High-fidelity detection of DNA combining the CRISPR/Cas9 system and hairpin probe

Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecti...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 184; p. 113212
Main Authors Wang, Meng, Han, Dongsheng, Zhang, Jiawei, Zhang, Rui, Li, Jinming
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 15.07.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecting nucleic acids. However, most of the current CRISPR/Cas-based DNA biosensing platforms suffer from inherent off-target effects of Cas proteins and require pre-amplification processes, which compromise the analytical fidelity. In this work, a CRISPR/Cas9-triggered hairpin probe-mediated biosensing method (namely CHP) was used to directly read the original DNA sequences, while effectively neutralizing the off-target effect and achieving high sensitivity. This technique can quantify DNA targets with a limit of detection (LOD) at the attomole level and identify SNVs with allelic fractions as low as 0.01%~0.1%. Moreover, we show that the CHP system is applicable in detecting mutations in serum samples without DNA isolation steps. Collectively, the CHP system is a sensitive and high-fidelity platform, which promises a great potential for providing robust tool for DNA sequence analysis and SNVs genotyping. •The CHP system is a high-fidelity DNA biosensor combining CRISPR/Cas9 and hairpin probe.•The CHP system can neutralize the off-target effect of CRISPR/Cas9.•The CHP system can quantify DNA at attomole level and identify SNVs at low allelic fraction.•The CHP system can detect mutations in serum samples without DNA isolation steps.
AbstractList Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecting nucleic acids. However, most of the current CRISPR/Cas-based DNA biosensing platforms suffer from inherent off-target effects of Cas proteins and require pre-amplification processes, which compromise the analytical fidelity. In this work, a CRISPR/Cas9-triggered hairpin probe-mediated biosensing method (namely CHP) was used to directly read the original DNA sequences, while effectively neutralizing the off-target effect and achieving high sensitivity. This technique can quantify DNA targets with a limit of detection (LOD) at the attomole level and identify SNVs with allelic fractions as low as 0.01%~0.1%. Moreover, we show that the CHP system is applicable in detecting mutations in serum samples without DNA isolation steps. Collectively, the CHP system is a sensitive and high-fidelity platform, which promises a great potential for providing robust tool for DNA sequence analysis and SNVs genotyping.
Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecting nucleic acids. However, most of the current CRISPR/Cas-based DNA biosensing platforms suffer from inherent off-target effects of Cas proteins and require pre-amplification processes, which compromise the analytical fidelity. In this work, a CRISPR/Cas9-triggered hairpin probe-mediated biosensing method (namely CHP) was used to directly read the original DNA sequences, while effectively neutralizing the off-target effect and achieving high sensitivity. This technique can quantify DNA targets with a limit of detection (LOD) at the attomole level and identify SNVs with allelic fractions as low as 0.01%~0.1%. Moreover, we show that the CHP system is applicable in detecting mutations in serum samples without DNA isolation steps. Collectively, the CHP system is a sensitive and high-fidelity platform, which promises a great potential for providing robust tool for DNA sequence analysis and SNVs genotyping. •The CHP system is a high-fidelity DNA biosensor combining CRISPR/Cas9 and hairpin probe.•The CHP system can neutralize the off-target effect of CRISPR/Cas9.•The CHP system can quantify DNA at attomole level and identify SNVs at low allelic fraction.•The CHP system can detect mutations in serum samples without DNA isolation steps.
Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecting nucleic acids. However, most of the current CRISPR/Cas-based DNA biosensing platforms suffer from inherent off-target effects of Cas proteins and require pre-amplification processes, which compromise the analytical fidelity. In this work, a CRISPR/Cas9-triggered hairpin probe-mediated biosensing method (namely CHP) was used to directly read the original DNA sequences, while effectively neutralizing the off-target effect and achieving high sensitivity. This technique can quantify DNA targets with a limit of detection (LOD) at the attomole level and identify SNVs with allelic fractions as low as 0.01%~0.1%. Moreover, we show that the CHP system is applicable in detecting mutations in serum samples without DNA isolation steps. Collectively, the CHP system is a sensitive and high-fidelity platform, which promises a great potential for providing robust tool for DNA sequence analysis and SNVs genotyping.Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecting nucleic acids. However, most of the current CRISPR/Cas-based DNA biosensing platforms suffer from inherent off-target effects of Cas proteins and require pre-amplification processes, which compromise the analytical fidelity. In this work, a CRISPR/Cas9-triggered hairpin probe-mediated biosensing method (namely CHP) was used to directly read the original DNA sequences, while effectively neutralizing the off-target effect and achieving high sensitivity. This technique can quantify DNA targets with a limit of detection (LOD) at the attomole level and identify SNVs with allelic fractions as low as 0.01%~0.1%. Moreover, we show that the CHP system is applicable in detecting mutations in serum samples without DNA isolation steps. Collectively, the CHP system is a sensitive and high-fidelity platform, which promises a great potential for providing robust tool for DNA sequence analysis and SNVs genotyping.
ArticleNumber 113212
Author Zhang, Jiawei
Han, Dongsheng
Wang, Meng
Zhang, Rui
Li, Jinming
Author_xml – sequence: 1
  givenname: Meng
  surname: Wang
  fullname: Wang, Meng
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
– sequence: 2
  givenname: Dongsheng
  surname: Han
  fullname: Han, Dongsheng
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
– sequence: 3
  givenname: Jiawei
  surname: Zhang
  fullname: Zhang, Jiawei
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
– sequence: 4
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  email: ruizhang@nccl.org.cn
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
– sequence: 5
  givenname: Jinming
  orcidid: 0000-0002-1476-3397
  surname: Li
  fullname: Li, Jinming
  email: jmli@nccl.org.cn
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
BackLink https://cir.nii.ac.jp/crid/1871991017482854272$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/33862567$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAURi1URKeFP8ACZcGCTaa-fltiUw30IVU8CqwtJ7Y7HiXOEGeQ5t_jKO2GRcXC15vz3St95wydpCF5hN4CXgMGcbFbN3HIa4IJrAEoAfICrUBJWjNC-QlaYc1FzYWgp-gs5x3GWILGr9AppUoQLuQKfb-JD9s6ROe7OB0r5yffTnFI1RCqT18uq3bom5hieqimra8297c_vt1fbGzWVT7myfeVTa7a2jjuY6r249D41-hlsF32bx7_c_Tr6vPPzU199_X6dnN5V7dMsam2oD1XOCipuHIMcINFaIJshS3PYS2dYAGHhmqsHTDiKCOYB2CaE6sVPUcflr3l6u-Dz5PpY25919nkh0M2hEtGAYDL_0CBCQyE6oK-e0QPTe-d2Y-xt-PRPDVWALUA7TjkPPpg2jjZubJptLEzgM0sx-zMLMfMcswip0TJP9Gn7c-G3i-hFGM5Nc-iGLQuAckUUZwROWMfF8yXyv9EP5rcRp9a7-JYjBo3xOeu_AWUKa6W
CitedBy_id crossref_primary_10_1080_10408347_2024_2400267
crossref_primary_10_1016_j_cej_2023_141463
crossref_primary_10_1016_j_aca_2022_340421
crossref_primary_10_1016_j_trac_2022_116539
crossref_primary_10_1039_D2CC01300B
crossref_primary_10_1002_ila2_6
crossref_primary_10_1016_j_trac_2023_117198
crossref_primary_10_1007_s11033_024_09840_8
crossref_primary_10_1016_j_snb_2022_132792
crossref_primary_10_3389_fbioe_2022_851712
crossref_primary_10_1016_j_aca_2023_341617
crossref_primary_10_1016_j_trac_2023_116980
crossref_primary_10_1021_acs_chemrev_1c01063
crossref_primary_10_1002_INMD_20230033
crossref_primary_10_1016_j_lmd_2024_100011
crossref_primary_10_1021_acsnano_4c05312
crossref_primary_10_3390_foods11030487
crossref_primary_10_3390_bios12100779
crossref_primary_10_1002_smll_202408725
crossref_primary_10_1016_j_trac_2023_117328
crossref_primary_10_1016_j_trac_2024_117902
crossref_primary_10_1016_j_ccr_2024_216083
crossref_primary_10_1016_j_aca_2022_340736
crossref_primary_10_3389_fbioe_2022_986233
crossref_primary_10_1002_smtd_202200794
crossref_primary_10_1016_j_fsigen_2024_103163
Cites_doi 10.1126/science.1247997
10.1016/j.tig.2014.07.001
10.1093/nar/20.7.1691
10.1126/science.1225829
10.1038/s41467-018-07324-5
10.1038/nbt.3481
10.1073/pnas.1700557114
10.1038/nrc2693
10.1126/science.aar6245
10.1056/NEJMoa044238
10.1016/j.molcel.2018.06.021
10.1021/jacs.8b05309
10.1158/0008-5472.CAN-08-0316
10.1016/j.bios.2020.112430
10.1016/j.cell.2016.04.059
10.1021/acssensors.9b02461
10.1016/S1471-4914(03)00047-9
10.1016/j.bios.2020.112674
10.1073/pnas.1208507109
10.1016/j.oraloncology.2020.105095
10.1038/nature16526
10.1186/s13073-018-0543-4
10.1126/science.aad5227
10.1038/nrc2050
10.1002/anie.201910772
10.1038/s41551-019-0371-x
10.1007/s00604-019-3348-2
10.1126/science.aas8836
10.1146/annurev-pathmechdis-012418-012751
10.1038/nature24268
10.1038/nature17960
10.1093/nar/gkv137
10.1093/nar/28.12.e63
10.1371/journal.pbio.0040204
10.1021/ac4033033
10.1038/nbt.2889
10.1126/science.aam9321
10.1016/j.bios.2020.112143
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bios.2021.113212
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
ExternalDocumentID 33862567
10_1016_j_bios_2021_113212
S0956566321002499
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSU
SSZ
T5K
TN5
XPP
Y6R
YK3
ZMT
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
.HR
53G
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGQPQ
AGRDE
AHHHB
AJQLL
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLW
HMU
HVGLF
HZ~
R2-
RIG
SBG
SCB
SCH
SEW
WUQ
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c484t-a19e580f87858d410b06fbf7c6a7c6d097d64f0fb3909d142d34205f14952a983
IEDL.DBID .~1
ISSN 0956-5663
1873-4235
IngestDate Fri Jul 11 06:27:27 EDT 2025
Thu Jul 10 19:15:23 EDT 2025
Mon Jul 21 06:09:45 EDT 2025
Tue Jul 01 01:42:56 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Thu Jun 26 23:22:56 EDT 2025
Fri Feb 23 02:44:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CRISPR
SNVs genotyping
Hairpin probe
Isothermal amplification
Nucleic acid detection
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-a19e580f87858d410b06fbf7c6a7c6d097d64f0fb3909d142d34205f14952a983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1476-3397
0000-0002-1892-8603
PMID 33862567
PQID 2514601239
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2574311157
proquest_miscellaneous_2514601239
pubmed_primary_33862567
crossref_citationtrail_10_1016_j_bios_2021_113212
crossref_primary_10_1016_j_bios_2021_113212
nii_cinii_1871991017482854272
elsevier_sciencedirect_doi_10_1016_j_bios_2021_113212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References van Dijk, Auger, Jaszczyszyn, Thermes (bib31) 2014; 30
Chen, Ma, Harrington, Da Costa, Tian, Palefsky, Doudna (bib6) 2018; 360
Fontham, Wolf, Church, Etzioni, Flowers, Herzig, Guerra, Oeffinger, Shih, Walter, Kim, Andrews, DeSantis, Fedewa, Manassaram-Baptiste, Saslow, Wender, Smith (bib9) 2020
Wu, Scott, Kriz, Chiu, Hsu, Dadon, Cheng, Trevino, Konermann, Chen, Jaenisch, Zhang, Sharp (bib36) 2014; 32
Brosh, Rotter (bib3) 2009; 9
Zhang, Yan, Que, Yang, Cheng, Ding, Zhang, Cheng (bib37) 2020; 5
Notomi, Okayama, Masubuchi, Yonekawa, Watanabe, Amino, Hase (bib22) 2000; 28
Zhou, Hu, Ying, Zhao, Chu, Yu (bib39) 2018; 9
Kleinstiver, Pattanayak, Prew, Tsai, Nguyen, Zheng, Joung (bib17) 2016; 529
Sashital (bib28) 2018; 10
Boyle, Andreasson, Chircus, Sternberg, Wu, Guegler, Doudna, Greenleaf (bib2) 2017; 114
O'Geen, Henry, Bhakta, Meckler, Segal (bib23) 2015; 43
Pardee, Green, Takahashi, Braff, Lambert, Lee, Ferrante, Ma, Donghia, Fan, Daringer, Bosch, Dudley, O'Connor, Gehrke, Collins (bib24) 2016; 165
Chen, Dagdas, Kleinstiver, Welch, Sousa, Harrington, Sternberg, Joung, Yildiz, Doudna (bib5) 2017; 550
Wang, Zhang, Li (bib34) 2020; 165
Slaymaker, Gao, Zetsche, Scott, Yan, Zhang (bib30) 2016; 351
Dhar, Banerjee, Dhar, Tawfik, Mayo, Vanveldhuizen, Banerjee (bib8) 2008; 68
Adderley, Rack, Hapuarachi, Feeney, Morgan, Hussell, Wallace, Betts, Hodgson, Harrington, Metcalf (bib1) 2020; 113
Mukama, Wu, Li, Liang, Yi, Lu, Liu, Liu, Hussain, Makafe, Liu, Xu, Zeng (bib20) 2020; 159
Myhrvold, Freije, Gootenberg, Abudayyeh, Metsky, Durbin, Kellner, Tan, Paul, Parham, Garcia, Barnes, Chak, Mondini, Nogueira, Isern, Michael, Lorenzana, Yozwiak, MacInnis, Bosch, Gehrke, Zhang, Sabeti (bib21) 2018; 360
Jia, Yun, Park, Ercan, Manuia, Juarez, Xu, Rhee, Chen, Zhang, Palakurthi, Jang, Lelais, DiDonato, Bursulaya, Michellys, Epple, Marsilje, McNeill, Lu, Harris, Bender, Wong, Jänne, Eck (bib14) 2016; 534
Wang, Lu, Liu, Freage, Willner (bib33) 2014; 86
Jinek, Jiang, Taylor, Sternberg, Kaya, Ma, Anders, Hauer, Zhou, Lin, Kaplan, Iavarone, Charpentier, Nogales, Doudna (bib16) 2014; 343
Shou, Li, Liu, Wu (bib29) 2018; 71
Zhang, Deng, Teng, Li, Sun, Ren, Li (bib38) 2018; 140
Kobayashi, Boggon, Dayaram, Jänne, Kocher, Meyerson, Johnson, Eck, Tenen, Halmos (bib18) 2005; 352
Chang, Liu, Liu, Zhan, Chen, Lei, Liu (bib4) 2019; 186
Pumford, Lu, Spaczai, Prasetyo, Zheng, Zhang, Kamei (bib26) 2020; 170
Gootenberg, Abudayyeh, Lee, Essletzbichler, Dy, Joung, Verdine, Donghia, Daringer, Freije, Myhrvold, Bhattacharyya, Livny, Regev, Koonin, Hung, Sabeti, Collins, Zhang (bib11) 2017; 356
Dai, Somoza, Wang, Welter, Li, Caplan, Liu (bib7) 2019; 58
Mocellin, Rossi, Pilati, Nitti, Marincola (bib19) 2003; 9
Hajian, Balderston, Tran, deBoer, Etienne, Sandhu, Wauford, Chung, Nokes, Athaiya, Paredes, Peytavi, Goldsmith, Murthy, Conboy, Aran (bib13) 2019; 3
Walker, Fraiser, Schram, Little, Nadeau, Malinowski (bib32) 1992; 20
Richardson, Ray, DeWitt, Curie, Corn (bib27) 2016; 34
Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib15) 2012; 337
Piepenburg, Williams, Stemple, Armes (bib25) 2006; 4
Gasiunas, Barrangou, Horvath, Siksnys (bib10) 2012; 109
Gu, Miller, Chiu (bib12) 2019; 14
Woodman, Collins, Young (bib35) 2007; 7
Chen (10.1016/j.bios.2021.113212_bib6) 2018; 360
Jinek (10.1016/j.bios.2021.113212_bib16) 2014; 343
Wang (10.1016/j.bios.2021.113212_bib33) 2014; 86
Dai (10.1016/j.bios.2021.113212_bib7) 2019; 58
Mukama (10.1016/j.bios.2021.113212_bib20) 2020; 159
Chen (10.1016/j.bios.2021.113212_bib5) 2017; 550
Fontham (10.1016/j.bios.2021.113212_bib9) 2020
Brosh (10.1016/j.bios.2021.113212_bib3) 2009; 9
Hajian (10.1016/j.bios.2021.113212_bib13) 2019; 3
Pardee (10.1016/j.bios.2021.113212_bib24) 2016; 165
Piepenburg (10.1016/j.bios.2021.113212_bib25) 2006; 4
Kleinstiver (10.1016/j.bios.2021.113212_bib17) 2016; 529
Zhang (10.1016/j.bios.2021.113212_bib38) 2018; 140
Sashital (10.1016/j.bios.2021.113212_bib28) 2018; 10
van Dijk (10.1016/j.bios.2021.113212_bib31) 2014; 30
Jia (10.1016/j.bios.2021.113212_bib14) 2016; 534
Slaymaker (10.1016/j.bios.2021.113212_bib30) 2016; 351
Dhar (10.1016/j.bios.2021.113212_bib8) 2008; 68
Richardson (10.1016/j.bios.2021.113212_bib27) 2016; 34
Zhou (10.1016/j.bios.2021.113212_bib39) 2018; 9
O'Geen (10.1016/j.bios.2021.113212_bib23) 2015; 43
Zhang (10.1016/j.bios.2021.113212_bib37) 2020; 5
Gootenberg (10.1016/j.bios.2021.113212_bib11) 2017; 356
Kobayashi (10.1016/j.bios.2021.113212_bib18) 2005; 352
Gu (10.1016/j.bios.2021.113212_bib12) 2019; 14
Wu (10.1016/j.bios.2021.113212_bib36) 2014; 32
Myhrvold (10.1016/j.bios.2021.113212_bib21) 2018; 360
Adderley (10.1016/j.bios.2021.113212_bib1) 2020; 113
Shou (10.1016/j.bios.2021.113212_bib29) 2018; 71
Chang (10.1016/j.bios.2021.113212_bib4) 2019; 186
Pumford (10.1016/j.bios.2021.113212_bib26) 2020; 170
Wang (10.1016/j.bios.2021.113212_bib34) 2020; 165
Gasiunas (10.1016/j.bios.2021.113212_bib10) 2012; 109
Notomi (10.1016/j.bios.2021.113212_bib22) 2000; 28
Walker (10.1016/j.bios.2021.113212_bib32) 1992; 20
Boyle (10.1016/j.bios.2021.113212_bib2) 2017; 114
Mocellin (10.1016/j.bios.2021.113212_bib19) 2003; 9
Woodman (10.1016/j.bios.2021.113212_bib35) 2007; 7
Jinek (10.1016/j.bios.2021.113212_bib15) 2012; 337
References_xml – volume: 9
  start-page: 701
  year: 2009
  end-page: 713
  ident: bib3
  article-title: When mutants gain new powers: news from the mutant p53 field
  publication-title: Nat. Rev. Canc.
– volume: 10
  start-page: 32
  year: 2018
  ident: bib28
  article-title: Pathogen detection in the CRISPR-Cas era
  publication-title: Genome Med.
– volume: 550
  start-page: 407
  year: 2017
  end-page: 410
  ident: bib5
  article-title: Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
  publication-title: Nature
– volume: 4
  year: 2006
  ident: bib25
  article-title: DNA detection using recombination proteins
  publication-title: PLoS Biol.
– volume: 9
  start-page: 189
  year: 2003
  end-page: 195
  ident: bib19
  article-title: Quantitative real-time PCR: a powerful ally in cancer research
  publication-title: Trends Mol. Med.
– volume: 43
  start-page: 3389
  year: 2015
  end-page: 3404
  ident: bib23
  article-title: A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture
  publication-title: Nucleic Acids Res.
– volume: 86
  start-page: 1614
  year: 2014
  end-page: 1621
  ident: bib33
  article-title: Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units
  publication-title: Anal. Chem.
– volume: 32
  start-page: 670
  year: 2014
  end-page: 676
  ident: bib36
  article-title: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
  publication-title: Nat. Biotechnol.
– volume: 534
  start-page: 129
  year: 2016
  end-page: 132
  ident: bib14
  article-title: Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors
  publication-title: Nature
– volume: 114
  start-page: 5461
  year: 2017
  end-page: 5466
  ident: bib2
  article-title: High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 360
  start-page: 444
  year: 2018
  end-page: 448
  ident: bib21
  article-title: Field-deployable viral diagnostics using CRISPR-Cas13
  publication-title: Science (New York, N.Y.)
– volume: 170
  start-page: 112674
  year: 2020
  ident: bib26
  article-title: Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics
  publication-title: Biosens. Bioelectron.
– volume: 165
  start-page: 1255
  year: 2016
  end-page: 1266
  ident: bib24
  article-title: Rapid, low-cost detection of zika virus using programmable biomolecular components
  publication-title: Cell
– volume: 7
  start-page: 11
  year: 2007
  end-page: 22
  ident: bib35
  article-title: The natural history of cervical HPV infection: unresolved issues
  publication-title: Nat. Rev. Canc.
– volume: 186
  start-page: 243
  year: 2019
  ident: bib4
  article-title: Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification
  publication-title: Mikrochim. Acta
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: bib15
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science (New York, N.Y.)
– volume: 9
  start-page: 5012
  year: 2018
  ident: bib39
  article-title: A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection
  publication-title: Nat. Commun.
– volume: 529
  start-page: 490
  year: 2016
  end-page: 495
  ident: bib17
  article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
  publication-title: Nature
– volume: 140
  start-page: 11293
  year: 2018
  end-page: 11301
  ident: bib38
  article-title: Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-Mediated proximity ligation Assay
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: E63
  year: 2000
  ident: bib22
  article-title: Loop-mediated isothermal amplification of DNA
  publication-title: Nucleic Acids Res.
– volume: 71
  start-page: 498
  year: 2018
  end-page: 509
  ident: bib29
  article-title: Precise and predictable CRISPR chromosomal rearrangements reveal principles of cas9-mediated nucleotide insertion
  publication-title: Mol. Cell
– volume: 351
  start-page: 84
  year: 2016
  end-page: 88
  ident: bib30
  article-title: Rationally engineered Cas9 nucleases with improved specificity
  publication-title: Science (New York, N.Y.)
– volume: 5
  start-page: 557
  year: 2020
  end-page: 562
  ident: bib37
  article-title: CRISPR/Cas12a-Mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing
  publication-title: ACS Sens.
– volume: 20
  start-page: 1691
  year: 1992
  end-page: 1696
  ident: bib32
  article-title: Strand displacement amplification--an isothermal, in vitro DNA amplification technique
  publication-title: Nucleic Acids Res.
– volume: 113
  start-page: 105095
  year: 2020
  ident: bib1
  article-title: The utility of TP53 and PIK3CA mutations as prognostic biomarkers in salivary adenoid cystic carcinoma
  publication-title: Oral Oncol.
– volume: 360
  start-page: 436
  year: 2018
  end-page: 439
  ident: bib6
  article-title: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
  publication-title: Science (New York, N.Y.)
– volume: 34
  start-page: 339
  year: 2016
  end-page: 344
  ident: bib27
  article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
  publication-title: Nat. Biotechnol.
– volume: 30
  start-page: 418
  year: 2014
  end-page: 426
  ident: bib31
  article-title: Ten years of next-generation sequencing technology
  publication-title: Trends Genet. : TIG
– volume: 3
  start-page: 427
  year: 2019
  end-page: 437
  ident: bib13
  article-title: Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor
  publication-title: Nat. Biomed. Eng.
– volume: 165
  start-page: 112430
  year: 2020
  ident: bib34
  article-title: CRISPR/cas systems redefine nucleic acid detection: principles and methods
  publication-title: Biosens. Bioelectron.
– volume: 68
  start-page: 4580
  year: 2008
  end-page: 4587
  ident: bib8
  article-title: Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2
  publication-title: Canc. Res.
– volume: 58
  start-page: 17399
  year: 2019
  end-page: 17405
  ident: bib7
  article-title: Exploring the trans-cleavage activity of CRISPR-cas12a (cpf1) for the development of a universal electrochemical biosensor
  publication-title: Angew. Chem.
– volume: 14
  start-page: 319
  year: 2019
  end-page: 338
  ident: bib12
  article-title: Clinical metagenomic next-generation sequencing for pathogen detection
  publication-title: Annual review of pathology
– year: 2020
  ident: bib9
  article-title: Cervical Cancer Screening for Individuals at Average Risk: 2020 Guideline Update from the American Cancer Society
– volume: 343
  year: 2014
  ident: bib16
  article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
  publication-title: Science (New York, N.Y.)
– volume: 356
  start-page: 438
  year: 2017
  end-page: 442
  ident: bib11
  article-title: Nucleic acid detection with CRISPR-Cas13a/C2c2
  publication-title: Science (New York, N.Y.)
– volume: 352
  start-page: 786
  year: 2005
  end-page: 792
  ident: bib18
  article-title: EGFR mutation and resistance of non-small-cell lung cancer to gefitinib
  publication-title: N. Engl. J. Med.
– volume: 159
  start-page: 112143
  year: 2020
  ident: bib20
  article-title: An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids
  publication-title: Biosens. Bioelectron.
– volume: 109
  start-page: E2579
  year: 2012
  end-page: E2586
  ident: bib10
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 343
  issue: 6176
  year: 2014
  ident: 10.1016/j.bios.2021.113212_bib16
  article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1247997
– volume: 30
  start-page: 418
  issue: 9
  year: 2014
  ident: 10.1016/j.bios.2021.113212_bib31
  article-title: Ten years of next-generation sequencing technology
  publication-title: Trends Genet. : TIG
  doi: 10.1016/j.tig.2014.07.001
– volume: 20
  start-page: 1691
  issue: 7
  year: 1992
  ident: 10.1016/j.bios.2021.113212_bib32
  article-title: Strand displacement amplification--an isothermal, in vitro DNA amplification technique
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/20.7.1691
– volume: 337
  start-page: 816
  issue: 6096
  year: 2012
  ident: 10.1016/j.bios.2021.113212_bib15
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1225829
– volume: 9
  start-page: 5012
  issue: 1
  year: 2018
  ident: 10.1016/j.bios.2021.113212_bib39
  article-title: A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07324-5
– volume: 34
  start-page: 339
  issue: 3
  year: 2016
  ident: 10.1016/j.bios.2021.113212_bib27
  article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3481
– volume: 114
  start-page: 5461
  issue: 21
  year: 2017
  ident: 10.1016/j.bios.2021.113212_bib2
  article-title: High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1700557114
– volume: 9
  start-page: 701
  issue: 10
  year: 2009
  ident: 10.1016/j.bios.2021.113212_bib3
  article-title: When mutants gain new powers: news from the mutant p53 field
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc2693
– volume: 360
  start-page: 436
  issue: 6387
  year: 2018
  ident: 10.1016/j.bios.2021.113212_bib6
  article-title: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.aar6245
– volume: 352
  start-page: 786
  issue: 8
  year: 2005
  ident: 10.1016/j.bios.2021.113212_bib18
  article-title: EGFR mutation and resistance of non-small-cell lung cancer to gefitinib
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa044238
– volume: 71
  start-page: 498
  issue: 4
  year: 2018
  ident: 10.1016/j.bios.2021.113212_bib29
  article-title: Precise and predictable CRISPR chromosomal rearrangements reveal principles of cas9-mediated nucleotide insertion
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.021
– volume: 140
  start-page: 11293
  issue: 36
  year: 2018
  ident: 10.1016/j.bios.2021.113212_bib38
  article-title: Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-Mediated proximity ligation Assay
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05309
– volume: 68
  start-page: 4580
  issue: 12
  year: 2008
  ident: 10.1016/j.bios.2021.113212_bib8
  article-title: Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-08-0316
– volume: 165
  start-page: 112430
  year: 2020
  ident: 10.1016/j.bios.2021.113212_bib34
  article-title: CRISPR/cas systems redefine nucleic acid detection: principles and methods
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112430
– volume: 165
  start-page: 1255
  issue: 5
  year: 2016
  ident: 10.1016/j.bios.2021.113212_bib24
  article-title: Rapid, low-cost detection of zika virus using programmable biomolecular components
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.059
– volume: 5
  start-page: 557
  issue: 2
  year: 2020
  ident: 10.1016/j.bios.2021.113212_bib37
  article-title: CRISPR/Cas12a-Mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b02461
– volume: 9
  start-page: 189
  issue: 5
  year: 2003
  ident: 10.1016/j.bios.2021.113212_bib19
  article-title: Quantitative real-time PCR: a powerful ally in cancer research
  publication-title: Trends Mol. Med.
  doi: 10.1016/S1471-4914(03)00047-9
– volume: 170
  start-page: 112674
  year: 2020
  ident: 10.1016/j.bios.2021.113212_bib26
  article-title: Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112674
– volume: 109
  start-page: E2579
  issue: 39
  year: 2012
  ident: 10.1016/j.bios.2021.113212_bib10
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1208507109
– volume: 113
  start-page: 105095
  year: 2020
  ident: 10.1016/j.bios.2021.113212_bib1
  article-title: The utility of TP53 and PIK3CA mutations as prognostic biomarkers in salivary adenoid cystic carcinoma
  publication-title: Oral Oncol.
  doi: 10.1016/j.oraloncology.2020.105095
– volume: 529
  start-page: 490
  issue: 7587
  year: 2016
  ident: 10.1016/j.bios.2021.113212_bib17
  article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
  publication-title: Nature
  doi: 10.1038/nature16526
– volume: 10
  start-page: 32
  issue: 1
  year: 2018
  ident: 10.1016/j.bios.2021.113212_bib28
  article-title: Pathogen detection in the CRISPR-Cas era
  publication-title: Genome Med.
  doi: 10.1186/s13073-018-0543-4
– volume: 351
  start-page: 84
  issue: 6268
  year: 2016
  ident: 10.1016/j.bios.2021.113212_bib30
  article-title: Rationally engineered Cas9 nucleases with improved specificity
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.aad5227
– volume: 7
  start-page: 11
  issue: 1
  year: 2007
  ident: 10.1016/j.bios.2021.113212_bib35
  article-title: The natural history of cervical HPV infection: unresolved issues
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc2050
– volume: 58
  start-page: 17399
  issue: 48
  year: 2019
  ident: 10.1016/j.bios.2021.113212_bib7
  article-title: Exploring the trans-cleavage activity of CRISPR-cas12a (cpf1) for the development of a universal electrochemical biosensor
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201910772
– volume: 3
  start-page: 427
  issue: 6
  year: 2019
  ident: 10.1016/j.bios.2021.113212_bib13
  article-title: Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0371-x
– volume: 186
  start-page: 243
  issue: 4
  year: 2019
  ident: 10.1016/j.bios.2021.113212_bib4
  article-title: Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification
  publication-title: Mikrochim. Acta
  doi: 10.1007/s00604-019-3348-2
– volume: 360
  start-page: 444
  issue: 6387
  year: 2018
  ident: 10.1016/j.bios.2021.113212_bib21
  article-title: Field-deployable viral diagnostics using CRISPR-Cas13
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.aas8836
– volume: 14
  start-page: 319
  year: 2019
  ident: 10.1016/j.bios.2021.113212_bib12
  article-title: Clinical metagenomic next-generation sequencing for pathogen detection
  publication-title: Annual review of pathology
  doi: 10.1146/annurev-pathmechdis-012418-012751
– volume: 550
  start-page: 407
  issue: 7676
  year: 2017
  ident: 10.1016/j.bios.2021.113212_bib5
  article-title: Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
  publication-title: Nature
  doi: 10.1038/nature24268
– volume: 534
  start-page: 129
  issue: 7605
  year: 2016
  ident: 10.1016/j.bios.2021.113212_bib14
  article-title: Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors
  publication-title: Nature
  doi: 10.1038/nature17960
– year: 2020
  ident: 10.1016/j.bios.2021.113212_bib9
– volume: 43
  start-page: 3389
  issue: 6
  year: 2015
  ident: 10.1016/j.bios.2021.113212_bib23
  article-title: A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv137
– volume: 28
  start-page: E63
  issue: 12
  year: 2000
  ident: 10.1016/j.bios.2021.113212_bib22
  article-title: Loop-mediated isothermal amplification of DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.12.e63
– volume: 4
  issue: 7
  year: 2006
  ident: 10.1016/j.bios.2021.113212_bib25
  article-title: DNA detection using recombination proteins
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040204
– volume: 86
  start-page: 1614
  issue: 3
  year: 2014
  ident: 10.1016/j.bios.2021.113212_bib33
  article-title: Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units
  publication-title: Anal. Chem.
  doi: 10.1021/ac4033033
– volume: 32
  start-page: 670
  issue: 7
  year: 2014
  ident: 10.1016/j.bios.2021.113212_bib36
  article-title: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2889
– volume: 356
  start-page: 438
  issue: 6336
  year: 2017
  ident: 10.1016/j.bios.2021.113212_bib11
  article-title: Nucleic acid detection with CRISPR-Cas13a/C2c2
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.aam9321
– volume: 159
  start-page: 112143
  year: 2020
  ident: 10.1016/j.bios.2021.113212_bib20
  article-title: An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112143
SSID ssj0007190
ssib006546448
Score 2.4716601
Snippet Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs)...
SourceID proquest
pubmed
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113212
SubjectTerms Biosensing Techniques
biosensors
blood serum
Clustered Regularly Interspaced Short Palindromic Repeats
Clustered Regularly Interspaced Short Palindromic Repeats - genetics
CRISPR
CRISPR-Cas Systems
CRISPR-Cas Systems - genetics
detection limit
DNA
DNA - genetics
Gene Editing
genotyping
Hairpin probe
Isothermal amplification
Limit of Detection
Nucleic acid detection
nucleotide sequences
sequence analysis
SNVs genotyping
Title High-fidelity detection of DNA combining the CRISPR/Cas9 system and hairpin probe
URI https://dx.doi.org/10.1016/j.bios.2021.113212
https://cir.nii.ac.jp/crid/1871991017482854272
https://www.ncbi.nlm.nih.gov/pubmed/33862567
https://www.proquest.com/docview/2514601239
https://www.proquest.com/docview/2574311157
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpQqE9hDR9bV6okFtxV5Jlyzoum4ZNCkubB-Rm9KQuxbukm0Mv_e2dsewkPWQPPdhgWzLSaKz5JM98Q8ixFUxFpmPmojEZWCiZWWN9FkUedOFK73znIDsvZ9fy_Ka42SDTIRYG3Sr7uT_N6d1s3d8Z99IcL5tmfIkUegBGMAgFee8wiE9KhVr-6c-Dm4fiaZ8F-fawdB84k3y8bLNAym7BMbWJ4OIp4_SsbZqnIWhnik53yHaPIekkNfMV2QjtLnmeskr-3iUvH3EMvibf0JMji8hmBYCb-rDqnK9auoj0ZD6h0HHbJYmgAAXp9OLs8uvFeGp-aZpInqlpPf1umttl01JMPxPekOvTz1fTWdbnUcicrOQqM1yHomKxUlVRecmZZWW0UbnSwOGZVr6UkUWba6Y9l8LnUrAi4uJJGF3lb8lmu2jDe0KNMNFox5EHT5ZOa-uZccoACGC5DHxE-CDA2vUk45jr4mc9eJP9qFHoNQq9TkIfkY_3dZaJYmNt6WIYl_ofRanBBqytdwiDCI3CM4dlIgBjmI0kMvhJoeD5h2F4a_jC8LeJacPiDl4CmLJE6KnXlUEkhsRFI_Iu6cZ9X_IcVo1Fqfb-s-X75AVe4YYyLw7I5ur2LhwCElrZo07Vj8jW5OzLbP4Xi7cBLw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyHggKBQWKBgJG4oWttxHj6uFqpdWlbQh9Rb5KcIQtlV2R7498zksYJD98AhOcR2ZI-dmW-c8TcA763kReQ6Ji4ak6CFUok11idRpkFnLvfOtwGyy3x-pT5fZ9d7MBvOwlBYZa_7O53eauv-yaSX5mRd15MLotBDMEKHUIj3Tu_DAbFTZSM4mC5O58utQi5Et9VClHvUoD8704V52XpFrN1SUHYTKeRd9mm_qeu7UWhrjU4ew6MeRrJp19MnsBeaQ7jXJZb8fQgP_6IZfArfKJgjiURohZib-bBp468ators43LKcOy2zRPBEA2y2fni4uv5ZGZ-adbxPDPTePbd1DfrumGUgSY8g6uTT5ezedKnUkicKtUmMUKHrOSxLMqs9Epwy_NoY-Fyg5fnuvC5ijzaVHPthZI-VZJnkfwnaXSZHsGoWTXhBTAjTTTaCaLCU7nT2npuXGEQB_BUBTEGMQiwcj3POKW7-FkNAWU_KhJ6RUKvOqGP4cO2zbpj2dhZOxvmpfpnrVRoBna2O8ZJxE7RXaCniNgYFZIiEj8lCyx_N0xvhR8Z_TkxTVjd4ksQVuaEPvWuOgTGiLtoDM-7tbEdS5qi45jlxcv_7PlbuD-__HJWnS2Wp6_gAZXQ_rLIXsNoc3MbjhEYbeybfuH_AWiaA-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-fidelity+detection+of+DNA+combining+the+CRISPR%2FCas9+system+and+hairpin+probe&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Wang%2C+Meng&rft.au=Han%2C+Dongsheng&rft.au=Zhang%2C+Jiawei&rft.au=Zhang%2C+Rui&rft.date=2021-07-15&rft.issn=0956-5663&rft.volume=184&rft.spage=113212&rft_id=info:doi/10.1016%2Fj.bios.2021.113212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bios_2021_113212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon