Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications
[Display omitted] Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported...
Saved in:
Published in | Journal of Colloid and Interface Science Vol. 641; pp. 861 - 874 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2023
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h−1) compared with the raw NCP-0 (0.64 mol g-1h−1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h−1, 25 times that of the NCP-0, without any cocatalysts. |
---|---|
AbstractList | Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi
S
nanorods with a considerably improved photocatalytic H
evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H
evolution rate (1.28 mol g
h
) compared with the raw NCP-0 (0.64 mol g
h
). Furthermore, the H
evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g
h
, 25 times that of the NCP-0, without any cocatalysts. Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h-1) compared with the raw NCP-0 (0.64 mol g-1h-1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h-1, 25 times that of the NCP-0, without any cocatalysts.Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h-1) compared with the raw NCP-0 (0.64 mol g-1h-1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h-1, 25 times that of the NCP-0, without any cocatalysts. Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further convertedinto advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi₂S₄ nanorods with a considerably improved photocatalytic H₂ evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H₂ evolution rate (1.28 mol g⁻¹ h⁻¹) compared with the raw NCP-0 (0.64 mol g⁻¹ h⁻¹). Furthermore, the H₂ evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g⁻¹ h⁻¹, 25 times that of the NCP-0, without any cocatalysts. [Display omitted] Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h−1) compared with the raw NCP-0 (0.64 mol g-1h−1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h−1, 25 times that of the NCP-0, without any cocatalysts. |
Author | Jin, Zhiliang Tsubaki, Noritatsu Li, Yanbing |
Author_xml | – sequence: 1 givenname: Yanbing surname: Li fullname: Li, Yanbing organization: Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan – sequence: 2 givenname: Zhiliang orcidid: 0000-0002-3793-6588 surname: Jin fullname: Jin, Zhiliang email: zl-jin@nun.edu.cn organization: School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China – sequence: 3 givenname: Noritatsu surname: Tsubaki fullname: Tsubaki, Noritatsu email: tsubaki@eng.u-toyama.ac.jp organization: Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan |
BackLink | https://cir.nii.ac.jp/crid/1872553967999962752$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/36966575$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU2PUyEUhokZ43RG_4ALw8KFm1vhUuCSuDGNX8lEXeiaUDh3SuVCBVrjL_Bvy21nNi5GcgIsnvc9X1foIqYICD2nZEkJFa93y531ZdmTni1JCzE8QgtKFO8kJewCLQjpaaekkpfoqpQdIZRyrp6gSyaUEFzyBfqz3sLkrQkYqt36eItNdHi_NQVwzSaWMeXJVJ8iTiP-7O0PCN06bUyo-Gs-lOJNxJtwgKYzId0W3ATYT_ucjuBwScHkzmV_hIh_mQq5K_vgaz1l2revPZmXp-jxaEKBZ3fvNfr-_t239cfu5suHT-u3N51dDavamUEMQAfWM0aY3PQr6kBaAUYqBoRaGAdwdiWINZy0XjerUY3UcaucM5JJdo1enX1bgT8PUKqefLEQgomQDkUzypkcCJHDf9FeKioJU4I09MUdethM4PQ--8nk3_p-zg0YzoDNqZQMo7a-njpvQ_ZBU6Lnleqdnleq55Vq0kLMZfT_SO_dHxS9PIui9y3VfNNB9py3cqVqR_SS9w17c8agjfzoIetiPUQLzmewVbvkH8ryFxuuxus |
CitedBy_id | crossref_primary_10_1016_j_est_2023_108958 crossref_primary_10_1039_D4QI00612G crossref_primary_10_1016_j_jmst_2024_06_018 crossref_primary_10_1002_adsu_202400639 crossref_primary_10_1002_cctc_202401359 crossref_primary_10_1016_j_seppur_2025_131770 crossref_primary_10_1016_j_mtchem_2024_102063 crossref_primary_10_1002_solr_202300617 crossref_primary_10_1016_j_carbon_2024_119418 crossref_primary_10_1016_j_cej_2024_154892 crossref_primary_10_1039_D4DT00905C crossref_primary_10_1002_ente_202402067 crossref_primary_10_1016_j_jpcs_2024_112404 |
Cites_doi | 10.1002/anie.201500267 10.1016/j.renene.2020.08.053 10.1038/s41467-019-10698-9 10.1039/C4CS00478G 10.1002/adfm.201605846 10.1021/acscatal.1c03687 10.1002/open.201800120 10.1002/cssc.201801691 10.1021/acs.jpcc.1c02274 10.1021/ja067422e 10.1016/j.joule.2017.12.009 10.1016/j.jallcom.2016.07.315 10.1039/C5CC08991C 10.1002/anie.201210294 10.1002/smll.201905289 10.1002/aenm.201800484 10.1002/ejic.201800133 10.1016/j.chempr.2017.10.018 10.1016/j.trechm.2019.06.009 10.1002/anie.201811570 10.1002/adfm.201604328 10.1002/adma.201706825 10.1021/jacsau.0c00082 10.1126/sciadv.1700732 10.1016/j.nanoen.2017.07.055 10.1021/acsenergylett.6b00391 10.1039/C1EE02426D 10.1002/adfm.201602779 10.1021/nn401363e 10.1002/smll.201802442 10.1021/acsenergylett.7b00179 10.1016/j.ensm.2017.06.002 10.1021/ja503372r 10.1039/C3GC42042F 10.1007/s10904-019-01207-y 10.1002/anie.201505581 10.1039/b911613n 10.1039/D0NR02241A 10.1002/adfm.202008989 10.1016/j.nanoen.2022.107028 10.1016/S2095-4956(14)60207-2 10.1039/C6CC02093C 10.1039/C5CS00397K 10.1002/anie.201508505 10.1038/ncomms12165 10.1021/cm802123a 10.1002/adma.201900281 10.1002/anie.201501116 10.1016/j.chempr.2020.05.004 10.1039/C5CS00729A 10.1021/acs.nanolett.1c00179 10.1039/C5CS00434A 10.1016/j.cej.2019.123051 10.1038/ncomms6280 10.1021/jp993593c 10.1002/adma.201700587 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | RYH AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2023.03.068 |
DatabaseName | CiNii Complete CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 874 |
ExternalDocumentID | 36966575 10_1016_j_jcis_2023_03_068 S0021979723004277 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV RYH SSH AAYXX ABDPE ABWVN ACRPL ADNMO ADVLN AGQPQ CITATION NPM PKN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c484t-a868e183233037b241de7c6ea793e01cef8edc460ca50559b4f9f1d5c9dda7373 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 06:43:54 EDT 2025 Fri Jul 11 01:31:30 EDT 2025 Wed Feb 19 02:24:04 EST 2025 Tue Jul 01 04:19:02 EDT 2025 Thu Apr 24 23:06:57 EDT 2025 Thu Jun 26 22:03:12 EDT 2025 Fri Apr 05 04:25:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NiCo PBA Chemical etching functional nanomaterials H2 evolution H evolution |
Language | English |
License | Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-a868e183233037b241de7c6ea793e01cef8edc460ca50559b4f9f1d5c9dda7373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3793-6588 |
PMID | 36966575 |
PQID | 2791703960 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3153780078 proquest_miscellaneous_2791703960 pubmed_primary_36966575 crossref_citationtrail_10_1016_j_jcis_2023_03_068 crossref_primary_10_1016_j_jcis_2023_03_068 nii_cinii_1872553967999962752 elsevier_sciencedirect_doi_10_1016_j_jcis_2023_03_068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of Colloid and Interface Science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Li, Du, Wang, Yin, Tu, Chen, Kraft, Chen, Xu (b0250) 2017; 27 Azhar, Zakaria, Ebeid, Chikyow, Bando, Alshehri, Alghamdi, Cai, Kumar, Lin, Kim, Yamauchi (b0095) 2018; 7 Guo, Tang, Wang, Sugahara, Yamauchi (b0215) 2018; 14 Nai, Guan, Yu, Lou (b0205) 2017; 3 Xu, Zheng, Tang, Guo, Xue, Pang (b0075) 2017; 9 P. Zhang, B.Y. Guan, L. Yu, X.W. (David) Lou, Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion, Chem 4 (2018) 162-173. Zhang, Chen, Chang, Jiang, Ji, Li, Lu, Dong, Li, Cai, Lan (b0190) 2021; 1 Shi, Zhang (b0255) 2016; 45 Yamada, Oyama, Gates, Fukuzumi (b0225) 2015; 54 Pan, Liu, Zhang, Zhuzhang, Wang (b0025) 2021; 125 Feng, Yu, Paik (b0060) 2016; 52 X.Y. Yu, L. Yu, H.B. Wu, X.W. (David) Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties, Angew. Chem. Int. Edit. 54 (2015) 1-6. Blanchard, Grosvenor, Cavell, Mar (b0155) 2008; 20 Cao, Piao, Chen (b0030) 2020; 2 Liu, Nosheen, Wang (b0050) 2015; 44 Wang, Zhang, Zhang, Yin, Li, Liu, Kang, Wei (b0080) 2017; 39 Tian, Liu, Asiri, Sun (b0240) 2014; 136 Lee, Wang, Pasta, Lee, Liu, Cui (b0070) 2014; 5 Wang, Li, Xu, Jin, Wang (b0230) 2020; 162 Shang, Li, Song, Huang, Yang, Xu, Yang (b0065) 2020; 6 Goto, Hisatomi, Wang, Higashi, Ishikiriyama, Maeda, Sakata, Okunaka, Tokudome, Katayama, Akiyama, Nishiyama, Inoue, Takewaki, Setoyama, Minegishi, Takata, Yamada, Domen (b0005) 2018; 2 Kong, Selomuly, Zheng, Zhao (b0055) 2015; 44 Wang, Wan, Xie, Xia, Huang, Xia (b0200) 2013; 7 Yang, Chen, Zheng, Wu, Tung (b0260) 2014; 16 Xu, Zhao, Yu, Sun, Hui, Zhou, Xue, Dai, Zhao, Wang, Gong, Zhou, An, Chen, Sun, Huang (b0140) 2020; 12 P. Zhang, X.W. (David) Lou, Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion, Adv. Mater. 31 (2019) 1900281. Serpone, Emeline, Ryabchuk, Kuznetsov, Artem’ev, Horikoshi (b0015) 2016; 1 Zhang, Jiang, Hadden, Xie, Riley (b0165) 2021; 31 Hou, Laursen, Zhang, Zhang, Zhu, Wang, Dahl, Chorkendorff (b0280) 2013; 52 Lai, Halpert, Wang (b0110) 2012; 5 Kulak, Iddon, Li, Armes, Cölfen, Paris, Wilson, Meldrum (b0130) 2007; 129 Zhou, Guo, Yang, Wang, Li, Zhou (b0170) 2016; 689 Liu, Zhao, Zhou, Liu, Pang, Zhang, Hao, Meng, Li, Kako, Ye (b0180) 2016; 26 He, Nazar (b0085) 2017; 2 Zhang, Li, Xiao, Shan, Bai, Xue, Pang, Tian, Xu (b0150) 2021; 21 J.W. Nai, X.W. (David) Lou, Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion, Adv. Mater. 31 (2018) 1706825. Hu, Jiang, Ji, Zeng (b0195) 2009; 11 Zhang, Shi, Zhang, Zhou, Yang, Fan, Wu (b0040) 2018; 2018 Lau, Moudrakovski, Botari, Weinberger, Mesch, Duppel, Senker, Blum, Lotsch (b0185) 2016; 7 Guo, Deng, Li, Jiang, Tian, Pan, Fu (b0275) 2016; 55 Xu, Kraft, Xu (b0010) 2016; 45 Pan, Niu, Hou, Fang, Liu, Wang (b0245) 2019; 12 Pan, Zhao, Zhuzhang, Zhang, Anpo, Wang (b0020) 2021; 11 Li, Ma, Wang, Gao, Chen, Shi, Qu, Feng, Xu (b0235) 2014; 23 Ge, Dong, Craig, Ajayan, Mi, Ye (b0160) 2018; 18 Zhang, Li, Fan, Yang, Wu (b0045) 2020; 30 Li, Jin, Zhao (b0270) 2020; 382 Feng, Yu, Paik (b0100) 2016; 52 Yu, Duan, Liu, Chen, Liu, Liu, Ma, Li, Zheng, Yao, Gao, Zhu, Ye, Yu (b0090) 2019; 10 Park, Yang, Lee, Kang (b0175) 2019; 15 Su, Cortie, Fan, Wang (b0145) 2017; 29 Zheng, Ding, Yu, Du, Zhao (b0265) 2017; 27 Guo, Mao, Tang, Shang, Cai, Zhang, Hu, Tan, Liu, Wang, Yu, Ye (b0210) 2022; 95 Ghobadi, Yildiz, Buyuktemiz, Akbari, Topkaya, İsci, Dede, Yaglioglu, Karadas (b0220) 2018; 57 Dhakshinamoorthy, Asiri, García (b0035) 2016; 55 Wang (b0135) 2000; 104 10.1016/j.jcis.2023.03.068_b0120 Li (10.1016/j.jcis.2023.03.068_b0270) 2020; 382 Hou (10.1016/j.jcis.2023.03.068_b0280) 2013; 52 Goto (10.1016/j.jcis.2023.03.068_b0005) 2018; 2 Wang (10.1016/j.jcis.2023.03.068_b0080) 2017; 39 Shi (10.1016/j.jcis.2023.03.068_b0255) 2016; 45 Li (10.1016/j.jcis.2023.03.068_b0250) 2017; 27 Yamada (10.1016/j.jcis.2023.03.068_b0225) 2015; 54 10.1016/j.jcis.2023.03.068_b0125 Serpone (10.1016/j.jcis.2023.03.068_b0015) 2016; 1 Liu (10.1016/j.jcis.2023.03.068_b0050) 2015; 44 Xu (10.1016/j.jcis.2023.03.068_b0010) 2016; 45 Nai (10.1016/j.jcis.2023.03.068_b0205) 2017; 3 Shang (10.1016/j.jcis.2023.03.068_b0065) 2020; 6 Pan (10.1016/j.jcis.2023.03.068_b0020) 2021; 11 Wang (10.1016/j.jcis.2023.03.068_b0230) 2020; 162 Zhang (10.1016/j.jcis.2023.03.068_b0150) 2021; 21 Pan (10.1016/j.jcis.2023.03.068_b0025) 2021; 125 Lau (10.1016/j.jcis.2023.03.068_b0185) 2016; 7 Pan (10.1016/j.jcis.2023.03.068_b0245) 2019; 12 Zhang (10.1016/j.jcis.2023.03.068_b0165) 2021; 31 Lai (10.1016/j.jcis.2023.03.068_b0110) 2012; 5 Wang (10.1016/j.jcis.2023.03.068_b0200) 2013; 7 Dhakshinamoorthy (10.1016/j.jcis.2023.03.068_b0035) 2016; 55 He (10.1016/j.jcis.2023.03.068_b0085) 2017; 2 Guo (10.1016/j.jcis.2023.03.068_b0215) 2018; 14 Zhang (10.1016/j.jcis.2023.03.068_b0040) 2018; 2018 Cao (10.1016/j.jcis.2023.03.068_b0030) 2020; 2 Wang (10.1016/j.jcis.2023.03.068_b0135) 2000; 104 Zheng (10.1016/j.jcis.2023.03.068_b0265) 2017; 27 Feng (10.1016/j.jcis.2023.03.068_b0060) 2016; 52 10.1016/j.jcis.2023.03.068_b0105 Ge (10.1016/j.jcis.2023.03.068_b0160) 2018; 18 Zhang (10.1016/j.jcis.2023.03.068_b0190) 2021; 1 Azhar (10.1016/j.jcis.2023.03.068_b0095) 2018; 7 Kulak (10.1016/j.jcis.2023.03.068_b0130) 2007; 129 Zhang (10.1016/j.jcis.2023.03.068_b0045) 2020; 30 Liu (10.1016/j.jcis.2023.03.068_b0180) 2016; 26 Guo (10.1016/j.jcis.2023.03.068_b0275) 2016; 55 Tian (10.1016/j.jcis.2023.03.068_b0240) 2014; 136 Xu (10.1016/j.jcis.2023.03.068_b0140) 2020; 12 Park (10.1016/j.jcis.2023.03.068_b0175) 2019; 15 Hu (10.1016/j.jcis.2023.03.068_b0195) 2009; 11 Zhou (10.1016/j.jcis.2023.03.068_b0170) 2016; 689 Lee (10.1016/j.jcis.2023.03.068_b0070) 2014; 5 Blanchard (10.1016/j.jcis.2023.03.068_b0155) 2008; 20 Ghobadi (10.1016/j.jcis.2023.03.068_b0220) 2018; 57 Yang (10.1016/j.jcis.2023.03.068_b0260) 2014; 16 Su (10.1016/j.jcis.2023.03.068_b0145) 2017; 29 Xu (10.1016/j.jcis.2023.03.068_b0075) 2017; 9 Yu (10.1016/j.jcis.2023.03.068_b0090) 2019; 10 10.1016/j.jcis.2023.03.068_b0115 Guo (10.1016/j.jcis.2023.03.068_b0210) 2022; 95 Li (10.1016/j.jcis.2023.03.068_b0235) 2014; 23 Kong (10.1016/j.jcis.2023.03.068_b0055) 2015; 44 Feng (10.1016/j.jcis.2023.03.068_b0100) 2016; 52 |
References_xml | – reference: P. Zhang, B.Y. Guan, L. Yu, X.W. (David) Lou, Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion, Chem 4 (2018) 162-173. – volume: 15 start-page: 1905289 year: 2019 ident: b0175 article-title: Investigation of binary metal (Ni, Co) selenite as Li-ion battery anode materials and their conversion reaction mechanism with Li ions publication-title: Small – volume: 52 start-page: 6269 year: 2016 end-page: 6272 ident: b0060 article-title: Formation of Co publication-title: Chem. Commun. – volume: 11 start-page: 2257 year: 2009 end-page: 2259 ident: b0195 article-title: Prussian Blue mesocrystals prepared by a facile hydrothermal method publication-title: CrystEngComm – reference: J.W. Nai, X.W. (David) Lou, Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion, Adv. Mater. 31 (2018) 1706825. – volume: 104 start-page: 1153 year: 2000 end-page: 1175 ident: b0135 article-title: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies publication-title: J. Phy. Chem. B – volume: 136 start-page: 7587 year: 2014 end-page: 7590 ident: b0240 article-title: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogenevolving cathode over the wide range of pH 0–14 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1122 year: 2017 end-page: 1127 ident: b0085 article-title: Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries publication-title: ACS Energy Let. – volume: 2018 start-page: 2768 year: 2018 end-page: 2775 ident: b0040 article-title: Modified Cu-based metal-organic framework by graphene oxide for sulfur compounds removal publication-title: Eur. J. Inorg. Chem. – volume: 7 start-page: 12165 year: 2016 ident: b0185 article-title: Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites publication-title: Nat. Commun. – volume: 21 start-page: 3016 year: 2021 end-page: 3025 ident: b0150 article-title: In situ anchoring polymetallic phosphide nanoparticles within porous prussian blue analogue nanocages for boosting oxygen evolution catalysis publication-title: Nano Lett. – volume: 9 start-page: 11 year: 2017 end-page: 30 ident: b0075 article-title: Prussian blue and its derivatives as electrode materials for electrochemical energy storage publication-title: Energy Storage Mater. – volume: 14 start-page: 1802442 year: 2018 ident: b0215 article-title: Hollow porous heterometallic phosphide nanocubes for enhanced electrochemical water splitting publication-title: Small – volume: 1 start-page: 931 year: 2016 end-page: 948 ident: b0015 article-title: Why do hydrogen and oxygen yields from semiconductor-based photocatalyzed water splitting remain disappointingly low? Intrinsic and extrinsic factors impacting surface redox reactions publication-title: ACS Energy Lett. – volume: 2 start-page: 57 year: 2020 end-page: 70 ident: b0030 article-title: Emerging photocatalysts for hydrogen evolution publication-title: Trends Chem. – volume: 129 start-page: 3729 year: 2007 end-page: 3736 ident: b0130 article-title: Continuous structural evolution of calcium carbonate particles: A unifying model of copolymer-mediated crystallization publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 5613 year: 2015 end-page: 5617 ident: b0225 article-title: High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation publication-title: Angew. Chem. Int. Edit. – volume: 44 start-page: 7997 year: 2015 end-page: 8018 ident: b0055 article-title: New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications publication-title: Chem. Soc. Rev. – volume: 7 start-page: 599 year: 2018 end-page: 603 ident: b0095 article-title: Synthesis of hollow Co-Fe Prussian blue analogue cubes by using silica spheres as a sacrificial template publication-title: ChemistryOpen – volume: 2 start-page: 509 year: 2018 ident: b0005 article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation publication-title: Joule – volume: 45 start-page: 1529 year: 2016 end-page: 1541 ident: b0255 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. – volume: 26 start-page: 6822 year: 2016 end-page: 6829 ident: b0180 article-title: In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production publication-title: Adv. Funct. Mater. – volume: 52 start-page: 3621 year: 2013 end-page: 3625 ident: b0280 article-title: Ib Chorkendorff, Layered nanojunctions for hydrogen-evolution catalysis publication-title: Angew. Chem. Int. Edit. – volume: 95 year: 2022 ident: b0210 article-title: Concentrating electron and activating H-OH bond of absorbed water on metallic NiCo publication-title: Nano Energy – volume: 10 start-page: 2799 year: 2019 ident: b0090 article-title: Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis publication-title: Nat. Commun. – volume: 30 start-page: 486 year: 2020 end-page: 493 ident: b0045 article-title: A highly reversible sorption for sulfur-containing toxic VOCs emissions under ambient temperature and pressure publication-title: J. Inorg. Organomet. Polym. – volume: 52 start-page: 1633 year: 2016 end-page: 1636 ident: b0100 article-title: Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution publication-title: Chem. Commun. – volume: 27 start-page: 1605846 year: 2017 ident: b0265 article-title: In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution publication-title: Adv. Funct. Mater. – volume: 382 year: 2020 ident: b0270 article-title: Performance of ZIF-67-derived fold polyhedrons for enhanced photocatalytic hydrogen evolution publication-title: Chem. Eng. J. – volume: 5 start-page: 5280 year: 2014 ident: b0070 article-title: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries publication-title: Nat. Commun. – volume: 7 start-page: 4586 year: 2013 end-page: 4594 ident: b0200 article-title: Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth publication-title: ACS Nano – volume: 31 start-page: 2008989 year: 2021 ident: b0165 article-title: Pd Ion-exchange and ammonia etching of a Prussian blue analogue to produce a high-performance water-splitting catalyst publication-title: Adv. Func. Mater. – volume: 689 start-page: 130 year: 2016 end-page: 137 ident: b0170 article-title: N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries publication-title: J. Alloy. Compound. – volume: 162 start-page: 535 year: 2020 end-page: 549 ident: b0230 article-title: Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well publication-title: Renew. Energy – volume: 125 start-page: 9818 year: 2021 end-page: 9826 ident: b0025 article-title: Molecular triazine-heptazine junctions promoting exciton dissociation for overall water splitting with visible light publication-title: J. Phys. Chem. C – volume: 44 start-page: 3056 year: 2015 end-page: 3078 ident: b0050 article-title: Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property publication-title: Chem. Soc. Rev. – volume: 57 start-page: 17173 year: 2018 end-page: 17177 ident: b0220 article-title: Noble-metal-free heterogeneous photosensitizer-relay catalyst triad that catalyzes water oxidation under visible light publication-title: Angew. Chem. Int. Edit. – volume: 39 start-page: 647 year: 2017 end-page: 653 ident: b0080 article-title: Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors publication-title: Nano Energy – volume: 18 start-page: 1800484 year: 2018 ident: b0160 article-title: Transforming nickel hydroxide into 3D prussian blue analogue array to obtain Ni publication-title: Adv. Energy Mater. – volume: 11 start-page: 13463 year: 2021 end-page: 13471 ident: b0020 article-title: Gradient Zn-doped poly heptazine imides integrated with a van der Waals homojunction boosting visible light-driven water oxidation activities publication-title: ACS Catal. – volume: 3 start-page: e1700732 year: 2017 ident: b0205 article-title: Oriented assembly of anisotropic nanoparticles into frame-like superstructures publication-title: Sci. Adv. – volume: 45 start-page: 3039 year: 2016 end-page: 3052 ident: b0010 article-title: Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting publication-title: Chem. Soc. Rev. – volume: 55 start-page: 5414 year: 2016 end-page: 5445 ident: b0035 article-title: Metal-organic framework (MOF) compounds photocatalysts for redox reactions and solar fuel production publication-title: Angew. Chem. Int. Edit. – volume: 5 start-page: 5604 year: 2012 end-page: 5618 ident: b0110 article-title: Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems publication-title: Energy Environ. Sci. – volume: 20 start-page: 7081 year: 2008 end-page: 7088 ident: b0155 article-title: X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M publication-title: Chem. Mater. – reference: X.Y. Yu, L. Yu, H.B. Wu, X.W. (David) Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties, Angew. Chem. Int. Edit. 54 (2015) 1-6. – volume: 16 start-page: 1082 year: 2014 ident: b0260 article-title: Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes publication-title: Green Chem. – volume: 6 start-page: 1804 year: 2020 end-page: 1818 ident: b0065 article-title: Unconventional Mn vacancies in Mn-Fe prussian blue analogs: suppressing Jahn-Teller distortion for ultrastable sodium storage publication-title: Chem – volume: 23 start-page: 742 year: 2014 end-page: 746 ident: b0235 article-title: Efficient oxidation of ethylbenzene catalyzed by cobalt zeolitic imidazolate framework ZIF-67 and NHPI publication-title: J. Energy Chem. – volume: 12 start-page: 1911 year: 2019 end-page: 1915 ident: b0245 article-title: LiCl as phase-transfer catalysts to synthesize thin Co publication-title: ChemSusChem – volume: 1 start-page: 212 year: 2021 end-page: 220 ident: b0190 article-title: Efficient charge migration in chemically-bonded prussian blue analogue/CdS with beaded structure for photocatalytic H publication-title: JACS Au – reference: P. Zhang, X.W. (David) Lou, Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion, Adv. Mater. 31 (2019) 1900281. – volume: 55 start-page: 1830 year: 2016 end-page: 1834 ident: b0275 article-title: Phosphorus-doped carbon nitride tubes with a layered micronanostructure for enhanced visible-light photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Edit. – volume: 12 start-page: 11112 year: 2020 end-page: 11118 ident: b0140 article-title: Mechanistic insight in site-selective and anisotropic etching of prussian blue analogues toward designable complex architectures for efficient energy storage publication-title: Nanoscale – volume: 27 start-page: 1604328 year: 2017 ident: b0250 article-title: Unique P-Co-N surface bonding states constructed on g-C publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1700587 year: 2017 ident: b0145 article-title: Prussian blue nanocubes with an open framework structure coated with pedot as high-capacity cathodes for lithium-sulfur batteries publication-title: Adv. Mater. – ident: 10.1016/j.jcis.2023.03.068_b0125 doi: 10.1002/anie.201500267 – volume: 162 start-page: 535 year: 2020 ident: 10.1016/j.jcis.2023.03.068_b0230 article-title: Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well publication-title: Renew. Energy doi: 10.1016/j.renene.2020.08.053 – volume: 10 start-page: 2799 year: 2019 ident: 10.1016/j.jcis.2023.03.068_b0090 article-title: Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-10698-9 – volume: 44 start-page: 3056 year: 2015 ident: 10.1016/j.jcis.2023.03.068_b0050 article-title: Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00478G – volume: 27 start-page: 1605846 year: 2017 ident: 10.1016/j.jcis.2023.03.068_b0265 article-title: In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605846 – volume: 11 start-page: 13463 year: 2021 ident: 10.1016/j.jcis.2023.03.068_b0020 article-title: Gradient Zn-doped poly heptazine imides integrated with a van der Waals homojunction boosting visible light-driven water oxidation activities publication-title: ACS Catal. doi: 10.1021/acscatal.1c03687 – volume: 7 start-page: 599 year: 2018 ident: 10.1016/j.jcis.2023.03.068_b0095 article-title: Synthesis of hollow Co-Fe Prussian blue analogue cubes by using silica spheres as a sacrificial template publication-title: ChemistryOpen doi: 10.1002/open.201800120 – volume: 12 start-page: 1911 year: 2019 ident: 10.1016/j.jcis.2023.03.068_b0245 article-title: LiCl as phase-transfer catalysts to synthesize thin Co2P nanosheets for oxygen evolution reaction publication-title: ChemSusChem doi: 10.1002/cssc.201801691 – volume: 125 start-page: 9818 year: 2021 ident: 10.1016/j.jcis.2023.03.068_b0025 article-title: Molecular triazine-heptazine junctions promoting exciton dissociation for overall water splitting with visible light publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c02274 – volume: 129 start-page: 3729 year: 2007 ident: 10.1016/j.jcis.2023.03.068_b0130 article-title: Continuous structural evolution of calcium carbonate particles: A unifying model of copolymer-mediated crystallization publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067422e – volume: 2 start-page: 509 year: 2018 ident: 10.1016/j.jcis.2023.03.068_b0005 article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation publication-title: Joule doi: 10.1016/j.joule.2017.12.009 – volume: 689 start-page: 130 year: 2016 ident: 10.1016/j.jcis.2023.03.068_b0170 article-title: N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries publication-title: J. Alloy. Compound. doi: 10.1016/j.jallcom.2016.07.315 – volume: 52 start-page: 1633 year: 2016 ident: 10.1016/j.jcis.2023.03.068_b0100 article-title: Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution publication-title: Chem. Commun. doi: 10.1039/C5CC08991C – volume: 52 start-page: 3621 year: 2013 ident: 10.1016/j.jcis.2023.03.068_b0280 article-title: Ib Chorkendorff, Layered nanojunctions for hydrogen-evolution catalysis publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201210294 – volume: 15 start-page: 1905289 year: 2019 ident: 10.1016/j.jcis.2023.03.068_b0175 article-title: Investigation of binary metal (Ni, Co) selenite as Li-ion battery anode materials and their conversion reaction mechanism with Li ions publication-title: Small doi: 10.1002/smll.201905289 – volume: 18 start-page: 1800484 year: 2018 ident: 10.1016/j.jcis.2023.03.068_b0160 article-title: Transforming nickel hydroxide into 3D prussian blue analogue array to obtain Ni2P/Fe2P for efficient hydrogen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800484 – volume: 2018 start-page: 2768 year: 2018 ident: 10.1016/j.jcis.2023.03.068_b0040 article-title: Modified Cu-based metal-organic framework by graphene oxide for sulfur compounds removal publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201800133 – ident: 10.1016/j.jcis.2023.03.068_b0115 doi: 10.1016/j.chempr.2017.10.018 – volume: 2 start-page: 57 year: 2020 ident: 10.1016/j.jcis.2023.03.068_b0030 article-title: Emerging photocatalysts for hydrogen evolution publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.06.009 – volume: 57 start-page: 17173 year: 2018 ident: 10.1016/j.jcis.2023.03.068_b0220 article-title: Noble-metal-free heterogeneous photosensitizer-relay catalyst triad that catalyzes water oxidation under visible light publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201811570 – volume: 27 start-page: 1604328 year: 2017 ident: 10.1016/j.jcis.2023.03.068_b0250 article-title: Unique P-Co-N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604328 – ident: 10.1016/j.jcis.2023.03.068_b0120 doi: 10.1002/adma.201706825 – volume: 1 start-page: 212 year: 2021 ident: 10.1016/j.jcis.2023.03.068_b0190 article-title: Efficient charge migration in chemically-bonded prussian blue analogue/CdS with beaded structure for photocatalytic H2 evolution publication-title: JACS Au doi: 10.1021/jacsau.0c00082 – volume: 3 start-page: e1700732 year: 2017 ident: 10.1016/j.jcis.2023.03.068_b0205 article-title: Oriented assembly of anisotropic nanoparticles into frame-like superstructures publication-title: Sci. Adv. doi: 10.1126/sciadv.1700732 – volume: 39 start-page: 647 year: 2017 ident: 10.1016/j.jcis.2023.03.068_b0080 article-title: Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.055 – volume: 1 start-page: 931 year: 2016 ident: 10.1016/j.jcis.2023.03.068_b0015 article-title: Why do hydrogen and oxygen yields from semiconductor-based photocatalyzed water splitting remain disappointingly low? Intrinsic and extrinsic factors impacting surface redox reactions publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00391 – volume: 5 start-page: 5604 year: 2012 ident: 10.1016/j.jcis.2023.03.068_b0110 article-title: Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02426D – volume: 26 start-page: 6822 year: 2016 ident: 10.1016/j.jcis.2023.03.068_b0180 article-title: In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602779 – volume: 7 start-page: 4586 year: 2013 ident: 10.1016/j.jcis.2023.03.068_b0200 article-title: Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth publication-title: ACS Nano doi: 10.1021/nn401363e – volume: 14 start-page: 1802442 year: 2018 ident: 10.1016/j.jcis.2023.03.068_b0215 article-title: Hollow porous heterometallic phosphide nanocubes for enhanced electrochemical water splitting publication-title: Small doi: 10.1002/smll.201802442 – volume: 2 start-page: 1122 year: 2017 ident: 10.1016/j.jcis.2023.03.068_b0085 article-title: Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries publication-title: ACS Energy Let. doi: 10.1021/acsenergylett.7b00179 – volume: 9 start-page: 11 year: 2017 ident: 10.1016/j.jcis.2023.03.068_b0075 article-title: Prussian blue and its derivatives as electrode materials for electrochemical energy storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.06.002 – volume: 136 start-page: 7587 year: 2014 ident: 10.1016/j.jcis.2023.03.068_b0240 article-title: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogenevolving cathode over the wide range of pH 0–14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503372r – volume: 16 start-page: 1082 year: 2014 ident: 10.1016/j.jcis.2023.03.068_b0260 article-title: Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes publication-title: Green Chem. doi: 10.1039/C3GC42042F – volume: 30 start-page: 486 year: 2020 ident: 10.1016/j.jcis.2023.03.068_b0045 article-title: A highly reversible sorption for sulfur-containing toxic VOCs emissions under ambient temperature and pressure publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-019-01207-y – volume: 55 start-page: 5414 year: 2016 ident: 10.1016/j.jcis.2023.03.068_b0035 article-title: Metal-organic framework (MOF) compounds photocatalysts for redox reactions and solar fuel production publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201505581 – volume: 11 start-page: 2257 year: 2009 ident: 10.1016/j.jcis.2023.03.068_b0195 article-title: Prussian Blue mesocrystals prepared by a facile hydrothermal method publication-title: CrystEngComm doi: 10.1039/b911613n – volume: 12 start-page: 11112 year: 2020 ident: 10.1016/j.jcis.2023.03.068_b0140 article-title: Mechanistic insight in site-selective and anisotropic etching of prussian blue analogues toward designable complex architectures for efficient energy storage publication-title: Nanoscale doi: 10.1039/D0NR02241A – volume: 31 start-page: 2008989 year: 2021 ident: 10.1016/j.jcis.2023.03.068_b0165 article-title: Pd Ion-exchange and ammonia etching of a Prussian blue analogue to produce a high-performance water-splitting catalyst publication-title: Adv. Func. Mater. doi: 10.1002/adfm.202008989 – volume: 95 year: 2022 ident: 10.1016/j.jcis.2023.03.068_b0210 article-title: Concentrating electron and activating H-OH bond of absorbed water on metallic NiCo2S4 boosting photocatalytic hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107028 – volume: 23 start-page: 742 year: 2014 ident: 10.1016/j.jcis.2023.03.068_b0235 article-title: Efficient oxidation of ethylbenzene catalyzed by cobalt zeolitic imidazolate framework ZIF-67 and NHPI publication-title: J. Energy Chem. doi: 10.1016/S2095-4956(14)60207-2 – volume: 52 start-page: 6269 year: 2016 ident: 10.1016/j.jcis.2023.03.068_b0060 article-title: Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation publication-title: Chem. Commun. doi: 10.1039/C6CC02093C – volume: 44 start-page: 7997 year: 2015 ident: 10.1016/j.jcis.2023.03.068_b0055 article-title: New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00397K – volume: 55 start-page: 1830 year: 2016 ident: 10.1016/j.jcis.2023.03.068_b0275 article-title: Phosphorus-doped carbon nitride tubes with a layered micronanostructure for enhanced visible-light photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201508505 – volume: 7 start-page: 12165 year: 2016 ident: 10.1016/j.jcis.2023.03.068_b0185 article-title: Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites publication-title: Nat. Commun. doi: 10.1038/ncomms12165 – volume: 20 start-page: 7081 year: 2008 ident: 10.1016/j.jcis.2023.03.068_b0155 article-title: X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr-Ni) publication-title: Chem. Mater. doi: 10.1021/cm802123a – ident: 10.1016/j.jcis.2023.03.068_b0105 doi: 10.1002/adma.201900281 – volume: 54 start-page: 5613 year: 2015 ident: 10.1016/j.jcis.2023.03.068_b0225 article-title: High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201501116 – volume: 6 start-page: 1804 year: 2020 ident: 10.1016/j.jcis.2023.03.068_b0065 article-title: Unconventional Mn vacancies in Mn-Fe prussian blue analogs: suppressing Jahn-Teller distortion for ultrastable sodium storage publication-title: Chem doi: 10.1016/j.chempr.2020.05.004 – volume: 45 start-page: 3039 year: 2016 ident: 10.1016/j.jcis.2023.03.068_b0010 article-title: Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00729A – volume: 21 start-page: 3016 year: 2021 ident: 10.1016/j.jcis.2023.03.068_b0150 article-title: In situ anchoring polymetallic phosphide nanoparticles within porous prussian blue analogue nanocages for boosting oxygen evolution catalysis publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00179 – volume: 45 start-page: 1529 year: 2016 ident: 10.1016/j.jcis.2023.03.068_b0255 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 382 year: 2020 ident: 10.1016/j.jcis.2023.03.068_b0270 article-title: Performance of ZIF-67-derived fold polyhedrons for enhanced photocatalytic hydrogen evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123051 – volume: 5 start-page: 5280 year: 2014 ident: 10.1016/j.jcis.2023.03.068_b0070 article-title: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries publication-title: Nat. Commun. doi: 10.1038/ncomms6280 – volume: 104 start-page: 1153 year: 2000 ident: 10.1016/j.jcis.2023.03.068_b0135 article-title: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies publication-title: J. Phy. Chem. B doi: 10.1021/jp993593c – volume: 29 start-page: 1700587 year: 2017 ident: 10.1016/j.jcis.2023.03.068_b0145 article-title: Prussian blue nanocubes with an open framework structure coated with pedot as high-capacity cathodes for lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201700587 |
SSID | ssj0011559 ssib006540584 |
Score | 2.4889185 |
Snippet | [Display omitted]
Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable... Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and... |
SourceID | proquest pubmed crossref nii elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 861 |
SubjectTerms | Chemical etching energy conversion functional nanomaterials H2 evolution light nanoparticles nanorods NiCo PBA phase transition photocatalysis species surface area |
Title | Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications |
URI | https://dx.doi.org/10.1016/j.jcis.2023.03.068 https://cir.nii.ac.jp/crid/1872553967999962752 https://www.ncbi.nlm.nih.gov/pubmed/36966575 https://www.proquest.com/docview/2791703960 https://www.proquest.com/docview/3153780078 |
Volume | 641 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LihQxsFjXg3oQXV-j7hLBm8TtdDJJ-rgMLqPi4sGFvTWdF_Y69AwzPXjz6m9b1Y9hBHcPQtPQIRXSqapUVVIPgLcpq2ImYuImFomr5B13GhHi89wrmaQNXfWGLxd6fqk-XU2vDmA2xsKQW-Ww9_d7erdbDy2nw2qeruqaYnyR2wxVzeoKRlBEuVKGqPz9r52bh6Brt97NQ3DqPQTO9D5e176mlN257BKdUrrVfwunO01d36yCdqLo_BE8HHRIdtZP8zEcxOYI7s3G0m1H8GAvy-AT-D0mBWCEImxiVRPY6jvKL9bu6a3Lhi0TQ9L4ERd8RnlCWvZ1vd1QmCVzi21EODrq2TAEYHV3GhED25BxzMOatk32E1XXNd-gZtv5U7P9-_GncHn-4dtszof6C9wrq1peWW0jsbxEOWccyvoQjdexQp5GBPuYbAxe6YzKKuAyO5WKJMLUFyFURhr5DA6bZRNfANOVtNYVIvlKKFTRCq9wYLR1hBNRuzQBMS586Yfk5FQjY1GOXmjXJSGrJGSVGT7aTuDdDmbVp-a4tfd0xGf5F4GVKDtuhTtG5OOk6C2sQRNMFtoUZCjmZppP4M1IFiVima5bqiYutziIQVM4w87ZzX0kChxjSU-bwPOepnb_QpUW6Vrs5X_O_BXcp6_et_g1HLbrbTxGDap1Jx2LnMDds4-f5xd_AInPGeo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615VA4oFJeCy0YCU7INI69sXPoAS1UW_oQh1bqLSSOLVJW2dUmq4oLV34Qf7AzeawWifaAVGm1h6xteT3jmW_i8XwAb32QukA4z7WLPVfeZjyLUCA2DK2SXpq8YW84OY3G5-rLxfBiDf70d2EorbKz_a1Nb6x192SvW829WVHQHV_cbZpYsxrCCN1lVh65n1cYt1X7h59QyO_C8ODz2WjMO2oBbpVRNU9NZBxpM4bzUmfoxnKnbeRSVFecu3XeuNyqKCDGAATdmfKxF_nQxnmeaqkljrsO9xSaC6JN-PBrmVci6JyvzSsRnKbX3dRpk8oubUE1wkPZVFal-q7_9obrZVHcjHkb33ewBQ870Mo-tuvyCNZcuQ2bo54rbhserJQ1fAy_-yoEjHQCH7G0zNnsOzpMVq8A5WnJpp6hLv5wEz6iwiQ1-zpfVHSvk2WThcN-9G6pYtiBFc3rD5eziqJxns_JTrMrxMpzXiGUbhK42eqB_BM4vxOpPIWNclq658CiVBqTxcLbVCjEhLFVODAGVyITLsr8AES_8IntqqETKcck6dPeLhMSVkLCSgL8RGYA75d9Zm0tkFtbD3t5Jn9pdILO6tZ-uyh8nBR9C6Mx5pNxpGOKTEM9DAfwpleLBKVM5ztp6aYLHERj7B1g4-DmNhI9nDYEDAfwrNWp5X8hakc6h3vxnzN_DZvjs5Pj5Pjw9Ogl3Kdf2sTmHdio5wu3i_Ctzl4124XBt7ven9ebRVXK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+etching+and+phase+transformation+of+Nickel-Cobalt+Prussian+blue+analogs+for+improved+solar-driven+water-splitting+applications&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Li%2C+Yanbing&rft.au=Jin%2C+Zhiliang&rft.au=Tsubaki%2C+Noritatsu&rft.date=2023-07-01&rft.issn=0021-9797&rft.volume=641&rft.spage=861&rft.epage=874&rft_id=info:doi/10.1016%2Fj.jcis.2023.03.068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2023_03_068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |