A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing
[Display omitted] •A review is presented on recent research on precipitation-hardened high-entropy alloys that can be produced by additive manufacturing.•The different strengthening mechanisms of AMed HEAs were reviewed with emphasis on precipitation strengthening.•The advantages of using applying p...
Saved in:
Published in | Materials & design Vol. 211; p. 110161 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0264-1275 1873-4197 |
DOI | 10.1016/j.matdes.2021.110161 |
Cover
Loading…
Abstract | [Display omitted]
•A review is presented on recent research on precipitation-hardened high-entropy alloys that can be produced by additive manufacturing.•The different strengthening mechanisms of AMed HEAs were reviewed with emphasis on precipitation strengthening.•The advantages of using applying post-printing heat-treatment for enhancing the strength-ductility relationship of HEAs are discussed.•Dynamic responses of precipitation during deformation are explained through the interaction between dislocations and precipitates.•The future prospects of precipitation-hardened high-entropy alloys fabricated by additive manufacturing are presented.
The growing demand for advanced metallic materials with optimum mechanical properties has led to the creation of next-generation materials based on the alloying of multiple-principal elements in high concentrations. High-entropy alloys (HEAs) have a high potential for industrial applications due to their extraordinary properties under elevated, ambient, and cryogenic conditions. Due to several limitations of conventional manufacturing methods, to develop HEAs of the maximum capability, a novel metal additive manufacturing (MAM) technique has been developed to produce defect-free HEA components with the desirable performance. The unique microstructures of MAMed HEAs provide an optimum strength-ductility relationship, even in extreme environments, by the simultaneous activation of several strengthening mechanisms. In particular, applying post-printing heat-treatment can significantly enhance the strength-ductility relationship of HEAs. Herein, a comprehensive review based on the process-microstructure-properties relationship in precipitation-hardenable HEAs fabricated by 3D printing is provided. Different kinds of precipitates formed in the microstructures of MAM-processed HEAs after applying a proper post-MAM heat treatment are presented. Moreover, the corresponding mechanical properties of these components are discussed in detail. Also, the improvement in the mechanical properties of precipitation-hardened MAM-processed HEAs due to the interaction between dislocations and precipitates is introduced, resulting in precipitate shearing and creation of Orowan/Hirsch loops. |
---|---|
AbstractList | The growing demand for advanced metallic materials with optimum mechanical properties has led to the creation of next-generation materials based on the alloying of multiple-principal elements in high concentrations. High-entropy alloys (HEAs) have a high potential for industrial applications due to their extraordinary properties under elevated, ambient, and cryogenic conditions. Due to several limitations of conventional manufacturing methods, to develop HEAs of the maximum capability, a novel metal additive manufacturing (MAM) technique has been developed to produce defect-free HEA components with the desirable performance. The unique microstructures of MAMed HEAs provide an optimum strength-ductility relationship, even in extreme environments, by the simultaneous activation of several strengthening mechanisms. In particular, applying post-printing heat-treatment can significantly enhance the strength-ductility relationship of HEAs. Herein, a comprehensive review based on the process-microstructure-properties relationship in precipitation-hardenable HEAs fabricated by 3D printing is provided. Different kinds of precipitates formed in the microstructures of MAM-processed HEAs after applying a proper post-MAM heat treatment are presented. Moreover, the corresponding mechanical properties of these components are discussed in detail. Also, the improvement in the mechanical properties of precipitation-hardened MAM-processed HEAs due to the interaction between dislocations and precipitates is introduced, resulting in precipitate shearing and creation of Orowan/Hirsch loops. [Display omitted] •A review is presented on recent research on precipitation-hardened high-entropy alloys that can be produced by additive manufacturing.•The different strengthening mechanisms of AMed HEAs were reviewed with emphasis on precipitation strengthening.•The advantages of using applying post-printing heat-treatment for enhancing the strength-ductility relationship of HEAs are discussed.•Dynamic responses of precipitation during deformation are explained through the interaction between dislocations and precipitates.•The future prospects of precipitation-hardened high-entropy alloys fabricated by additive manufacturing are presented. The growing demand for advanced metallic materials with optimum mechanical properties has led to the creation of next-generation materials based on the alloying of multiple-principal elements in high concentrations. High-entropy alloys (HEAs) have a high potential for industrial applications due to their extraordinary properties under elevated, ambient, and cryogenic conditions. Due to several limitations of conventional manufacturing methods, to develop HEAs of the maximum capability, a novel metal additive manufacturing (MAM) technique has been developed to produce defect-free HEA components with the desirable performance. The unique microstructures of MAMed HEAs provide an optimum strength-ductility relationship, even in extreme environments, by the simultaneous activation of several strengthening mechanisms. In particular, applying post-printing heat-treatment can significantly enhance the strength-ductility relationship of HEAs. Herein, a comprehensive review based on the process-microstructure-properties relationship in precipitation-hardenable HEAs fabricated by 3D printing is provided. Different kinds of precipitates formed in the microstructures of MAM-processed HEAs after applying a proper post-MAM heat treatment are presented. Moreover, the corresponding mechanical properties of these components are discussed in detail. Also, the improvement in the mechanical properties of precipitation-hardened MAM-processed HEAs due to the interaction between dislocations and precipitates is introduced, resulting in precipitate shearing and creation of Orowan/Hirsch loops. |
ArticleNumber | 110161 |
Author | Kim, Hyoung Seop Haftlang, Farahnaz |
Author_xml | – sequence: 1 givenname: Farahnaz surname: Haftlang fullname: Haftlang, Farahnaz organization: Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea – sequence: 2 givenname: Hyoung Seop surname: Kim fullname: Kim, Hyoung Seop email: hskim@postech.ac.kr organization: Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea |
BookMark | eNqFkctq3DAUhkVJoJPLG2ThF_BUN1tyF4UQ2jQQ6KZdi2PpaEaDRzaSEpi3ryZON120K8Evvv8cfboiF3GOSMgdo1tGWf_psD1CcZi3nHK2ZeeMfSAbppVoJRvUBdlQ3suWcdV9JFc5HyjlXAm5IXDfLJjygraEV2zm2CwJbVhCgRLm2O4hOYwh7pp92O1bjCXNy6mBaZpPufEwpmChoGvGGjoX3lqOEF882PKSKnhDLj1MGW_fz2vy69vXnw_f2-cfj08P98-tlVqWFqweKUeupPO6x5GxTtBuUMCtRZC9Eqxe0w5H7JTw2LMBQYuOeu8Hj1Zck6e1181wMEsKR0gnM0Mwb8GcdgZSCXZCw5gUGkfpVKflYHWdgoPyCr1wjmlduz6vXTbNOSf0xr4LKQnCZBg1Z8nmYFbx5izerOIrLP-C_yzzH-zLimGV9BowmWwDRosu1B8p9RXh3wW_ASqDo3o |
CitedBy_id | crossref_primary_10_1080_02670836_2022_2130530 crossref_primary_10_1016_j_msea_2024_147438 crossref_primary_10_1016_j_surfcoat_2022_128802 crossref_primary_10_1016_j_ijrmhm_2022_105836 crossref_primary_10_1016_j_intermet_2025_108725 crossref_primary_10_1016_j_jallcom_2024_177527 crossref_primary_10_1016_j_addma_2023_103421 crossref_primary_10_1016_j_actamat_2023_119115 crossref_primary_10_1039_D3TA01476B crossref_primary_10_1007_s11661_024_07448_y crossref_primary_10_1016_j_jallcom_2023_171384 crossref_primary_10_1016_j_jmat_2021_12_010 crossref_primary_10_1080_14686996_2022_2158043 crossref_primary_10_1007_s11661_024_07300_3 crossref_primary_10_1016_j_ijfatigue_2025_108818 crossref_primary_10_1021_acsaenm_4c00280 crossref_primary_10_1007_s10853_024_10270_x crossref_primary_10_1016_j_vacuum_2023_112601 crossref_primary_10_1016_j_msea_2024_147172 crossref_primary_10_1016_j_mtcomm_2023_106422 crossref_primary_10_1016_j_msea_2024_147057 crossref_primary_10_3390_coatings13081301 crossref_primary_10_1016_j_jmrt_2024_07_060 crossref_primary_10_1016_j_jallcom_2022_164304 crossref_primary_10_1016_j_msea_2022_144346 crossref_primary_10_1016_j_jmst_2023_11_053 crossref_primary_10_1016_j_msea_2022_144348 crossref_primary_10_1016_j_msea_2022_142720 crossref_primary_10_1016_j_jmapro_2022_04_014 crossref_primary_10_1007_s11661_025_07731_6 crossref_primary_10_1016_j_jmrt_2024_09_146 crossref_primary_10_1016_j_jallcom_2023_171089 crossref_primary_10_1016_j_jmrt_2025_03_074 crossref_primary_10_1016_j_matchar_2023_112841 crossref_primary_10_1016_j_addma_2023_103443 crossref_primary_10_2139_ssrn_4181220 crossref_primary_10_1016_j_jallcom_2024_177494 crossref_primary_10_1016_j_matdes_2022_110774 crossref_primary_10_1016_j_scriptamat_2023_115617 crossref_primary_10_1016_j_jallcom_2023_170443 crossref_primary_10_1016_j_jallcom_2023_172502 crossref_primary_10_1016_j_corsci_2023_111599 crossref_primary_10_1016_j_matdes_2022_110685 crossref_primary_10_1016_j_msea_2025_147914 crossref_primary_10_1016_j_jmst_2023_05_045 crossref_primary_10_1002_adfm_202412071 crossref_primary_10_1016_j_mser_2024_100834 crossref_primary_10_1016_j_surfcoat_2023_129538 crossref_primary_10_1016_j_jmst_2024_02_077 crossref_primary_10_1007_s11665_023_08171_2 crossref_primary_10_1007_s10853_022_07400_8 crossref_primary_10_1016_j_jmrt_2022_11_137 crossref_primary_10_1016_j_msea_2024_147245 crossref_primary_10_1016_j_jalmes_2024_100054 crossref_primary_10_1007_s10853_022_07137_4 crossref_primary_10_1016_j_jallcom_2022_164415 crossref_primary_10_1016_j_pmatsci_2024_101295 crossref_primary_10_1016_j_jmst_2023_12_006 crossref_primary_10_1007_s10853_022_07110_1 crossref_primary_10_1080_21663831_2025_2466779 crossref_primary_10_1016_j_jallcom_2023_171870 crossref_primary_10_1016_j_jallcom_2024_176103 crossref_primary_10_1016_j_jmrt_2022_11_027 crossref_primary_10_1016_j_cossms_2022_100992 crossref_primary_10_1016_j_intermet_2025_108650 crossref_primary_10_1063_5_0168668 crossref_primary_10_1016_j_addma_2023_103914 crossref_primary_10_1016_j_msea_2022_144425 crossref_primary_10_1016_j_addma_2024_104408 crossref_primary_10_1080_21663831_2024_2309271 crossref_primary_10_1016_j_matchar_2024_114191 crossref_primary_10_3390_jmmp8060269 crossref_primary_10_1007_s10853_023_09244_2 crossref_primary_10_1016_j_mser_2024_100853 crossref_primary_10_1016_j_jallcom_2024_175849 crossref_primary_10_1016_j_vacuum_2023_112115 crossref_primary_10_1016_j_jallcom_2023_170631 crossref_primary_10_1038_s41467_024_50078_6 crossref_primary_10_1016_j_jallcom_2023_172093 crossref_primary_10_1016_j_msea_2023_145164 crossref_primary_10_1016_j_jmrt_2024_02_232 crossref_primary_10_1016_j_msea_2023_145042 crossref_primary_10_1016_j_msea_2022_144156 crossref_primary_10_1016_j_msea_2022_144398 crossref_primary_10_1007_s12540_022_01225_5 crossref_primary_10_1016_j_jallcom_2022_165601 crossref_primary_10_1016_j_heliyon_2024_e28006 crossref_primary_10_1016_j_jallcom_2024_173929 crossref_primary_10_1016_j_jmatprotec_2022_117733 crossref_primary_10_1016_j_jmrt_2023_10_266 crossref_primary_10_1016_j_jallcom_2023_171213 crossref_primary_10_1016_j_jmrt_2022_12_084 crossref_primary_10_1016_j_mtcomm_2022_104686 crossref_primary_10_3390_ma17174215 crossref_primary_10_1016_j_scriptamat_2023_115384 crossref_primary_10_1016_j_jmrt_2024_02_226 crossref_primary_10_1016_j_msea_2024_147631 |
Cites_doi | 10.1016/j.msea.2018.12.005 10.1016/j.matchemphys.2017.09.014 10.1016/j.actamat.2015.08.076 10.1016/j.ijplas.2018.09.009 10.1038/s41467-018-06600-8 10.1016/j.jallcom.2019.153273 10.1016/j.actamat.2014.08.026 10.1016/j.mattod.2021.02.022 10.1016/j.intermet.2012.09.022 10.1016/j.actamat.2019.10.015 10.1016/j.matdes.2020.108966 10.1016/j.jallcom.2020.157625 10.1016/j.scriptamat.2020.07.023 10.1016/j.scriptamat.2018.01.028 10.1016/j.msea.2008.01.064 10.1016/j.actamat.2018.12.032 10.1016/j.corsci.2021.109663 10.1016/j.jallcom.2020.154707 10.1016/j.corsci.2021.109365 10.1016/j.actamat.2020.05.015 10.1016/j.actamat.2019.01.048 10.1016/j.matlet.2016.11.026 10.1016/j.intermet.2018.01.002 10.1016/j.triboint.2021.107031 10.1016/j.msea.2021.141264 10.1016/j.jmatprotec.2020.116806 10.1016/j.jallcom.2018.12.040 10.1016/j.apsusc.2019.06.087 10.1007/s12540-019-00565-z 10.1016/j.matlet.2006.03.140 10.1038/s41467-020-16085-z 10.1080/14686996.2017.1361305 10.1016/j.scriptamat.2020.06.019 10.1016/j.msea.2018.11.118 10.1016/j.ijmachtools.2019.103475 10.1016/j.actamat.2020.07.006 10.1016/j.jallcom.2019.03.403 10.1016/j.scriptamat.2018.05.015 10.1016/j.actamat.2013.04.058 10.1016/j.msea.2020.139802 10.1080/21663831.2014.912690 10.1016/j.matdes.2018.107576 10.1016/j.msea.2018.08.038 10.1016/j.actamat.2020.04.052 10.1016/j.jallcom.2019.04.121 10.1016/j.actamat.2011.06.041 10.1016/j.corsci.2021.109479 10.1080/21663831.2019.1638844 10.1016/j.jallcom.2019.01.213 10.1016/j.msea.2021.141249 10.1016/j.msea.2020.140551 10.1016/j.jallcom.2020.155074 10.1016/j.msea.2010.05.052 10.1016/j.commatsci.2021.110462 10.1016/j.jallcom.2018.12.267 10.1016/j.scriptamat.2016.10.023 10.1016/j.jmapro.2016.11.006 10.1016/j.actamat.2016.07.038 10.1016/j.scriptamat.2014.11.037 10.1016/j.actamat.2021.117121 10.1016/j.msea.2016.08.118 10.1016/j.apmt.2021.101040 10.1016/j.msea.2015.03.109 10.1016/j.actamat.2019.12.003 10.1016/j.matdes.2015.05.027 10.1016/j.msea.2019.138056 10.1002/adma.201903855 10.1016/j.jallcom.2020.155997 10.1016/j.intermet.2012.07.001 10.1016/j.msea.2015.02.072 10.1038/srep16707 10.1016/j.msea.2019.138243 10.1016/j.pmatsci.2020.100736 10.1016/j.ijmachtools.2021.103729 10.1016/j.jallcom.2019.152750 10.1007/s10853-017-0975-z 10.1016/j.matlet.2019.127175 10.1007/s12540-019-00332-0 10.1016/S0966-9795(01)00131-5 10.1016/j.msea.2021.141386 10.1016/j.jallcom.2019.06.204 10.1016/j.intermet.2021.107212 10.1016/j.mtla.2019.100310 10.1016/j.matdes.2012.04.049 10.1016/j.mattod.2021.03.020 10.1016/j.jallcom.2016.12.209 10.1016/j.matchar.2017.10.022 10.1016/j.msea.2020.139184 10.1016/j.mattod.2020.09.029 10.1016/j.ijplas.2020.102819 10.1016/j.msea.2016.10.038 10.1016/0956-7151(94)90036-1 10.1016/j.actamat.2019.06.032 10.1016/j.actamat.2016.12.074 10.1007/s12540-019-00466-1 10.1016/j.matlet.2021.130391 10.1126/sciadv.aat8712 10.1016/j.scriptamat.2021.114013 10.1016/j.scriptamat.2018.01.025 10.1016/j.pmatsci.2013.10.001 10.1016/j.actamat.2017.02.053 10.1016/j.jmst.2020.11.029 10.1016/j.jallcom.2016.10.138 10.1007/s12540-020-00923-2 10.1016/S1002-0071(12)60080-X 10.1016/j.actamat.2019.04.018 10.1016/j.scriptamat.2006.05.002 10.1016/j.actamat.2018.01.050 10.1016/j.msea.2003.10.257 10.1016/j.msea.2021.141763 10.1016/j.jmst.2019.05.062 10.1016/j.intermet.2020.106813 10.1016/j.jallcom.2020.156909 10.1016/j.scriptamat.2020.04.035 10.1080/02670836.2017.1342367 10.1016/j.scriptamat.2019.07.008 10.1016/j.scriptamat.2020.03.030 10.1016/j.matchar.2018.08.019 10.1016/j.corsci.2020.108954 10.1016/j.actamat.2020.10.071 10.1016/j.scriptamat.2021.114066 10.1016/j.scriptamat.2020.07.010 10.1080/21663831.2014.951493 10.1016/j.mtla.2019.100522 10.1007/s12540-020-00823-5 10.1557/jmr.2018.186 10.1016/j.msea.2017.04.111 10.1016/j.actamat.2018.01.049 10.1016/j.actamat.2019.12.015 10.1016/j.mtla.2019.100282 10.3390/met11030486 10.1038/srep40704 10.1016/j.jallcom.2020.155305 10.1016/j.intermet.2021.107202 10.1016/j.matchemphys.2017.09.057 10.1016/j.msea.2019.01.050 10.1080/21663831.2019.1650131 10.1016/j.matlet.2019.127004 10.1016/j.actamat.2013.06.040 10.3390/e20110878 10.1016/0025-5416(74)90020-2 10.1016/j.msea.2013.08.005 10.1007/s11837-014-1085-x 10.1016/j.jallcom.2014.11.085 10.1016/j.actamat.2015.11.040 10.1016/j.jallcom.2021.160102 10.1016/j.actamat.2018.12.012 10.1007/s40843-020-1291-9 10.1016/j.intermet.2015.10.022 10.1016/j.scriptamat.2017.05.019 10.1080/21663831.2018.1434250 10.1016/j.jmst.2019.10.025 10.1016/j.jallcom.2019.07.106 10.1016/j.mtla.2018.11.022 10.1016/j.msea.2020.140056 10.1063/1.3587228 10.1007/s12540-020-00818-2 10.1016/j.powtec.2019.10.068 10.1103/PhysRevB.74.020102 10.1016/j.msea.2019.138241 10.1016/j.msea.2020.139275 10.1016/j.wear.2005.12.008 10.1016/j.actamat.2016.06.063 10.1016/j.intermet.2018.12.001 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2021.110161 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_11438eb4d75849c897ae97f7ef3dd188 10_1016_j_matdes_2021_110161 S0264127521007164 |
GroupedDBID | --K --M -~X .~1 0SF 1B1 1~. 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BCNDV BJAXD BKOJK BLXMC EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KOM M41 MO0 NCXOZ OAUVE OK1 P2P PC. Q38 ROL SDF SDG SDP SPC SSM SST SSZ T5K ~G- 0R~ 29M AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ JJJVA MAGPM O9- P-8 P-9 R2- RIG RNS RPZ SEW SMS SSH WUQ EFKBS |
ID | FETCH-LOGICAL-c484t-ac8b02e274df86eb11530597a2ccea4673102e05ebe573fe619ea8350fff9fec3 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:20:03 EDT 2025 Tue Jul 01 02:24:04 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 Fri Feb 23 02:41:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High entropy alloys Mechanical properties Precipitation hardening Metal additive manufacturing Strengthening micro-mechanisms |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-ac8b02e274df86eb11530597a2ccea4673102e05ebe573fe619ea8350fff9fec3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0264127521007164 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_11438eb4d75849c897ae97f7ef3dd188 crossref_citationtrail_10_1016_j_matdes_2021_110161 crossref_primary_10_1016_j_matdes_2021_110161 elsevier_sciencedirect_doi_10_1016_j_matdes_2021_110161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hatano (b0925) 2006; 74 Zhao, Chen, Lu, Nieh (b0900) 2018; 147 Luo, Zhao, Su, Liu, Wang (b0510) 2020; 31 Zaddach, Scattergood, Koch (b0625) 2015; 636 Zhu, Nguyen, Ng, An, Liao, Liaw, Nai, Wei (b0460) 2018; 154 He, Chen, Han, Wu, Wang, Wei, Wei, Wang, Liu, Kai (b0635) 2019; 167 Tsai, Yeh (b0155) 2014; 2 Xu, Zhang, Du, He, Luo, Song, Mao, Zhou, Wang (b0505) 2020; 177 Z. Niu, Y. Wang, C. Geng, J. Xu, Y. Wang, Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x = 0, 0.2, 0.5, 0.8, 1) high entropy alloys, J. Alloys Compd. 820 (2020) 153273. https://doi.org/10.1016/j.jallcom.2019.153273. Li, Gao, Wang, Chen, Xin, Tang, Liu, Liu, Song (b0685) 2019; 792 Cantor, Chang, Knight, Vincent (b0030) 2004; 375–377 Kwon, Moon, Bae, Park, Son, Do, Lee, Kim (b0225) 2020; 188 Svetlizky, Das, Zheng, Vyatskikh, Bose, Bandyopadhyay, Schoenung, Lavernia, Eliaz (b0290) 2021 Cheng, Wang, Xie, Tang, Dai (b0695) 2017; 33 Haftlang, Asghari-Rad, Moon, Lee, Kato, Kim (b0050) 2021; 302 Hutchinson, Ridley (b0440) 2006; 55 Guan, Wan, Solberg, Berto, Welo, Yue, Chan (b0445) 2019; 761 Tsai, Tsai, Yeh (b0520) 2013; 61 Chen, Yang, Li, Attallah, Yan (b0910) 2020; 194 Wang, Baker, Guo, Poplawsky (b0690) 2017; 126 Bae, Park, Moon, Choi, Lee, Kim (b0650) 2019; 781 Kim, Choe, Lee (b0450) 2019; 805 Park, Choe, Kim, Bae, Moon, Yang, Kim, Yu, Kim (b0255) 2020; 8 Chuang, Tsai, Wang, Lin, Yeh (b0160) 2011; 59 Yi, Yang, Wang, Xu (b0070) 2021; 27 Motaman, Roters, Haase (b0325) 2020; 185 Dasari, Sarkar, Sharma, Gwalani, Choudhuri, Soni, Manda, Samajdar, Banerjee (b0580) 2021; 202 Zhao, Yang, Zhu, Chen, Yang, Hu, Liu, Kai (b0645) 2018; 148 Ding, Cao, Luan, Jiao (b0545) 2021; 184 Tsai, Yuan, Cheng, Xu, Jian, Chuang, Juan, Yeh, Lin, Zhua (b0755) 2013; 33 Zhang, Huo, Wang, Du, Zhang, Li, Zou, Wan, Duan, Wu (b0605) 2020; 122 Guo, Ou, Ni, Liu, Song (b0680) 2019; 746 Sanchez, Smith, Xu, Gaspard, Hyde, Wits, Ashcroft, Chen, Clare (b0265) 2021; 165 Yang, Zhao, Liu, Kai, Liu (b0530) 2018; 33 Bhardwaj, Zhou, Zhang, Han, Du, Hua, Wang (b0185) 2021; 160 Lin, Xu, Jing, Han, Zhao, Zhang, Li (b0515) 2020; 36 Zhang, Gao (b0135) 2016 Wang, Wang, Zhou, Xiao, Xiao, Wang, Cao, Ren, Liang, Wang, Xue (b0565) 2021; 216 Zhang, Xiang, Han, Srolovitz (b0360) 2019; 166 Dasari, Jagetia, Chang, Soni, Gwalani, Gorsse, Yeh, Banerjee (b0210) 2020; 830 Lu, Lu, Xu, Yao, Cai, Luo (b0315) 2020; 148 Tong, Ren, Jiao, Zhou, Ren, Ye, Larson, Gu (b0405) 2019; 785 Ma, Wang, Jiang, Li, Hao, Li, Dong, Nieh (b0780) 2018; 147 Moghaddam, Shaburova, Samodurova, Abdollahzadeh, Trofimov (b0240) 2021; 77 Zhao (b0090) 2020; 44 Li, Chen, Fang, Jiang, Liu, Liaw (b0905) 2020; 133 Wang, Zhang, Davies, Wu (b0825) 2017; 694 Wu, Lin, Yeh, Chen, Huang, Chen (b0190) 2006; 261 Gypen, Deruyttere (b0875) 1981; 15 George, Curtin, Tasan (b0150) 2020; 188 Ma, Hao, Jie, Wang, Dong (b0060) 2019; 764 Kim, Park, Asghari-Rad, Jung, Moon, Kim (b0385) 2021; 27 Ming, Bi, Wang (b0655) 2017; 137 Gao, Lu, Zhao, Liu, Liu, Wu, Liu, Fan, Lu, George (b0710) 2019; 792 Han, Fang, Shi, Tor, Chua, Zhou (b0310) 2020; 32 Pegues, Melia, Puckett, Whetten, Argibay, Kustas (b0345) 2021; 37 Peng, Hu, Li, Gao, Zhang (b0555) 2020; 817 Huang, Zhang, Vilar, Shen (b0175) 2012; 41 Sinha, Nene, Frank, Liu, Mishra, McWilliams, Cho (b0330) 2019; 6 Griffiths, Ghasemi Tabasi, Ivas, Maeder, De Luca, Zweiacker, Wróbel, Jhabvala, Logé, Leinenbach (b0810) 2020; 36 Shahmir, He, Lu, Kawasaki, Langdon (b0615) 2016; 676 Joseph, Jarvis, Wu, Stanford, Hodgson, Fabijanic (b0800) 2015; 633 Thapliyal, Nene, Agrawal, Wang, Morphew, Mishra, McWilliams, Cho (b0415) 2020; 36 Ge, Fu, Zhang, Mao, Li, Wang, Li, Zhang (b0145) 2020; 784 Seol, Bae, Kim, Sung, Li, Lee, Shim, Jang, Ko, Hong, Kim (b0005) 2020; 194 Du, Li, Chang, Yang, Duan, Wu, Huang, Chen, Liu, Chuang, Lu, Sui, Huang (b0570) 2020; 11 Kwon, Asghari-Rad, Park, Sathiyamoorthi, Bae, Moon, Zargaran, Choi, Son, Kim (b0675) 2021; 135 Eleti, Bhattacharjee, Shibata, Tsuji (b0080) 2019; 171 McLouth, Witkin, Bean, Sitzman, Adams, Lohser, Yang, Zaldivar (b0305) 2020; 780 Lin, Chang, Hsu, Gorsse, Sun, Furuhara, Yeh (b0750) 2020; 36 Gorsse, Hutchinson, Gouné, Banerjee (b0235) 2017; 18 He, Zhang, Yeli, Tong, Wei, Li, Wang, Wang, Kai (b0760) 2020; 183 Ming, Bi, Wang (b0630) 2017; 134 Wang, Wang, Tang, Luo, Luo, Su, Guo, Fu (b0670) 2020; 843 Li, Zhang, Xu, Liu, Qian, Xuan (b0370) 2020; 360 Lin, Liu, An, Wang, Zhang, Liao (b0435) 2018; 6 Guo, Ng, Lu, Liu (b0125) 2011; 109 Kim, Hong, Lee, Kim, Lee, Han, Lee, Song (b0740) 2021; 823 Liu, Xie, Cui, Yi, Xing, Wang, Li (b0660) 2021; 11 Brif, Thomas, Todd (b0355) 2015; 99 Tian, Zhao, Chen, Shibata, Zhang, Tsuji (b0495) 2015; 5 Machirori, Liu, Yin, Wei (b0295) 2021; 195 Lee, Moon, Bae, Park, Kwon, Kato, Kim (b0015) 2021; 134 Melia, Carroll, Whetten, Esmaeely, Locke, White, Anderson, Chandross, Michael, Argibay, Schindelholz, Kustas (b0275) 2019; 29 Nyamekye, Nieminen, Bilesan, Repo, Piili, Salminen (b0280) 2021; 23 Gwalani, Choudhuri, Soni, Ren, Styles, Hwang, Nam, Ryu, Hong, Banerjee (b0735) 2017; 129 Jiang, Huang, Wang, Xiao, Liu, Zhang (b0040) 2021; 876 Zhu, An, Lu, Li, Ng, Liao, Ramamurty, Nai, Wei (b0425) 2019; 7 Haftlang, Asghari-Rad, Moon, Zargaran, Lee, Hong, Kim (b0770) 2021; 202 J. Peng, Z. Li, L. Fu, X. Ji, Z. Pang, Ai. Shan, Carbide precipitation strengthening in fine-grained carbon-doped FeCoCrNiMn high entropy alloy, J. Alloys Compd. 803 (2019) 491-498. https://doi.org/10.1016/j.jallcom.2019.06.204. Li, Xiang, Luan, Amar, Liu, Lu, Zeng, Le, Wang, Qu, Jiang, Yang (b0375) 2019; 35 Singh, Ramakrishna, Singh (b0245) 2017; 25 Laplanche, Kostka, Horst, Eggeler, George (b0390) 2016; 118 Karlsson, Marshal, Johansson, Schuisky, Sahlberg, Schneider, Jansson (b0805) 2019; 784 Zheng, Li, Zhang, Ye, Yang, Gu (b0270) 2021; 37 Lakhdar, Tuck, Binner, Terry, Goodridge (b0260) 2021; 116 Liu, Jin, Guo, Liaw, Qiao (b0585) 2021; 818 Xu, Zhao, Chen, Sun, Chen, Tong, Liu, Zhang (b0730) 2019; 113 Bu, Wu, Lei, Yuan, Wu, Feng, Liu, Ding, Lu, Wang, Lu, Yang (b0085) 2021; 46 Li, Lu, Liu, Dong, Zhao, Yang, Guo (b0200) 2021; 187 Zhou, Liu, Zhou, Li, Wu, Song, Liu, Liang, Liaw (b0480) 2018; 94 Zhou, Liu, Liu, Li, Fang (b0820) 2019; 106 Wu, Bei, Pharr, George (b0035) 2014; 81 Wang, Li, Pang, Li, Dong, Liaw (b0785) 2018; 20 Agrawal, Thapliyal, Nene, Mishra, McWilliams, Cho (b0420) 2020; 32 Senkov, Gorsse, Miracle (b0140) 2019; 175 Chew, Bi, Zhu, Ng, Weng, Liu, Nai, Lee (b0400) 2019; 744 Wu, Yang, Cao, Luan, Jia, Xu, Mu, Zhang, Kong, Tong, Peng, Wang, Zhai, Lu, Liu (b0575) 2021; 204 Han, Wei, Tong, Chen, Zhao, Wang, He, Yang, Zhao, Shimizu, Inoue, Nagai, Hu, Liu, Kai (b0720) 2018; 148 Zhang, Chen, Jayalakshmi, Singh, Deev, Prusov (b0340) 2021; 857 Gwalani, Gorsse, Soni, Carl, Ley, Smith, Ayyagari, Zheng, Young, Mishra, Banerjee (b0540) 2019; 6 Zhang, Zhou, Wang, Zhu, Li, Zhao (b0830) 2019; 743 Yang, Chau, Weng, Chen, Chou (b0350) 2017; 202 Tomihisa, Kaneno, Takasugi (b0835) 2002; 10 Lin, Xu, Jing, Han, Zhao, Minami (b0485) 2020; 32 Gasan, Lökçü, Ozcan, Celik, Celikyurek, Ulutan, Kurtulus (b0165) 2020; 26 Zhang, Zhang, Fan, Yu, Li (b0180) 2019 Chang, Yeh (b0535) 2017; 210 Chae, Sharma, Oh, Ahn (b0230) 2021; 27 Thompson, Su, Voorhees (b0775) 1994; 42 Cho, Fujioka, Nagase, Yasuda (b0610) 2018; 735 Lu, Luo, Yang, Le, Huang, Li (b0640) 2020; 833 Takeuchi, Amiya, Wada, Yubuta (b0110) 2016; 69 Dasari, Chang, Jagetia, Soni, Sharma, Gwalani, Gorsse, Yeh, Banerjee (b0550) 2021; 805 Biswas, Yeh, Bhattacharjee, DeHosson (b0020) 2020; 188 Zheng, Haley, Yang, Yee, Terrassa, Zhou, Lavernia, Schoenung (b0285) 2019; 764 Chen, Phan, Darvish (b0470) 2017; 52 Wu, Wang, Huang, Shu, Sun (b0130) 2020; 262 T. Cao, L. Ma, L. Wang, J. Zhou, Y. Wang, B. Wang, Y. Xue, High temperature deformation behavior of dual-phase Al0.6CoCrFeNi high-entropy alloys, J. Alloys Compd. 836, (2020) 155305. https://doi.org/10.1016/j.jallcom.2020.155305. Qin, Chen, Liaw, Gao, Li, Zheng, Wang, Su, Guo, Fu (b0045) 2019; 172 Luo, Su, Wang (b0915) 2020; 63 Shi, Zhong, Li, Ren, Zheng, Shen, Yang, Peng, Hu, Zhang, Liaw, Zhu (b0595) 2020; 41 Courtney (b0920) 2005 Maresca, Curtin (b0095) 2020; 182 Niu, Li, Fan, Yuan, Zhang (b0430) 2021; 814 Su, Fan, Su, Huang, Tsai, Lu (b0745) 2021; 851 Kotadia, Gibbons, Das, Howes (b0300) 2021; 46 Ma, Liu, Dong, Li, Zhang, Lu, Yu, Li (b0705) 2020; 792 Zhou, Wang, He, Liu, Li, Kai, Wang (b0815) 2020; 35 Joseph, Stanford, Hodgson, Fabijanic (b0410) 2017; 129 Meng, Qiu, Baker (b0600) 2013; 586 Wang, Zhou, Fu, Wang, Luo, Han, Chen, Wang (b0560) 2017; 696 Wang, Zhu, Chen, Wang, Liu, Liu, Zheng, Nai, Primig, Babu, Ringer, Liao (b0490) 2020; 196 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (b0170) 2014; 61 Alshataif, Sivasankaran, Al-Mufadi, Alaboodi, Ammar (b0220) 2020; 26 Xu, Zhu, Wang, Meenashisundaram, Nai, Wei (b0250) 2020; 35 Karthik, Panikar, Ram, Kottada (b0365) 2017; 679 Kong, Dong, Wei, Ni, Zhang, Li, Wang, Man, Li (b0475) 2021; 38 Wu, Wang, Wang, Jia, Yi, Zhai, Liu, Sun, Chu, Shen, Liaw, Liu, Zhang (b0380) 2019; 165 Fu, Jiang, Wardini, MacDonald, Wen, Xiong, Zhang, Zhou, Rupert, Chen, Lavernia (b0890) 2018; 4 Guo, Liu (b0120) 2011; 21 Nartu, Alam, Dasari, Mantri, Gorsse, Siller, Dahotre, Banerjee (b0865) 2020; 9 Basu, De Hosson (b0320) 2020; 187 Liu, Lei, Ma, Liu, Liu, Cui (b0115) 2015; 630 Wu, Zhou, Wei, Ni, Liu, Song (b0840) 2018; 144 Ioroi, Kaneno, Semboshi, Takasugi (b0870) 2019; 5 King, Middleburgh, McGregor, Cortie (b0215) 2016; 104 Prashanth, Eckert (b0455) 2017; 707 Wang, Huang, Ng, Sin, Lu, Nai, Dong, Wei (b0465) 2019; 168 Oblak, Duvall, Paulonis (b0885) 1974; 13 Fujieda, Shiratori, Kuwabara, Hirota, Kato, Yamanaka, Koizumi, Chiba, Watanabe (b0195) 2017; 189 Fujieda, Chen, Shiratori, Kuwabara, Yamanaka, Koizumi, Chiba, Watanabe (b0860) 2019; 25 Chen, Tang, Kuo, Chen, Tsau, Shun, Yeh (b0765) 2010 Wang, Li, Ren, Yang, Fu (b0795) 2008; 491 Matsukawa (b0880) 2019 Chou, Huang, Yang, Lin, Nieh (b0525) 2020; 195 Jiao, Luan, Zhang, Miller, Ma, Liu (b0725) 2013; 61 He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (b0790) 2016; 102 Liang, Wang, Wen, Cheng, Wu, Cao, Xiao, Xue, Sha, Wang, Ren, Li, Wang, Wang, Cai (b0895) 2018; 9 Yang, Liu, Pi (b0850) 2020; 261 Li, Ta Karthik (10.1016/j.matdes.2021.110161_b0365) 2017; 679 Haftlang (10.1016/j.matdes.2021.110161_b0770) 2021; 202 Liu (10.1016/j.matdes.2021.110161_b0620) 2016; 116 Han (10.1016/j.matdes.2021.110161_b0310) 2020; 32 Lin (10.1016/j.matdes.2021.110161_b0435) 2018; 6 Sanchez (10.1016/j.matdes.2021.110161_b0265) 2021; 165 Ma (10.1016/j.matdes.2021.110161_b0705) 2020; 792 Zheng (10.1016/j.matdes.2021.110161_b0285) 2019; 764 Kong (10.1016/j.matdes.2021.110161_b0475) 2021; 38 Dasari (10.1016/j.matdes.2021.110161_b0210) 2020; 830 Lu (10.1016/j.matdes.2021.110161_b0640) 2020; 833 Zhao (10.1016/j.matdes.2021.110161_b0900) 2018; 147 Ding (10.1016/j.matdes.2021.110161_b0545) 2021; 184 He (10.1016/j.matdes.2021.110161_b0790) 2016; 102 Gasan (10.1016/j.matdes.2021.110161_b0165) 2020; 26 Guo (10.1016/j.matdes.2021.110161_b0120) 2011; 21 Zhou (10.1016/j.matdes.2021.110161_b0815) 2020; 35 Qin (10.1016/j.matdes.2021.110161_b0045) 2019; 172 Lu (10.1016/j.matdes.2021.110161_b0315) 2020; 148 Gwalani (10.1016/j.matdes.2021.110161_b0735) 2017; 129 Sistla (10.1016/j.matdes.2021.110161_b0845) 2015; 81 Park (10.1016/j.matdes.2021.110161_b0395) 2020; 35 Wang (10.1016/j.matdes.2021.110161_b0560) 2017; 696 Wang (10.1016/j.matdes.2021.110161_b0795) 2008; 491 Jiao (10.1016/j.matdes.2021.110161_b0725) 2013; 61 Yang (10.1016/j.matdes.2021.110161_b0530) 2018; 33 Fujieda (10.1016/j.matdes.2021.110161_b0860) 2019; 25 Zhou (10.1016/j.matdes.2021.110161_b0480) 2018; 94 Dasari (10.1016/j.matdes.2021.110161_b0550) 2021; 805 Tsai (10.1016/j.matdes.2021.110161_b0520) 2013; 61 Lin (10.1016/j.matdes.2021.110161_b0515) 2020; 36 Gorsse (10.1016/j.matdes.2021.110161_b0235) 2017; 18 Wang (10.1016/j.matdes.2021.110161_b0690) 2017; 126 Xiong (10.1016/j.matdes.2021.110161_b0075) 2020; 186 Kim (10.1016/j.matdes.2021.110161_b0740) 2021; 823 Liang (10.1016/j.matdes.2021.110161_b0895) 2018; 9 Zhang (10.1016/j.matdes.2021.110161_b0135) 2016 Zhu (10.1016/j.matdes.2021.110161_b0425) 2019; 7 Zhang (10.1016/j.matdes.2021.110161_b0830) 2019; 743 Guan (10.1016/j.matdes.2021.110161_b0445) 2019; 761 Jiang (10.1016/j.matdes.2021.110161_b0040) 2021; 876 Wu (10.1016/j.matdes.2021.110161_b0130) 2020; 262 Joseph (10.1016/j.matdes.2021.110161_b0410) 2017; 129 Motaman (10.1016/j.matdes.2021.110161_b0325) 2020; 185 Wu (10.1016/j.matdes.2021.110161_b0575) 2021; 204 Zhao (10.1016/j.matdes.2021.110161_b0645) 2018; 148 George (10.1016/j.matdes.2021.110161_b0150) 2020; 188 Alshataif (10.1016/j.matdes.2021.110161_b0220) 2020; 26 Ma (10.1016/j.matdes.2021.110161_b0060) 2019; 764 Chang (10.1016/j.matdes.2021.110161_b0535) 2017; 210 Meng (10.1016/j.matdes.2021.110161_b0600) 2013; 586 Kwon (10.1016/j.matdes.2021.110161_b0675) 2021; 135 Takeuchi (10.1016/j.matdes.2021.110161_b0100) 2014; 66 Luo (10.1016/j.matdes.2021.110161_b0510) 2020; 31 Li (10.1016/j.matdes.2021.110161_b0685) 2019; 792 Lee (10.1016/j.matdes.2021.110161_b0015) 2021; 134 Qi (10.1016/j.matdes.2021.110161_b0055) 2020; 797 Guo (10.1016/j.matdes.2021.110161_b0125) 2011; 109 Wang (10.1016/j.matdes.2021.110161_b0785) 2018; 20 Zhang (10.1016/j.matdes.2021.110161_b0180) 2019 Xu (10.1016/j.matdes.2021.110161_b0730) 2019; 113 Shahmir (10.1016/j.matdes.2021.110161_b0615) 2016; 676 Hatano (10.1016/j.matdes.2021.110161_b0925) 2006; 74 Maresca (10.1016/j.matdes.2021.110161_b0095) 2020; 182 Svetlizky (10.1016/j.matdes.2021.110161_b0290) 2021 Tian (10.1016/j.matdes.2021.110161_b0495) 2015; 5 Shi (10.1016/j.matdes.2021.110161_b0595) 2020; 41 Hutchinson (10.1016/j.matdes.2021.110161_b0440) 2006; 55 Lin (10.1016/j.matdes.2021.110161_b0750) 2020; 36 Han (10.1016/j.matdes.2021.110161_b0720) 2018; 148 Zhu (10.1016/j.matdes.2021.110161_b0460) 2018; 154 10.1016/j.matdes.2021.110161_b0700 Machirori (10.1016/j.matdes.2021.110161_b0295) 2021; 195 Cantor (10.1016/j.matdes.2021.110161_b0030) 2004; 375–377 10.1016/j.matdes.2021.110161_b0665 Ming (10.1016/j.matdes.2021.110161_b0630) 2017; 134 Singh (10.1016/j.matdes.2021.110161_b0245) 2017; 25 Kang (10.1016/j.matdes.2021.110161_b0590) 2021; 814 Yi (10.1016/j.matdes.2021.110161_b0070) 2021; 27 Luo (10.1016/j.matdes.2021.110161_b0915) 2020; 63 Cheng (10.1016/j.matdes.2021.110161_b0695) 2017; 33 Gypen (10.1016/j.matdes.2021.110161_b0875) 1981; 15 Wu (10.1016/j.matdes.2021.110161_b0190) 2006; 261 He (10.1016/j.matdes.2021.110161_b0760) 2020; 183 Chuang (10.1016/j.matdes.2021.110161_b0160) 2011; 59 Bu (10.1016/j.matdes.2021.110161_b0085) 2021; 46 Guo (10.1016/j.matdes.2021.110161_b0680) 2019; 746 Tomihisa (10.1016/j.matdes.2021.110161_b0835) 2002; 10 Zhang (10.1016/j.matdes.2021.110161_b0360) 2019; 166 Liu (10.1016/j.matdes.2021.110161_b0115) 2015; 630 Zhang (10.1016/j.matdes.2021.110161_b0170) 2014; 61 Tong (10.1016/j.matdes.2021.110161_b0405) 2019; 785 Thapliyal (10.1016/j.matdes.2021.110161_b0415) 2020; 36 Bae (10.1016/j.matdes.2021.110161_b0650) 2019; 781 Gao (10.1016/j.matdes.2021.110161_b0710) 2019; 792 Haftlang (10.1016/j.matdes.2021.110161_b0050) 2021; 302 Pegues (10.1016/j.matdes.2021.110161_b0345) 2021; 37 Biswas (10.1016/j.matdes.2021.110161_b0020) 2020; 188 Eleti (10.1016/j.matdes.2021.110161_b0080) 2019; 171 Chen (10.1016/j.matdes.2021.110161_b0470) 2017; 52 Karlsson (10.1016/j.matdes.2021.110161_b0805) 2019; 784 Liu (10.1016/j.matdes.2021.110161_b0660) 2021; 11 Ioroi (10.1016/j.matdes.2021.110161_b0870) 2019; 5 Tsai (10.1016/j.matdes.2021.110161_b0155) 2014; 2 Agrawal (10.1016/j.matdes.2021.110161_b0420) 2020; 32 Cho (10.1016/j.matdes.2021.110161_b0610) 2018; 735 Xu (10.1016/j.matdes.2021.110161_b0505) 2020; 177 Wu (10.1016/j.matdes.2021.110161_b0840) 2018; 144 Fu (10.1016/j.matdes.2021.110161_b0890) 2018; 4 Li (10.1016/j.matdes.2021.110161_b0905) 2020; 133 Sinha (10.1016/j.matdes.2021.110161_b0330) 2019; 6 Su (10.1016/j.matdes.2021.110161_b0745) 2021; 851 Ma (10.1016/j.matdes.2021.110161_b0780) 2018; 147 King (10.1016/j.matdes.2021.110161_b0215) 2016; 104 Li (10.1016/j.matdes.2021.110161_b0715) 2017; 7 Chen (10.1016/j.matdes.2021.110161_b0765) 2010 Chae (10.1016/j.matdes.2021.110161_b0230) 2021; 27 Niu (10.1016/j.matdes.2021.110161_b0430) 2021; 814 Chew (10.1016/j.matdes.2021.110161_b0400) 2019; 744 Wang (10.1016/j.matdes.2021.110161_b0465) 2019; 168 Oblak (10.1016/j.matdes.2021.110161_b0885) 1974; 13 Wang (10.1016/j.matdes.2021.110161_b0670) 2020; 843 Du (10.1016/j.matdes.2021.110161_b0570) 2020; 11 Chen (10.1016/j.matdes.2021.110161_b0910) 2020; 194 Li (10.1016/j.matdes.2021.110161_b0370) 2020; 360 Li (10.1016/j.matdes.2021.110161_b0375) 2019; 35 Gwalani (10.1016/j.matdes.2021.110161_b0540) 2019; 6 Moghaddam (10.1016/j.matdes.2021.110161_b0240) 2021; 77 Takeuchi (10.1016/j.matdes.2021.110161_b0110) 2016; 69 Prashanth (10.1016/j.matdes.2021.110161_b0455) 2017; 707 Brif (10.1016/j.matdes.2021.110161_b0355) 2015; 99 Thompson (10.1016/j.matdes.2021.110161_b0775) 1994; 42 Huang (10.1016/j.matdes.2021.110161_b0175) 2012; 41 Park (10.1016/j.matdes.2021.110161_b0010) 2020; 26 Lin (10.1016/j.matdes.2021.110161_b0485) 2020; 32 Liu (10.1016/j.matdes.2021.110161_b0585) 2021; 818 Zaddach (10.1016/j.matdes.2021.110161_b0625) 2015; 636 Dasari (10.1016/j.matdes.2021.110161_b0580) 2021; 202 Zhou (10.1016/j.matdes.2021.110161_b0820) 2019; 106 Lakhdar (10.1016/j.matdes.2021.110161_b0260) 2021; 116 Kotadia (10.1016/j.matdes.2021.110161_b0300) 2021; 46 Zhao (10.1016/j.matdes.2021.110161_b0090) 2020; 44 Ming (10.1016/j.matdes.2021.110161_b0655) 2017; 137 Wu (10.1016/j.matdes.2021.110161_b0035) 2014; 81 Senkov (10.1016/j.matdes.2021.110161_b0140) 2019; 175 Fujieda (10.1016/j.matdes.2021.110161_b0195) 2017; 189 Chou (10.1016/j.matdes.2021.110161_b0525) 2020; 195 Haftlang (10.1016/j.matdes.2021.110161_b0855) 2019; 491 Courtney (10.1016/j.matdes.2021.110161_b0920) 2005 Zhang (10.1016/j.matdes.2021.110161_b0340) 2021; 857 Seol (10.1016/j.matdes.2021.110161_b0005) 2020; 194 Nyamekye (10.1016/j.matdes.2021.110161_b0280) 2021; 23 Wu (10.1016/j.matdes.2021.110161_b0380) 2019; 165 Tong (10.1016/j.matdes.2021.110161_b0500) 2020; 285 Kim (10.1016/j.matdes.2021.110161_b0385) 2021; 27 Li (10.1016/j.matdes.2021.110161_b0200) 2021; 187 10.1016/j.matdes.2021.110161_b0065 Wang (10.1016/j.matdes.2021.110161_b0565) 2021; 216 Wang (10.1016/j.matdes.2021.110161_b0825) 2017; 694 Kim (10.1016/j.matdes.2021.110161_b0450) 2019; 805 Yang (10.1016/j.matdes.2021.110161_b0850) 2020; 261 Melia (10.1016/j.matdes.2021.110161_b0275) 2019; 29 Yang (10.1016/j.matdes.2021.110161_b0350) 2017; 202 Peng (10.1016/j.matdes.2021.110161_b0555) 2020; 817 Matsukawa (10.1016/j.matdes.2021.110161_b0880) 2019 Tung (10.1016/j.matdes.2021.110161_b0025) 2007; 61 Ge (10.1016/j.matdes.2021.110161_b0145) 2020; 784 He (10.1016/j.matdes.2021.110161_b0635) 2019; 167 Zhang (10.1016/j.matdes.2021.110161_b0605) 2020; 122 Tsai (10.1016/j.matdes.2021.110161_b0755) 2013; 33 Ng (10.1016/j.matdes.2021.110161_b0335) 2012; 31 Joseph (10.1016/j.matdes.2021.110161_b0800) 2015; 633 Park (10.1016/j.matdes.2021.110161_b0255) 2020; 8 Basu (10.1016/j.matdes.2021.110161_b0320) 2020; 187 Nartu (10.1016/j.matdes.2021.110161_b0865) 2020; 9 Feuerbacher (10.1016/j.matdes.2021.110161_b0105) 2015; 3 Zheng (10.1016/j.matdes.2021.110161_b0270) 2021; 37 Wang (10.1016/j.matdes.2021.110161_b0490) 2020; 196 Kwon (10.1016/j.matdes.2021.110161_b0225) 2020; 188 Laplanche (10.1016/j.matdes.2021.110161_b0390) 2016; 118 Griffiths (10.1016/j.matdes.2021.110161_b0810) 2020; 36 Xu (10.1016/j.matdes.2021.110161_b0250) 2020; 35 Bhardwaj (10.1016/j.matdes.2021.110161_b0185) 2021; 160 Xu (10.1016/j.matdes.2021.110161_b0205) 2021; 190 McLouth (10.1016/j.matdes.2021.110161_b0305) 2020; 780 |
References_xml | – volume: 792 start-page: 139802 year: 2020 ident: b0705 article-title: Interstitial carbide synergistically strengthening high-entropy alloy CoCrFeNiV publication-title: Mater. Sci. Eng. A 792 – volume: 61 start-page: 1 year: 2007 end-page: 5 ident: b0025 article-title: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system publication-title: Mater. Lett. – volume: 18 start-page: 584 year: 2017 end-page: 610 ident: b0235 article-title: Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys publication-title: Sci. Technol. Adv. Mater. – volume: 285 start-page: 116806 year: 2020 ident: b0500 article-title: Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening publication-title: J. Mater. Process. Technol. – volume: 31 start-page: 100925 year: 2020 ident: b0510 article-title: Selective laser melting of dual phase AlCrCuFeNi publication-title: Addit. Manuf. – volume: 21 start-page: 433 year: 2011 end-page: 446 ident: b0120 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog. Nat. Sci – volume: 210 start-page: 111 year: 2017 end-page: 119 ident: b0535 article-title: The formation of cellular precipitate and its effect on the tensile properties of a precipitation strengthened high entropy alloy publication-title: Mater. Chem. Phys. – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: b0170 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 4 start-page: 8712 year: 2018 ident: b0890 article-title: A high-entropy alloy with hierarchical precipitates and ultrahigh strength publication-title: Sci. Adv. – volume: 746 start-page: 356 year: 2019 end-page: 362 ident: b0680 article-title: Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys publication-title: Mater. Sci. Eng. A – volume: 42 start-page: 2107 year: 1994 end-page: 2122 ident: b0775 article-title: The equilibrium shape of a misfitting precipitate publication-title: Acta Metall. Mater. – volume: 679 start-page: 193 year: 2017 end-page: 203 ident: b0365 article-title: Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles publication-title: Mater. Sci. Eng. A – volume: 6 start-page: 100310 year: 2019 ident: b0330 article-title: Revealing the microstructural evolution in a high entropy alloy enabled with transformation, twinning and precipitation publication-title: Materialia – volume: 61 start-page: 4887 year: 2013 end-page: 4897 ident: b0520 article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys publication-title: Acta. Mater. – volume: 26 start-page: 641 year: 2020 end-page: 649 ident: b0010 article-title: Effect of initial grain size on friction stir weldability for rolled and cast CoCrFeMnNi high-entropy alloys publication-title: Met. Mater. Int. – volume: 189 start-page: 148 year: 2017 end-page: 151 ident: b0195 article-title: CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment publication-title: Mater. Let. – volume: 797 start-page: 140056 year: 2020 ident: b0055 article-title: L2 publication-title: Mater. Sci. Eng. A – volume: 41 start-page: 62 year: 2020 end-page: 71 ident: b0595 article-title: Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys publication-title: Mater. Today – volume: 586 start-page: 45 year: 2013 end-page: 52 ident: b0600 article-title: The effects of chromium on the microstructure and tensile behavior of Fe publication-title: Mater. Sci. Eng. A – volume: 122 start-page: 106813 year: 2020 ident: b0605 article-title: A ductile high entropy alloy strengthened by nano sigma phase publication-title: Intermetallics – volume: 23 start-page: 101040 year: 2021 ident: b0280 article-title: Prospects for laser based powder bed fusion in the manufacturing of metal electrodes: a review publication-title: Appl. Mater. Today – volume: 202 start-page: 448 year: 2021 end-page: 462 ident: b0580 article-title: Recovery of cold-worked Al publication-title: Acta Mater. – volume: 11 start-page: 2390 year: 2020 ident: b0570 article-title: Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy publication-title: Nat. Commun. – volume: 33 start-page: 81 year: 2013 end-page: 86 ident: b0755 article-title: Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy publication-title: Intermetallics – volume: 636 start-page: 373 year: 2015 end-page: 378 ident: b0625 article-title: Tensile properties of low-stacking fault energy high-entropy alloys publication-title: Mater. Sci. Eng. A – volume: 694 start-page: 971 year: 2017 end-page: 981 ident: b0825 article-title: Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication publication-title: J. Alloys. Compd. – volume: 35 start-page: 101441 year: 2020 ident: b0250 article-title: Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing publication-title: Addit. Manuf. – volume: 106 start-page: 20 year: 2019 end-page: 25 ident: b0820 article-title: Precipitation behavior of selective laser melted FeCoCrNiC publication-title: Intermetallics 106 – volume: 764 start-page: 138241 year: 2019 ident: b0060 article-title: Coherent precipitation and strengthening in a dual-phase AlNi publication-title: Mater. Sci. Eng. A 764 – volume: 41 start-page: 338 year: 2012 end-page: 343 ident: b0175 article-title: Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate publication-title: Mater. Des. – volume: 175 start-page: 394 year: 2019 end-page: 405 ident: b0140 article-title: High temperature strength of refractory complex concentrated alloys publication-title: Acta Mater. – volume: 94 start-page: 165 year: 2018 end-page: 171 ident: b0480 article-title: Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting publication-title: Intermetallics – volume: 33 start-page: 2983 year: 2018 end-page: 2997 ident: b0530 article-title: L1 publication-title: J. Mater. Res. – volume: 15 start-page: 815 year: 1981 end-page: 820 ident: b0875 article-title: The combination of atomic size and elastic modulus misfit interactions in solid solution hardening publication-title: Scr. Mater. – volume: 743 start-page: 773 year: 2019 end-page: 784 ident: b0830 article-title: AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment publication-title: Mater. Sci. Eng. A – volume: 168 start-page: 107576 year: 2019 ident: b0465 article-title: Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder publication-title: Mater. Des. – volume: 99 start-page: 93 year: 2015 end-page: 96 ident: b0355 article-title: The use of high-entropy alloys in additive manufacturing publication-title: Scr. Mater. – volume: 6 start-page: 236 year: 2018 end-page: 243 ident: b0435 article-title: Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy publication-title: Mater. Res. Let. – volume: 81 start-page: 428 year: 2014 end-page: 441 ident: b0035 article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures publication-title: Acta Mater. – volume: 26 start-page: 310 year: 2020 end-page: 320 ident: b0165 article-title: Effects of Al on the Phase Volume Fractions and Wear Properties in the AlxCoCrFeMoNi high entropy alloy system publication-title: Met. Mater. Int. – volume: 118 start-page: 152 year: 2016 end-page: 163 ident: b0390 article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy publication-title: Acta Mater. – start-page: 5818 year: 2010 end-page: 5825 ident: b0765 article-title: Microstructure and properties of age-hardenable Al publication-title: Mater. Sci. Eng. A 527 – volume: 35 start-page: 2430 year: 2019 end-page: 2434 ident: b0375 article-title: Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition publication-title: J. Mater. Sci. Technol. – volume: 116 start-page: 100736 year: 2021 ident: b0260 article-title: Additive manufacturing of advanced ceramic materials publication-title: Prog. Mater. Sci. – volume: 814 start-page: 141264 year: 2021 ident: b0430 article-title: Additive manufacturing of TRIP-assisted dual-phases Fe publication-title: Mater. Sci. Eng. A – volume: 744 start-page: 137 year: 2019 end-page: 144 ident: b0400 article-title: Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy publication-title: Mater. Sci. Eng. A – volume: 33 start-page: 2032 year: 2017 end-page: 2039 ident: b0695 article-title: Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: microstructure and mechanical properties publication-title: Mater. Sci. Technol. – volume: 360 start-page: 509 year: 2020 end-page: 521 ident: b0370 article-title: Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: process, particle behavior and effects publication-title: Powder Technol. – volume: 8 start-page: 1 year: 2020 end-page: 7 ident: b0255 article-title: Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting publication-title: Mater. Res. Lett. – volume: 185 start-page: 340 year: 2020 end-page: 369 ident: b0325 article-title: Anisotropic polycrystal plasticity due to microstructural heterogeneity: a multi-scale experimental and numerical study on additively manufactured metallic materials publication-title: Acta Mater. – volume: 25 start-page: 412 year: 2019 end-page: 420 ident: b0860 article-title: Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting publication-title: Addit. Manuf. – year: 2019 ident: b0880 article-title: Crystallography of Precipitates in Metals and Alloys: (2) Impact of Crystallography on Precipitation Hardening Crystallography, Takashiro Akitsu publication-title: IntechOpen – volume: 27 start-page: 2387 year: 2021 end-page: 2394 ident: b0070 article-title: Novel, Equimolar, Multiphase CoCuNiTiV high-entropy alloy: phase component, microstructure, and compressive properties publication-title: Met. Mater. Int. – volume: 116 start-page: 332 year: 2016 end-page: 342 ident: b0620 article-title: Ductile CoCrFeNiMo publication-title: Acta Mater. – volume: 32 start-page: 1903855 year: 2020 ident: b0310 article-title: Recent Advances on High-Entropy Alloys for 3D Printing publication-title: Adv. Mater. – volume: 817 start-page: 152750 year: 2020 ident: b0555 article-title: On the correlation between L1 publication-title: J. Alloys Compd. – volume: 134 start-page: 194 year: 2017 end-page: 201 ident: b0630 article-title: Microstructures and deformation mechanisms of Cr publication-title: Mater. Charact. – volume: 764 start-page: 138243 year: 2019 ident: b0285 article-title: On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition publication-title: Mater. Sci. Eng. A – volume: 818 start-page: 141386 year: 2021 ident: b0585 article-title: Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination publication-title: Mater. Sci. Eng. A – volume: 785 start-page: 1144 year: 2019 end-page: 1159 ident: b0405 article-title: Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property publication-title: J. Alloys Compd. – volume: 814 start-page: 141249 year: 2021 ident: b0590 article-title: Role of recrystallization and second phases on mechanical properties of (CoCrFeMnNi) publication-title: Mater. Sci. Eng. A 814 – volume: 188 start-page: 140 year: 2020 end-page: 145 ident: b0225 article-title: Precipitation-driven metastability engineering of carbon-doped CoCrFeNiMo medium-entropy alloys at cryogenic temperature publication-title: Scr. Mater. – volume: 190 start-page: 109663 year: 2021 ident: b0205 article-title: Remarkable cavitation erosion–corrosion resistance of CoCrFeNiTiMo high-entropy alloy coatings publication-title: Corros. Sci. – volume: 29 start-page: 100833 year: 2019 ident: b0275 article-title: Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy publication-title: Addit. Manuf. – reference: J. Peng, Z. Li, L. Fu, X. Ji, Z. Pang, Ai. Shan, Carbide precipitation strengthening in fine-grained carbon-doped FeCoCrNiMn high entropy alloy, J. Alloys Compd. 803 (2019) 491-498. https://doi.org/10.1016/j.jallcom.2019.06.204. – volume: 6 start-page: 100282 year: 2019 ident: b0540 article-title: Role of copper on L1 publication-title: Materialia – volume: 5 start-page: 16707 year: 2015 ident: b0495 article-title: Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes publication-title: Sci. Rep. – volume: 147 start-page: 184 year: 2018 end-page: 194 ident: b0900 article-title: Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr) publication-title: Acta Mater. – volume: 129 start-page: 170 year: 2017 end-page: 182 ident: b0735 article-title: Cu assisted stabilization and nucleation of L1 publication-title: Acta Mater. – volume: 9 start-page: 100522 year: 2020 ident: b0865 article-title: Enhanced tensile yield strength in laser additively manufactured Al publication-title: Materialia 9 – volume: 696 start-page: 503 year: 2017 end-page: 510 ident: b0560 article-title: Effect of coherent L1 publication-title: Mater. Sci. Eng. A – volume: 167 start-page: 275 year: 2019 end-page: 286 ident: b0635 article-title: Design of D0 publication-title: Acta Mater. – volume: 630 start-page: 151 year: 2015 end-page: 157 ident: b0115 article-title: On the microstructures, phase assemblages and properties of Al publication-title: J. Alloys Compd. – volume: 262 start-page: 127175 year: 2020 ident: b0130 article-title: CALPHAD aided eutectic high-entropy alloy design publication-title: Mater. Lett. – volume: 10 start-page: 247 year: 2002 end-page: 254 ident: b0835 article-title: Phase relation and microstructure in Ni publication-title: Intermetallics – volume: 66 start-page: 1984 year: 2014 end-page: 1992 ident: b0100 article-title: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams publication-title: JOM – volume: 195 start-page: 71 year: 2020 end-page: 80 ident: b0525 article-title: Consideration of kinetics on intermetallics formation in solid-solution high entropy alloys publication-title: Acta. Mater. – volume: 830 start-page: 154707 year: 2020 ident: b0210 article-title: Engineering multi-scale B2 precipitation in a heterogeneous FCC based microstructure to enhance the mechanical properties of a Al publication-title: J. Alloys Compd. – volume: 5 start-page: 100173 year: 2019 ident: b0870 article-title: Effect of transition metal addition on microstructure and hardening behavior of two-phase Ni publication-title: Materialia – volume: 44 start-page: 133 year: 2020 end-page: 139 ident: b0090 article-title: Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure publication-title: J. Mater. Sci. Technol. – volume: 46 start-page: 102155 year: 2021 ident: b0300 article-title: A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties publication-title: Addit. Manuf. – volume: 823 start-page: 141763 year: 2021 ident: b0740 article-title: Development of coherent-precipitate-hardened high-entropy alloys with hierarchical NiAl/Ni publication-title: Mater. Sci. Eng. A – volume: 77 start-page: 131 year: 2021 end-page: 162 ident: b0240 article-title: Additive manufacturing of high entropy alloys: a practical review publication-title: J. Mater. Sci. Technol. – volume: 184 start-page: 109365 year: 2021 ident: b0545 article-title: Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L1 publication-title: Corros. Sci. – volume: 676 start-page: 294 year: 2016 end-page: 303 ident: b0615 article-title: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion publication-title: Mater. Sci. Eng. A – volume: 59 start-page: 6308 year: 2011 end-page: 6317 ident: b0160 article-title: Microstructure and wear behavior of Al publication-title: Acta Mater. – volume: 7 start-page: 40704 year: 2017 ident: b0715 article-title: Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys publication-title: Sci. Rep. – volume: 9 start-page: 4063 year: 2018 ident: b0895 article-title: High-content ductile coherent precipitates achieve ultrastrong high-entropy alloys publication-title: Nat. Commun. – volume: 165 start-page: 103729 year: 2021 ident: b0265 article-title: Powder bed fusion of nickel-based superalloys: a review publication-title: Int. J. Mach. Tools Manuf. – volume: 126 start-page: 346 year: 2017 end-page: 360 ident: b0690 article-title: The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe publication-title: Acta Mater. – volume: 147 start-page: 213 year: 2018 end-page: 225 ident: b0780 article-title: Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al publication-title: Acta Mater. – volume: 784 start-page: 195 year: 2019 end-page: 203 ident: b0805 article-title: Elemental segregation in an AlCoCrFeNi high-entropy alloy – a comparison between selective laser melting and induction melting publication-title: J. Alloys. Compd. – year: 2021 ident: b0290 article-title: Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications publication-title: Mater. Today – volume: 792 start-page: 1028 year: 2019 end-page: 1035 ident: b0710 article-title: Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation publication-title: J. Alloys Compd. – volume: 81 start-page: 113 year: 2015 end-page: 121 ident: b0845 article-title: Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of Al publication-title: Mater. Des. – volume: 202 start-page: 114013 year: 2021 ident: b0770 article-title: Simultaneous effects of deformation-induced plasticity and precipitation hardening in metastable non-equiatomic FeNiCoMnTiSi ferrous medium-entropy alloy at room and liquid nitrogen temperatures publication-title: Scr. Mater. – volume: 781 start-page: 75 year: 2019 end-page: 83 ident: b0650 article-title: Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys publication-title: J. Alloys Compd. – volume: 13 start-page: 51 year: 1974 end-page: 56 ident: b0885 article-title: An estimate of the strengthening arising from coherent, tetragonally-distorted particles publication-title: Mater. Sci. Eng. – volume: 74 start-page: 020102(R) year: 2006 ident: b0925 article-title: Dynamics of a dislocation bypassing an impenetrable precipitate: The Hirsch mechanism revisited publication-title: Phys. Rev. B – volume: 134 start-page: 107202 year: 2021 ident: b0015 article-title: Temperature-and strain-dependent thermally-activated deformation mechanism of a ferrous medium-entropy alloy publication-title: Intermetallics – volume: 182 start-page: 235 year: 2020 end-page: 249 ident: b0095 article-title: Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K publication-title: Acta Mater. – volume: 52 start-page: 7415 year: 2017 end-page: 7427 ident: b0470 article-title: Grain growth during selective laser melting of a Co-CrMo alloy publication-title: J. Mater. Sci. – volume: 177 start-page: 108954 year: 2020 ident: b0505 article-title: Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing publication-title: Corros. Sci. – volume: 735 start-page: 191 year: 2018 end-page: 200 ident: b0610 article-title: Grain refinement of non-equiatomic Cr-rich CoCrFeMnNi high-entropy alloys through combination of cold rolling and precipitation of σ phase publication-title: Mater. Sci. Eng. A – volume: 11 start-page: 486 year: 2021 ident: b0660 article-title: Effect of Mo element on the mechanical properties and tribological responses of CoCrFeNiMo publication-title: Metals – volume: 851 start-page: 156909 year: 2021 ident: b0745 article-title: Lattice distortion and atomic ordering of the sigma precipitates in CoCrFeNiMo high-entropy alloy publication-title: J. Alloys Compd. – volume: 204 start-page: 114066 year: 2021 ident: b0575 article-title: Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries publication-title: Scr. Mater. – volume: 261 start-page: 513 year: 2006 end-page: 519 ident: b0190 article-title: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content publication-title: Wear – volume: 61 start-page: 5996 year: 2013 end-page: 6005 ident: b0725 article-title: Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels publication-title: Acta. Mater. – volume: 3 start-page: 1 year: 2015 end-page: 6 ident: b0105 article-title: Hexagonal high-entropy alloys publication-title: Mater. Res. Lett. – volume: 37 start-page: 101598 year: 2021 ident: b0345 article-title: Exploring additive manufacturing as a high-throughput screening tool for multiphase high entropy alloys publication-title: Addit. Manuf. – volume: 196 start-page: 609 year: 2020 end-page: 625 ident: b0490 article-title: Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting publication-title: Acta Mater. – volume: 188 start-page: 54 year: 2020 end-page: 58 ident: b0020 article-title: High entropy alloys: key issues under passionate debate publication-title: Scr. Mater. – volume: 20 start-page: 878 year: 2018 ident: b0785 article-title: Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review publication-title: Entropy – volume: 172 start-page: 51 year: 2019 end-page: 55 ident: b0045 article-title: A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates publication-title: Scr. Mater. – volume: 183 start-page: 111 year: 2020 end-page: 116 ident: b0760 article-title: Anomalous effect of lattice misfit on the coarsening behavior of multicomponent L1 publication-title: Scr. Mater. – volume: 32 start-page: 101098 year: 2020 ident: b0420 article-title: Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing publication-title: Addit. Manuf. – year: 2005 ident: b0920 article-title: Mechanical Behavior of Materials – volume: 129 start-page: 30 year: 2017 end-page: 34 ident: b0410 article-title: Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy publication-title: Scr. Mater. – volume: 135 start-page: 107212 year: 2021 ident: b0675 article-title: Synergetic strengthening from grain refinement and nano-scale precipitates in non-equiatomic CoCrFeNiMo medium-entropy alloy publication-title: Intermetallics – volume: 707 start-page: 27 year: 2017 end-page: 34 ident: b0455 article-title: Formation of metastable cellular microstructures in selective laser melted alloys publication-title: J. Alloy. Compd. – volume: 35 start-page: 101410 year: 2020 ident: b0815 article-title: A precipitation-strengthened high-entropy alloy for additive manufacturing publication-title: Addit. Manuf. – volume: 194 start-page: 108966 year: 2020 ident: b0910 article-title: In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion publication-title: Mater. Des. – volume: 843 year: 2020 ident: b0670 article-title: Microstructure and mechanical properties of CoCrFeNiW publication-title: J. Alloys Compd. – volume: 113 start-page: 99 year: 2019 end-page: 110 ident: b0730 article-title: Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel publication-title: Int. J. Plast. – start-page: 399 year: 2016 end-page: 444 ident: b0135 article-title: CALPHAD modeling of high-entropy alloys publication-title: High-entropy Alloys: Fundamental and Applications – volume: 37 start-page: 101660 year: 2021 ident: b0270 article-title: The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition publication-title: Addit. Manuf. – volume: 36 start-page: 101443 year: 2020 ident: b0810 article-title: Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy publication-title: Addit. Manuf. – volume: 857 start-page: 157625 year: 2021 ident: b0340 article-title: Factors determining solid solution phase formation and stability in CoCrFeNiX publication-title: J. Alloys Compd. – volume: 188 start-page: 435 year: 2020 end-page: 474 ident: b0150 article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms publication-title: Acta Mater. – volume: 491 start-page: 154 year: 2008 end-page: 158 ident: b0795 article-title: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy publication-title: Mater. Sci. Eng. A – volume: 27 start-page: 629 year: 2021 end-page: 638 ident: b0230 article-title: Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio processed by powder metallurgy publication-title: Met. Mater. Int. – volume: 36 start-page: 101455 year: 2020 ident: b0415 article-title: Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. – volume: 38 start-page: 101804 year: 2021 ident: b0475 article-title: About metastable cellular structure in additively manufactured austenitic stainless steels publication-title: Addit. Manuf. – volume: 805 start-page: 680 year: 2019 end-page: 691 ident: b0450 article-title: Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: microstructure, anisotropic mechanical response, and multiple strengthening mechanism publication-title: J. Alloys Compd. – volume: 104 start-page: 172 year: 2016 end-page: 179 ident: b0215 article-title: Predicting the formation and stability of single phase high-entropy alloys publication-title: Acta Mater. – volume: 36 start-page: 101591 year: 2020 ident: b0515 article-title: A strong, ductile, high-entropy FeCoCrNi alloy with fine grains fabricated via additive manufacturing and a single cold deformation and annealing cycle publication-title: Addit. Manuf. – volume: 63 start-page: 1279 year: 2020 end-page: 1290 ident: b0915 article-title: Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting publication-title: Sci. China Mater. – volume: 2 start-page: 107 year: 2014 end-page: 123 ident: b0155 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. – volume: 25 start-page: 185 year: 2017 end-page: 200 ident: b0245 article-title: Material issues in additive manufacturing: a review publication-title: J. Manuf. Process. – volume: 194 start-page: 366 year: 2020 end-page: 377 ident: b0005 article-title: Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications publication-title: Acta Mater. – volume: 876 start-page: 160102 year: 2021 ident: b0040 article-title: Unique hot deformation behavior and microstructure evolution of a dual FCC-phase CoCrCu publication-title: J. Alloys Compd. – volume: 35 start-page: 101333 year: 2020 ident: b0395 article-title: Synergetic strengthening of additively manufactured (CoCrFeMnNi) publication-title: Addit. Manuf. – volume: 805 start-page: 140551 year: 2021 ident: b0550 article-title: Discontinuous precipitation leading to nano-rod intermetallic precipitates in an Al publication-title: Mater. Sci. Eng. A 805 – volume: 144 start-page: 605 year: 2018 end-page: 610 ident: b0840 article-title: Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting publication-title: Mater. Charact. – volume: 31 start-page: 165 year: 2012 end-page: 172 ident: b0335 article-title: Entropy-driven phase stability and slow diffusion kinetics in an Al publication-title: Intermetallics – volume: 187 year: 2021 ident: b0200 article-title: Al publication-title: Corros. Sci. – volume: 195 start-page: 110462 year: 2021 ident: b0295 article-title: Spatiotemporal variations of residual stresses during multi-track and multi-layer deposition for laser powder bed fusion of Ti-6Al-4V publication-title: Comput. Mater. Sci. – reference: T. Cao, L. Ma, L. Wang, J. Zhou, Y. Wang, B. Wang, Y. Xue, High temperature deformation behavior of dual-phase Al0.6CoCrFeNi high-entropy alloys, J. Alloys Compd. 836, (2020) 155305. https://doi.org/10.1016/j.jallcom.2020.155305. – volume: 216 start-page: 117121 year: 2021 ident: b0565 article-title: Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy publication-title: Acta Mater. – volume: 148 start-page: 51 year: 2018 end-page: 55 ident: b0645 article-title: Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates publication-title: Scr. Mater. – volume: 202 start-page: 151 year: 2017 end-page: 158 ident: b0350 article-title: Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process publication-title: Mater. Chem. Phys. – volume: 133 start-page: 102819 year: 2020 ident: b0905 article-title: Unraveling the dislocation–precipitate interactions in high-entropy alloys publication-title: Int. J. Plast. – volume: 784 start-page: 139275 year: 2020 ident: b0145 article-title: Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy publication-title: Mater. Sci. Eng. A – volume: 187 start-page: 148 year: 2020 end-page: 156 ident: b0320 article-title: Strengthening mechanisms in high entropy alloys: fundamental issues publication-title: Scr. Mater. – volume: 26 start-page: 1099 year: 2020 end-page: 1133 ident: b0220 article-title: Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review publication-title: Met. Mater. Int. – volume: 186 start-page: 336 year: 2020 end-page: 340 ident: b0075 article-title: High-strength and high-ductility AlCoCrFeNi publication-title: Scr. Mater. – year: 2019 ident: b0180 article-title: Novel Co-free CrFeNiNb publication-title: Mater. Sci. Eng. A 764 – volume: 833 start-page: 155074 year: 2020 ident: b0640 article-title: Co-free non-equilibrium medium-entropy alloy with outstanding tensile properties publication-title: J. Alloy. Compd. – volume: 165 start-page: 444 year: 2019 end-page: 458 ident: b0380 article-title: Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure publication-title: Acta Mater. – volume: 633 start-page: 184 year: 2015 end-page: 193 ident: b0800 article-title: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al publication-title: Mater. Sci. Eng. A – volume: 780 start-page: 139184 year: 2020 ident: b0305 article-title: Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control publication-title: Mater. Sci. Eng. A – volume: 109 start-page: 103505 year: 2011 ident: b0125 article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys publication-title: J. Appl. Phys. – volume: 55 start-page: 299 year: 2006 end-page: 302 ident: b0440 article-title: On dislocation accumulation and work hardening in Hadfield steel publication-title: Scr. Mater. – volume: 69 start-page: 103 year: 2016 end-page: 109 ident: b0110 article-title: Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy publication-title: Intermetallics – reference: Z. Niu, Y. Wang, C. Geng, J. Xu, Y. Wang, Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x = 0, 0.2, 0.5, 0.8, 1) high entropy alloys, J. Alloys Compd. 820 (2020) 153273. https://doi.org/10.1016/j.jallcom.2019.153273. – volume: 148 start-page: 42 year: 2018 end-page: 46 ident: b0720 article-title: Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy publication-title: Scr. Mater. – volume: 261 start-page: 127004 year: 2020 ident: b0850 article-title: Microstructure and wear behavior of the AlCrFeCoNi high-entropy alloy fabricated by additive manufacturing publication-title: Mater. Lett. – volume: 375–377 start-page: 213 year: 2004 end-page: 218 ident: b0030 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. – volume: 166 start-page: 424 year: 2019 end-page: 434 ident: b0360 article-title: The effect of randomness on the strength of high-entropy alloys publication-title: Acta Mater. – volume: 27 start-page: 2300 year: 2021 end-page: 2309 ident: b0385 article-title: Constitutive modeling with critical twinning stress in CoCrFeMnNi high entropy alloy at cryogenic temperature and room temperature publication-title: Met. Mater. Int. – volume: 154 start-page: 20 year: 2018 end-page: 24 ident: b0460 article-title: Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting publication-title: Scr. Mater. – volume: 46 start-page: 28 year: 2021 end-page: 34 ident: b0085 article-title: Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys publication-title: Mater. Today – volume: 792 start-page: 170 year: 2019 end-page: 179 ident: b0685 article-title: Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys publication-title: J. Alloys Compd. – volume: 761 start-page: 138056 year: 2019 ident: b0445 article-title: Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping publication-title: Mater. Sci. Eng. A – volume: 7 start-page: 453 year: 2019 end-page: 459 ident: b0425 article-title: Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy publication-title: Mater. Res. Lett – volume: 137 start-page: 88 year: 2017 end-page: 93 ident: b0655 article-title: Precipitation strengthening of ductile Cr publication-title: Scr. Mater. – volume: 36 start-page: 101601 year: 2020 ident: b0750 article-title: Microstructure and tensile property of a precipitation strengthened high entropy alloy processed by selective laser melting and post heat treatment publication-title: Addit. Manuf. – volume: 302 start-page: 130391 year: 2021 ident: b0050 article-title: Superior phase transformation-assisted mechanical properties of a metastable medium-entropy ferrous alloy with heterogeneous microstructure publication-title: Mater. Lett. – volume: 148 start-page: 103475 year: 2020 ident: b0315 article-title: High-performance integrated additive manufacturing with laser shock peening –induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components publication-title: Int. J. Mach. Tools Manuf. – volume: 102 start-page: 187 year: 2016 end-page: 196 ident: b0790 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater. – volume: 171 start-page: 132 year: 2019 end-page: 145 ident: b0080 article-title: Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy publication-title: Acta Mater. – volume: 160 start-page: 107031 year: 2021 ident: b0185 article-title: Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys publication-title: Tribol. Int. – volume: 491 start-page: 360 year: 2019 end-page: 373 ident: b0855 article-title: The wear induced crystallographic texture transition in Ti-29Nb-14Ta-4.5Zr alloy publication-title: Appl. Surf. Sci. – volume: 32 start-page: 101058 year: 2020 ident: b0485 article-title: Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting publication-title: Addit. Manuf. – volume: 744 start-page: 137 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0400 article-title: Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.12.005 – volume: 202 start-page: 151 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0350 article-title: Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.09.014 – volume: 102 start-page: 187 year: 2016 ident: 10.1016/j.matdes.2021.110161_b0790 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.076 – volume: 113 start-page: 99 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0730 article-title: Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.09.009 – volume: 9 start-page: 4063 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0895 article-title: High-content ductile coherent precipitates achieve ultrastrong high-entropy alloys publication-title: Nat. Commun. doi: 10.1038/s41467-018-06600-8 – ident: 10.1016/j.matdes.2021.110161_b0665 doi: 10.1016/j.jallcom.2019.153273 – volume: 81 start-page: 428 year: 2014 ident: 10.1016/j.matdes.2021.110161_b0035 article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.08.026 – volume: 46 start-page: 28 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0085 article-title: Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys publication-title: Mater. Today doi: 10.1016/j.mattod.2021.02.022 – volume: 33 start-page: 81 year: 2013 ident: 10.1016/j.matdes.2021.110161_b0755 article-title: Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2012.09.022 – volume: 182 start-page: 235 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0095 article-title: Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.10.015 – volume: 194 start-page: 108966 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0910 article-title: In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108966 – volume: 857 start-page: 157625 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0340 article-title: Factors determining solid solution phase formation and stability in CoCrFeNiX0.4 (X=Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157625 – volume: 188 start-page: 140 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0225 article-title: Precipitation-driven metastability engineering of carbon-doped CoCrFeNiMo medium-entropy alloys at cryogenic temperature publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.07.023 – volume: 35 start-page: 101333 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0395 article-title: Synergetic strengthening of additively manufactured (CoCrFeMnNi)99C1 high-entropy alloy by heterogeneous anisotropic microstructure publication-title: Addit. Manuf. – volume: 31 start-page: 100925 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0510 article-title: Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms publication-title: Addit. Manuf. – volume: 36 start-page: 101591 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0515 article-title: A strong, ductile, high-entropy FeCoCrNi alloy with fine grains fabricated via additive manufacturing and a single cold deformation and annealing cycle publication-title: Addit. Manuf. – volume: 148 start-page: 51 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0645 article-title: Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.01.028 – volume: 491 start-page: 154 issue: 1-2 year: 2008 ident: 10.1016/j.matdes.2021.110161_b0795 article-title: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.01.064 – volume: 166 start-page: 424 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0360 article-title: The effect of randomness on the strength of high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.12.032 – volume: 190 start-page: 109663 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0205 article-title: Remarkable cavitation erosion–corrosion resistance of CoCrFeNiTiMo high-entropy alloy coatings publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.109663 – volume: 830 start-page: 154707 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0210 article-title: Engineering multi-scale B2 precipitation in a heterogeneous FCC based microstructure to enhance the mechanical properties of a Al0.5Co1.5CrFeNi1.5 high entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154707 – volume: 184 start-page: 109365 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0545 article-title: Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L12-strengthened FeCoCrNi high-entropy alloys publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.109365 – volume: 195 start-page: 71 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0525 article-title: Consideration of kinetics on intermetallics formation in solid-solution high entropy alloys publication-title: Acta. Mater. doi: 10.1016/j.actamat.2020.05.015 – volume: 167 start-page: 275 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0635 article-title: Design of D022 superlattice with superior strengthening effect in high entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.01.048 – volume: 38 start-page: 101804 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0475 article-title: About metastable cellular structure in additively manufactured austenitic stainless steels publication-title: Addit. Manuf. – volume: 189 start-page: 148 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0195 article-title: CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment publication-title: Mater. Let. doi: 10.1016/j.matlet.2016.11.026 – volume: 94 start-page: 165 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0480 article-title: Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting publication-title: Intermetallics doi: 10.1016/j.intermet.2018.01.002 – volume: 160 start-page: 107031 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0185 article-title: Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys publication-title: Tribol. Int. doi: 10.1016/j.triboint.2021.107031 – volume: 814 start-page: 141264 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0430 article-title: Additive manufacturing of TRIP-assisted dual-phases Fe50Mn30Co10Cr10 high-entropy alloy: microstructure evolution, mechanical properties and deformation mechanisms publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.141264 – volume: 285 start-page: 116806 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0500 article-title: Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2020.116806 – volume: 781 start-page: 75 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0650 article-title: Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.12.040 – volume: 491 start-page: 360 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0855 article-title: The wear induced crystallographic texture transition in Ti-29Nb-14Ta-4.5Zr alloy publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.06.087 – volume: 26 start-page: 1099 issue: 8 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0220 article-title: Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00565-z – volume: 61 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.matdes.2021.110161_b0025 article-title: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system publication-title: Mater. Lett. doi: 10.1016/j.matlet.2006.03.140 – volume: 11 start-page: 2390 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0570 article-title: Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy publication-title: Nat. Commun. doi: 10.1038/s41467-020-16085-z – volume: 18 start-page: 584 issue: 1 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0235 article-title: Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2017.1361305 – volume: 187 start-page: 148 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0320 article-title: Strengthening mechanisms in high entropy alloys: fundamental issues publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.06.019 – volume: 743 start-page: 773 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0830 article-title: AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.11.118 – volume: 148 start-page: 103475 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0315 article-title: High-performance integrated additive manufacturing with laser shock peening –induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2019.103475 – volume: 196 start-page: 609 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0490 article-title: Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.07.006 – volume: 792 start-page: 170 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0685 article-title: Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.03.403 – volume: 154 start-page: 20 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0460 article-title: Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.05.015 – volume: 61 start-page: 4887 issue: 13 year: 2013 ident: 10.1016/j.matdes.2021.110161_b0520 article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys publication-title: Acta. Mater. doi: 10.1016/j.actamat.2013.04.058 – volume: 792 start-page: 139802 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0705 article-title: Interstitial carbide synergistically strengthening high-entropy alloy CoCrFeNiV0.5Cx publication-title: Mater. Sci. Eng. A 792 doi: 10.1016/j.msea.2020.139802 – volume: 2 start-page: 107 issue: 3 year: 2014 ident: 10.1016/j.matdes.2021.110161_b0155 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.912690 – volume: 168 start-page: 107576 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0465 article-title: Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.107576 – volume: 735 start-page: 191 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0610 article-title: Grain refinement of non-equiatomic Cr-rich CoCrFeMnNi high-entropy alloys through combination of cold rolling and precipitation of σ phase publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.08.038 – volume: 194 start-page: 366 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0005 article-title: Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.04.052 – volume: 792 start-page: 1028 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0710 article-title: Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.04.121 – volume: 36 start-page: 101455 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0415 article-title: Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. – volume: 59 start-page: 6308 issue: 16 year: 2011 ident: 10.1016/j.matdes.2021.110161_b0160 article-title: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.06.041 – volume: 187 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0200 article-title: AlxCoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25% NaCl at 900 °C publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.109479 – volume: 8 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0255 article-title: Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2019.1638844 – volume: 785 start-page: 1144 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0405 article-title: Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.01.213 – volume: 814 start-page: 141249 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0590 article-title: Role of recrystallization and second phases on mechanical properties of (CoCrFeMnNi)95.2Al3.2Ti1.6 high entropy alloy publication-title: Mater. Sci. Eng. A 814 doi: 10.1016/j.msea.2021.141249 – volume: 805 start-page: 140551 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0550 article-title: Discontinuous precipitation leading to nano-rod intermetallic precipitates in an Al0.2Ti0.3Co1.5CrFeNi1.5 high entropy alloy results in an excellent strength-ductility combination publication-title: Mater. Sci. Eng. A 805 doi: 10.1016/j.msea.2020.140551 – volume: 833 start-page: 155074 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0640 article-title: Co-free non-equilibrium medium-entropy alloy with outstanding tensile properties publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.155074 – year: 2019 ident: 10.1016/j.matdes.2021.110161_b0180 article-title: Novel Co-free CrFeNiNb0.1Tix high-entropy alloys with ultra-high hardness and strength publication-title: Mater. Sci. Eng. A 764 – start-page: 5818 year: 2010 ident: 10.1016/j.matdes.2021.110161_b0765 article-title: Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys publication-title: Mater. Sci. Eng. A 527 doi: 10.1016/j.msea.2010.05.052 – volume: 32 start-page: 101058 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0485 article-title: Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting publication-title: Addit. Manuf. – volume: 195 start-page: 110462 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0295 article-title: Spatiotemporal variations of residual stresses during multi-track and multi-layer deposition for laser powder bed fusion of Ti-6Al-4V publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110462 – volume: 784 start-page: 195 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0805 article-title: Elemental segregation in an AlCoCrFeNi high-entropy alloy – a comparison between selective laser melting and induction melting publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2018.12.267 – volume: 129 start-page: 30 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0410 article-title: Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.10.023 – volume: 25 start-page: 185 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0245 article-title: Material issues in additive manufacturing: a review publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2016.11.006 – volume: 118 start-page: 152 year: 2016 ident: 10.1016/j.matdes.2021.110161_b0390 article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.038 – year: 2019 ident: 10.1016/j.matdes.2021.110161_b0880 article-title: Crystallography of Precipitates in Metals and Alloys: (2) Impact of Crystallography on Precipitation Hardening Crystallography, Takashiro Akitsu publication-title: IntechOpen – volume: 99 start-page: 93 year: 2015 ident: 10.1016/j.matdes.2021.110161_b0355 article-title: The use of high-entropy alloys in additive manufacturing publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.11.037 – volume: 216 start-page: 117121 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0565 article-title: Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117121 – volume: 676 start-page: 294 year: 2016 ident: 10.1016/j.matdes.2021.110161_b0615 article-title: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.08.118 – volume: 23 start-page: 101040 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0280 article-title: Prospects for laser based powder bed fusion in the manufacturing of metal electrodes: a review publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2021.101040 – volume: 636 start-page: 373 year: 2015 ident: 10.1016/j.matdes.2021.110161_b0625 article-title: Tensile properties of low-stacking fault energy high-entropy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.03.109 – volume: 185 start-page: 340 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0325 article-title: Anisotropic polycrystal plasticity due to microstructural heterogeneity: a multi-scale experimental and numerical study on additively manufactured metallic materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.12.003 – volume: 81 start-page: 113 year: 2015 ident: 10.1016/j.matdes.2021.110161_b0845 article-title: Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2−x (x = 0.3, 1) high entropy alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.05.027 – volume: 761 start-page: 138056 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0445 article-title: Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138056 – volume: 32 start-page: 1903855 issue: 26 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0310 article-title: Recent Advances on High-Entropy Alloys for 3D Printing publication-title: Adv. Mater. doi: 10.1002/adma.201903855 – volume: 843 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0670 article-title: Microstructure and mechanical properties of CoCrFeNiWx high entropy alloys reinforced by μ phase particles publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155997 – volume: 31 start-page: 165 year: 2012 ident: 10.1016/j.matdes.2021.110161_b0335 article-title: Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2012.07.001 – volume: 633 start-page: 184 year: 2015 ident: 10.1016/j.matdes.2021.110161_b0800 article-title: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.02.072 – volume: 5 start-page: 16707 year: 2015 ident: 10.1016/j.matdes.2021.110161_b0495 article-title: Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes publication-title: Sci. Rep. doi: 10.1038/srep16707 – volume: 764 start-page: 138243 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0285 article-title: On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138243 – volume: 116 start-page: 100736 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0260 article-title: Additive manufacturing of advanced ceramic materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100736 – volume: 165 start-page: 103729 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0265 article-title: Powder bed fusion of nickel-based superalloys: a review publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2021.103729 – volume: 817 start-page: 152750 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0555 article-title: On the correlation between L12 nanoparticles and mechanical properties of (NiCo)52+2x(AlTi)4+2xFe29-4xCr15 (x=0-4) high-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152750 – volume: 52 start-page: 7415 issue: 12 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0470 article-title: Grain growth during selective laser melting of a Co-CrMo alloy publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-0975-z – volume: 262 start-page: 127175 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0130 article-title: CALPHAD aided eutectic high-entropy alloy design publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.127175 – volume: 26 start-page: 310 issue: 3 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0165 article-title: Effects of Al on the Phase Volume Fractions and Wear Properties in the AlxCoCrFeMoNi high entropy alloy system publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00332-0 – volume: 36 start-page: 101601 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0750 article-title: Microstructure and tensile property of a precipitation strengthened high entropy alloy processed by selective laser melting and post heat treatment publication-title: Addit. Manuf. – volume: 10 start-page: 247 issue: 3 year: 2002 ident: 10.1016/j.matdes.2021.110161_b0835 article-title: Phase relation and microstructure in Ni3Al–Ni3Ti–Ni3Nb pseudo-ternary alloy system publication-title: Intermetallics doi: 10.1016/S0966-9795(01)00131-5 – volume: 818 start-page: 141386 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0585 article-title: Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.141386 – volume: 29 start-page: 100833 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0275 article-title: Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy publication-title: Addit. Manuf. – ident: 10.1016/j.matdes.2021.110161_b0700 doi: 10.1016/j.jallcom.2019.06.204 – volume: 135 start-page: 107212 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0675 article-title: Synergetic strengthening from grain refinement and nano-scale precipitates in non-equiatomic CoCrFeNiMo medium-entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2021.107212 – volume: 6 start-page: 100310 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0330 article-title: Revealing the microstructural evolution in a high entropy alloy enabled with transformation, twinning and precipitation publication-title: Materialia doi: 10.1016/j.mtla.2019.100310 – volume: 41 start-page: 338 year: 2012 ident: 10.1016/j.matdes.2021.110161_b0175 article-title: Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate publication-title: Mater. Des. doi: 10.1016/j.matdes.2012.04.049 – year: 2021 ident: 10.1016/j.matdes.2021.110161_b0290 article-title: Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications publication-title: Mater. Today doi: 10.1016/j.mattod.2021.03.020 – volume: 707 start-page: 27 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0455 article-title: Formation of metastable cellular microstructures in selective laser melted alloys publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.12.209 – volume: 134 start-page: 194 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0630 article-title: Microstructures and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 alloys publication-title: Mater. Charact. doi: 10.1016/j.matchar.2017.10.022 – volume: 780 start-page: 139184 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0305 article-title: Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139184 – volume: 41 start-page: 62 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0595 article-title: Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys publication-title: Mater. Today doi: 10.1016/j.mattod.2020.09.029 – volume: 133 start-page: 102819 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0905 article-title: Unraveling the dislocation–precipitate interactions in high-entropy alloys publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102819 – volume: 679 start-page: 193 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0365 article-title: Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.10.038 – volume: 42 start-page: 2107 issue: 6 year: 1994 ident: 10.1016/j.matdes.2021.110161_b0775 article-title: The equilibrium shape of a misfitting precipitate publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(94)90036-1 – volume: 175 start-page: 394 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0140 article-title: High temperature strength of refractory complex concentrated alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.06.032 – volume: 126 start-page: 346 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0690 article-title: The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.12.074 – year: 2005 ident: 10.1016/j.matdes.2021.110161_b0920 – volume: 26 start-page: 641 issue: 5 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0010 article-title: Effect of initial grain size on friction stir weldability for rolled and cast CoCrFeMnNi high-entropy alloys publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00466-1 – volume: 302 start-page: 130391 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0050 article-title: Superior phase transformation-assisted mechanical properties of a metastable medium-entropy ferrous alloy with heterogeneous microstructure publication-title: Mater. Lett. doi: 10.1016/j.matlet.2021.130391 – volume: 4 start-page: 8712 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0890 article-title: A high-entropy alloy with hierarchical precipitates and ultrahigh strength publication-title: Sci. Adv. doi: 10.1126/sciadv.aat8712 – volume: 202 start-page: 114013 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0770 article-title: Simultaneous effects of deformation-induced plasticity and precipitation hardening in metastable non-equiatomic FeNiCoMnTiSi ferrous medium-entropy alloy at room and liquid nitrogen temperatures publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114013 – volume: 148 start-page: 42 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0720 article-title: Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.01.025 – volume: 61 start-page: 1 year: 2014 ident: 10.1016/j.matdes.2021.110161_b0170 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 129 start-page: 170 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0735 article-title: Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.053 – volume: 77 start-page: 131 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0240 article-title: Additive manufacturing of high entropy alloys: a practical review publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.11.029 – volume: 37 start-page: 101598 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0345 article-title: Exploring additive manufacturing as a high-throughput screening tool for multiphase high entropy alloys publication-title: Addit. Manuf. – volume: 694 start-page: 971 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0825 article-title: Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2016.10.138 – volume: 27 start-page: 2387 issue: 7 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0070 article-title: Novel, Equimolar, Multiphase CoCuNiTiV high-entropy alloy: phase component, microstructure, and compressive properties publication-title: Met. Mater. Int. doi: 10.1007/s12540-020-00923-2 – volume: 21 start-page: 433 issue: 6 year: 2011 ident: 10.1016/j.matdes.2021.110161_b0120 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog. Nat. Sci doi: 10.1016/S1002-0071(12)60080-X – volume: 171 start-page: 132 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0080 article-title: Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.04.018 – volume: 55 start-page: 299 issue: 4 year: 2006 ident: 10.1016/j.matdes.2021.110161_b0440 article-title: On dislocation accumulation and work hardening in Hadfield steel publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2006.05.002 – volume: 147 start-page: 213 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0780 article-title: Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni Co, Fe, Cr)14 compositions publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.01.050 – volume: 36 start-page: 101443 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0810 article-title: Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy publication-title: Addit. Manuf. – volume: 375–377 start-page: 213 year: 2004 ident: 10.1016/j.matdes.2021.110161_b0030 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2003.10.257 – volume: 823 start-page: 141763 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0740 article-title: Development of coherent-precipitate-hardened high-entropy alloys with hierarchical NiAl/Ni2TiAl precipitates in CrMnFeCoNiAlxTiy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.141763 – start-page: 399 year: 2016 ident: 10.1016/j.matdes.2021.110161_b0135 article-title: CALPHAD modeling of high-entropy alloys – volume: 35 start-page: 2430 issue: 11 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0375 article-title: Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.05.062 – volume: 122 start-page: 106813 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0605 article-title: A ductile high entropy alloy strengthened by nano sigma phase publication-title: Intermetallics doi: 10.1016/j.intermet.2020.106813 – volume: 851 start-page: 156909 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0745 article-title: Lattice distortion and atomic ordering of the sigma precipitates in CoCrFeNiMo high-entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156909 – volume: 186 start-page: 336 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0075 article-title: High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.04.035 – volume: 33 start-page: 2032 issue: 17 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0695 article-title: Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: microstructure and mechanical properties publication-title: Mater. Sci. Technol. doi: 10.1080/02670836.2017.1342367 – volume: 172 start-page: 51 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0045 article-title: A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.07.008 – volume: 183 start-page: 111 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0760 article-title: Anomalous effect of lattice misfit on the coarsening behavior of multicomponent L12 phase publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.03.030 – volume: 46 start-page: 102155 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0300 article-title: A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties publication-title: Addit. Manuf. – volume: 144 start-page: 605 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0840 article-title: Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.08.019 – volume: 177 start-page: 108954 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0505 article-title: Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108954 – volume: 202 start-page: 448 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0580 article-title: Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.10.071 – volume: 204 start-page: 114066 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0575 article-title: Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114066 – volume: 188 start-page: 54 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0020 article-title: High entropy alloys: key issues under passionate debate publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.07.010 – volume: 3 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.matdes.2021.110161_b0105 article-title: Hexagonal high-entropy alloys publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.951493 – volume: 9 start-page: 100522 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0865 article-title: Enhanced tensile yield strength in laser additively manufactured Al0.3CoCrFeNi high entropy alloy publication-title: Materialia 9 doi: 10.1016/j.mtla.2019.100522 – volume: 27 start-page: 629 issue: 4 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0230 article-title: Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio processed by powder metallurgy publication-title: Met. Mater. Int. doi: 10.1007/s12540-020-00823-5 – volume: 33 start-page: 2983 issue: 19 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0530 article-title: L12-strengthened high-entropy alloys for advanced structural applications publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.186 – volume: 696 start-page: 503 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0560 article-title: Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.04.111 – volume: 35 start-page: 101410 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0815 article-title: A precipitation-strengthened high-entropy alloy for additive manufacturing publication-title: Addit. Manuf. – volume: 37 start-page: 101660 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0270 article-title: The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition publication-title: Addit. Manuf. – volume: 147 start-page: 184 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0900 article-title: Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.01.049 – volume: 188 start-page: 435 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0150 article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.12.015 – volume: 6 start-page: 100282 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0540 article-title: Role of copper on L12 precipitation strengthened fcc based high entropy alloy publication-title: Materialia doi: 10.1016/j.mtla.2019.100282 – volume: 11 start-page: 486 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0660 article-title: Effect of Mo element on the mechanical properties and tribological responses of CoCrFeNiMox high-entropy alloys publication-title: Metals doi: 10.3390/met11030486 – volume: 7 start-page: 40704 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0715 article-title: Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys publication-title: Sci. Rep. doi: 10.1038/srep40704 – ident: 10.1016/j.matdes.2021.110161_b0065 doi: 10.1016/j.jallcom.2020.155305 – volume: 134 start-page: 107202 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0015 article-title: Temperature-and strain-dependent thermally-activated deformation mechanism of a ferrous medium-entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2021.107202 – volume: 210 start-page: 111 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0535 article-title: The formation of cellular precipitate and its effect on the tensile properties of a precipitation strengthened high entropy alloy publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.09.057 – volume: 746 start-page: 356 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0680 article-title: Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.01.050 – volume: 7 start-page: 453 issue: 11 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0425 article-title: Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy publication-title: Mater. Res. Lett doi: 10.1080/21663831.2019.1650131 – volume: 261 start-page: 127004 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0850 article-title: Microstructure and wear behavior of the AlCrFeCoNi high-entropy alloy fabricated by additive manufacturing publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.127004 – volume: 61 start-page: 5996 issue: 16 year: 2013 ident: 10.1016/j.matdes.2021.110161_b0725 article-title: Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels publication-title: Acta. Mater. doi: 10.1016/j.actamat.2013.06.040 – volume: 20 start-page: 878 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0785 article-title: Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review publication-title: Entropy doi: 10.3390/e20110878 – volume: 13 start-page: 51 issue: 1 year: 1974 ident: 10.1016/j.matdes.2021.110161_b0885 article-title: An estimate of the strengthening arising from coherent, tetragonally-distorted particles publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(74)90020-2 – volume: 586 start-page: 45 year: 2013 ident: 10.1016/j.matdes.2021.110161_b0600 article-title: The effects of chromium on the microstructure and tensile behavior of Fe30Ni20Mn35Al15 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.08.005 – volume: 15 start-page: 815 issue: 8 year: 1981 ident: 10.1016/j.matdes.2021.110161_b0875 article-title: The combination of atomic size and elastic modulus misfit interactions in solid solution hardening publication-title: Scr. Mater. – volume: 66 start-page: 1984 issue: 10 year: 2014 ident: 10.1016/j.matdes.2021.110161_b0100 article-title: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams publication-title: JOM doi: 10.1007/s11837-014-1085-x – volume: 630 start-page: 151 year: 2015 ident: 10.1016/j.matdes.2021.110161_b0115 article-title: On the microstructures, phase assemblages and properties of Al0.5CoCrCuFeNiSix high-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.11.085 – volume: 104 start-page: 172 year: 2016 ident: 10.1016/j.matdes.2021.110161_b0215 article-title: Predicting the formation and stability of single phase high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.11.040 – volume: 876 start-page: 160102 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0040 article-title: Unique hot deformation behavior and microstructure evolution of a dual FCC-phase CoCrCu1.2FeNi high entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160102 – volume: 165 start-page: 444 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0380 article-title: Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.12.012 – volume: 35 start-page: 101441 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0250 article-title: Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing publication-title: Addit. Manuf. – volume: 63 start-page: 1279 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0915 article-title: Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1291-9 – volume: 69 start-page: 103 year: 2016 ident: 10.1016/j.matdes.2021.110161_b0110 article-title: Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2015.10.022 – volume: 137 start-page: 88 year: 2017 ident: 10.1016/j.matdes.2021.110161_b0655 article-title: Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.05.019 – volume: 6 start-page: 236 issue: 4 year: 2018 ident: 10.1016/j.matdes.2021.110161_b0435 article-title: Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy publication-title: Mater. Res. Let. doi: 10.1080/21663831.2018.1434250 – volume: 44 start-page: 133 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0090 article-title: Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.10.025 – volume: 805 start-page: 680 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0450 article-title: Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: microstructure, anisotropic mechanical response, and multiple strengthening mechanism publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.07.106 – volume: 5 start-page: 100173 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0870 article-title: Effect of transition metal addition on microstructure and hardening behavior of two-phase Ni3Al-Ni3V intermetallic alloys publication-title: Materialia doi: 10.1016/j.mtla.2018.11.022 – volume: 25 start-page: 412 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0860 article-title: Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting publication-title: Addit. Manuf. – volume: 797 start-page: 140056 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0055 article-title: L21-strengthened face-centered cubic high-entropy alloy with high strength and ductility publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.140056 – volume: 109 start-page: 103505 issue: 10 year: 2011 ident: 10.1016/j.matdes.2021.110161_b0125 article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys publication-title: J. Appl. Phys. doi: 10.1063/1.3587228 – volume: 27 start-page: 2300 issue: 7 year: 2021 ident: 10.1016/j.matdes.2021.110161_b0385 article-title: Constitutive modeling with critical twinning stress in CoCrFeMnNi high entropy alloy at cryogenic temperature and room temperature publication-title: Met. Mater. Int. doi: 10.1007/s12540-020-00818-2 – volume: 360 start-page: 509 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0370 article-title: Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: process, particle behavior and effects publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.10.068 – volume: 32 start-page: 101098 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0420 article-title: Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing publication-title: Addit. Manuf. – volume: 74 start-page: 020102(R) year: 2006 ident: 10.1016/j.matdes.2021.110161_b0925 article-title: Dynamics of a dislocation bypassing an impenetrable precipitate: The Hirsch mechanism revisited publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.020102 – volume: 764 start-page: 138241 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0060 article-title: Coherent precipitation and strengthening in a dual-phase AlNi2Co2Fe1.5Cr1.5 high-entropy alloy publication-title: Mater. Sci. Eng. A 764 doi: 10.1016/j.msea.2019.138241 – volume: 784 start-page: 139275 year: 2020 ident: 10.1016/j.matdes.2021.110161_b0145 article-title: Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139275 – volume: 261 start-page: 513 issue: 5–6 year: 2006 ident: 10.1016/j.matdes.2021.110161_b0190 article-title: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content publication-title: Wear doi: 10.1016/j.wear.2005.12.008 – volume: 116 start-page: 332 year: 2016 ident: 10.1016/j.matdes.2021.110161_b0620 article-title: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.06.063 – volume: 106 start-page: 20 year: 2019 ident: 10.1016/j.matdes.2021.110161_b0820 article-title: Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy Alloy publication-title: Intermetallics 106 doi: 10.1016/j.intermet.2018.12.001 |
SSID | ssj0022734 |
Score | 2.6113992 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•A review is presented on recent research on precipitation-hardened high-entropy alloys that can be produced by additive manufacturing.•The... The growing demand for advanced metallic materials with optimum mechanical properties has led to the creation of next-generation materials based on the... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 110161 |
SubjectTerms | High entropy alloys Mechanical properties Metal additive manufacturing Precipitation hardening Strengthening micro-mechanisms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWC1aGynccaCqBASTFTqFvlxlkCQRlCG_nvu4qSUBRZWy7GTu5PvO-fuO8YuY9ASNCiROQVClyYIU8pMOCXBK5n5PFA18sPj6G6q72f5bK3VF-WEJXrgJLirjPpzg9MBga0uvSkLC2URC4gqhMy0Zb7o8_pgqgu1iLQl3a4QK1-R90VzbWYXQsEARNUtM8qCz0bZD6fUcvev-aY1fzPZZTsdUOTj9IJ7bAPqfba9Rh94wOyYN9-1knxe84a4KpqOdltQQRXQvQcnUmJB97jzZsnpV_vyg0fr2hZBELjDwRDaLCL-ZutPqnZoyxcP2XRy-3RzJ7qWCcJroxfCeuOGEjDUDNGM8BzGAw0BVGGl92DxUEQ0J2GYo-ryQkXA8AksgrBhjLGMqJ0jtlnPazhmHB03IJhRzkulrTU24qzcGchHJaKIOGCql1nluw-jthavVZ849lIlSVck6SpJesDE6qkm8Wn8Mf-a1LGaS2zY7QDaSNXZSPWXjQxY0Suz6oBFAgy41POv25_8x_anbIuWTEkwZ2xz8f4J5whlFu6itdovjnzxpA priority: 102 providerName: Directory of Open Access Journals |
Title | A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing |
URI | https://dx.doi.org/10.1016/j.matdes.2021.110161 https://doaj.org/article/11438eb4d75849c897ae97f7ef3dd188 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4XOgBFQrq0hb5wNXaje0kznGLihZQubRI3CI_xmgRZCNYDvx7ZhJnu1yoxDGWncRja-ab8cxnxk5i0BI0KJE5BUJXJghTyUw4JcErmfk8UDXy76tidq0vbvKbDXY61MJQWmXS_b1O77R1ahknaY7b-Xz8B70HTfTkkg76EfVvsm2pqgI9sO3p-eXsauV3EYNLH2ohir4yHyroujQvxIUBiLdbZpQSnxXZGwvVEfmvGao143P2me0m1Min_Y_tsQ1o9tmnNS7BL8xOefuvcJIvGt4ScUWbOLgFVVcBBUE4MRQLCuou2hdO5-4vTzxa190XBIE7bAyhSyniD7Z5ptKHrpbxgF2f_fp7OhPp_gThtdFLYb1xEwnod4ZoClTKqN0QTZVWeg8WNSRCOwmTHNcxL1UE9KXAIiKbxBiriEt1yLaaRQNfGUcrDohslPNSaWuNjdgrdwbyokJIEUdMDTKrfZoY3XFxXw9ZZHd1L-maJF33kh4xsRrV9uQa_-n_k5Zj1ZeosbuGxeNtnfYGlVkrA04H9IR05Q3OF6oylhBVCJkxI1YOi1m_2Wn4qvm7nz_68MhvbIee-jSY72xr-fgMPxDMLN1x2qzHXTDgFWXw9OU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHFoOqPShLlDwoVdrN7azcY4LAi0F9gJI3CI_xtVWNBvBcuDfM5M42-VCpV4dO4nHo5lv7JnPjP2IQUvQoETmFAhdmiBMKTPhlASvZObzQNXIV7Px9Fb_vMvvNthJXwtDaZXJ9nc2vbXWqWWYpDls5vPhNUYPmujJJR30I-p_x7aInQqVfWtyfjGdreIuYnDptlqIoq_I-wq6Ns0LcWEA4u2WGaXEZ-PslYdqifzXHNWa8zn7yHYSauST7sd22QbUn9j2GpfgZ2YnvPlbOMkXNW-IuKJJHNyCqquANkE4MRQL2tRdNM-czt2fH3m0rr0vCAJ32BhCm1LE_9j6iUof2lrGL-z27PTmZCrS_QnCa6OXwnrjRhIw7gzRjNEoo3VDNFVY6T1YtJAI7SSMclzHvFARMJYCi4hsFGMsIy7VV7ZZL2r4xjh6cUBko5yXSltrbMReuTOQj0uEFHHAVC-zyqeJ0R0X91WfRfa76iRdkaSrTtIDJlajmo5c4x_9j2k5Vn2JGrttWDz8qpJuUJm1MuB0wEhIl97gfKEsYgFRhZAZM2BFv5jVK03DV83f_Pzef488Yu-nN1eX1eX57GKffaAnXUrMAdtcPjzBdwQ2S3eYFPcFMKr21g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+perspective+on+precipitation-hardening+high-entropy+alloys+fabricated+by+additive+manufacturing&rft.jtitle=Materials+%26+design&rft.au=Haftlang%2C+Farahnaz&rft.au=Kim%2C+Hyoung+Seop&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0264-1275&rft.eissn=1873-4197&rft.volume=211&rft_id=info:doi/10.1016%2Fj.matdes.2021.110161&rft.externalDocID=S0264127521007164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |