b0345) 2021; 37
Peng, Hu, Li, Gao, Zhang (b0555) 2020; 817
Huang, Zhang, Vilar, Shen (b0175) 2012; 41
Sinha, Nene, Frank, Liu, Mishra, McWilliams, Cho (b0330) 2019; 6
Griffiths, Ghasemi Tabasi, Ivas, Maeder, De Luca, Zweiacker, Wróbel, Jhabvala, Logé, Leinenbach (b0810) 2020; 36
Shahmir, He, Lu, Kawasaki, Langdon (b0615) 2016; 676
Joseph, Jarvis, Wu, Stanford, Hodgson, Fabijanic (b0800) 2015; 633
Thapliyal, Nene, Agrawal, Wang, Morphew, Mishra, McWilliams, Cho (b0415) 2020; 36
Ge, Fu, Zhang, Mao, Li, Wang, Li, Zhang (b0145) 2020; 784
Seol, Bae, Kim, Sung, Li, Lee, Shim, Jang, Ko, Hong, Kim (b0005) 2020; 194
Du, Li, Chang, Yang, Duan, Wu, Huang, Chen, Liu, Chuang, Lu, Sui, Huang (b0570) 2020; 11
Kwon, Asghari-Rad, Park, Sathiyamoorthi, Bae, Moon, Zargaran, Choi, Son, Kim (b0675) 2021; 135
Eleti, Bhattacharjee, Shibata, Tsuji (b0080) 2019; 171
McLouth, Witkin, Bean, Sitzman, Adams, Lohser, Yang, Zaldivar (b0305) 2020; 780
Lin, Chang, Hsu, Gorsse, Sun, Furuhara, Yeh (b0750) 2020; 36
Gorsse, Hutchinson, Gouné, Banerjee (b0235) 2017; 18
He, Zhang, Yeli, Tong, Wei, Li, Wang, Wang, Kai (b0760) 2020; 183
Ming, Bi, Wang (b0630) 2017; 134
Wang, Wang, Tang, Luo, Luo, Su, Guo, Fu (b0670) 2020; 843
Li, Zhang, Xu, Liu, Qian, Xuan (b0370) 2020; 360
Lin, Liu, An, Wang, Zhang, Liao (b0435) 2018; 6
Guo, Ng, Lu, Liu (b0125) 2011; 109
Kim, Hong, Lee, Kim, Lee, Han, Lee, Song (b0740) 2021; 823
Liu, Xie, Cui, Yi, Xing, Wang, Li (b0660) 2021; 11
Brif, Thomas, Todd (b0355) 2015; 99
Tian, Zhao, Chen, Shibata, Zhang, Tsuji (b0495) 2015; 5
Machirori, Liu, Yin, Wei (b0295) 2021; 195
Lee, Moon, Bae, Park, Kwon, Kato, Kim (b0015) 2021; 134
Melia, Carroll, Whetten, Esmaeely, Locke, White, Anderson, Chandross, Michael, Argibay, Schindelholz, Kustas (b0275) 2019; 29
Nyamekye, Nieminen, Bilesan, Repo, Piili, Salminen (b0280) 2021; 23
Gwalani, Choudhuri, Soni, Ren, Styles, Hwang, Nam, Ryu, Hong, Banerjee (b0735) 2017; 129
Jiang, Huang, Wang, Xiao, Liu, Zhang (b0040) 2021; 876
Zhu, An, Lu, Li, Ng, Liao, Ramamurty, Nai, Wei (b0425) 2019; 7
Haftlang, Asghari-Rad, Moon, Zargaran, Lee, Hong, Kim (b0770) 2021; 202
J. Peng, Z. Li, L. Fu, X. Ji, Z. Pang, Ai. Shan, Carbide precipitation strengthening in fine-grained carbon-doped FeCoCrNiMn high entropy alloy, J. Alloys Compd. 803 (2019) 491-498. https://doi.org/10.1016/j.jallcom.2019.06.204.
Li, Xiang, Luan, Amar, Liu, Lu, Zeng, Le, Wang, Qu, Jiang, Yang (b0375) 2019; 35
Singh, Ramakrishna, Singh (b0245) 2017; 25
Laplanche, Kostka, Horst, Eggeler, George (b0390) 2016; 118
Karlsson, Marshal, Johansson, Schuisky, Sahlberg, Schneider, Jansson (b0805) 2019; 784
Zheng, Li, Zhang, Ye, Yang, Gu (b0270) 2021; 37
Lakhdar, Tuck, Binner, Terry, Goodridge (b0260) 2021; 116
Liu, Jin, Guo, Liaw, Qiao (b0585) 2021; 818
Xu, Zhao, Chen, Sun, Chen, Tong, Liu, Zhang (b0730) 2019; 113
Bu, Wu, Lei, Yuan, Wu, Feng, Liu, Ding, Lu, Wang, Lu, Yang (b0085) 2021; 46
Li, Lu, Liu, Dong, Zhao, Yang, Guo (b0200) 2021; 187
Zhou, Liu, Zhou, Li, Wu, Song, Liu, Liang, Liaw (b0480) 2018; 94
Zhou, Liu, Liu, Li, Fang (b0820) 2019; 106
Wu, Bei, Pharr, George (b0035) 2014; 81
Wang, Li, Pang, Li, Dong, Liaw (b0785) 2018; 20
Agrawal, Thapliyal, Nene, Mishra, McWilliams, Cho (b0420) 2020; 32
Senkov, Gorsse, Miracle (b0140) 2019; 175
Chew, Bi, Zhu, Ng, Weng, Liu, Nai, Lee (b0400) 2019; 744
Wu, Yang, Cao, Luan, Jia, Xu, Mu, Zhang, Kong, Tong, Peng, Wang, Zhai, Lu, Liu (b0575) 2021; 204
Han, Wei, Tong, Chen, Zhao, Wang, He, Yang, Zhao, Shimizu, Inoue, Nagai, Hu, Liu, Kai (b0720) 2018; 148
Zhang, Chen, Jayalakshmi, Singh, Deev, Prusov (b0340) 2021; 857
Gwalani, Gorsse, Soni, Carl, Ley, Smith, Ayyagari, Zheng, Young, Mishra, Banerjee (b0540) 2019; 6
Zhang, Zhou, Wang, Zhu, Li, Zhao (b0830) 2019; 743
Yang, Chau, Weng, Chen, Chou (b0350) 2017; 202
Tomihisa, Kaneno, Takasugi (b0835) 2002; 10
Lin, Xu, Jing, Han, Zhao, Minami (b0485) 2020; 32
Gasan, Lökçü, Ozcan, Celik, Celikyurek, Ulutan, Kurtulus (b0165) 2020; 26
Zhang, Zhang, Fan, Yu, Li (b0180) 2019
Chang, Yeh (b0535) 2017; 210
Chae, Sharma, Oh, Ahn (b0230) 2021; 27
Thompson, Su, Voorhees (b0775) 1994; 42
Cho, Fujioka, Nagase, Yasuda (b0610) 2018; 735
Lu, Luo, Yang, Le, Huang, Li (b0640) 2020; 833
Takeuchi, Amiya, Wada, Yubuta (b0110) 2016; 69
Dasari, Chang, Jagetia, Soni, Sharma, Gwalani, Gorsse, Yeh, Banerjee (b0550) 2021; 805
Biswas, Yeh, Bhattacharjee, DeHosson (b0020) 2020; 188
Zheng, Haley, Yang, Yee, Terrassa, Zhou, Lavernia, Schoenung (b0285) 2019; 764
Chen, Phan, Darvish (b0470) 2017; 52
Wu, Wang, Huang, Shu, Sun (b0130) 2020; 262
T. Cao, L. Ma, L. Wang, J. Zhou, Y. Wang, B. Wang, Y. Xue, High temperature deformation behavior of dual-phase Al0.6CoCrFeNi high-entropy alloys, J. Alloys Compd. 836, (2020) 155305. https://doi.org/10.1016/j.jallcom.2020.155305.
Qin, Chen, Liaw, Gao, Li, Zheng, Wang, Su, Guo, Fu (b0045) 2019; 172
Luo, Su, Wang (b0915) 2020; 63
Shi, Zhong, Li, Ren, Zheng, Shen, Yang, Peng, Hu, Zhang, Liaw, Zhu (b0595) 2020; 41
Courtney (b0920) 2005
Maresca, Curtin (b0095) 2020; 182
Niu, Li, Fan, Yuan, Zhang (b0430) 2021; 814
Su, Fan, Su, Huang, Tsai, Lu (b0745) 2021; 851
Kotadia, Gibbons, Das, Howes (b0300) 2021; 46
Ma, Liu, Dong, Li, Zhang, Lu, Yu, Li (b0705) 2020; 792
Zhou, Wang, He, Liu, Li, Kai, Wang (b0815) 2020; 35
Joseph, Stanford, Hodgson, Fabijanic (b0410) 2017; 129
Meng, Qiu, Baker (b0600) 2013; 586
Wang, Zhou, Fu, Wang, Luo, Han, Chen, Wang (b0560) 2017; 696
Wang, Zhu, Chen, Wang, Liu, Liu, Zheng, Nai, Primig, Babu, Ringer, Liao (b0490) 2020; 196
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (b0170) 2014; 61
Alshataif, Sivasankaran, Al-Mufadi, Alaboodi, Ammar (b0220) 2020; 26
Xu, Zhu, Wang, Meenashisundaram, Nai, Wei (b0250) 2020; 35
Karthik, Panikar, Ram, Kottada (b0365) 2017; 679
Kong, Dong, Wei, Ni, Zhang, Li, Wang, Man, Li (b0475) 2021; 38
Wu, Wang, Wang, Jia, Yi, Zhai, Liu, Sun, Chu, Shen, Liaw, Liu, Zhang (b0380) 2019; 165
Fu, Jiang, Wardini, MacDonald, Wen, Xiong, Zhang, Zhou, Rupert, Chen, Lavernia (b0890) 2018; 4
Guo, Liu (b0120) 2011; 21
Nartu, Alam, Dasari, Mantri, Gorsse, Siller, Dahotre, Banerjee (b0865) 2020; 9
Basu, De Hosson (b0320) 2020; 187
Liu, Lei, Ma, Liu, Liu, Cui (b0115) 2015; 630
Wu, Zhou, Wei, Ni, Liu, Song (b0840) 2018; 144
Ioroi, Kaneno, Semboshi, Takasugi (b0870) 2019; 5
King, Middleburgh, McGregor, Cortie (b0215) 2016; 104
Prashanth, Eckert (b0455) 2017; 707
Wang, Huang, Ng, Sin, Lu, Nai, Dong, Wei (b0465) 2019; 168
Oblak, Duvall, Paulonis (b0885) 1974; 13
Fujieda, Shiratori, Kuwabara, Hirota, Kato, Yamanaka, Koizumi, Chiba, Watanabe (b0195) 2017; 189
Fujieda, Chen, Shiratori, Kuwabara, Yamanaka, Koizumi, Chiba, Watanabe (b0860) 2019; 25
Chen, Tang, Kuo, Chen, Tsau, Shun, Yeh (b0765) 2010
Wang, Li, Ren, Yang, Fu (b0795) 2008; 491
Matsukawa (b0880) 2019
Chou, Huang, Yang, Lin, Nieh (b0525) 2020; 195
Jiao, Luan, Zhang, Miller, Ma, Liu (b0725) 2013; 61
He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (b0790) 2016; 102
Liang, Wang, Wen, Cheng, Wu, Cao, Xiao, Xue, Sha, Wang, Ren, Li, Wang, Wang, Cai (b0895) 2018; 9
Yang, Liu, Pi (b0850) 2020; 261
Li, Ta
Karthik (10.1016/j.matdes.2021.110161_b0365) 2017; 679
Haftlang (10.1016/j.matdes.2021.110161_b0770) 2021; 202
Liu (10.1016/j.matdes.2021.110161_b0620) 2016; 116
Han (10.1016/j.matdes.2021.110161_b0310) 2020; 32
Lin (10.1016/j.matdes.2021.110161_b0435) 2018; 6
Sanchez (10.1016/j.matdes.2021.110161_b0265) 2021; 165
Ma (10.1016/j.matdes.2021.110161_b0705) 2020; 792
Zheng (10.1016/j.matdes.2021.110161_b0285) 2019; 764
Kong (10.1016/j.matdes.2021.110161_b0475) 2021; 38
Dasari (10.1016/j.matdes.2021.110161_b0210) 2020; 830
Lu (10.1016/j.matdes.2021.110161_b0640) 2020; 833
Zhao (10.1016/j.matdes.2021.110161_b0900) 2018; 147
Ding (10.1016/j.matdes.2021.110161_b0545) 2021; 184
He (10.1016/j.matdes.2021.110161_b0790) 2016; 102
Gasan (10.1016/j.matdes.2021.110161_b0165) 2020; 26
Guo (10.1016/j.matdes.2021.110161_b0120) 2011; 21
Zhou (10.1016/j.matdes.2021.110161_b0815) 2020; 35
Qin (10.1016/j.matdes.2021.110161_b0045) 2019; 172
Lu (10.1016/j.matdes.2021.110161_b0315) 2020; 148
Gwalani (10.1016/j.matdes.2021.110161_b0735) 2017; 129
Sistla (10.1016/j.matdes.2021.110161_b0845) 2015; 81
Park (10.1016/j.matdes.2021.110161_b0395) 2020; 35
Wang (10.1016/j.matdes.2021.110161_b0560) 2017; 696
Wang (10.1016/j.matdes.2021.110161_b0795) 2008; 491
Jiao (10.1016/j.matdes.2021.110161_b0725) 2013; 61
Yang (10.1016/j.matdes.2021.110161_b0530) 2018; 33
Fujieda (10.1016/j.matdes.2021.110161_b0860) 2019; 25
Zhou (10.1016/j.matdes.2021.110161_b0480) 2018; 94
Dasari (10.1016/j.matdes.2021.110161_b0550) 2021; 805
Tsai (10.1016/j.matdes.2021.110161_b0520) 2013; 61
Lin (10.1016/j.matdes.2021.110161_b0515) 2020; 36
Gorsse (10.1016/j.matdes.2021.110161_b0235) 2017; 18
Wang (10.1016/j.matdes.2021.110161_b0690) 2017; 126
Xiong (10.1016/j.matdes.2021.110161_b0075) 2020; 186
Kim (10.1016/j.matdes.2021.110161_b0740) 2021; 823
Liang (10.1016/j.matdes.2021.110161_b0895) 2018; 9
Zhang (10.1016/j.matdes.2021.110161_b0135) 2016
Zhu (10.1016/j.matdes.2021.110161_b0425) 2019; 7
Zhang (10.1016/j.matdes.2021.110161_b0830) 2019; 743
Guan (10.1016/j.matdes.2021.110161_b0445) 2019; 761
Jiang (10.1016/j.matdes.2021.110161_b0040) 2021; 876
Wu (10.1016/j.matdes.2021.110161_b0130) 2020; 262
Joseph (10.1016/j.matdes.2021.110161_b0410) 2017; 129
Motaman (10.1016/j.matdes.2021.110161_b0325) 2020; 185
Wu (10.1016/j.matdes.2021.110161_b0575) 2021; 204
Zhao (10.1016/j.matdes.2021.110161_b0645) 2018; 148
George (10.1016/j.matdes.2021.110161_b0150) 2020; 188
Alshataif (10.1016/j.matdes.2021.110161_b0220) 2020; 26
Ma (10.1016/j.matdes.2021.110161_b0060) 2019; 764
Chang (10.1016/j.matdes.2021.110161_b0535) 2017; 210
Meng (10.1016/j.matdes.2021.110161_b0600) 2013; 586
Kwon (10.1016/j.matdes.2021.110161_b0675) 2021; 135
Takeuchi (10.1016/j.matdes.2021.110161_b0100) 2014; 66
Luo (10.1016/j.matdes.2021.110161_b0510) 2020; 31
Li (10.1016/j.matdes.2021.110161_b0685) 2019; 792
Lee (10.1016/j.matdes.2021.110161_b0015) 2021; 134
Qi (10.1016/j.matdes.2021.110161_b0055) 2020; 797
Guo (10.1016/j.matdes.2021.110161_b0125) 2011; 109
Wang (10.1016/j.matdes.2021.110161_b0785) 2018; 20
Zhang (10.1016/j.matdes.2021.110161_b0180) 2019
Xu (10.1016/j.matdes.2021.110161_b0730) 2019; 113
Shahmir (10.1016/j.matdes.2021.110161_b0615) 2016; 676
Hatano (10.1016/j.matdes.2021.110161_b0925) 2006; 74
Maresca (10.1016/j.matdes.2021.110161_b0095) 2020; 182
Svetlizky (10.1016/j.matdes.2021.110161_b0290) 2021
Tian (10.1016/j.matdes.2021.110161_b0495) 2015; 5
Shi (10.1016/j.matdes.2021.110161_b0595) 2020; 41
Hutchinson (10.1016/j.matdes.2021.110161_b0440) 2006; 55
Lin (10.1016/j.matdes.2021.110161_b0750) 2020; 36
Han (10.1016/j.matdes.2021.110161_b0720) 2018; 148
Zhu (10.1016/j.matdes.2021.110161_b0460) 2018; 154
10.1016/j.matdes.2021.110161_b0700
Machirori (10.1016/j.matdes.2021.110161_b0295) 2021; 195
Cantor (10.1016/j.matdes.2021.110161_b0030) 2004; 375–377
10.1016/j.matdes.2021.110161_b0665
Ming (10.1016/j.matdes.2021.110161_b0630) 2017; 134
Singh (10.1016/j.matdes.2021.110161_b0245) 2017; 25
Kang (10.1016/j.matdes.2021.110161_b0590) 2021; 814
Yi (10.1016/j.matdes.2021.110161_b0070) 2021; 27
Luo (10.1016/j.matdes.2021.110161_b0915) 2020; 63
Cheng (10.1016/j.matdes.2021.110161_b0695) 2017; 33
Gypen (10.1016/j.matdes.2021.110161_b0875) 1981; 15
Wu (10.1016/j.matdes.2021.110161_b0190) 2006; 261
He (10.1016/j.matdes.2021.110161_b0760) 2020; 183
Chuang (10.1016/j.matdes.2021.110161_b0160) 2011; 59
Bu (10.1016/j.matdes.2021.110161_b0085) 2021; 46
Guo (10.1016/j.matdes.2021.110161_b0680) 2019; 746
Tomihisa (10.1016/j.matdes.2021.110161_b0835) 2002; 10
Zhang (10.1016/j.matdes.2021.110161_b0360) 2019; 166
Liu (10.1016/j.matdes.2021.110161_b0115) 2015; 630
Zhang (10.1016/j.matdes.2021.110161_b0170) 2014; 61
Tong (10.1016/j.matdes.2021.110161_b0405) 2019; 785
Thapliyal (10.1016/j.matdes.2021.110161_b0415) 2020; 36
Bae (10.1016/j.matdes.2021.110161_b0650) 2019; 781
Gao (10.1016/j.matdes.2021.110161_b0710) 2019; 792
Haftlang (10.1016/j.matdes.2021.110161_b0050) 2021; 302
Pegues (10.1016/j.matdes.2021.110161_b0345) 2021; 37
Biswas (10.1016/j.matdes.2021.110161_b0020) 2020; 188
Eleti (10.1016/j.matdes.2021.110161_b0080) 2019; 171
Chen (10.1016/j.matdes.2021.110161_b0470) 2017; 52
Karlsson (10.1016/j.matdes.2021.110161_b0805) 2019; 784
Liu (10.1016/j.matdes.2021.110161_b0660) 2021; 11
Ioroi (10.1016/j.matdes.2021.110161_b0870) 2019; 5
Tsai (10.1016/j.matdes.2021.110161_b0155) 2014; 2
Agrawal (10.1016/j.matdes.2021.110161_b0420) 2020; 32
Cho (10.1016/j.matdes.2021.110161_b0610) 2018; 735
Xu (10.1016/j.matdes.2021.110161_b0505) 2020; 177
Wu (10.1016/j.matdes.2021.110161_b0840) 2018; 144
Fu (10.1016/j.matdes.2021.110161_b0890) 2018; 4
Li (10.1016/j.matdes.2021.110161_b0905) 2020; 133
Sinha (10.1016/j.matdes.2021.110161_b0330) 2019; 6
Su (10.1016/j.matdes.2021.110161_b0745) 2021; 851
Ma (10.1016/j.matdes.2021.110161_b0780) 2018; 147
King (10.1016/j.matdes.2021.110161_b0215) 2016; 104
Li (10.1016/j.matdes.2021.110161_b0715) 2017; 7
Chen (10.1016/j.matdes.2021.110161_b0765) 2010
Chae (10.1016/j.matdes.2021.110161_b0230) 2021; 27
Niu (10.1016/j.matdes.2021.110161_b0430) 2021; 814
Chew (10.1016/j.matdes.2021.110161_b0400) 2019; 744
Wang (10.1016/j.matdes.2021.110161_b0465) 2019; 168
Oblak (10.1016/j.matdes.2021.110161_b0885) 1974; 13
Wang (10.1016/j.matdes.2021.110161_b0670) 2020; 843
Du (10.1016/j.matdes.2021.110161_b0570) 2020; 11
Chen (10.1016/j.matdes.2021.110161_b0910) 2020; 194
Li (10.1016/j.matdes.2021.110161_b0370) 2020; 360
Li (10.1016/j.matdes.2021.110161_b0375) 2019; 35
Gwalani (10.1016/j.matdes.2021.110161_b0540) 2019; 6
Moghaddam (10.1016/j.matdes.2021.110161_b0240) 2021; 77
Takeuchi (10.1016/j.matdes.2021.110161_b0110) 2016; 69
Prashanth (10.1016/j.matdes.2021.110161_b0455) 2017; 707
Brif (10.1016/j.matdes.2021.110161_b0355) 2015; 99
Thompson (10.1016/j.matdes.2021.110161_b0775) 1994; 42
Huang (10.1016/j.matdes.2021.110161_b0175) 2012; 41
Park (10.1016/j.matdes.2021.110161_b0010) 2020; 26
Lin (10.1016/j.matdes.2021.110161_b0485) 2020; 32
Liu (10.1016/j.matdes.2021.110161_b0585) 2021; 818
Zaddach (10.1016/j.matdes.2021.110161_b0625) 2015; 636
Dasari (10.1016/j.matdes.2021.110161_b0580) 2021; 202
Zhou (10.1016/j.matdes.2021.110161_b0820) 2019; 106
Lakhdar (10.1016/j.matdes.2021.110161_b0260) 2021; 116
Kotadia (10.1016/j.matdes.2021.110161_b0300) 2021; 46
Zhao (10.1016/j.matdes.2021.110161_b0090) 2020; 44
Ming (10.1016/j.matdes.2021.110161_b0655) 2017; 137
Wu (10.1016/j.matdes.2021.110161_b0035) 2014; 81
Senkov (10.1016/j.matdes.2021.110161_b0140) 2019; 175
Fujieda (10.1016/j.matdes.2021.110161_b0195) 2017; 189
Chou (10.1016/j.matdes.2021.110161_b0525) 2020; 195
Haftlang (10.1016/j.matdes.2021.110161_b0855) 2019; 491
Courtney (10.1016/j.matdes.2021.110161_b0920) 2005
Zhang (10.1016/j.matdes.2021.110161_b0340) 2021; 857
Seol (10.1016/j.matdes.2021.110161_b0005) 2020; 194
Nyamekye (10.1016/j.matdes.2021.110161_b0280) 2021; 23
Wu (10.1016/j.matdes.2021.110161_b0380) 2019; 165
Tong (10.1016/j.matdes.2021.110161_b0500) 2020; 285
Kim (10.1016/j.matdes.2021.110161_b0385) 2021; 27
Li (10.1016/j.matdes.2021.110161_b0200) 2021; 187
10.1016/j.matdes.2021.110161_b0065
Wang (10.1016/j.matdes.2021.110161_b0565) 2021; 216
Wang (10.1016/j.matdes.2021.110161_b0825) 2017; 694
Kim (10.1016/j.matdes.2021.110161_b0450) 2019; 805
Yang (10.1016/j.matdes.2021.110161_b0850) 2020; 261
Melia (10.1016/j.matdes.2021.110161_b0275) 2019; 29
Yang (10.1016/j.matdes.2021.110161_b0350) 2017; 202
Peng (10.1016/j.matdes.2021.110161_b0555) 2020; 817
Matsukawa (10.1016/j.matdes.2021.110161_b0880) 2019
Tung (10.1016/j.matdes.2021.110161_b0025) 2007; 61
Ge (10.1016/j.matdes.2021.110161_b0145) 2020; 784
He (10.1016/j.matdes.2021.110161_b0635) 2019; 167
Zhang (10.1016/j.matdes.2021.110161_b0605) 2020; 122
Tsai (10.1016/j.matdes.2021.110161_b0755) 2013; 33
Ng (10.1016/j.matdes.2021.110161_b0335) 2012; 31
Joseph (10.1016/j.matdes.2021.110161_b0800) 2015; 633
Park (10.1016/j.matdes.2021.110161_b0255) 2020; 8
Basu (10.1016/j.matdes.2021.110161_b0320) 2020; 187
Nartu (10.1016/j.matdes.2021.110161_b0865) 2020; 9
Feuerbacher (10.1016/j.matdes.2021.110161_b0105) 2015; 3
Zheng (10.1016/j.matdes.2021.110161_b0270) 2021; 37
Wang (10.1016/j.matdes.2021.110161_b0490) 2020; 196
Kwon (10.1016/j.matdes.2021.110161_b0225) 2020; 188
Laplanche (10.1016/j.matdes.2021.110161_b0390) 2016; 118
Griffiths (10.1016/j.matdes.2021.110161_b0810) 2020; 36
Xu (10.1016/j.matdes.2021.110161_b0250) 2020; 35
Bhardwaj (10.1016/j.matdes.2021.110161_b0185) 2021; 160
Xu (10.1016/j.matdes.2021.110161_b0205) 2021; 190
McLouth (10.1016/j.matdes.2021.110161_b0305) 2020; 780
References_xml – volume: 792
  start-page: 139802
  year: 2020
  ident: b0705
  article-title: Interstitial carbide synergistically strengthening high-entropy alloy CoCrFeNiV
  publication-title: Mater. Sci. Eng. A 792
– volume: 61
  start-page: 1
  year: 2007
  end-page: 5
  ident: b0025
  article-title: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system
  publication-title: Mater. Lett.
– volume: 18
  start-page: 584
  year: 2017
  end-page: 610
  ident: b0235
  article-title: Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys
  publication-title: Sci. Technol. Adv. Mater.
– volume: 285
  start-page: 116806
  year: 2020
  ident: b0500
  article-title: Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening
  publication-title: J. Mater. Process. Technol.
– volume: 31
  start-page: 100925
  year: 2020
  ident: b0510
  article-title: Selective laser melting of dual phase AlCrCuFeNi
  publication-title: Addit. Manuf.
– volume: 21
  start-page: 433
  year: 2011
  end-page: 446
  ident: b0120
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Prog. Nat. Sci
– volume: 210
  start-page: 111
  year: 2017
  end-page: 119
  ident: b0535
  article-title: The formation of cellular precipitate and its effect on the tensile properties of a precipitation strengthened high entropy alloy
  publication-title: Mater. Chem. Phys.
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  ident: b0170
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
– volume: 4
  start-page: 8712
  year: 2018
  ident: b0890
  article-title: A high-entropy alloy with hierarchical precipitates and ultrahigh strength
  publication-title: Sci. Adv.
– volume: 746
  start-page: 356
  year: 2019
  end-page: 362
  ident: b0680
  article-title: Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys
  publication-title: Mater. Sci. Eng. A
– volume: 42
  start-page: 2107
  year: 1994
  end-page: 2122
  ident: b0775
  article-title: The equilibrium shape of a misfitting precipitate
  publication-title: Acta Metall. Mater.
– volume: 679
  start-page: 193
  year: 2017
  end-page: 203
  ident: b0365
  article-title: Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles
  publication-title: Mater. Sci. Eng. A
– volume: 6
  start-page: 100310
  year: 2019
  ident: b0330
  article-title: Revealing the microstructural evolution in a high entropy alloy enabled with transformation, twinning and precipitation
  publication-title: Materialia
– volume: 61
  start-page: 4887
  year: 2013
  end-page: 4897
  ident: b0520
  article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys
  publication-title: Acta. Mater.
– volume: 26
  start-page: 641
  year: 2020
  end-page: 649
  ident: b0010
  article-title: Effect of initial grain size on friction stir weldability for rolled and cast CoCrFeMnNi high-entropy alloys
  publication-title: Met. Mater. Int.
– volume: 189
  start-page: 148
  year: 2017
  end-page: 151
  ident: b0195
  article-title: CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment
  publication-title: Mater. Let.
– volume: 797
  start-page: 140056
  year: 2020
  ident: b0055
  article-title: L2
  publication-title: Mater. Sci. Eng. A
– volume: 41
  start-page: 62
  year: 2020
  end-page: 71
  ident: b0595
  article-title: Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys
  publication-title: Mater. Today
– volume: 586
  start-page: 45
  year: 2013
  end-page: 52
  ident: b0600
  article-title: The effects of chromium on the microstructure and tensile behavior of Fe
  publication-title: Mater. Sci. Eng. A
– volume: 122
  start-page: 106813
  year: 2020
  ident: b0605
  article-title: A ductile high entropy alloy strengthened by nano sigma phase
  publication-title: Intermetallics
– volume: 23
  start-page: 101040
  year: 2021
  ident: b0280
  article-title: Prospects for laser based powder bed fusion in the manufacturing of metal electrodes: a review
  publication-title: Appl. Mater. Today
– volume: 202
  start-page: 448
  year: 2021
  end-page: 462
  ident: b0580
  article-title: Recovery of cold-worked Al
  publication-title: Acta Mater.
– volume: 11
  start-page: 2390
  year: 2020
  ident: b0570
  article-title: Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy
  publication-title: Nat. Commun.
– volume: 33
  start-page: 81
  year: 2013
  end-page: 86
  ident: b0755
  article-title: Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy
  publication-title: Intermetallics
– volume: 636
  start-page: 373
  year: 2015
  end-page: 378
  ident: b0625
  article-title: Tensile properties of low-stacking fault energy high-entropy alloys
  publication-title: Mater. Sci. Eng. A
– volume: 694
  start-page: 971
  year: 2017
  end-page: 981
  ident: b0825
  article-title: Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication
  publication-title: J. Alloys. Compd.
– volume: 35
  start-page: 101441
  year: 2020
  ident: b0250
  article-title: Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing
  publication-title: Addit. Manuf.
– volume: 106
  start-page: 20
  year: 2019
  end-page: 25
  ident: b0820
  article-title: Precipitation behavior of selective laser melted FeCoCrNiC
  publication-title: Intermetallics 106
– volume: 764
  start-page: 138241
  year: 2019
  ident: b0060
  article-title: Coherent precipitation and strengthening in a dual-phase AlNi
  publication-title: Mater. Sci. Eng. A 764
– volume: 41
  start-page: 338
  year: 2012
  end-page: 343
  ident: b0175
  article-title: Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate
  publication-title: Mater. Des.
– volume: 175
  start-page: 394
  year: 2019
  end-page: 405
  ident: b0140
  article-title: High temperature strength of refractory complex concentrated alloys
  publication-title: Acta Mater.
– volume: 94
  start-page: 165
  year: 2018
  end-page: 171
  ident: b0480
  article-title: Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting
  publication-title: Intermetallics
– volume: 33
  start-page: 2983
  year: 2018
  end-page: 2997
  ident: b0530
  article-title: L1
  publication-title: J. Mater. Res.
– volume: 15
  start-page: 815
  year: 1981
  end-page: 820
  ident: b0875
  article-title: The combination of atomic size and elastic modulus misfit interactions in solid solution hardening
  publication-title: Scr. Mater.
– volume: 743
  start-page: 773
  year: 2019
  end-page: 784
  ident: b0830
  article-title: AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment
  publication-title: Mater. Sci. Eng. A
– volume: 168
  start-page: 107576
  year: 2019
  ident: b0465
  article-title: Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder
  publication-title: Mater. Des.
– volume: 99
  start-page: 93
  year: 2015
  end-page: 96
  ident: b0355
  article-title: The use of high-entropy alloys in additive manufacturing
  publication-title: Scr. Mater.
– volume: 6
  start-page: 236
  year: 2018
  end-page: 243
  ident: b0435
  article-title: Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy
  publication-title: Mater. Res. Let.
– volume: 81
  start-page: 428
  year: 2014
  end-page: 441
  ident: b0035
  article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures
  publication-title: Acta Mater.
– volume: 26
  start-page: 310
  year: 2020
  end-page: 320
  ident: b0165
  article-title: Effects of Al on the Phase Volume Fractions and Wear Properties in the AlxCoCrFeMoNi high entropy alloy system
  publication-title: Met. Mater. Int.
– volume: 118
  start-page: 152
  year: 2016
  end-page: 163
  ident: b0390
  article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy
  publication-title: Acta Mater.
– start-page: 5818
  year: 2010
  end-page: 5825
  ident: b0765
  article-title: Microstructure and properties of age-hardenable Al
  publication-title: Mater. Sci. Eng. A 527
– volume: 35
  start-page: 2430
  year: 2019
  end-page: 2434
  ident: b0375
  article-title: Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition
  publication-title: J. Mater. Sci. Technol.
– volume: 116
  start-page: 100736
  year: 2021
  ident: b0260
  article-title: Additive manufacturing of advanced ceramic materials
  publication-title: Prog. Mater. Sci.
– volume: 814
  start-page: 141264
  year: 2021
  ident: b0430
  article-title: Additive manufacturing of TRIP-assisted dual-phases Fe
  publication-title: Mater. Sci. Eng. A
– volume: 744
  start-page: 137
  year: 2019
  end-page: 144
  ident: b0400
  article-title: Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy
  publication-title: Mater. Sci. Eng. A
– volume: 33
  start-page: 2032
  year: 2017
  end-page: 2039
  ident: b0695
  article-title: Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: microstructure and mechanical properties
  publication-title: Mater. Sci. Technol.
– volume: 360
  start-page: 509
  year: 2020
  end-page: 521
  ident: b0370
  article-title: Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: process, particle behavior and effects
  publication-title: Powder Technol.
– volume: 8
  start-page: 1
  year: 2020
  end-page: 7
  ident: b0255
  article-title: Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting
  publication-title: Mater. Res. Lett.
– volume: 185
  start-page: 340
  year: 2020
  end-page: 369
  ident: b0325
  article-title: Anisotropic polycrystal plasticity due to microstructural heterogeneity: a multi-scale experimental and numerical study on additively manufactured metallic materials
  publication-title: Acta Mater.
– volume: 25
  start-page: 412
  year: 2019
  end-page: 420
  ident: b0860
  article-title: Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting
  publication-title: Addit. Manuf.
– year: 2019
  ident: b0880
  article-title: Crystallography of Precipitates in Metals and Alloys: (2) Impact of Crystallography on Precipitation Hardening Crystallography, Takashiro Akitsu
  publication-title: IntechOpen
– volume: 27
  start-page: 2387
  year: 2021
  end-page: 2394
  ident: b0070
  article-title: Novel, Equimolar, Multiphase CoCuNiTiV high-entropy alloy: phase component, microstructure, and compressive properties
  publication-title: Met. Mater. Int.
– volume: 116
  start-page: 332
  year: 2016
  end-page: 342
  ident: b0620
  article-title: Ductile CoCrFeNiMo
  publication-title: Acta Mater.
– volume: 32
  start-page: 1903855
  year: 2020
  ident: b0310
  article-title: Recent Advances on High-Entropy Alloys for 3D Printing
  publication-title: Adv. Mater.
– volume: 817
  start-page: 152750
  year: 2020
  ident: b0555
  article-title: On the correlation between L1
  publication-title: J. Alloys Compd.
– volume: 134
  start-page: 194
  year: 2017
  end-page: 201
  ident: b0630
  article-title: Microstructures and deformation mechanisms of Cr
  publication-title: Mater. Charact.
– volume: 764
  start-page: 138243
  year: 2019
  ident: b0285
  article-title: On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition
  publication-title: Mater. Sci. Eng. A
– volume: 818
  start-page: 141386
  year: 2021
  ident: b0585
  article-title: Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination
  publication-title: Mater. Sci. Eng. A
– volume: 785
  start-page: 1144
  year: 2019
  end-page: 1159
  ident: b0405
  article-title: Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property
  publication-title: J. Alloys Compd.
– volume: 814
  start-page: 141249
  year: 2021
  ident: b0590
  article-title: Role of recrystallization and second phases on mechanical properties of (CoCrFeMnNi)
  publication-title: Mater. Sci. Eng. A 814
– volume: 188
  start-page: 140
  year: 2020
  end-page: 145
  ident: b0225
  article-title: Precipitation-driven metastability engineering of carbon-doped CoCrFeNiMo medium-entropy alloys at cryogenic temperature
  publication-title: Scr. Mater.
– volume: 190
  start-page: 109663
  year: 2021
  ident: b0205
  article-title: Remarkable cavitation erosion–corrosion resistance of CoCrFeNiTiMo high-entropy alloy coatings
  publication-title: Corros. Sci.
– volume: 29
  start-page: 100833
  year: 2019
  ident: b0275
  article-title: Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy
  publication-title: Addit. Manuf.
– reference: J. Peng, Z. Li, L. Fu, X. Ji, Z. Pang, Ai. Shan, Carbide precipitation strengthening in fine-grained carbon-doped FeCoCrNiMn high entropy alloy, J. Alloys Compd. 803 (2019) 491-498. https://doi.org/10.1016/j.jallcom.2019.06.204.
– volume: 6
  start-page: 100282
  year: 2019
  ident: b0540
  article-title: Role of copper on L1
  publication-title: Materialia
– volume: 5
  start-page: 16707
  year: 2015
  ident: b0495
  article-title: Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes
  publication-title: Sci. Rep.
– volume: 147
  start-page: 184
  year: 2018
  end-page: 194
  ident: b0900
  article-title: Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)
  publication-title: Acta Mater.
– volume: 129
  start-page: 170
  year: 2017
  end-page: 182
  ident: b0735
  article-title: Cu assisted stabilization and nucleation of L1
  publication-title: Acta Mater.
– volume: 9
  start-page: 100522
  year: 2020
  ident: b0865
  article-title: Enhanced tensile yield strength in laser additively manufactured Al
  publication-title: Materialia 9
– volume: 696
  start-page: 503
  year: 2017
  end-page: 510
  ident: b0560
  article-title: Effect of coherent L1
  publication-title: Mater. Sci. Eng. A
– volume: 167
  start-page: 275
  year: 2019
  end-page: 286
  ident: b0635
  article-title: Design of D0
  publication-title: Acta Mater.
– volume: 630
  start-page: 151
  year: 2015
  end-page: 157
  ident: b0115
  article-title: On the microstructures, phase assemblages and properties of Al
  publication-title: J. Alloys Compd.
– volume: 262
  start-page: 127175
  year: 2020
  ident: b0130
  article-title: CALPHAD aided eutectic high-entropy alloy design
  publication-title: Mater. Lett.
– volume: 10
  start-page: 247
  year: 2002
  end-page: 254
  ident: b0835
  article-title: Phase relation and microstructure in Ni
  publication-title: Intermetallics
– volume: 66
  start-page: 1984
  year: 2014
  end-page: 1992
  ident: b0100
  article-title: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams
  publication-title: JOM
– volume: 195
  start-page: 71
  year: 2020
  end-page: 80
  ident: b0525
  article-title: Consideration of kinetics on intermetallics formation in solid-solution high entropy alloys
  publication-title: Acta. Mater.
– volume: 830
  start-page: 154707
  year: 2020
  ident: b0210
  article-title: Engineering multi-scale B2 precipitation in a heterogeneous FCC based microstructure to enhance the mechanical properties of a Al
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 100173
  year: 2019
  ident: b0870
  article-title: Effect of transition metal addition on microstructure and hardening behavior of two-phase Ni
  publication-title: Materialia
– volume: 44
  start-page: 133
  year: 2020
  end-page: 139
  ident: b0090
  article-title: Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure
  publication-title: J. Mater. Sci. Technol.
– volume: 46
  start-page: 102155
  year: 2021
  ident: b0300
  article-title: A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties
  publication-title: Addit. Manuf.
– volume: 823
  start-page: 141763
  year: 2021
  ident: b0740
  article-title: Development of coherent-precipitate-hardened high-entropy alloys with hierarchical NiAl/Ni
  publication-title: Mater. Sci. Eng. A
– volume: 77
  start-page: 131
  year: 2021
  end-page: 162
  ident: b0240
  article-title: Additive manufacturing of high entropy alloys: a practical review
  publication-title: J. Mater. Sci. Technol.
– volume: 184
  start-page: 109365
  year: 2021
  ident: b0545
  article-title: Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L1
  publication-title: Corros. Sci.
– volume: 676
  start-page: 294
  year: 2016
  end-page: 303
  ident: b0615
  article-title: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion
  publication-title: Mater. Sci. Eng. A
– volume: 59
  start-page: 6308
  year: 2011
  end-page: 6317
  ident: b0160
  article-title: Microstructure and wear behavior of Al
  publication-title: Acta Mater.
– volume: 7
  start-page: 40704
  year: 2017
  ident: b0715
  article-title: Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys
  publication-title: Sci. Rep.
– volume: 9
  start-page: 4063
  year: 2018
  ident: b0895
  article-title: High-content ductile coherent precipitates achieve ultrastrong high-entropy alloys
  publication-title: Nat. Commun.
– volume: 165
  start-page: 103729
  year: 2021
  ident: b0265
  article-title: Powder bed fusion of nickel-based superalloys: a review
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 126
  start-page: 346
  year: 2017
  end-page: 360
  ident: b0690
  article-title: The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe
  publication-title: Acta Mater.
– volume: 147
  start-page: 213
  year: 2018
  end-page: 225
  ident: b0780
  article-title: Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al
  publication-title: Acta Mater.
– volume: 784
  start-page: 195
  year: 2019
  end-page: 203
  ident: b0805
  article-title: Elemental segregation in an AlCoCrFeNi high-entropy alloy – a comparison between selective laser melting and induction melting
  publication-title: J. Alloys. Compd.
– year: 2021
  ident: b0290
  article-title: Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications
  publication-title: Mater. Today
– volume: 792
  start-page: 1028
  year: 2019
  end-page: 1035
  ident: b0710
  article-title: Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation
  publication-title: J. Alloys Compd.
– volume: 81
  start-page: 113
  year: 2015
  end-page: 121
  ident: b0845
  article-title: Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of Al
  publication-title: Mater. Des.
– volume: 202
  start-page: 114013
  year: 2021
  ident: b0770
  article-title: Simultaneous effects of deformation-induced plasticity and precipitation hardening in metastable non-equiatomic FeNiCoMnTiSi ferrous medium-entropy alloy at room and liquid nitrogen temperatures
  publication-title: Scr. Mater.
– volume: 781
  start-page: 75
  year: 2019
  end-page: 83
  ident: b0650
  article-title: Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys
  publication-title: J. Alloys Compd.
– volume: 13
  start-page: 51
  year: 1974
  end-page: 56
  ident: b0885
  article-title: An estimate of the strengthening arising from coherent, tetragonally-distorted particles
  publication-title: Mater. Sci. Eng.
– volume: 74
  start-page: 020102(R)
  year: 2006
  ident: b0925
  article-title: Dynamics of a dislocation bypassing an impenetrable precipitate: The Hirsch mechanism revisited
  publication-title: Phys. Rev. B
– volume: 134
  start-page: 107202
  year: 2021
  ident: b0015
  article-title: Temperature-and strain-dependent thermally-activated deformation mechanism of a ferrous medium-entropy alloy
  publication-title: Intermetallics
– volume: 182
  start-page: 235
  year: 2020
  end-page: 249
  ident: b0095
  article-title: Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K
  publication-title: Acta Mater.
– volume: 52
  start-page: 7415
  year: 2017
  end-page: 7427
  ident: b0470
  article-title: Grain growth during selective laser melting of a Co-CrMo alloy
  publication-title: J. Mater. Sci.
– volume: 177
  start-page: 108954
  year: 2020
  ident: b0505
  article-title: Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing
  publication-title: Corros. Sci.
– volume: 735
  start-page: 191
  year: 2018
  end-page: 200
  ident: b0610
  article-title: Grain refinement of non-equiatomic Cr-rich CoCrFeMnNi high-entropy alloys through combination of cold rolling and precipitation of σ phase
  publication-title: Mater. Sci. Eng. A
– volume: 11
  start-page: 486
  year: 2021
  ident: b0660
  article-title: Effect of Mo element on the mechanical properties and tribological responses of CoCrFeNiMo
  publication-title: Metals
– volume: 851
  start-page: 156909
  year: 2021
  ident: b0745
  article-title: Lattice distortion and atomic ordering of the sigma precipitates in CoCrFeNiMo high-entropy alloy
  publication-title: J. Alloys Compd.
– volume: 204
  start-page: 114066
  year: 2021
  ident: b0575
  article-title: Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries
  publication-title: Scr. Mater.
– volume: 261
  start-page: 513
  year: 2006
  end-page: 519
  ident: b0190
  article-title: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content
  publication-title: Wear
– volume: 61
  start-page: 5996
  year: 2013
  end-page: 6005
  ident: b0725
  article-title: Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels
  publication-title: Acta. Mater.
– volume: 3
  start-page: 1
  year: 2015
  end-page: 6
  ident: b0105
  article-title: Hexagonal high-entropy alloys
  publication-title: Mater. Res. Lett.
– volume: 37
  start-page: 101598
  year: 2021
  ident: b0345
  article-title: Exploring additive manufacturing as a high-throughput screening tool for multiphase high entropy alloys
  publication-title: Addit. Manuf.
– volume: 196
  start-page: 609
  year: 2020
  end-page: 625
  ident: b0490
  article-title: Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting
  publication-title: Acta Mater.
– volume: 188
  start-page: 54
  year: 2020
  end-page: 58
  ident: b0020
  article-title: High entropy alloys: key issues under passionate debate
  publication-title: Scr. Mater.
– volume: 20
  start-page: 878
  year: 2018
  ident: b0785
  article-title: Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review
  publication-title: Entropy
– volume: 172
  start-page: 51
  year: 2019
  end-page: 55
  ident: b0045
  article-title: A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates
  publication-title: Scr. Mater.
– volume: 183
  start-page: 111
  year: 2020
  end-page: 116
  ident: b0760
  article-title: Anomalous effect of lattice misfit on the coarsening behavior of multicomponent L1
  publication-title: Scr. Mater.
– volume: 32
  start-page: 101098
  year: 2020
  ident: b0420
  article-title: Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing
  publication-title: Addit. Manuf.
– year: 2005
  ident: b0920
  article-title: Mechanical Behavior of Materials
– volume: 129
  start-page: 30
  year: 2017
  end-page: 34
  ident: b0410
  article-title: Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy
  publication-title: Scr. Mater.
– volume: 135
  start-page: 107212
  year: 2021
  ident: b0675
  article-title: Synergetic strengthening from grain refinement and nano-scale precipitates in non-equiatomic CoCrFeNiMo medium-entropy alloy
  publication-title: Intermetallics
– volume: 707
  start-page: 27
  year: 2017
  end-page: 34
  ident: b0455
  article-title: Formation of metastable cellular microstructures in selective laser melted alloys
  publication-title: J. Alloy. Compd.
– volume: 35
  start-page: 101410
  year: 2020
  ident: b0815
  article-title: A precipitation-strengthened high-entropy alloy for additive manufacturing
  publication-title: Addit. Manuf.
– volume: 194
  start-page: 108966
  year: 2020
  ident: b0910
  article-title: In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion
  publication-title: Mater. Des.
– volume: 843
  year: 2020
  ident: b0670
  article-title: Microstructure and mechanical properties of CoCrFeNiW
  publication-title: J. Alloys Compd.
– volume: 113
  start-page: 99
  year: 2019
  end-page: 110
  ident: b0730
  article-title: Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel
  publication-title: Int. J. Plast.
– start-page: 399
  year: 2016
  end-page: 444
  ident: b0135
  article-title: CALPHAD modeling of high-entropy alloys
  publication-title: High-entropy Alloys: Fundamental and Applications
– volume: 37
  start-page: 101660
  year: 2021
  ident: b0270
  article-title: The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition
  publication-title: Addit. Manuf.
– volume: 36
  start-page: 101443
  year: 2020
  ident: b0810
  article-title: Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy
  publication-title: Addit. Manuf.
– volume: 857
  start-page: 157625
  year: 2021
  ident: b0340
  article-title: Factors determining solid solution phase formation and stability in CoCrFeNiX
  publication-title: J. Alloys Compd.
– volume: 188
  start-page: 435
  year: 2020
  end-page: 474
  ident: b0150
  article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms
  publication-title: Acta Mater.
– volume: 491
  start-page: 154
  year: 2008
  end-page: 158
  ident: b0795
  article-title: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy
  publication-title: Mater. Sci. Eng. A
– volume: 27
  start-page: 629
  year: 2021
  end-page: 638
  ident: b0230
  article-title: Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio processed by powder metallurgy
  publication-title: Met. Mater. Int.
– volume: 36
  start-page: 101455
  year: 2020
  ident: b0415
  article-title: Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
– volume: 38
  start-page: 101804
  year: 2021
  ident: b0475
  article-title: About metastable cellular structure in additively manufactured austenitic stainless steels
  publication-title: Addit. Manuf.
– volume: 805
  start-page: 680
  year: 2019
  end-page: 691
  ident: b0450
  article-title: Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: microstructure, anisotropic mechanical response, and multiple strengthening mechanism
  publication-title: J. Alloys Compd.
– volume: 104
  start-page: 172
  year: 2016
  end-page: 179
  ident: b0215
  article-title: Predicting the formation and stability of single phase high-entropy alloys
  publication-title: Acta Mater.
– volume: 36
  start-page: 101591
  year: 2020
  ident: b0515
  article-title: A strong, ductile, high-entropy FeCoCrNi alloy with fine grains fabricated via additive manufacturing and a single cold deformation and annealing cycle
  publication-title: Addit. Manuf.
– volume: 63
  start-page: 1279
  year: 2020
  end-page: 1290
  ident: b0915
  article-title: Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting
  publication-title: Sci. China Mater.
– volume: 2
  start-page: 107
  year: 2014
  end-page: 123
  ident: b0155
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
– volume: 25
  start-page: 185
  year: 2017
  end-page: 200
  ident: b0245
  article-title: Material issues in additive manufacturing: a review
  publication-title: J. Manuf. Process.
– volume: 194
  start-page: 366
  year: 2020
  end-page: 377
  ident: b0005
  article-title: Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications
  publication-title: Acta Mater.
– volume: 876
  start-page: 160102
  year: 2021
  ident: b0040
  article-title: Unique hot deformation behavior and microstructure evolution of a dual FCC-phase CoCrCu
  publication-title: J. Alloys Compd.
– volume: 35
  start-page: 101333
  year: 2020
  ident: b0395
  article-title: Synergetic strengthening of additively manufactured (CoCrFeMnNi)
  publication-title: Addit. Manuf.
– volume: 805
  start-page: 140551
  year: 2021
  ident: b0550
  article-title: Discontinuous precipitation leading to nano-rod intermetallic precipitates in an Al
  publication-title: Mater. Sci. Eng. A 805
– volume: 144
  start-page: 605
  year: 2018
  end-page: 610
  ident: b0840
  article-title: Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting
  publication-title: Mater. Charact.
– volume: 31
  start-page: 165
  year: 2012
  end-page: 172
  ident: b0335
  article-title: Entropy-driven phase stability and slow diffusion kinetics in an Al
  publication-title: Intermetallics
– volume: 187
  year: 2021
  ident: b0200
  article-title: Al
  publication-title: Corros. Sci.
– volume: 195
  start-page: 110462
  year: 2021
  ident: b0295
  article-title: Spatiotemporal variations of residual stresses during multi-track and multi-layer deposition for laser powder bed fusion of Ti-6Al-4V
  publication-title: Comput. Mater. Sci.
– reference: T. Cao, L. Ma, L. Wang, J. Zhou, Y. Wang, B. Wang, Y. Xue, High temperature deformation behavior of dual-phase Al0.6CoCrFeNi high-entropy alloys, J. Alloys Compd. 836, (2020) 155305. https://doi.org/10.1016/j.jallcom.2020.155305.
– volume: 216
  start-page: 117121
  year: 2021
  ident: b0565
  article-title: Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy
  publication-title: Acta Mater.
– volume: 148
  start-page: 51
  year: 2018
  end-page: 55
  ident: b0645
  article-title: Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates
  publication-title: Scr. Mater.
– volume: 202
  start-page: 151
  year: 2017
  end-page: 158
  ident: b0350
  article-title: Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process
  publication-title: Mater. Chem. Phys.
– volume: 133
  start-page: 102819
  year: 2020
  ident: b0905
  article-title: Unraveling the dislocation–precipitate interactions in high-entropy alloys
  publication-title: Int. J. Plast.
– volume: 784
  start-page: 139275
  year: 2020
  ident: b0145
  article-title: Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy
  publication-title: Mater. Sci. Eng. A
– volume: 187
  start-page: 148
  year: 2020
  end-page: 156
  ident: b0320
  article-title: Strengthening mechanisms in high entropy alloys: fundamental issues
  publication-title: Scr. Mater.
– volume: 26
  start-page: 1099
  year: 2020
  end-page: 1133
  ident: b0220
  article-title: Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review
  publication-title: Met. Mater. Int.
– volume: 186
  start-page: 336
  year: 2020
  end-page: 340
  ident: b0075
  article-title: High-strength and high-ductility AlCoCrFeNi
  publication-title: Scr. Mater.
– year: 2019
  ident: b0180
  article-title: Novel Co-free CrFeNiNb
  publication-title: Mater. Sci. Eng. A 764
– volume: 833
  start-page: 155074
  year: 2020
  ident: b0640
  article-title: Co-free non-equilibrium medium-entropy alloy with outstanding tensile properties
  publication-title: J. Alloy. Compd.
– volume: 165
  start-page: 444
  year: 2019
  end-page: 458
  ident: b0380
  article-title: Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure
  publication-title: Acta Mater.
– volume: 633
  start-page: 184
  year: 2015
  end-page: 193
  ident: b0800
  article-title: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al
  publication-title: Mater. Sci. Eng. A
– volume: 780
  start-page: 139184
  year: 2020
  ident: b0305
  article-title: Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control
  publication-title: Mater. Sci. Eng. A
– volume: 109
  start-page: 103505
  year: 2011
  ident: b0125
  article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
  publication-title: J. Appl. Phys.
– volume: 55
  start-page: 299
  year: 2006
  end-page: 302
  ident: b0440
  article-title: On dislocation accumulation and work hardening in Hadfield steel
  publication-title: Scr. Mater.
– volume: 69
  start-page: 103
  year: 2016
  end-page: 109
  ident: b0110
  article-title: Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy
  publication-title: Intermetallics
– reference: Z. Niu, Y. Wang, C. Geng, J. Xu, Y. Wang, Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x = 0, 0.2, 0.5, 0.8, 1) high entropy alloys, J. Alloys Compd. 820 (2020) 153273. https://doi.org/10.1016/j.jallcom.2019.153273.
– volume: 148
  start-page: 42
  year: 2018
  end-page: 46
  ident: b0720
  article-title: Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy
  publication-title: Scr. Mater.
– volume: 261
  start-page: 127004
  year: 2020
  ident: b0850
  article-title: Microstructure and wear behavior of the AlCrFeCoNi high-entropy alloy fabricated by additive manufacturing
  publication-title: Mater. Lett.
– volume: 375–377
  start-page: 213
  year: 2004
  end-page: 218
  ident: b0030
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng.
– volume: 166
  start-page: 424
  year: 2019
  end-page: 434
  ident: b0360
  article-title: The effect of randomness on the strength of high-entropy alloys
  publication-title: Acta Mater.
– volume: 27
  start-page: 2300
  year: 2021
  end-page: 2309
  ident: b0385
  article-title: Constitutive modeling with critical twinning stress in CoCrFeMnNi high entropy alloy at cryogenic temperature and room temperature
  publication-title: Met. Mater. Int.
– volume: 154
  start-page: 20
  year: 2018
  end-page: 24
  ident: b0460
  article-title: Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting
  publication-title: Scr. Mater.
– volume: 46
  start-page: 28
  year: 2021
  end-page: 34
  ident: b0085
  article-title: Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys
  publication-title: Mater. Today
– volume: 792
  start-page: 170
  year: 2019
  end-page: 179
  ident: b0685
  article-title: Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys
  publication-title: J. Alloys Compd.
– volume: 761
  start-page: 138056
  year: 2019
  ident: b0445
  article-title: Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping
  publication-title: Mater. Sci. Eng. A
– volume: 7
  start-page: 453
  year: 2019
  end-page: 459
  ident: b0425
  article-title: Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy
  publication-title: Mater. Res. Lett
– volume: 137
  start-page: 88
  year: 2017
  end-page: 93
  ident: b0655
  article-title: Precipitation strengthening of ductile Cr
  publication-title: Scr. Mater.
– volume: 36
  start-page: 101601
  year: 2020
  ident: b0750
  article-title: Microstructure and tensile property of a precipitation strengthened high entropy alloy processed by selective laser melting and post heat treatment
  publication-title: Addit. Manuf.
– volume: 302
  start-page: 130391
  year: 2021
  ident: b0050
  article-title: Superior phase transformation-assisted mechanical properties of a metastable medium-entropy ferrous alloy with heterogeneous microstructure
  publication-title: Mater. Lett.
– volume: 148
  start-page: 103475
  year: 2020
  ident: b0315
  article-title: High-performance integrated additive manufacturing with laser shock peening –induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 102
  start-page: 187
  year: 2016
  end-page: 196
  ident: b0790
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater.
– volume: 171
  start-page: 132
  year: 2019
  end-page: 145
  ident: b0080
  article-title: Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy
  publication-title: Acta Mater.
– volume: 160
  start-page: 107031
  year: 2021
  ident: b0185
  article-title: Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys
  publication-title: Tribol. Int.
– volume: 491
  start-page: 360
  year: 2019
  end-page: 373
  ident: b0855
  article-title: The wear induced crystallographic texture transition in Ti-29Nb-14Ta-4.5Zr alloy
  publication-title: Appl. Surf. Sci.
– volume: 32
  start-page: 101058
  year: 2020
  ident: b0485
  article-title: Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting
  publication-title: Addit. Manuf.
– volume: 744
  start-page: 137
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0400
  article-title: Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.12.005
– volume: 202
  start-page: 151
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0350
  article-title: Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.09.014
– volume: 102
  start-page: 187
  year: 2016
  ident: 10.1016/j.matdes.2021.110161_b0790
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.076
– volume: 113
  start-page: 99
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0730
  article-title: Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.09.009
– volume: 9
  start-page: 4063
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0895
  article-title: High-content ductile coherent precipitates achieve ultrastrong high-entropy alloys
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06600-8
– ident: 10.1016/j.matdes.2021.110161_b0665
  doi: 10.1016/j.jallcom.2019.153273
– volume: 81
  start-page: 428
  year: 2014
  ident: 10.1016/j.matdes.2021.110161_b0035
  article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.026
– volume: 46
  start-page: 28
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0085
  article-title: Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2021.02.022
– volume: 33
  start-page: 81
  year: 2013
  ident: 10.1016/j.matdes.2021.110161_b0755
  article-title: Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2012.09.022
– volume: 182
  start-page: 235
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0095
  article-title: Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.10.015
– volume: 194
  start-page: 108966
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0910
  article-title: In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108966
– volume: 857
  start-page: 157625
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0340
  article-title: Factors determining solid solution phase formation and stability in CoCrFeNiX0.4 (X=Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.157625
– volume: 188
  start-page: 140
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0225
  article-title: Precipitation-driven metastability engineering of carbon-doped CoCrFeNiMo medium-entropy alloys at cryogenic temperature
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.07.023
– volume: 35
  start-page: 101333
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0395
  article-title: Synergetic strengthening of additively manufactured (CoCrFeMnNi)99C1 high-entropy alloy by heterogeneous anisotropic microstructure
  publication-title: Addit. Manuf.
– volume: 31
  start-page: 100925
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0510
  article-title: Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms
  publication-title: Addit. Manuf.
– volume: 36
  start-page: 101591
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0515
  article-title: A strong, ductile, high-entropy FeCoCrNi alloy with fine grains fabricated via additive manufacturing and a single cold deformation and annealing cycle
  publication-title: Addit. Manuf.
– volume: 148
  start-page: 51
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0645
  article-title: Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.01.028
– volume: 491
  start-page: 154
  issue: 1-2
  year: 2008
  ident: 10.1016/j.matdes.2021.110161_b0795
  article-title: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.01.064
– volume: 166
  start-page: 424
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0360
  article-title: The effect of randomness on the strength of high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.12.032
– volume: 190
  start-page: 109663
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0205
  article-title: Remarkable cavitation erosion–corrosion resistance of CoCrFeNiTiMo high-entropy alloy coatings
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2021.109663
– volume: 830
  start-page: 154707
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0210
  article-title: Engineering multi-scale B2 precipitation in a heterogeneous FCC based microstructure to enhance the mechanical properties of a Al0.5Co1.5CrFeNi1.5 high entropy alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154707
– volume: 184
  start-page: 109365
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0545
  article-title: Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L12-strengthened FeCoCrNi high-entropy alloys
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2021.109365
– volume: 195
  start-page: 71
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0525
  article-title: Consideration of kinetics on intermetallics formation in solid-solution high entropy alloys
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2020.05.015
– volume: 167
  start-page: 275
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0635
  article-title: Design of D022 superlattice with superior strengthening effect in high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.01.048
– volume: 38
  start-page: 101804
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0475
  article-title: About metastable cellular structure in additively manufactured austenitic stainless steels
  publication-title: Addit. Manuf.
– volume: 189
  start-page: 148
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0195
  article-title: CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment
  publication-title: Mater. Let.
  doi: 10.1016/j.matlet.2016.11.026
– volume: 94
  start-page: 165
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0480
  article-title: Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.01.002
– volume: 160
  start-page: 107031
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0185
  article-title: Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2021.107031
– volume: 814
  start-page: 141264
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0430
  article-title: Additive manufacturing of TRIP-assisted dual-phases Fe50Mn30Co10Cr10 high-entropy alloy: microstructure evolution, mechanical properties and deformation mechanisms
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.141264
– volume: 285
  start-page: 116806
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0500
  article-title: Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2020.116806
– volume: 781
  start-page: 75
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0650
  article-title: Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.12.040
– volume: 491
  start-page: 360
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0855
  article-title: The wear induced crystallographic texture transition in Ti-29Nb-14Ta-4.5Zr alloy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.06.087
– volume: 26
  start-page: 1099
  issue: 8
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0220
  article-title: Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00565-z
– volume: 61
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.matdes.2021.110161_b0025
  article-title: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2006.03.140
– volume: 11
  start-page: 2390
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0570
  article-title: Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16085-z
– volume: 18
  start-page: 584
  issue: 1
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0235
  article-title: Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2017.1361305
– volume: 187
  start-page: 148
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0320
  article-title: Strengthening mechanisms in high entropy alloys: fundamental issues
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.06.019
– volume: 743
  start-page: 773
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0830
  article-title: AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.11.118
– volume: 148
  start-page: 103475
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0315
  article-title: High-performance integrated additive manufacturing with laser shock peening –induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2019.103475
– volume: 196
  start-page: 609
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0490
  article-title: Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.07.006
– volume: 792
  start-page: 170
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0685
  article-title: Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.03.403
– volume: 154
  start-page: 20
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0460
  article-title: Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.05.015
– volume: 61
  start-page: 4887
  issue: 13
  year: 2013
  ident: 10.1016/j.matdes.2021.110161_b0520
  article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2013.04.058
– volume: 792
  start-page: 139802
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0705
  article-title: Interstitial carbide synergistically strengthening high-entropy alloy CoCrFeNiV0.5Cx
  publication-title: Mater. Sci. Eng. A 792
  doi: 10.1016/j.msea.2020.139802
– volume: 2
  start-page: 107
  issue: 3
  year: 2014
  ident: 10.1016/j.matdes.2021.110161_b0155
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.912690
– volume: 168
  start-page: 107576
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0465
  article-title: Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.107576
– volume: 735
  start-page: 191
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0610
  article-title: Grain refinement of non-equiatomic Cr-rich CoCrFeMnNi high-entropy alloys through combination of cold rolling and precipitation of σ phase
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.08.038
– volume: 194
  start-page: 366
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0005
  article-title: Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.04.052
– volume: 792
  start-page: 1028
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0710
  article-title: Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.04.121
– volume: 36
  start-page: 101455
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0415
  article-title: Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
– volume: 59
  start-page: 6308
  issue: 16
  year: 2011
  ident: 10.1016/j.matdes.2021.110161_b0160
  article-title: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.06.041
– volume: 187
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0200
  article-title: AlxCoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25% NaCl at 900 °C
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2021.109479
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0255
  article-title: Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2019.1638844
– volume: 785
  start-page: 1144
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0405
  article-title: Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.01.213
– volume: 814
  start-page: 141249
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0590
  article-title: Role of recrystallization and second phases on mechanical properties of (CoCrFeMnNi)95.2Al3.2Ti1.6 high entropy alloy
  publication-title: Mater. Sci. Eng. A 814
  doi: 10.1016/j.msea.2021.141249
– volume: 805
  start-page: 140551
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0550
  article-title: Discontinuous precipitation leading to nano-rod intermetallic precipitates in an Al0.2Ti0.3Co1.5CrFeNi1.5 high entropy alloy results in an excellent strength-ductility combination
  publication-title: Mater. Sci. Eng. A 805
  doi: 10.1016/j.msea.2020.140551
– volume: 833
  start-page: 155074
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0640
  article-title: Co-free non-equilibrium medium-entropy alloy with outstanding tensile properties
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.155074
– year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0180
  article-title: Novel Co-free CrFeNiNb0.1Tix high-entropy alloys with ultra-high hardness and strength
  publication-title: Mater. Sci. Eng. A 764
– start-page: 5818
  year: 2010
  ident: 10.1016/j.matdes.2021.110161_b0765
  article-title: Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys
  publication-title: Mater. Sci. Eng. A 527
  doi: 10.1016/j.msea.2010.05.052
– volume: 32
  start-page: 101058
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0485
  article-title: Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting
  publication-title: Addit. Manuf.
– volume: 195
  start-page: 110462
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0295
  article-title: Spatiotemporal variations of residual stresses during multi-track and multi-layer deposition for laser powder bed fusion of Ti-6Al-4V
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110462
– volume: 784
  start-page: 195
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0805
  article-title: Elemental segregation in an AlCoCrFeNi high-entropy alloy – a comparison between selective laser melting and induction melting
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2018.12.267
– volume: 129
  start-page: 30
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0410
  article-title: Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.10.023
– volume: 25
  start-page: 185
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0245
  article-title: Material issues in additive manufacturing: a review
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2016.11.006
– volume: 118
  start-page: 152
  year: 2016
  ident: 10.1016/j.matdes.2021.110161_b0390
  article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.038
– year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0880
  article-title: Crystallography of Precipitates in Metals and Alloys: (2) Impact of Crystallography on Precipitation Hardening Crystallography, Takashiro Akitsu
  publication-title: IntechOpen
– volume: 99
  start-page: 93
  year: 2015
  ident: 10.1016/j.matdes.2021.110161_b0355
  article-title: The use of high-entropy alloys in additive manufacturing
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2014.11.037
– volume: 216
  start-page: 117121
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0565
  article-title: Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117121
– volume: 676
  start-page: 294
  year: 2016
  ident: 10.1016/j.matdes.2021.110161_b0615
  article-title: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.08.118
– volume: 23
  start-page: 101040
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0280
  article-title: Prospects for laser based powder bed fusion in the manufacturing of metal electrodes: a review
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2021.101040
– volume: 636
  start-page: 373
  year: 2015
  ident: 10.1016/j.matdes.2021.110161_b0625
  article-title: Tensile properties of low-stacking fault energy high-entropy alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.03.109
– volume: 185
  start-page: 340
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0325
  article-title: Anisotropic polycrystal plasticity due to microstructural heterogeneity: a multi-scale experimental and numerical study on additively manufactured metallic materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.12.003
– volume: 81
  start-page: 113
  year: 2015
  ident: 10.1016/j.matdes.2021.110161_b0845
  article-title: Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2−x (x = 0.3, 1) high entropy alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.05.027
– volume: 761
  start-page: 138056
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0445
  article-title: Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138056
– volume: 32
  start-page: 1903855
  issue: 26
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0310
  article-title: Recent Advances on High-Entropy Alloys for 3D Printing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903855
– volume: 843
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0670
  article-title: Microstructure and mechanical properties of CoCrFeNiWx high entropy alloys reinforced by μ phase particles
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155997
– volume: 31
  start-page: 165
  year: 2012
  ident: 10.1016/j.matdes.2021.110161_b0335
  article-title: Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2012.07.001
– volume: 633
  start-page: 184
  year: 2015
  ident: 10.1016/j.matdes.2021.110161_b0800
  article-title: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.02.072
– volume: 5
  start-page: 16707
  year: 2015
  ident: 10.1016/j.matdes.2021.110161_b0495
  article-title: Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes
  publication-title: Sci. Rep.
  doi: 10.1038/srep16707
– volume: 764
  start-page: 138243
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0285
  article-title: On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138243
– volume: 116
  start-page: 100736
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0260
  article-title: Additive manufacturing of advanced ceramic materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100736
– volume: 165
  start-page: 103729
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0265
  article-title: Powder bed fusion of nickel-based superalloys: a review
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2021.103729
– volume: 817
  start-page: 152750
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0555
  article-title: On the correlation between L12 nanoparticles and mechanical properties of (NiCo)52+2x(AlTi)4+2xFe29-4xCr15 (x=0-4) high-entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.152750
– volume: 52
  start-page: 7415
  issue: 12
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0470
  article-title: Grain growth during selective laser melting of a Co-CrMo alloy
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-0975-z
– volume: 262
  start-page: 127175
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0130
  article-title: CALPHAD aided eutectic high-entropy alloy design
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.127175
– volume: 26
  start-page: 310
  issue: 3
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0165
  article-title: Effects of Al on the Phase Volume Fractions and Wear Properties in the AlxCoCrFeMoNi high entropy alloy system
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00332-0
– volume: 36
  start-page: 101601
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0750
  article-title: Microstructure and tensile property of a precipitation strengthened high entropy alloy processed by selective laser melting and post heat treatment
  publication-title: Addit. Manuf.
– volume: 10
  start-page: 247
  issue: 3
  year: 2002
  ident: 10.1016/j.matdes.2021.110161_b0835
  article-title: Phase relation and microstructure in Ni3Al–Ni3Ti–Ni3Nb pseudo-ternary alloy system
  publication-title: Intermetallics
  doi: 10.1016/S0966-9795(01)00131-5
– volume: 818
  start-page: 141386
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0585
  article-title: Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.141386
– volume: 29
  start-page: 100833
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0275
  article-title: Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy
  publication-title: Addit. Manuf.
– ident: 10.1016/j.matdes.2021.110161_b0700
  doi: 10.1016/j.jallcom.2019.06.204
– volume: 135
  start-page: 107212
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0675
  article-title: Synergetic strengthening from grain refinement and nano-scale precipitates in non-equiatomic CoCrFeNiMo medium-entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2021.107212
– volume: 6
  start-page: 100310
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0330
  article-title: Revealing the microstructural evolution in a high entropy alloy enabled with transformation, twinning and precipitation
  publication-title: Materialia
  doi: 10.1016/j.mtla.2019.100310
– volume: 41
  start-page: 338
  year: 2012
  ident: 10.1016/j.matdes.2021.110161_b0175
  article-title: Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2012.04.049
– year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0290
  article-title: Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2021.03.020
– volume: 707
  start-page: 27
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0455
  article-title: Formation of metastable cellular microstructures in selective laser melted alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.12.209
– volume: 134
  start-page: 194
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0630
  article-title: Microstructures and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 alloys
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2017.10.022
– volume: 780
  start-page: 139184
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0305
  article-title: Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139184
– volume: 41
  start-page: 62
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0595
  article-title: Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.09.029
– volume: 133
  start-page: 102819
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0905
  article-title: Unraveling the dislocation–precipitate interactions in high-entropy alloys
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102819
– volume: 679
  start-page: 193
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0365
  article-title: Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.10.038
– volume: 42
  start-page: 2107
  issue: 6
  year: 1994
  ident: 10.1016/j.matdes.2021.110161_b0775
  article-title: The equilibrium shape of a misfitting precipitate
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(94)90036-1
– volume: 175
  start-page: 394
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0140
  article-title: High temperature strength of refractory complex concentrated alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.06.032
– volume: 126
  start-page: 346
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0690
  article-title: The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.12.074
– year: 2005
  ident: 10.1016/j.matdes.2021.110161_b0920
– volume: 26
  start-page: 641
  issue: 5
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0010
  article-title: Effect of initial grain size on friction stir weldability for rolled and cast CoCrFeMnNi high-entropy alloys
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00466-1
– volume: 302
  start-page: 130391
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0050
  article-title: Superior phase transformation-assisted mechanical properties of a metastable medium-entropy ferrous alloy with heterogeneous microstructure
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2021.130391
– volume: 4
  start-page: 8712
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0890
  article-title: A high-entropy alloy with hierarchical precipitates and ultrahigh strength
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat8712
– volume: 202
  start-page: 114013
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0770
  article-title: Simultaneous effects of deformation-induced plasticity and precipitation hardening in metastable non-equiatomic FeNiCoMnTiSi ferrous medium-entropy alloy at room and liquid nitrogen temperatures
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114013
– volume: 148
  start-page: 42
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0720
  article-title: Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.01.025
– volume: 61
  start-page: 1
  year: 2014
  ident: 10.1016/j.matdes.2021.110161_b0170
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 129
  start-page: 170
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0735
  article-title: Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.053
– volume: 77
  start-page: 131
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0240
  article-title: Additive manufacturing of high entropy alloys: a practical review
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.11.029
– volume: 37
  start-page: 101598
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0345
  article-title: Exploring additive manufacturing as a high-throughput screening tool for multiphase high entropy alloys
  publication-title: Addit. Manuf.
– volume: 694
  start-page: 971
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0825
  article-title: Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2016.10.138
– volume: 27
  start-page: 2387
  issue: 7
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0070
  article-title: Novel, Equimolar, Multiphase CoCuNiTiV high-entropy alloy: phase component, microstructure, and compressive properties
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-020-00923-2
– volume: 21
  start-page: 433
  issue: 6
  year: 2011
  ident: 10.1016/j.matdes.2021.110161_b0120
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Prog. Nat. Sci
  doi: 10.1016/S1002-0071(12)60080-X
– volume: 171
  start-page: 132
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0080
  article-title: Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.04.018
– volume: 55
  start-page: 299
  issue: 4
  year: 2006
  ident: 10.1016/j.matdes.2021.110161_b0440
  article-title: On dislocation accumulation and work hardening in Hadfield steel
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2006.05.002
– volume: 147
  start-page: 213
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0780
  article-title: Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni Co, Fe, Cr)14 compositions
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.01.050
– volume: 36
  start-page: 101443
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0810
  article-title: Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy
  publication-title: Addit. Manuf.
– volume: 375–377
  start-page: 213
  year: 2004
  ident: 10.1016/j.matdes.2021.110161_b0030
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2003.10.257
– volume: 823
  start-page: 141763
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0740
  article-title: Development of coherent-precipitate-hardened high-entropy alloys with hierarchical NiAl/Ni2TiAl precipitates in CrMnFeCoNiAlxTiy alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.141763
– start-page: 399
  year: 2016
  ident: 10.1016/j.matdes.2021.110161_b0135
  article-title: CALPHAD modeling of high-entropy alloys
– volume: 35
  start-page: 2430
  issue: 11
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0375
  article-title: Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.05.062
– volume: 122
  start-page: 106813
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0605
  article-title: A ductile high entropy alloy strengthened by nano sigma phase
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2020.106813
– volume: 851
  start-page: 156909
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0745
  article-title: Lattice distortion and atomic ordering of the sigma precipitates in CoCrFeNiMo high-entropy alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.156909
– volume: 186
  start-page: 336
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0075
  article-title: High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.04.035
– volume: 33
  start-page: 2032
  issue: 17
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0695
  article-title: Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: microstructure and mechanical properties
  publication-title: Mater. Sci. Technol.
  doi: 10.1080/02670836.2017.1342367
– volume: 172
  start-page: 51
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0045
  article-title: A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.07.008
– volume: 183
  start-page: 111
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0760
  article-title: Anomalous effect of lattice misfit on the coarsening behavior of multicomponent L12 phase
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.03.030
– volume: 46
  start-page: 102155
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0300
  article-title: A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties
  publication-title: Addit. Manuf.
– volume: 144
  start-page: 605
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0840
  article-title: Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2018.08.019
– volume: 177
  start-page: 108954
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0505
  article-title: Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.108954
– volume: 202
  start-page: 448
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0580
  article-title: Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.10.071
– volume: 204
  start-page: 114066
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0575
  article-title: Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114066
– volume: 188
  start-page: 54
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0020
  article-title: High entropy alloys: key issues under passionate debate
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.07.010
– volume: 3
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.matdes.2021.110161_b0105
  article-title: Hexagonal high-entropy alloys
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.951493
– volume: 9
  start-page: 100522
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0865
  article-title: Enhanced tensile yield strength in laser additively manufactured Al0.3CoCrFeNi high entropy alloy
  publication-title: Materialia 9
  doi: 10.1016/j.mtla.2019.100522
– volume: 27
  start-page: 629
  issue: 4
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0230
  article-title: Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio processed by powder metallurgy
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-020-00823-5
– volume: 33
  start-page: 2983
  issue: 19
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0530
  article-title: L12-strengthened high-entropy alloys for advanced structural applications
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.186
– volume: 696
  start-page: 503
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0560
  article-title: Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.04.111
– volume: 35
  start-page: 101410
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0815
  article-title: A precipitation-strengthened high-entropy alloy for additive manufacturing
  publication-title: Addit. Manuf.
– volume: 37
  start-page: 101660
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0270
  article-title: The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition
  publication-title: Addit. Manuf.
– volume: 147
  start-page: 184
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0900
  article-title: Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.01.049
– volume: 188
  start-page: 435
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0150
  article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.12.015
– volume: 6
  start-page: 100282
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0540
  article-title: Role of copper on L12 precipitation strengthened fcc based high entropy alloy
  publication-title: Materialia
  doi: 10.1016/j.mtla.2019.100282
– volume: 11
  start-page: 486
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0660
  article-title: Effect of Mo element on the mechanical properties and tribological responses of CoCrFeNiMox high-entropy alloys
  publication-title: Metals
  doi: 10.3390/met11030486
– volume: 7
  start-page: 40704
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0715
  article-title: Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys
  publication-title: Sci. Rep.
  doi: 10.1038/srep40704
– ident: 10.1016/j.matdes.2021.110161_b0065
  doi: 10.1016/j.jallcom.2020.155305
– volume: 134
  start-page: 107202
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0015
  article-title: Temperature-and strain-dependent thermally-activated deformation mechanism of a ferrous medium-entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2021.107202
– volume: 210
  start-page: 111
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0535
  article-title: The formation of cellular precipitate and its effect on the tensile properties of a precipitation strengthened high entropy alloy
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.09.057
– volume: 746
  start-page: 356
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0680
  article-title: Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.01.050
– volume: 7
  start-page: 453
  issue: 11
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0425
  article-title: Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy
  publication-title: Mater. Res. Lett
  doi: 10.1080/21663831.2019.1650131
– volume: 261
  start-page: 127004
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0850
  article-title: Microstructure and wear behavior of the AlCrFeCoNi high-entropy alloy fabricated by additive manufacturing
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.127004
– volume: 61
  start-page: 5996
  issue: 16
  year: 2013
  ident: 10.1016/j.matdes.2021.110161_b0725
  article-title: Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2013.06.040
– volume: 20
  start-page: 878
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0785
  article-title: Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review
  publication-title: Entropy
  doi: 10.3390/e20110878
– volume: 13
  start-page: 51
  issue: 1
  year: 1974
  ident: 10.1016/j.matdes.2021.110161_b0885
  article-title: An estimate of the strengthening arising from coherent, tetragonally-distorted particles
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(74)90020-2
– volume: 586
  start-page: 45
  year: 2013
  ident: 10.1016/j.matdes.2021.110161_b0600
  article-title: The effects of chromium on the microstructure and tensile behavior of Fe30Ni20Mn35Al15
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.08.005
– volume: 15
  start-page: 815
  issue: 8
  year: 1981
  ident: 10.1016/j.matdes.2021.110161_b0875
  article-title: The combination of atomic size and elastic modulus misfit interactions in solid solution hardening
  publication-title: Scr. Mater.
– volume: 66
  start-page: 1984
  issue: 10
  year: 2014
  ident: 10.1016/j.matdes.2021.110161_b0100
  article-title: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams
  publication-title: JOM
  doi: 10.1007/s11837-014-1085-x
– volume: 630
  start-page: 151
  year: 2015
  ident: 10.1016/j.matdes.2021.110161_b0115
  article-title: On the microstructures, phase assemblages and properties of Al0.5CoCrCuFeNiSix high-entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.11.085
– volume: 104
  start-page: 172
  year: 2016
  ident: 10.1016/j.matdes.2021.110161_b0215
  article-title: Predicting the formation and stability of single phase high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.11.040
– volume: 876
  start-page: 160102
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0040
  article-title: Unique hot deformation behavior and microstructure evolution of a dual FCC-phase CoCrCu1.2FeNi high entropy alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160102
– volume: 165
  start-page: 444
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0380
  article-title: Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.12.012
– volume: 35
  start-page: 101441
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0250
  article-title: Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing
  publication-title: Addit. Manuf.
– volume: 63
  start-page: 1279
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0915
  article-title: Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-020-1291-9
– volume: 69
  start-page: 103
  year: 2016
  ident: 10.1016/j.matdes.2021.110161_b0110
  article-title: Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.10.022
– volume: 137
  start-page: 88
  year: 2017
  ident: 10.1016/j.matdes.2021.110161_b0655
  article-title: Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.05.019
– volume: 6
  start-page: 236
  issue: 4
  year: 2018
  ident: 10.1016/j.matdes.2021.110161_b0435
  article-title: Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy
  publication-title: Mater. Res. Let.
  doi: 10.1080/21663831.2018.1434250
– volume: 44
  start-page: 133
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0090
  article-title: Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.10.025
– volume: 805
  start-page: 680
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0450
  article-title: Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: microstructure, anisotropic mechanical response, and multiple strengthening mechanism
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.07.106
– volume: 5
  start-page: 100173
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0870
  article-title: Effect of transition metal addition on microstructure and hardening behavior of two-phase Ni3Al-Ni3V intermetallic alloys
  publication-title: Materialia
  doi: 10.1016/j.mtla.2018.11.022
– volume: 25
  start-page: 412
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0860
  article-title: Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting
  publication-title: Addit. Manuf.
– volume: 797
  start-page: 140056
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0055
  article-title: L21-strengthened face-centered cubic high-entropy alloy with high strength and ductility
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.140056
– volume: 109
  start-page: 103505
  issue: 10
  year: 2011
  ident: 10.1016/j.matdes.2021.110161_b0125
  article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3587228
– volume: 27
  start-page: 2300
  issue: 7
  year: 2021
  ident: 10.1016/j.matdes.2021.110161_b0385
  article-title: Constitutive modeling with critical twinning stress in CoCrFeMnNi high entropy alloy at cryogenic temperature and room temperature
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-020-00818-2
– volume: 360
  start-page: 509
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0370
  article-title: Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: process, particle behavior and effects
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.10.068
– volume: 32
  start-page: 101098
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0420
  article-title: Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing
  publication-title: Addit. Manuf.
– volume: 74
  start-page: 020102(R)
  year: 2006
  ident: 10.1016/j.matdes.2021.110161_b0925
  article-title: Dynamics of a dislocation bypassing an impenetrable precipitate: The Hirsch mechanism revisited
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.020102
– volume: 764
  start-page: 138241
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0060
  article-title: Coherent precipitation and strengthening in a dual-phase AlNi2Co2Fe1.5Cr1.5 high-entropy alloy
  publication-title: Mater. Sci. Eng. A 764
  doi: 10.1016/j.msea.2019.138241
– volume: 784
  start-page: 139275
  year: 2020
  ident: 10.1016/j.matdes.2021.110161_b0145
  article-title: Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139275
– volume: 261
  start-page: 513
  issue: 5–6
  year: 2006
  ident: 10.1016/j.matdes.2021.110161_b0190
  article-title: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content
  publication-title: Wear
  doi: 10.1016/j.wear.2005.12.008
– volume: 116
  start-page: 332
  year: 2016
  ident: 10.1016/j.matdes.2021.110161_b0620
  article-title: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.06.063
– volume: 106
  start-page: 20
  year: 2019
  ident: 10.1016/j.matdes.2021.110161_b0820
  article-title: Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy Alloy
  publication-title: Intermetallics 106
  doi: 10.1016/j.intermet.2018.12.001
SSID ssj0022734
Score 2.6113992
SecondaryResourceType review_article
Snippet [Display omitted] •A review is presented on recent research on precipitation-hardened high-entropy alloys that can be produced by additive manufacturing.•The...
The growing demand for advanced metallic materials with optimum mechanical properties has led to the creation of next-generation materials based on the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 110161
SubjectTerms High entropy alloys
Mechanical properties
Metal additive manufacturing
Precipitation hardening
Strengthening micro-mechanisms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWC1aGynccaCqBASTFTqFvlxlkCQRlCG_nvu4qSUBRZWy7GTu5PvO-fuO8YuY9ASNCiROQVClyYIU8pMOCXBK5n5PFA18sPj6G6q72f5bK3VF-WEJXrgJLirjPpzg9MBga0uvSkLC2URC4gqhMy0Zb7o8_pgqgu1iLQl3a4QK1-R90VzbWYXQsEARNUtM8qCz0bZD6fUcvev-aY1fzPZZTsdUOTj9IJ7bAPqfba9Rh94wOyYN9-1knxe84a4KpqOdltQQRXQvQcnUmJB97jzZsnpV_vyg0fr2hZBELjDwRDaLCL-ZutPqnZoyxcP2XRy-3RzJ7qWCcJroxfCeuOGEjDUDNGM8BzGAw0BVGGl92DxUEQ0J2GYo-ryQkXA8AksgrBhjLGMqJ0jtlnPazhmHB03IJhRzkulrTU24qzcGchHJaKIOGCql1nluw-jthavVZ849lIlSVck6SpJesDE6qkm8Wn8Mf-a1LGaS2zY7QDaSNXZSPWXjQxY0Suz6oBFAgy41POv25_8x_anbIuWTEkwZ2xz8f4J5whlFu6itdovjnzxpA
  priority: 102
  providerName: Directory of Open Access Journals
Title A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing
URI https://dx.doi.org/10.1016/j.matdes.2021.110161
https://doaj.org/article/11438eb4d75849c897ae97f7ef3dd188
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4XOgBFQrq0hb5wNXaje0kznGLihZQubRI3CI_xmgRZCNYDvx7ZhJnu1yoxDGWncRja-ab8cxnxk5i0BI0KJE5BUJXJghTyUw4JcErmfk8UDXy76tidq0vbvKbDXY61MJQWmXS_b1O77R1ahknaY7b-Xz8B70HTfTkkg76EfVvsm2pqgI9sO3p-eXsauV3EYNLH2ohir4yHyroujQvxIUBiLdbZpQSnxXZGwvVEfmvGao143P2me0m1Min_Y_tsQ1o9tmnNS7BL8xOefuvcJIvGt4ScUWbOLgFVVcBBUE4MRQLCuou2hdO5-4vTzxa190XBIE7bAyhSyniD7Z5ptKHrpbxgF2f_fp7OhPp_gThtdFLYb1xEwnod4ZoClTKqN0QTZVWeg8WNSRCOwmTHNcxL1UE9KXAIiKbxBiriEt1yLaaRQNfGUcrDohslPNSaWuNjdgrdwbyokJIEUdMDTKrfZoY3XFxXw9ZZHd1L-maJF33kh4xsRrV9uQa_-n_k5Zj1ZeosbuGxeNtnfYGlVkrA04H9IR05Q3OF6oylhBVCJkxI1YOi1m_2Wn4qvm7nz_68MhvbIee-jSY72xr-fgMPxDMLN1x2qzHXTDgFWXw9OU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHFoOqPShLlDwoVdrN7azcY4LAi0F9gJI3CI_xtVWNBvBcuDfM5M42-VCpV4dO4nHo5lv7JnPjP2IQUvQoETmFAhdmiBMKTPhlASvZObzQNXIV7Px9Fb_vMvvNthJXwtDaZXJ9nc2vbXWqWWYpDls5vPhNUYPmujJJR30I-p_x7aInQqVfWtyfjGdreIuYnDptlqIoq_I-wq6Ns0LcWEA4u2WGaXEZ-PslYdqifzXHNWa8zn7yHYSauST7sd22QbUn9j2GpfgZ2YnvPlbOMkXNW-IuKJJHNyCqquANkE4MRQL2tRdNM-czt2fH3m0rr0vCAJ32BhCm1LE_9j6iUof2lrGL-z27PTmZCrS_QnCa6OXwnrjRhIw7gzRjNEoo3VDNFVY6T1YtJAI7SSMclzHvFARMJYCi4hsFGMsIy7VV7ZZL2r4xjh6cUBko5yXSltrbMReuTOQj0uEFHHAVC-zyqeJ0R0X91WfRfa76iRdkaSrTtIDJlajmo5c4x_9j2k5Vn2JGrttWDz8qpJuUJm1MuB0wEhIl97gfKEsYgFRhZAZM2BFv5jVK03DV83f_Pzef488Yu-nN1eX1eX57GKffaAnXUrMAdtcPjzBdwQ2S3eYFPcFMKr21g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+perspective+on+precipitation-hardening+high-entropy+alloys+fabricated+by+additive+manufacturing&rft.jtitle=Materials+%26+design&rft.au=Haftlang%2C+Farahnaz&rft.au=Kim%2C+Hyoung+Seop&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0264-1275&rft.eissn=1873-4197&rft.volume=211&rft_id=info:doi/10.1016%2Fj.matdes.2021.110161&rft.externalDocID=S0264127521007164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon