Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications

[Display omitted] Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported...

Full description

Saved in:
Bibliographic Details
Published inJournal of Colloid and Interface Science Vol. 641; pp. 861 - 874
Main Authors Li, Yanbing, Jin, Zhiliang, Tsubaki, Noritatsu
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2023
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h−1) compared with the raw NCP-0 (0.64 mol g-1h−1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h−1, 25 times that of the NCP-0, without any cocatalysts.
AbstractList Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi S nanorods with a considerably improved photocatalytic H evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H evolution rate (1.28 mol g h ) compared with the raw NCP-0 (0.64 mol g h ). Furthermore, the H evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g h , 25 times that of the NCP-0, without any cocatalysts.
Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h-1) compared with the raw NCP-0 (0.64 mol g-1h-1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h-1, 25 times that of the NCP-0, without any cocatalysts.Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h-1) compared with the raw NCP-0 (0.64 mol g-1h-1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h-1, 25 times that of the NCP-0, without any cocatalysts.
Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further convertedinto advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi₂S₄ nanorods with a considerably improved photocatalytic H₂ evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H₂ evolution rate (1.28 mol g⁻¹ h⁻¹) compared with the raw NCP-0 (0.64 mol g⁻¹ h⁻¹). Furthermore, the H₂ evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g⁻¹ h⁻¹, 25 times that of the NCP-0, without any cocatalysts.
[Display omitted] Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h−1) compared with the raw NCP-0 (0.64 mol g-1h−1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h−1, 25 times that of the NCP-0, without any cocatalysts.
Author Jin, Zhiliang
Tsubaki, Noritatsu
Li, Yanbing
Author_xml – sequence: 1
  givenname: Yanbing
  surname: Li
  fullname: Li, Yanbing
  organization: Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
– sequence: 2
  givenname: Zhiliang
  orcidid: 0000-0002-3793-6588
  surname: Jin
  fullname: Jin, Zhiliang
  email: zl-jin@nun.edu.cn
  organization: School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China
– sequence: 3
  givenname: Noritatsu
  surname: Tsubaki
  fullname: Tsubaki, Noritatsu
  email: tsubaki@eng.u-toyama.ac.jp
  organization: Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
BackLink https://cir.nii.ac.jp/crid/1872553967999962752$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/36966575$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2PUyEUhokZ43RG_4ALw8KFm1vhUuCSuDGNX8lEXeiaUDh3SuVCBVrjL_Bvy21nNi5GcgIsnvc9X1foIqYICD2nZEkJFa93y531ZdmTni1JCzE8QgtKFO8kJewCLQjpaaekkpfoqpQdIZRyrp6gSyaUEFzyBfqz3sLkrQkYqt36eItNdHi_NQVwzSaWMeXJVJ8iTiP-7O0PCN06bUyo-Gs-lOJNxJtwgKYzId0W3ATYT_ucjuBwScHkzmV_hIh_mQq5K_vgaz1l2revPZmXp-jxaEKBZ3fvNfr-_t239cfu5suHT-u3N51dDavamUEMQAfWM0aY3PQr6kBaAUYqBoRaGAdwdiWINZy0XjerUY3UcaucM5JJdo1enX1bgT8PUKqefLEQgomQDkUzypkcCJHDf9FeKioJU4I09MUdethM4PQ--8nk3_p-zg0YzoDNqZQMo7a-njpvQ_ZBU6Lnleqdnleq55Vq0kLMZfT_SO_dHxS9PIui9y3VfNNB9py3cqVqR_SS9w17c8agjfzoIetiPUQLzmewVbvkH8ryFxuuxus
CitedBy_id crossref_primary_10_1016_j_est_2023_108958
crossref_primary_10_1039_D4QI00612G
crossref_primary_10_1016_j_jmst_2024_06_018
crossref_primary_10_1002_adsu_202400639
crossref_primary_10_1002_cctc_202401359
crossref_primary_10_1016_j_seppur_2025_131770
crossref_primary_10_1016_j_mtchem_2024_102063
crossref_primary_10_1002_solr_202300617
crossref_primary_10_1016_j_carbon_2024_119418
crossref_primary_10_1016_j_cej_2024_154892
crossref_primary_10_1039_D4DT00905C
crossref_primary_10_1002_ente_202402067
crossref_primary_10_1016_j_jpcs_2024_112404
Cites_doi 10.1002/anie.201500267
10.1016/j.renene.2020.08.053
10.1038/s41467-019-10698-9
10.1039/C4CS00478G
10.1002/adfm.201605846
10.1021/acscatal.1c03687
10.1002/open.201800120
10.1002/cssc.201801691
10.1021/acs.jpcc.1c02274
10.1021/ja067422e
10.1016/j.joule.2017.12.009
10.1016/j.jallcom.2016.07.315
10.1039/C5CC08991C
10.1002/anie.201210294
10.1002/smll.201905289
10.1002/aenm.201800484
10.1002/ejic.201800133
10.1016/j.chempr.2017.10.018
10.1016/j.trechm.2019.06.009
10.1002/anie.201811570
10.1002/adfm.201604328
10.1002/adma.201706825
10.1021/jacsau.0c00082
10.1126/sciadv.1700732
10.1016/j.nanoen.2017.07.055
10.1021/acsenergylett.6b00391
10.1039/C1EE02426D
10.1002/adfm.201602779
10.1021/nn401363e
10.1002/smll.201802442
10.1021/acsenergylett.7b00179
10.1016/j.ensm.2017.06.002
10.1021/ja503372r
10.1039/C3GC42042F
10.1007/s10904-019-01207-y
10.1002/anie.201505581
10.1039/b911613n
10.1039/D0NR02241A
10.1002/adfm.202008989
10.1016/j.nanoen.2022.107028
10.1016/S2095-4956(14)60207-2
10.1039/C6CC02093C
10.1039/C5CS00397K
10.1002/anie.201508505
10.1038/ncomms12165
10.1021/cm802123a
10.1002/adma.201900281
10.1002/anie.201501116
10.1016/j.chempr.2020.05.004
10.1039/C5CS00729A
10.1021/acs.nanolett.1c00179
10.1039/C5CS00434A
10.1016/j.cej.2019.123051
10.1038/ncomms6280
10.1021/jp993593c
10.1002/adma.201700587
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID RYH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2023.03.068
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 874
ExternalDocumentID 36966575
10_1016_j_jcis_2023_03_068
S0021979723004277
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
ADVLN
AGQPQ
CITATION
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c484t-a868e183233037b241de7c6ea793e01cef8edc460ca50559b4f9f1d5c9dda7373
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 06:43:54 EDT 2025
Fri Jul 11 01:31:30 EDT 2025
Wed Feb 19 02:24:04 EST 2025
Tue Jul 01 04:19:02 EDT 2025
Thu Apr 24 23:06:57 EDT 2025
Thu Jun 26 22:03:12 EDT 2025
Fri Apr 05 04:25:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords NiCo PBA
Chemical etching
functional nanomaterials
H2 evolution
H evolution
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-a868e183233037b241de7c6ea793e01cef8edc460ca50559b4f9f1d5c9dda7373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3793-6588
PMID 36966575
PQID 2791703960
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3153780078
proquest_miscellaneous_2791703960
pubmed_primary_36966575
crossref_citationtrail_10_1016_j_jcis_2023_03_068
crossref_primary_10_1016_j_jcis_2023_03_068
nii_cinii_1872553967999962752
elsevier_sciencedirect_doi_10_1016_j_jcis_2023_03_068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of Colloid and Interface Science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2023
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Li, Du, Wang, Yin, Tu, Chen, Kraft, Chen, Xu (b0250) 2017; 27
Azhar, Zakaria, Ebeid, Chikyow, Bando, Alshehri, Alghamdi, Cai, Kumar, Lin, Kim, Yamauchi (b0095) 2018; 7
Guo, Tang, Wang, Sugahara, Yamauchi (b0215) 2018; 14
Nai, Guan, Yu, Lou (b0205) 2017; 3
Xu, Zheng, Tang, Guo, Xue, Pang (b0075) 2017; 9
P. Zhang, B.Y. Guan, L. Yu, X.W. (David) Lou, Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion, Chem 4 (2018) 162-173.
Zhang, Chen, Chang, Jiang, Ji, Li, Lu, Dong, Li, Cai, Lan (b0190) 2021; 1
Shi, Zhang (b0255) 2016; 45
Yamada, Oyama, Gates, Fukuzumi (b0225) 2015; 54
Pan, Liu, Zhang, Zhuzhang, Wang (b0025) 2021; 125
Feng, Yu, Paik (b0060) 2016; 52
X.Y. Yu, L. Yu, H.B. Wu, X.W. (David) Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties, Angew. Chem. Int. Edit. 54 (2015) 1-6.
Blanchard, Grosvenor, Cavell, Mar (b0155) 2008; 20
Cao, Piao, Chen (b0030) 2020; 2
Liu, Nosheen, Wang (b0050) 2015; 44
Wang, Zhang, Zhang, Yin, Li, Liu, Kang, Wei (b0080) 2017; 39
Tian, Liu, Asiri, Sun (b0240) 2014; 136
Lee, Wang, Pasta, Lee, Liu, Cui (b0070) 2014; 5
Wang, Li, Xu, Jin, Wang (b0230) 2020; 162
Shang, Li, Song, Huang, Yang, Xu, Yang (b0065) 2020; 6
Goto, Hisatomi, Wang, Higashi, Ishikiriyama, Maeda, Sakata, Okunaka, Tokudome, Katayama, Akiyama, Nishiyama, Inoue, Takewaki, Setoyama, Minegishi, Takata, Yamada, Domen (b0005) 2018; 2
Kong, Selomuly, Zheng, Zhao (b0055) 2015; 44
Wang, Wan, Xie, Xia, Huang, Xia (b0200) 2013; 7
Yang, Chen, Zheng, Wu, Tung (b0260) 2014; 16
Xu, Zhao, Yu, Sun, Hui, Zhou, Xue, Dai, Zhao, Wang, Gong, Zhou, An, Chen, Sun, Huang (b0140) 2020; 12
P. Zhang, X.W. (David) Lou, Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion, Adv. Mater. 31 (2019) 1900281.
Serpone, Emeline, Ryabchuk, Kuznetsov, Artem’ev, Horikoshi (b0015) 2016; 1
Zhang, Jiang, Hadden, Xie, Riley (b0165) 2021; 31
Hou, Laursen, Zhang, Zhang, Zhu, Wang, Dahl, Chorkendorff (b0280) 2013; 52
Lai, Halpert, Wang (b0110) 2012; 5
Kulak, Iddon, Li, Armes, Cölfen, Paris, Wilson, Meldrum (b0130) 2007; 129
Zhou, Guo, Yang, Wang, Li, Zhou (b0170) 2016; 689
Liu, Zhao, Zhou, Liu, Pang, Zhang, Hao, Meng, Li, Kako, Ye (b0180) 2016; 26
He, Nazar (b0085) 2017; 2
Zhang, Li, Xiao, Shan, Bai, Xue, Pang, Tian, Xu (b0150) 2021; 21
J.W. Nai, X.W. (David) Lou, Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion, Adv. Mater. 31 (2018) 1706825.
Hu, Jiang, Ji, Zeng (b0195) 2009; 11
Zhang, Shi, Zhang, Zhou, Yang, Fan, Wu (b0040) 2018; 2018
Lau, Moudrakovski, Botari, Weinberger, Mesch, Duppel, Senker, Blum, Lotsch (b0185) 2016; 7
Guo, Deng, Li, Jiang, Tian, Pan, Fu (b0275) 2016; 55
Xu, Kraft, Xu (b0010) 2016; 45
Pan, Niu, Hou, Fang, Liu, Wang (b0245) 2019; 12
Pan, Zhao, Zhuzhang, Zhang, Anpo, Wang (b0020) 2021; 11
Li, Ma, Wang, Gao, Chen, Shi, Qu, Feng, Xu (b0235) 2014; 23
Ge, Dong, Craig, Ajayan, Mi, Ye (b0160) 2018; 18
Zhang, Li, Fan, Yang, Wu (b0045) 2020; 30
Li, Jin, Zhao (b0270) 2020; 382
Feng, Yu, Paik (b0100) 2016; 52
Yu, Duan, Liu, Chen, Liu, Liu, Ma, Li, Zheng, Yao, Gao, Zhu, Ye, Yu (b0090) 2019; 10
Park, Yang, Lee, Kang (b0175) 2019; 15
Su, Cortie, Fan, Wang (b0145) 2017; 29
Zheng, Ding, Yu, Du, Zhao (b0265) 2017; 27
Guo, Mao, Tang, Shang, Cai, Zhang, Hu, Tan, Liu, Wang, Yu, Ye (b0210) 2022; 95
Ghobadi, Yildiz, Buyuktemiz, Akbari, Topkaya, İsci, Dede, Yaglioglu, Karadas (b0220) 2018; 57
Dhakshinamoorthy, Asiri, García (b0035) 2016; 55
Wang (b0135) 2000; 104
10.1016/j.jcis.2023.03.068_b0120
Li (10.1016/j.jcis.2023.03.068_b0270) 2020; 382
Hou (10.1016/j.jcis.2023.03.068_b0280) 2013; 52
Goto (10.1016/j.jcis.2023.03.068_b0005) 2018; 2
Wang (10.1016/j.jcis.2023.03.068_b0080) 2017; 39
Shi (10.1016/j.jcis.2023.03.068_b0255) 2016; 45
Li (10.1016/j.jcis.2023.03.068_b0250) 2017; 27
Yamada (10.1016/j.jcis.2023.03.068_b0225) 2015; 54
10.1016/j.jcis.2023.03.068_b0125
Serpone (10.1016/j.jcis.2023.03.068_b0015) 2016; 1
Liu (10.1016/j.jcis.2023.03.068_b0050) 2015; 44
Xu (10.1016/j.jcis.2023.03.068_b0010) 2016; 45
Nai (10.1016/j.jcis.2023.03.068_b0205) 2017; 3
Shang (10.1016/j.jcis.2023.03.068_b0065) 2020; 6
Pan (10.1016/j.jcis.2023.03.068_b0020) 2021; 11
Wang (10.1016/j.jcis.2023.03.068_b0230) 2020; 162
Zhang (10.1016/j.jcis.2023.03.068_b0150) 2021; 21
Pan (10.1016/j.jcis.2023.03.068_b0025) 2021; 125
Lau (10.1016/j.jcis.2023.03.068_b0185) 2016; 7
Pan (10.1016/j.jcis.2023.03.068_b0245) 2019; 12
Zhang (10.1016/j.jcis.2023.03.068_b0165) 2021; 31
Lai (10.1016/j.jcis.2023.03.068_b0110) 2012; 5
Wang (10.1016/j.jcis.2023.03.068_b0200) 2013; 7
Dhakshinamoorthy (10.1016/j.jcis.2023.03.068_b0035) 2016; 55
He (10.1016/j.jcis.2023.03.068_b0085) 2017; 2
Guo (10.1016/j.jcis.2023.03.068_b0215) 2018; 14
Zhang (10.1016/j.jcis.2023.03.068_b0040) 2018; 2018
Cao (10.1016/j.jcis.2023.03.068_b0030) 2020; 2
Wang (10.1016/j.jcis.2023.03.068_b0135) 2000; 104
Zheng (10.1016/j.jcis.2023.03.068_b0265) 2017; 27
Feng (10.1016/j.jcis.2023.03.068_b0060) 2016; 52
10.1016/j.jcis.2023.03.068_b0105
Ge (10.1016/j.jcis.2023.03.068_b0160) 2018; 18
Zhang (10.1016/j.jcis.2023.03.068_b0190) 2021; 1
Azhar (10.1016/j.jcis.2023.03.068_b0095) 2018; 7
Kulak (10.1016/j.jcis.2023.03.068_b0130) 2007; 129
Zhang (10.1016/j.jcis.2023.03.068_b0045) 2020; 30
Liu (10.1016/j.jcis.2023.03.068_b0180) 2016; 26
Guo (10.1016/j.jcis.2023.03.068_b0275) 2016; 55
Tian (10.1016/j.jcis.2023.03.068_b0240) 2014; 136
Xu (10.1016/j.jcis.2023.03.068_b0140) 2020; 12
Park (10.1016/j.jcis.2023.03.068_b0175) 2019; 15
Hu (10.1016/j.jcis.2023.03.068_b0195) 2009; 11
Zhou (10.1016/j.jcis.2023.03.068_b0170) 2016; 689
Lee (10.1016/j.jcis.2023.03.068_b0070) 2014; 5
Blanchard (10.1016/j.jcis.2023.03.068_b0155) 2008; 20
Ghobadi (10.1016/j.jcis.2023.03.068_b0220) 2018; 57
Yang (10.1016/j.jcis.2023.03.068_b0260) 2014; 16
Su (10.1016/j.jcis.2023.03.068_b0145) 2017; 29
Xu (10.1016/j.jcis.2023.03.068_b0075) 2017; 9
Yu (10.1016/j.jcis.2023.03.068_b0090) 2019; 10
10.1016/j.jcis.2023.03.068_b0115
Guo (10.1016/j.jcis.2023.03.068_b0210) 2022; 95
Li (10.1016/j.jcis.2023.03.068_b0235) 2014; 23
Kong (10.1016/j.jcis.2023.03.068_b0055) 2015; 44
Feng (10.1016/j.jcis.2023.03.068_b0100) 2016; 52
References_xml – reference: P. Zhang, B.Y. Guan, L. Yu, X.W. (David) Lou, Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion, Chem 4 (2018) 162-173.
– volume: 15
  start-page: 1905289
  year: 2019
  ident: b0175
  article-title: Investigation of binary metal (Ni, Co) selenite as Li-ion battery anode materials and their conversion reaction mechanism with Li ions
  publication-title: Small
– volume: 52
  start-page: 6269
  year: 2016
  end-page: 6272
  ident: b0060
  article-title: Formation of Co
  publication-title: Chem. Commun.
– volume: 11
  start-page: 2257
  year: 2009
  end-page: 2259
  ident: b0195
  article-title: Prussian Blue mesocrystals prepared by a facile hydrothermal method
  publication-title: CrystEngComm
– reference: J.W. Nai, X.W. (David) Lou, Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion, Adv. Mater. 31 (2018) 1706825.
– volume: 104
  start-page: 1153
  year: 2000
  end-page: 1175
  ident: b0135
  article-title: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies
  publication-title: J. Phy. Chem. B
– volume: 136
  start-page: 7587
  year: 2014
  end-page: 7590
  ident: b0240
  article-title: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogenevolving cathode over the wide range of pH 0–14
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1122
  year: 2017
  end-page: 1127
  ident: b0085
  article-title: Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries
  publication-title: ACS Energy Let.
– volume: 2018
  start-page: 2768
  year: 2018
  end-page: 2775
  ident: b0040
  article-title: Modified Cu-based metal-organic framework by graphene oxide for sulfur compounds removal
  publication-title: Eur. J. Inorg. Chem.
– volume: 7
  start-page: 12165
  year: 2016
  ident: b0185
  article-title: Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites
  publication-title: Nat. Commun.
– volume: 21
  start-page: 3016
  year: 2021
  end-page: 3025
  ident: b0150
  article-title: In situ anchoring polymetallic phosphide nanoparticles within porous prussian blue analogue nanocages for boosting oxygen evolution catalysis
  publication-title: Nano Lett.
– volume: 9
  start-page: 11
  year: 2017
  end-page: 30
  ident: b0075
  article-title: Prussian blue and its derivatives as electrode materials for electrochemical energy storage
  publication-title: Energy Storage Mater.
– volume: 14
  start-page: 1802442
  year: 2018
  ident: b0215
  article-title: Hollow porous heterometallic phosphide nanocubes for enhanced electrochemical water splitting
  publication-title: Small
– volume: 1
  start-page: 931
  year: 2016
  end-page: 948
  ident: b0015
  article-title: Why do hydrogen and oxygen yields from semiconductor-based photocatalyzed water splitting remain disappointingly low? Intrinsic and extrinsic factors impacting surface redox reactions
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 57
  year: 2020
  end-page: 70
  ident: b0030
  article-title: Emerging photocatalysts for hydrogen evolution
  publication-title: Trends Chem.
– volume: 129
  start-page: 3729
  year: 2007
  end-page: 3736
  ident: b0130
  article-title: Continuous structural evolution of calcium carbonate particles: A unifying model of copolymer-mediated crystallization
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 5613
  year: 2015
  end-page: 5617
  ident: b0225
  article-title: High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation
  publication-title: Angew. Chem. Int. Edit.
– volume: 44
  start-page: 7997
  year: 2015
  end-page: 8018
  ident: b0055
  article-title: New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 599
  year: 2018
  end-page: 603
  ident: b0095
  article-title: Synthesis of hollow Co-Fe Prussian blue analogue cubes by using silica spheres as a sacrificial template
  publication-title: ChemistryOpen
– volume: 2
  start-page: 509
  year: 2018
  ident: b0005
  article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation
  publication-title: Joule
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  ident: b0255
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 6822
  year: 2016
  end-page: 6829
  ident: b0180
  article-title: In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 3621
  year: 2013
  end-page: 3625
  ident: b0280
  article-title: Ib Chorkendorff, Layered nanojunctions for hydrogen-evolution catalysis
  publication-title: Angew. Chem. Int. Edit.
– volume: 95
  year: 2022
  ident: b0210
  article-title: Concentrating electron and activating H-OH bond of absorbed water on metallic NiCo
  publication-title: Nano Energy
– volume: 10
  start-page: 2799
  year: 2019
  ident: b0090
  article-title: Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis
  publication-title: Nat. Commun.
– volume: 30
  start-page: 486
  year: 2020
  end-page: 493
  ident: b0045
  article-title: A highly reversible sorption for sulfur-containing toxic VOCs emissions under ambient temperature and pressure
  publication-title: J. Inorg. Organomet. Polym.
– volume: 52
  start-page: 1633
  year: 2016
  end-page: 1636
  ident: b0100
  article-title: Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution
  publication-title: Chem. Commun.
– volume: 27
  start-page: 1605846
  year: 2017
  ident: b0265
  article-title: In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution
  publication-title: Adv. Funct. Mater.
– volume: 382
  year: 2020
  ident: b0270
  article-title: Performance of ZIF-67-derived fold polyhedrons for enhanced photocatalytic hydrogen evolution
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 5280
  year: 2014
  ident: b0070
  article-title: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries
  publication-title: Nat. Commun.
– volume: 7
  start-page: 4586
  year: 2013
  end-page: 4594
  ident: b0200
  article-title: Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth
  publication-title: ACS Nano
– volume: 31
  start-page: 2008989
  year: 2021
  ident: b0165
  article-title: Pd Ion-exchange and ammonia etching of a Prussian blue analogue to produce a high-performance water-splitting catalyst
  publication-title: Adv. Func. Mater.
– volume: 689
  start-page: 130
  year: 2016
  end-page: 137
  ident: b0170
  article-title: N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries
  publication-title: J. Alloy. Compound.
– volume: 162
  start-page: 535
  year: 2020
  end-page: 549
  ident: b0230
  article-title: Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well
  publication-title: Renew. Energy
– volume: 125
  start-page: 9818
  year: 2021
  end-page: 9826
  ident: b0025
  article-title: Molecular triazine-heptazine junctions promoting exciton dissociation for overall water splitting with visible light
  publication-title: J. Phys. Chem. C
– volume: 44
  start-page: 3056
  year: 2015
  end-page: 3078
  ident: b0050
  article-title: Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 17173
  year: 2018
  end-page: 17177
  ident: b0220
  article-title: Noble-metal-free heterogeneous photosensitizer-relay catalyst triad that catalyzes water oxidation under visible light
  publication-title: Angew. Chem. Int. Edit.
– volume: 39
  start-page: 647
  year: 2017
  end-page: 653
  ident: b0080
  article-title: Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors
  publication-title: Nano Energy
– volume: 18
  start-page: 1800484
  year: 2018
  ident: b0160
  article-title: Transforming nickel hydroxide into 3D prussian blue analogue array to obtain Ni
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 13463
  year: 2021
  end-page: 13471
  ident: b0020
  article-title: Gradient Zn-doped poly heptazine imides integrated with a van der Waals homojunction boosting visible light-driven water oxidation activities
  publication-title: ACS Catal.
– volume: 3
  start-page: e1700732
  year: 2017
  ident: b0205
  article-title: Oriented assembly of anisotropic nanoparticles into frame-like superstructures
  publication-title: Sci. Adv.
– volume: 45
  start-page: 3039
  year: 2016
  end-page: 3052
  ident: b0010
  article-title: Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 5414
  year: 2016
  end-page: 5445
  ident: b0035
  article-title: Metal-organic framework (MOF) compounds photocatalysts for redox reactions and solar fuel production
  publication-title: Angew. Chem. Int. Edit.
– volume: 5
  start-page: 5604
  year: 2012
  end-page: 5618
  ident: b0110
  article-title: Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems
  publication-title: Energy Environ. Sci.
– volume: 20
  start-page: 7081
  year: 2008
  end-page: 7088
  ident: b0155
  article-title: X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M
  publication-title: Chem. Mater.
– reference: X.Y. Yu, L. Yu, H.B. Wu, X.W. (David) Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties, Angew. Chem. Int. Edit. 54 (2015) 1-6.
– volume: 16
  start-page: 1082
  year: 2014
  ident: b0260
  article-title: Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes
  publication-title: Green Chem.
– volume: 6
  start-page: 1804
  year: 2020
  end-page: 1818
  ident: b0065
  article-title: Unconventional Mn vacancies in Mn-Fe prussian blue analogs: suppressing Jahn-Teller distortion for ultrastable sodium storage
  publication-title: Chem
– volume: 23
  start-page: 742
  year: 2014
  end-page: 746
  ident: b0235
  article-title: Efficient oxidation of ethylbenzene catalyzed by cobalt zeolitic imidazolate framework ZIF-67 and NHPI
  publication-title: J. Energy Chem.
– volume: 12
  start-page: 1911
  year: 2019
  end-page: 1915
  ident: b0245
  article-title: LiCl as phase-transfer catalysts to synthesize thin Co
  publication-title: ChemSusChem
– volume: 1
  start-page: 212
  year: 2021
  end-page: 220
  ident: b0190
  article-title: Efficient charge migration in chemically-bonded prussian blue analogue/CdS with beaded structure for photocatalytic H
  publication-title: JACS Au
– reference: P. Zhang, X.W. (David) Lou, Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion, Adv. Mater. 31 (2019) 1900281.
– volume: 55
  start-page: 1830
  year: 2016
  end-page: 1834
  ident: b0275
  article-title: Phosphorus-doped carbon nitride tubes with a layered micronanostructure for enhanced visible-light photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Edit.
– volume: 12
  start-page: 11112
  year: 2020
  end-page: 11118
  ident: b0140
  article-title: Mechanistic insight in site-selective and anisotropic etching of prussian blue analogues toward designable complex architectures for efficient energy storage
  publication-title: Nanoscale
– volume: 27
  start-page: 1604328
  year: 2017
  ident: b0250
  article-title: Unique P-Co-N surface bonding states constructed on g-C
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1700587
  year: 2017
  ident: b0145
  article-title: Prussian blue nanocubes with an open framework structure coated with pedot as high-capacity cathodes for lithium-sulfur batteries
  publication-title: Adv. Mater.
– ident: 10.1016/j.jcis.2023.03.068_b0125
  doi: 10.1002/anie.201500267
– volume: 162
  start-page: 535
  year: 2020
  ident: 10.1016/j.jcis.2023.03.068_b0230
  article-title: Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.08.053
– volume: 10
  start-page: 2799
  year: 2019
  ident: 10.1016/j.jcis.2023.03.068_b0090
  article-title: Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10698-9
– volume: 44
  start-page: 3056
  year: 2015
  ident: 10.1016/j.jcis.2023.03.068_b0050
  article-title: Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00478G
– volume: 27
  start-page: 1605846
  year: 2017
  ident: 10.1016/j.jcis.2023.03.068_b0265
  article-title: In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605846
– volume: 11
  start-page: 13463
  year: 2021
  ident: 10.1016/j.jcis.2023.03.068_b0020
  article-title: Gradient Zn-doped poly heptazine imides integrated with a van der Waals homojunction boosting visible light-driven water oxidation activities
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03687
– volume: 7
  start-page: 599
  year: 2018
  ident: 10.1016/j.jcis.2023.03.068_b0095
  article-title: Synthesis of hollow Co-Fe Prussian blue analogue cubes by using silica spheres as a sacrificial template
  publication-title: ChemistryOpen
  doi: 10.1002/open.201800120
– volume: 12
  start-page: 1911
  year: 2019
  ident: 10.1016/j.jcis.2023.03.068_b0245
  article-title: LiCl as phase-transfer catalysts to synthesize thin Co2P nanosheets for oxygen evolution reaction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801691
– volume: 125
  start-page: 9818
  year: 2021
  ident: 10.1016/j.jcis.2023.03.068_b0025
  article-title: Molecular triazine-heptazine junctions promoting exciton dissociation for overall water splitting with visible light
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c02274
– volume: 129
  start-page: 3729
  year: 2007
  ident: 10.1016/j.jcis.2023.03.068_b0130
  article-title: Continuous structural evolution of calcium carbonate particles: A unifying model of copolymer-mediated crystallization
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja067422e
– volume: 2
  start-page: 509
  year: 2018
  ident: 10.1016/j.jcis.2023.03.068_b0005
  article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation
  publication-title: Joule
  doi: 10.1016/j.joule.2017.12.009
– volume: 689
  start-page: 130
  year: 2016
  ident: 10.1016/j.jcis.2023.03.068_b0170
  article-title: N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries
  publication-title: J. Alloy. Compound.
  doi: 10.1016/j.jallcom.2016.07.315
– volume: 52
  start-page: 1633
  year: 2016
  ident: 10.1016/j.jcis.2023.03.068_b0100
  article-title: Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08991C
– volume: 52
  start-page: 3621
  year: 2013
  ident: 10.1016/j.jcis.2023.03.068_b0280
  article-title: Ib Chorkendorff, Layered nanojunctions for hydrogen-evolution catalysis
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201210294
– volume: 15
  start-page: 1905289
  year: 2019
  ident: 10.1016/j.jcis.2023.03.068_b0175
  article-title: Investigation of binary metal (Ni, Co) selenite as Li-ion battery anode materials and their conversion reaction mechanism with Li ions
  publication-title: Small
  doi: 10.1002/smll.201905289
– volume: 18
  start-page: 1800484
  year: 2018
  ident: 10.1016/j.jcis.2023.03.068_b0160
  article-title: Transforming nickel hydroxide into 3D prussian blue analogue array to obtain Ni2P/Fe2P for efficient hydrogen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800484
– volume: 2018
  start-page: 2768
  year: 2018
  ident: 10.1016/j.jcis.2023.03.068_b0040
  article-title: Modified Cu-based metal-organic framework by graphene oxide for sulfur compounds removal
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201800133
– ident: 10.1016/j.jcis.2023.03.068_b0115
  doi: 10.1016/j.chempr.2017.10.018
– volume: 2
  start-page: 57
  year: 2020
  ident: 10.1016/j.jcis.2023.03.068_b0030
  article-title: Emerging photocatalysts for hydrogen evolution
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.06.009
– volume: 57
  start-page: 17173
  year: 2018
  ident: 10.1016/j.jcis.2023.03.068_b0220
  article-title: Noble-metal-free heterogeneous photosensitizer-relay catalyst triad that catalyzes water oxidation under visible light
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201811570
– volume: 27
  start-page: 1604328
  year: 2017
  ident: 10.1016/j.jcis.2023.03.068_b0250
  article-title: Unique P-Co-N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604328
– ident: 10.1016/j.jcis.2023.03.068_b0120
  doi: 10.1002/adma.201706825
– volume: 1
  start-page: 212
  year: 2021
  ident: 10.1016/j.jcis.2023.03.068_b0190
  article-title: Efficient charge migration in chemically-bonded prussian blue analogue/CdS with beaded structure for photocatalytic H2 evolution
  publication-title: JACS Au
  doi: 10.1021/jacsau.0c00082
– volume: 3
  start-page: e1700732
  year: 2017
  ident: 10.1016/j.jcis.2023.03.068_b0205
  article-title: Oriented assembly of anisotropic nanoparticles into frame-like superstructures
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700732
– volume: 39
  start-page: 647
  year: 2017
  ident: 10.1016/j.jcis.2023.03.068_b0080
  article-title: Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.055
– volume: 1
  start-page: 931
  year: 2016
  ident: 10.1016/j.jcis.2023.03.068_b0015
  article-title: Why do hydrogen and oxygen yields from semiconductor-based photocatalyzed water splitting remain disappointingly low? Intrinsic and extrinsic factors impacting surface redox reactions
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00391
– volume: 5
  start-page: 5604
  year: 2012
  ident: 10.1016/j.jcis.2023.03.068_b0110
  article-title: Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02426D
– volume: 26
  start-page: 6822
  year: 2016
  ident: 10.1016/j.jcis.2023.03.068_b0180
  article-title: In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602779
– volume: 7
  start-page: 4586
  year: 2013
  ident: 10.1016/j.jcis.2023.03.068_b0200
  article-title: Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth
  publication-title: ACS Nano
  doi: 10.1021/nn401363e
– volume: 14
  start-page: 1802442
  year: 2018
  ident: 10.1016/j.jcis.2023.03.068_b0215
  article-title: Hollow porous heterometallic phosphide nanocubes for enhanced electrochemical water splitting
  publication-title: Small
  doi: 10.1002/smll.201802442
– volume: 2
  start-page: 1122
  year: 2017
  ident: 10.1016/j.jcis.2023.03.068_b0085
  article-title: Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries
  publication-title: ACS Energy Let.
  doi: 10.1021/acsenergylett.7b00179
– volume: 9
  start-page: 11
  year: 2017
  ident: 10.1016/j.jcis.2023.03.068_b0075
  article-title: Prussian blue and its derivatives as electrode materials for electrochemical energy storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.06.002
– volume: 136
  start-page: 7587
  year: 2014
  ident: 10.1016/j.jcis.2023.03.068_b0240
  article-title: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogenevolving cathode over the wide range of pH 0–14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503372r
– volume: 16
  start-page: 1082
  year: 2014
  ident: 10.1016/j.jcis.2023.03.068_b0260
  article-title: Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes
  publication-title: Green Chem.
  doi: 10.1039/C3GC42042F
– volume: 30
  start-page: 486
  year: 2020
  ident: 10.1016/j.jcis.2023.03.068_b0045
  article-title: A highly reversible sorption for sulfur-containing toxic VOCs emissions under ambient temperature and pressure
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-019-01207-y
– volume: 55
  start-page: 5414
  year: 2016
  ident: 10.1016/j.jcis.2023.03.068_b0035
  article-title: Metal-organic framework (MOF) compounds photocatalysts for redox reactions and solar fuel production
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201505581
– volume: 11
  start-page: 2257
  year: 2009
  ident: 10.1016/j.jcis.2023.03.068_b0195
  article-title: Prussian Blue mesocrystals prepared by a facile hydrothermal method
  publication-title: CrystEngComm
  doi: 10.1039/b911613n
– volume: 12
  start-page: 11112
  year: 2020
  ident: 10.1016/j.jcis.2023.03.068_b0140
  article-title: Mechanistic insight in site-selective and anisotropic etching of prussian blue analogues toward designable complex architectures for efficient energy storage
  publication-title: Nanoscale
  doi: 10.1039/D0NR02241A
– volume: 31
  start-page: 2008989
  year: 2021
  ident: 10.1016/j.jcis.2023.03.068_b0165
  article-title: Pd Ion-exchange and ammonia etching of a Prussian blue analogue to produce a high-performance water-splitting catalyst
  publication-title: Adv. Func. Mater.
  doi: 10.1002/adfm.202008989
– volume: 95
  year: 2022
  ident: 10.1016/j.jcis.2023.03.068_b0210
  article-title: Concentrating electron and activating H-OH bond of absorbed water on metallic NiCo2S4 boosting photocatalytic hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107028
– volume: 23
  start-page: 742
  year: 2014
  ident: 10.1016/j.jcis.2023.03.068_b0235
  article-title: Efficient oxidation of ethylbenzene catalyzed by cobalt zeolitic imidazolate framework ZIF-67 and NHPI
  publication-title: J. Energy Chem.
  doi: 10.1016/S2095-4956(14)60207-2
– volume: 52
  start-page: 6269
  year: 2016
  ident: 10.1016/j.jcis.2023.03.068_b0060
  article-title: Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC02093C
– volume: 44
  start-page: 7997
  year: 2015
  ident: 10.1016/j.jcis.2023.03.068_b0055
  article-title: New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00397K
– volume: 55
  start-page: 1830
  year: 2016
  ident: 10.1016/j.jcis.2023.03.068_b0275
  article-title: Phosphorus-doped carbon nitride tubes with a layered micronanostructure for enhanced visible-light photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201508505
– volume: 7
  start-page: 12165
  year: 2016
  ident: 10.1016/j.jcis.2023.03.068_b0185
  article-title: Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12165
– volume: 20
  start-page: 7081
  year: 2008
  ident: 10.1016/j.jcis.2023.03.068_b0155
  article-title: X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr-Ni)
  publication-title: Chem. Mater.
  doi: 10.1021/cm802123a
– ident: 10.1016/j.jcis.2023.03.068_b0105
  doi: 10.1002/adma.201900281
– volume: 54
  start-page: 5613
  year: 2015
  ident: 10.1016/j.jcis.2023.03.068_b0225
  article-title: High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201501116
– volume: 6
  start-page: 1804
  year: 2020
  ident: 10.1016/j.jcis.2023.03.068_b0065
  article-title: Unconventional Mn vacancies in Mn-Fe prussian blue analogs: suppressing Jahn-Teller distortion for ultrastable sodium storage
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.05.004
– volume: 45
  start-page: 3039
  year: 2016
  ident: 10.1016/j.jcis.2023.03.068_b0010
  article-title: Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00729A
– volume: 21
  start-page: 3016
  year: 2021
  ident: 10.1016/j.jcis.2023.03.068_b0150
  article-title: In situ anchoring polymetallic phosphide nanoparticles within porous prussian blue analogue nanocages for boosting oxygen evolution catalysis
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00179
– volume: 45
  start-page: 1529
  year: 2016
  ident: 10.1016/j.jcis.2023.03.068_b0255
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– volume: 382
  year: 2020
  ident: 10.1016/j.jcis.2023.03.068_b0270
  article-title: Performance of ZIF-67-derived fold polyhedrons for enhanced photocatalytic hydrogen evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123051
– volume: 5
  start-page: 5280
  year: 2014
  ident: 10.1016/j.jcis.2023.03.068_b0070
  article-title: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6280
– volume: 104
  start-page: 1153
  year: 2000
  ident: 10.1016/j.jcis.2023.03.068_b0135
  article-title: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies
  publication-title: J. Phy. Chem. B
  doi: 10.1021/jp993593c
– volume: 29
  start-page: 1700587
  year: 2017
  ident: 10.1016/j.jcis.2023.03.068_b0145
  article-title: Prussian blue nanocubes with an open framework structure coated with pedot as high-capacity cathodes for lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700587
SSID ssj0011559
ssib006540584
Score 2.4889185
Snippet [Display omitted] Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable...
Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and...
SourceID proquest
pubmed
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 861
SubjectTerms Chemical etching
energy conversion
functional nanomaterials
H2 evolution
light
nanoparticles
nanorods
NiCo PBA
phase transition
photocatalysis
species
surface area
Title Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications
URI https://dx.doi.org/10.1016/j.jcis.2023.03.068
https://cir.nii.ac.jp/crid/1872553967999962752
https://www.ncbi.nlm.nih.gov/pubmed/36966575
https://www.proquest.com/docview/2791703960
https://www.proquest.com/docview/3153780078
Volume 641
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LihQxsFjXg3oQXV-j7hLBm8TtdDJJ-rgMLqPi4sGFvTWdF_Y69AwzPXjz6m9b1Y9hBHcPQtPQIRXSqapUVVIPgLcpq2ImYuImFomr5B13GhHi89wrmaQNXfWGLxd6fqk-XU2vDmA2xsKQW-Ww9_d7erdbDy2nw2qeruqaYnyR2wxVzeoKRlBEuVKGqPz9r52bh6Brt97NQ3DqPQTO9D5e176mlN257BKdUrrVfwunO01d36yCdqLo_BE8HHRIdtZP8zEcxOYI7s3G0m1H8GAvy-AT-D0mBWCEImxiVRPY6jvKL9bu6a3Lhi0TQ9L4ERd8RnlCWvZ1vd1QmCVzi21EODrq2TAEYHV3GhED25BxzMOatk32E1XXNd-gZtv5U7P9-_GncHn-4dtszof6C9wrq1peWW0jsbxEOWccyvoQjdexQp5GBPuYbAxe6YzKKuAyO5WKJMLUFyFURhr5DA6bZRNfANOVtNYVIvlKKFTRCq9wYLR1hBNRuzQBMS586Yfk5FQjY1GOXmjXJSGrJGSVGT7aTuDdDmbVp-a4tfd0xGf5F4GVKDtuhTtG5OOk6C2sQRNMFtoUZCjmZppP4M1IFiVima5bqiYutziIQVM4w87ZzX0kChxjSU-bwPOepnb_QpUW6Vrs5X_O_BXcp6_et_g1HLbrbTxGDap1Jx2LnMDds4-f5xd_AInPGeo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615VA4oFJeCy0YCU7INI69sXPoAS1UW_oQh1bqLSSOLVJW2dUmq4oLV34Qf7AzeawWifaAVGm1h6xteT3jmW_i8XwAb32QukA4z7WLPVfeZjyLUCA2DK2SXpq8YW84OY3G5-rLxfBiDf70d2EorbKz_a1Nb6x192SvW829WVHQHV_cbZpYsxrCCN1lVh65n1cYt1X7h59QyO_C8ODz2WjMO2oBbpVRNU9NZBxpM4bzUmfoxnKnbeRSVFecu3XeuNyqKCDGAATdmfKxF_nQxnmeaqkljrsO9xSaC6JN-PBrmVci6JyvzSsRnKbX3dRpk8oubUE1wkPZVFal-q7_9obrZVHcjHkb33ewBQ870Mo-tuvyCNZcuQ2bo54rbhserJQ1fAy_-yoEjHQCH7G0zNnsOzpMVq8A5WnJpp6hLv5wEz6iwiQ1-zpfVHSvk2WThcN-9G6pYtiBFc3rD5eziqJxns_JTrMrxMpzXiGUbhK42eqB_BM4vxOpPIWNclq658CiVBqTxcLbVCjEhLFVODAGVyITLsr8AES_8IntqqETKcck6dPeLhMSVkLCSgL8RGYA75d9Zm0tkFtbD3t5Jn9pdILO6tZ-uyh8nBR9C6Mx5pNxpGOKTEM9DAfwpleLBKVM5ztp6aYLHERj7B1g4-DmNhI9nDYEDAfwrNWp5X8hakc6h3vxnzN_DZvjs5Pj5Pjw9Ogl3Kdf2sTmHdio5wu3i_Ctzl4124XBt7ven9ebRVXK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+etching+and+phase+transformation+of+Nickel-Cobalt+Prussian+blue+analogs+for+improved+solar-driven+water-splitting+applications&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Li%2C+Yanbing&rft.au=Jin%2C+Zhiliang&rft.au=Tsubaki%2C+Noritatsu&rft.date=2023-07-01&rft.issn=0021-9797&rft.volume=641&rft.spage=861&rft.epage=874&rft_id=info:doi/10.1016%2Fj.jcis.2023.03.068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2023_03_068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon