High-fidelity detection of DNA combining the CRISPR/Cas9 system and hairpin probe
Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecti...
Saved in:
Published in | Biosensors & bioelectronics Vol. 184; p. 113212 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecting nucleic acids. However, most of the current CRISPR/Cas-based DNA biosensing platforms suffer from inherent off-target effects of Cas proteins and require pre-amplification processes, which compromise the analytical fidelity. In this work, a CRISPR/Cas9-triggered hairpin probe-mediated biosensing method (namely CHP) was used to directly read the original DNA sequences, while effectively neutralizing the off-target effect and achieving high sensitivity. This technique can quantify DNA targets with a limit of detection (LOD) at the attomole level and identify SNVs with allelic fractions as low as 0.01%~0.1%. Moreover, we show that the CHP system is applicable in detecting mutations in serum samples without DNA isolation steps. Collectively, the CHP system is a sensitive and high-fidelity platform, which promises a great potential for providing robust tool for DNA sequence analysis and SNVs genotyping.
•The CHP system is a high-fidelity DNA biosensor combining CRISPR/Cas9 and hairpin probe.•The CHP system can neutralize the off-target effect of CRISPR/Cas9.•The CHP system can quantify DNA at attomole level and identify SNVs at low allelic fraction.•The CHP system can detect mutations in serum samples without DNA isolation steps. |
---|---|
AbstractList | Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecting nucleic acids. However, most of the current CRISPR/Cas-based DNA biosensing platforms suffer from inherent off-target effects of Cas proteins and require pre-amplification processes, which compromise the analytical fidelity. In this work, a CRISPR/Cas9-triggered hairpin probe-mediated biosensing method (namely CHP) was used to directly read the original DNA sequences, while effectively neutralizing the off-target effect and achieving high sensitivity. This technique can quantify DNA targets with a limit of detection (LOD) at the attomole level and identify SNVs with allelic fractions as low as 0.01%~0.1%. Moreover, we show that the CHP system is applicable in detecting mutations in serum samples without DNA isolation steps. Collectively, the CHP system is a sensitive and high-fidelity platform, which promises a great potential for providing robust tool for DNA sequence analysis and SNVs genotyping. Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecting nucleic acids. However, most of the current CRISPR/Cas-based DNA biosensing platforms suffer from inherent off-target effects of Cas proteins and require pre-amplification processes, which compromise the analytical fidelity. In this work, a CRISPR/Cas9-triggered hairpin probe-mediated biosensing method (namely CHP) was used to directly read the original DNA sequences, while effectively neutralizing the off-target effect and achieving high sensitivity. This technique can quantify DNA targets with a limit of detection (LOD) at the attomole level and identify SNVs with allelic fractions as low as 0.01%~0.1%. Moreover, we show that the CHP system is applicable in detecting mutations in serum samples without DNA isolation steps. Collectively, the CHP system is a sensitive and high-fidelity platform, which promises a great potential for providing robust tool for DNA sequence analysis and SNVs genotyping. •The CHP system is a high-fidelity DNA biosensor combining CRISPR/Cas9 and hairpin probe.•The CHP system can neutralize the off-target effect of CRISPR/Cas9.•The CHP system can quantify DNA at attomole level and identify SNVs at low allelic fraction.•The CHP system can detect mutations in serum samples without DNA isolation steps. Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecting nucleic acids. However, most of the current CRISPR/Cas-based DNA biosensing platforms suffer from inherent off-target effects of Cas proteins and require pre-amplification processes, which compromise the analytical fidelity. In this work, a CRISPR/Cas9-triggered hairpin probe-mediated biosensing method (namely CHP) was used to directly read the original DNA sequences, while effectively neutralizing the off-target effect and achieving high sensitivity. This technique can quantify DNA targets with a limit of detection (LOD) at the attomole level and identify SNVs with allelic fractions as low as 0.01%~0.1%. Moreover, we show that the CHP system is applicable in detecting mutations in serum samples without DNA isolation steps. Collectively, the CHP system is a sensitive and high-fidelity platform, which promises a great potential for providing robust tool for DNA sequence analysis and SNVs genotyping.Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs) genotyping. The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas systems have provided revolutionary tools for detecting nucleic acids. However, most of the current CRISPR/Cas-based DNA biosensing platforms suffer from inherent off-target effects of Cas proteins and require pre-amplification processes, which compromise the analytical fidelity. In this work, a CRISPR/Cas9-triggered hairpin probe-mediated biosensing method (namely CHP) was used to directly read the original DNA sequences, while effectively neutralizing the off-target effect and achieving high sensitivity. This technique can quantify DNA targets with a limit of detection (LOD) at the attomole level and identify SNVs with allelic fractions as low as 0.01%~0.1%. Moreover, we show that the CHP system is applicable in detecting mutations in serum samples without DNA isolation steps. Collectively, the CHP system is a sensitive and high-fidelity platform, which promises a great potential for providing robust tool for DNA sequence analysis and SNVs genotyping. |
ArticleNumber | 113212 |
Author | Zhang, Jiawei Han, Dongsheng Wang, Meng Zhang, Rui Li, Jinming |
Author_xml | – sequence: 1 givenname: Meng surname: Wang fullname: Wang, Meng organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China – sequence: 2 givenname: Dongsheng surname: Han fullname: Han, Dongsheng organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China – sequence: 3 givenname: Jiawei surname: Zhang fullname: Zhang, Jiawei organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China – sequence: 4 givenname: Rui surname: Zhang fullname: Zhang, Rui email: ruizhang@nccl.org.cn organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China – sequence: 5 givenname: Jinming orcidid: 0000-0002-1476-3397 surname: Li fullname: Li, Jinming email: jmli@nccl.org.cn organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China |
BackLink | https://cir.nii.ac.jp/crid/1871991017482854272$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/33862567$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAURi1URKeFP8ACZcGCTaa-fltiUw30IVU8CqwtJ7Y7HiXOEGeQ5t_jKO2GRcXC15vz3St95wydpCF5hN4CXgMGcbFbN3HIa4IJrAEoAfICrUBJWjNC-QlaYc1FzYWgp-gs5x3GWILGr9AppUoQLuQKfb-JD9s6ROe7OB0r5yffTnFI1RCqT18uq3bom5hieqimra8297c_vt1fbGzWVT7myfeVTa7a2jjuY6r249D41-hlsF32bx7_c_Tr6vPPzU199_X6dnN5V7dMsam2oD1XOCipuHIMcINFaIJshS3PYS2dYAGHhmqsHTDiKCOYB2CaE6sVPUcflr3l6u-Dz5PpY25919nkh0M2hEtGAYDL_0CBCQyE6oK-e0QPTe-d2Y-xt-PRPDVWALUA7TjkPPpg2jjZubJptLEzgM0sx-zMLMfMcswip0TJP9Gn7c-G3i-hFGM5Nc-iGLQuAckUUZwROWMfF8yXyv9EP5rcRp9a7-JYjBo3xOeu_AWUKa6W |
CitedBy_id | crossref_primary_10_1080_10408347_2024_2400267 crossref_primary_10_1016_j_cej_2023_141463 crossref_primary_10_1016_j_aca_2022_340421 crossref_primary_10_1016_j_trac_2022_116539 crossref_primary_10_1039_D2CC01300B crossref_primary_10_1002_ila2_6 crossref_primary_10_1016_j_trac_2023_117198 crossref_primary_10_1007_s11033_024_09840_8 crossref_primary_10_1016_j_snb_2022_132792 crossref_primary_10_3389_fbioe_2022_851712 crossref_primary_10_1016_j_aca_2023_341617 crossref_primary_10_1016_j_trac_2023_116980 crossref_primary_10_1021_acs_chemrev_1c01063 crossref_primary_10_1002_INMD_20230033 crossref_primary_10_1016_j_lmd_2024_100011 crossref_primary_10_1021_acsnano_4c05312 crossref_primary_10_3390_foods11030487 crossref_primary_10_3390_bios12100779 crossref_primary_10_1002_smll_202408725 crossref_primary_10_1016_j_trac_2023_117328 crossref_primary_10_1016_j_trac_2024_117902 crossref_primary_10_1016_j_ccr_2024_216083 crossref_primary_10_1016_j_aca_2022_340736 crossref_primary_10_3389_fbioe_2022_986233 crossref_primary_10_1002_smtd_202200794 crossref_primary_10_1016_j_fsigen_2024_103163 |
Cites_doi | 10.1126/science.1247997 10.1016/j.tig.2014.07.001 10.1093/nar/20.7.1691 10.1126/science.1225829 10.1038/s41467-018-07324-5 10.1038/nbt.3481 10.1073/pnas.1700557114 10.1038/nrc2693 10.1126/science.aar6245 10.1056/NEJMoa044238 10.1016/j.molcel.2018.06.021 10.1021/jacs.8b05309 10.1158/0008-5472.CAN-08-0316 10.1016/j.bios.2020.112430 10.1016/j.cell.2016.04.059 10.1021/acssensors.9b02461 10.1016/S1471-4914(03)00047-9 10.1016/j.bios.2020.112674 10.1073/pnas.1208507109 10.1016/j.oraloncology.2020.105095 10.1038/nature16526 10.1186/s13073-018-0543-4 10.1126/science.aad5227 10.1038/nrc2050 10.1002/anie.201910772 10.1038/s41551-019-0371-x 10.1007/s00604-019-3348-2 10.1126/science.aas8836 10.1146/annurev-pathmechdis-012418-012751 10.1038/nature24268 10.1038/nature17960 10.1093/nar/gkv137 10.1093/nar/28.12.e63 10.1371/journal.pbio.0040204 10.1021/ac4033033 10.1038/nbt.2889 10.1126/science.aam9321 10.1016/j.bios.2020.112143 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2021.113212 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
ExternalDocumentID | 33862567 10_1016_j_bios_2021_113212 S0956566321002499 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM AAHBH AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SSH .HR 53G AAQXK AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFFNX AFJKZ AGQPQ AGRDE AHHHB AJQLL ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- RIG SBG SCB SCH SEW WUQ CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c484t-a19e580f87858d410b06fbf7c6a7c6d097d64f0fb3909d142d34205f14952a983 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Fri Jul 11 06:27:27 EDT 2025 Thu Jul 10 19:15:23 EDT 2025 Mon Jul 21 06:09:45 EDT 2025 Tue Jul 01 01:42:56 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Thu Jun 26 23:22:56 EDT 2025 Fri Feb 23 02:44:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CRISPR SNVs genotyping Hairpin probe Isothermal amplification Nucleic acid detection |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-a19e580f87858d410b06fbf7c6a7c6d097d64f0fb3909d142d34205f14952a983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1476-3397 0000-0002-1892-8603 |
PMID | 33862567 |
PQID | 2514601239 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2574311157 proquest_miscellaneous_2514601239 pubmed_primary_33862567 crossref_citationtrail_10_1016_j_bios_2021_113212 crossref_primary_10_1016_j_bios_2021_113212 nii_cinii_1871991017482854272 elsevier_sciencedirect_doi_10_1016_j_bios_2021_113212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-15 |
PublicationDateYYYYMMDD | 2021-07-15 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | van Dijk, Auger, Jaszczyszyn, Thermes (bib31) 2014; 30 Chen, Ma, Harrington, Da Costa, Tian, Palefsky, Doudna (bib6) 2018; 360 Fontham, Wolf, Church, Etzioni, Flowers, Herzig, Guerra, Oeffinger, Shih, Walter, Kim, Andrews, DeSantis, Fedewa, Manassaram-Baptiste, Saslow, Wender, Smith (bib9) 2020 Wu, Scott, Kriz, Chiu, Hsu, Dadon, Cheng, Trevino, Konermann, Chen, Jaenisch, Zhang, Sharp (bib36) 2014; 32 Brosh, Rotter (bib3) 2009; 9 Zhang, Yan, Que, Yang, Cheng, Ding, Zhang, Cheng (bib37) 2020; 5 Notomi, Okayama, Masubuchi, Yonekawa, Watanabe, Amino, Hase (bib22) 2000; 28 Zhou, Hu, Ying, Zhao, Chu, Yu (bib39) 2018; 9 Kleinstiver, Pattanayak, Prew, Tsai, Nguyen, Zheng, Joung (bib17) 2016; 529 Sashital (bib28) 2018; 10 Boyle, Andreasson, Chircus, Sternberg, Wu, Guegler, Doudna, Greenleaf (bib2) 2017; 114 O'Geen, Henry, Bhakta, Meckler, Segal (bib23) 2015; 43 Pardee, Green, Takahashi, Braff, Lambert, Lee, Ferrante, Ma, Donghia, Fan, Daringer, Bosch, Dudley, O'Connor, Gehrke, Collins (bib24) 2016; 165 Chen, Dagdas, Kleinstiver, Welch, Sousa, Harrington, Sternberg, Joung, Yildiz, Doudna (bib5) 2017; 550 Wang, Zhang, Li (bib34) 2020; 165 Slaymaker, Gao, Zetsche, Scott, Yan, Zhang (bib30) 2016; 351 Dhar, Banerjee, Dhar, Tawfik, Mayo, Vanveldhuizen, Banerjee (bib8) 2008; 68 Adderley, Rack, Hapuarachi, Feeney, Morgan, Hussell, Wallace, Betts, Hodgson, Harrington, Metcalf (bib1) 2020; 113 Mukama, Wu, Li, Liang, Yi, Lu, Liu, Liu, Hussain, Makafe, Liu, Xu, Zeng (bib20) 2020; 159 Myhrvold, Freije, Gootenberg, Abudayyeh, Metsky, Durbin, Kellner, Tan, Paul, Parham, Garcia, Barnes, Chak, Mondini, Nogueira, Isern, Michael, Lorenzana, Yozwiak, MacInnis, Bosch, Gehrke, Zhang, Sabeti (bib21) 2018; 360 Jia, Yun, Park, Ercan, Manuia, Juarez, Xu, Rhee, Chen, Zhang, Palakurthi, Jang, Lelais, DiDonato, Bursulaya, Michellys, Epple, Marsilje, McNeill, Lu, Harris, Bender, Wong, Jänne, Eck (bib14) 2016; 534 Wang, Lu, Liu, Freage, Willner (bib33) 2014; 86 Jinek, Jiang, Taylor, Sternberg, Kaya, Ma, Anders, Hauer, Zhou, Lin, Kaplan, Iavarone, Charpentier, Nogales, Doudna (bib16) 2014; 343 Shou, Li, Liu, Wu (bib29) 2018; 71 Zhang, Deng, Teng, Li, Sun, Ren, Li (bib38) 2018; 140 Kobayashi, Boggon, Dayaram, Jänne, Kocher, Meyerson, Johnson, Eck, Tenen, Halmos (bib18) 2005; 352 Chang, Liu, Liu, Zhan, Chen, Lei, Liu (bib4) 2019; 186 Pumford, Lu, Spaczai, Prasetyo, Zheng, Zhang, Kamei (bib26) 2020; 170 Gootenberg, Abudayyeh, Lee, Essletzbichler, Dy, Joung, Verdine, Donghia, Daringer, Freije, Myhrvold, Bhattacharyya, Livny, Regev, Koonin, Hung, Sabeti, Collins, Zhang (bib11) 2017; 356 Dai, Somoza, Wang, Welter, Li, Caplan, Liu (bib7) 2019; 58 Mocellin, Rossi, Pilati, Nitti, Marincola (bib19) 2003; 9 Hajian, Balderston, Tran, deBoer, Etienne, Sandhu, Wauford, Chung, Nokes, Athaiya, Paredes, Peytavi, Goldsmith, Murthy, Conboy, Aran (bib13) 2019; 3 Walker, Fraiser, Schram, Little, Nadeau, Malinowski (bib32) 1992; 20 Richardson, Ray, DeWitt, Curie, Corn (bib27) 2016; 34 Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib15) 2012; 337 Piepenburg, Williams, Stemple, Armes (bib25) 2006; 4 Gasiunas, Barrangou, Horvath, Siksnys (bib10) 2012; 109 Gu, Miller, Chiu (bib12) 2019; 14 Woodman, Collins, Young (bib35) 2007; 7 Chen (10.1016/j.bios.2021.113212_bib6) 2018; 360 Jinek (10.1016/j.bios.2021.113212_bib16) 2014; 343 Wang (10.1016/j.bios.2021.113212_bib33) 2014; 86 Dai (10.1016/j.bios.2021.113212_bib7) 2019; 58 Mukama (10.1016/j.bios.2021.113212_bib20) 2020; 159 Chen (10.1016/j.bios.2021.113212_bib5) 2017; 550 Fontham (10.1016/j.bios.2021.113212_bib9) 2020 Brosh (10.1016/j.bios.2021.113212_bib3) 2009; 9 Hajian (10.1016/j.bios.2021.113212_bib13) 2019; 3 Pardee (10.1016/j.bios.2021.113212_bib24) 2016; 165 Piepenburg (10.1016/j.bios.2021.113212_bib25) 2006; 4 Kleinstiver (10.1016/j.bios.2021.113212_bib17) 2016; 529 Zhang (10.1016/j.bios.2021.113212_bib38) 2018; 140 Sashital (10.1016/j.bios.2021.113212_bib28) 2018; 10 van Dijk (10.1016/j.bios.2021.113212_bib31) 2014; 30 Jia (10.1016/j.bios.2021.113212_bib14) 2016; 534 Slaymaker (10.1016/j.bios.2021.113212_bib30) 2016; 351 Dhar (10.1016/j.bios.2021.113212_bib8) 2008; 68 Richardson (10.1016/j.bios.2021.113212_bib27) 2016; 34 Zhou (10.1016/j.bios.2021.113212_bib39) 2018; 9 O'Geen (10.1016/j.bios.2021.113212_bib23) 2015; 43 Zhang (10.1016/j.bios.2021.113212_bib37) 2020; 5 Gootenberg (10.1016/j.bios.2021.113212_bib11) 2017; 356 Kobayashi (10.1016/j.bios.2021.113212_bib18) 2005; 352 Gu (10.1016/j.bios.2021.113212_bib12) 2019; 14 Wu (10.1016/j.bios.2021.113212_bib36) 2014; 32 Myhrvold (10.1016/j.bios.2021.113212_bib21) 2018; 360 Adderley (10.1016/j.bios.2021.113212_bib1) 2020; 113 Shou (10.1016/j.bios.2021.113212_bib29) 2018; 71 Chang (10.1016/j.bios.2021.113212_bib4) 2019; 186 Pumford (10.1016/j.bios.2021.113212_bib26) 2020; 170 Wang (10.1016/j.bios.2021.113212_bib34) 2020; 165 Gasiunas (10.1016/j.bios.2021.113212_bib10) 2012; 109 Notomi (10.1016/j.bios.2021.113212_bib22) 2000; 28 Walker (10.1016/j.bios.2021.113212_bib32) 1992; 20 Boyle (10.1016/j.bios.2021.113212_bib2) 2017; 114 Mocellin (10.1016/j.bios.2021.113212_bib19) 2003; 9 Woodman (10.1016/j.bios.2021.113212_bib35) 2007; 7 Jinek (10.1016/j.bios.2021.113212_bib15) 2012; 337 |
References_xml | – volume: 9 start-page: 701 year: 2009 end-page: 713 ident: bib3 article-title: When mutants gain new powers: news from the mutant p53 field publication-title: Nat. Rev. Canc. – volume: 10 start-page: 32 year: 2018 ident: bib28 article-title: Pathogen detection in the CRISPR-Cas era publication-title: Genome Med. – volume: 550 start-page: 407 year: 2017 end-page: 410 ident: bib5 article-title: Enhanced proofreading governs CRISPR-Cas9 targeting accuracy publication-title: Nature – volume: 4 year: 2006 ident: bib25 article-title: DNA detection using recombination proteins publication-title: PLoS Biol. – volume: 9 start-page: 189 year: 2003 end-page: 195 ident: bib19 article-title: Quantitative real-time PCR: a powerful ally in cancer research publication-title: Trends Mol. Med. – volume: 43 start-page: 3389 year: 2015 end-page: 3404 ident: bib23 article-title: A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture publication-title: Nucleic Acids Res. – volume: 86 start-page: 1614 year: 2014 end-page: 1621 ident: bib33 article-title: Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units publication-title: Anal. Chem. – volume: 32 start-page: 670 year: 2014 end-page: 676 ident: bib36 article-title: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells publication-title: Nat. Biotechnol. – volume: 534 start-page: 129 year: 2016 end-page: 132 ident: bib14 article-title: Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors publication-title: Nature – volume: 114 start-page: 5461 year: 2017 end-page: 5466 ident: bib2 article-title: High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 360 start-page: 444 year: 2018 end-page: 448 ident: bib21 article-title: Field-deployable viral diagnostics using CRISPR-Cas13 publication-title: Science (New York, N.Y.) – volume: 170 start-page: 112674 year: 2020 ident: bib26 article-title: Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics publication-title: Biosens. Bioelectron. – volume: 165 start-page: 1255 year: 2016 end-page: 1266 ident: bib24 article-title: Rapid, low-cost detection of zika virus using programmable biomolecular components publication-title: Cell – volume: 7 start-page: 11 year: 2007 end-page: 22 ident: bib35 article-title: The natural history of cervical HPV infection: unresolved issues publication-title: Nat. Rev. Canc. – volume: 186 start-page: 243 year: 2019 ident: bib4 article-title: Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification publication-title: Mikrochim. Acta – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: bib15 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science (New York, N.Y.) – volume: 9 start-page: 5012 year: 2018 ident: bib39 article-title: A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection publication-title: Nat. Commun. – volume: 529 start-page: 490 year: 2016 end-page: 495 ident: bib17 article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects publication-title: Nature – volume: 140 start-page: 11293 year: 2018 end-page: 11301 ident: bib38 article-title: Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-Mediated proximity ligation Assay publication-title: J. Am. Chem. Soc. – volume: 28 start-page: E63 year: 2000 ident: bib22 article-title: Loop-mediated isothermal amplification of DNA publication-title: Nucleic Acids Res. – volume: 71 start-page: 498 year: 2018 end-page: 509 ident: bib29 article-title: Precise and predictable CRISPR chromosomal rearrangements reveal principles of cas9-mediated nucleotide insertion publication-title: Mol. Cell – volume: 351 start-page: 84 year: 2016 end-page: 88 ident: bib30 article-title: Rationally engineered Cas9 nucleases with improved specificity publication-title: Science (New York, N.Y.) – volume: 5 start-page: 557 year: 2020 end-page: 562 ident: bib37 article-title: CRISPR/Cas12a-Mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing publication-title: ACS Sens. – volume: 20 start-page: 1691 year: 1992 end-page: 1696 ident: bib32 article-title: Strand displacement amplification--an isothermal, in vitro DNA amplification technique publication-title: Nucleic Acids Res. – volume: 113 start-page: 105095 year: 2020 ident: bib1 article-title: The utility of TP53 and PIK3CA mutations as prognostic biomarkers in salivary adenoid cystic carcinoma publication-title: Oral Oncol. – volume: 360 start-page: 436 year: 2018 end-page: 439 ident: bib6 article-title: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity publication-title: Science (New York, N.Y.) – volume: 34 start-page: 339 year: 2016 end-page: 344 ident: bib27 article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA publication-title: Nat. Biotechnol. – volume: 30 start-page: 418 year: 2014 end-page: 426 ident: bib31 article-title: Ten years of next-generation sequencing technology publication-title: Trends Genet. : TIG – volume: 3 start-page: 427 year: 2019 end-page: 437 ident: bib13 article-title: Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor publication-title: Nat. Biomed. Eng. – volume: 165 start-page: 112430 year: 2020 ident: bib34 article-title: CRISPR/cas systems redefine nucleic acid detection: principles and methods publication-title: Biosens. Bioelectron. – volume: 68 start-page: 4580 year: 2008 end-page: 4587 ident: bib8 article-title: Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2 publication-title: Canc. Res. – volume: 58 start-page: 17399 year: 2019 end-page: 17405 ident: bib7 article-title: Exploring the trans-cleavage activity of CRISPR-cas12a (cpf1) for the development of a universal electrochemical biosensor publication-title: Angew. Chem. – volume: 14 start-page: 319 year: 2019 end-page: 338 ident: bib12 article-title: Clinical metagenomic next-generation sequencing for pathogen detection publication-title: Annual review of pathology – year: 2020 ident: bib9 article-title: Cervical Cancer Screening for Individuals at Average Risk: 2020 Guideline Update from the American Cancer Society – volume: 343 year: 2014 ident: bib16 article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation publication-title: Science (New York, N.Y.) – volume: 356 start-page: 438 year: 2017 end-page: 442 ident: bib11 article-title: Nucleic acid detection with CRISPR-Cas13a/C2c2 publication-title: Science (New York, N.Y.) – volume: 352 start-page: 786 year: 2005 end-page: 792 ident: bib18 article-title: EGFR mutation and resistance of non-small-cell lung cancer to gefitinib publication-title: N. Engl. J. Med. – volume: 159 start-page: 112143 year: 2020 ident: bib20 article-title: An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids publication-title: Biosens. Bioelectron. – volume: 109 start-page: E2579 year: 2012 end-page: E2586 ident: bib10 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 343 issue: 6176 year: 2014 ident: 10.1016/j.bios.2021.113212_bib16 article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation publication-title: Science (New York, N.Y.) doi: 10.1126/science.1247997 – volume: 30 start-page: 418 issue: 9 year: 2014 ident: 10.1016/j.bios.2021.113212_bib31 article-title: Ten years of next-generation sequencing technology publication-title: Trends Genet. : TIG doi: 10.1016/j.tig.2014.07.001 – volume: 20 start-page: 1691 issue: 7 year: 1992 ident: 10.1016/j.bios.2021.113212_bib32 article-title: Strand displacement amplification--an isothermal, in vitro DNA amplification technique publication-title: Nucleic Acids Res. doi: 10.1093/nar/20.7.1691 – volume: 337 start-page: 816 issue: 6096 year: 2012 ident: 10.1016/j.bios.2021.113212_bib15 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science (New York, N.Y.) doi: 10.1126/science.1225829 – volume: 9 start-page: 5012 issue: 1 year: 2018 ident: 10.1016/j.bios.2021.113212_bib39 article-title: A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection publication-title: Nat. Commun. doi: 10.1038/s41467-018-07324-5 – volume: 34 start-page: 339 issue: 3 year: 2016 ident: 10.1016/j.bios.2021.113212_bib27 article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3481 – volume: 114 start-page: 5461 issue: 21 year: 2017 ident: 10.1016/j.bios.2021.113212_bib2 article-title: High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1700557114 – volume: 9 start-page: 701 issue: 10 year: 2009 ident: 10.1016/j.bios.2021.113212_bib3 article-title: When mutants gain new powers: news from the mutant p53 field publication-title: Nat. Rev. Canc. doi: 10.1038/nrc2693 – volume: 360 start-page: 436 issue: 6387 year: 2018 ident: 10.1016/j.bios.2021.113212_bib6 article-title: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity publication-title: Science (New York, N.Y.) doi: 10.1126/science.aar6245 – volume: 352 start-page: 786 issue: 8 year: 2005 ident: 10.1016/j.bios.2021.113212_bib18 article-title: EGFR mutation and resistance of non-small-cell lung cancer to gefitinib publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa044238 – volume: 71 start-page: 498 issue: 4 year: 2018 ident: 10.1016/j.bios.2021.113212_bib29 article-title: Precise and predictable CRISPR chromosomal rearrangements reveal principles of cas9-mediated nucleotide insertion publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.021 – volume: 140 start-page: 11293 issue: 36 year: 2018 ident: 10.1016/j.bios.2021.113212_bib38 article-title: Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-Mediated proximity ligation Assay publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05309 – volume: 68 start-page: 4580 issue: 12 year: 2008 ident: 10.1016/j.bios.2021.113212_bib8 article-title: Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2 publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-08-0316 – volume: 165 start-page: 112430 year: 2020 ident: 10.1016/j.bios.2021.113212_bib34 article-title: CRISPR/cas systems redefine nucleic acid detection: principles and methods publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112430 – volume: 165 start-page: 1255 issue: 5 year: 2016 ident: 10.1016/j.bios.2021.113212_bib24 article-title: Rapid, low-cost detection of zika virus using programmable biomolecular components publication-title: Cell doi: 10.1016/j.cell.2016.04.059 – volume: 5 start-page: 557 issue: 2 year: 2020 ident: 10.1016/j.bios.2021.113212_bib37 article-title: CRISPR/Cas12a-Mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing publication-title: ACS Sens. doi: 10.1021/acssensors.9b02461 – volume: 9 start-page: 189 issue: 5 year: 2003 ident: 10.1016/j.bios.2021.113212_bib19 article-title: Quantitative real-time PCR: a powerful ally in cancer research publication-title: Trends Mol. Med. doi: 10.1016/S1471-4914(03)00047-9 – volume: 170 start-page: 112674 year: 2020 ident: 10.1016/j.bios.2021.113212_bib26 article-title: Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112674 – volume: 109 start-page: E2579 issue: 39 year: 2012 ident: 10.1016/j.bios.2021.113212_bib10 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1208507109 – volume: 113 start-page: 105095 year: 2020 ident: 10.1016/j.bios.2021.113212_bib1 article-title: The utility of TP53 and PIK3CA mutations as prognostic biomarkers in salivary adenoid cystic carcinoma publication-title: Oral Oncol. doi: 10.1016/j.oraloncology.2020.105095 – volume: 529 start-page: 490 issue: 7587 year: 2016 ident: 10.1016/j.bios.2021.113212_bib17 article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects publication-title: Nature doi: 10.1038/nature16526 – volume: 10 start-page: 32 issue: 1 year: 2018 ident: 10.1016/j.bios.2021.113212_bib28 article-title: Pathogen detection in the CRISPR-Cas era publication-title: Genome Med. doi: 10.1186/s13073-018-0543-4 – volume: 351 start-page: 84 issue: 6268 year: 2016 ident: 10.1016/j.bios.2021.113212_bib30 article-title: Rationally engineered Cas9 nucleases with improved specificity publication-title: Science (New York, N.Y.) doi: 10.1126/science.aad5227 – volume: 7 start-page: 11 issue: 1 year: 2007 ident: 10.1016/j.bios.2021.113212_bib35 article-title: The natural history of cervical HPV infection: unresolved issues publication-title: Nat. Rev. Canc. doi: 10.1038/nrc2050 – volume: 58 start-page: 17399 issue: 48 year: 2019 ident: 10.1016/j.bios.2021.113212_bib7 article-title: Exploring the trans-cleavage activity of CRISPR-cas12a (cpf1) for the development of a universal electrochemical biosensor publication-title: Angew. Chem. doi: 10.1002/anie.201910772 – volume: 3 start-page: 427 issue: 6 year: 2019 ident: 10.1016/j.bios.2021.113212_bib13 article-title: Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0371-x – volume: 186 start-page: 243 issue: 4 year: 2019 ident: 10.1016/j.bios.2021.113212_bib4 article-title: Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification publication-title: Mikrochim. Acta doi: 10.1007/s00604-019-3348-2 – volume: 360 start-page: 444 issue: 6387 year: 2018 ident: 10.1016/j.bios.2021.113212_bib21 article-title: Field-deployable viral diagnostics using CRISPR-Cas13 publication-title: Science (New York, N.Y.) doi: 10.1126/science.aas8836 – volume: 14 start-page: 319 year: 2019 ident: 10.1016/j.bios.2021.113212_bib12 article-title: Clinical metagenomic next-generation sequencing for pathogen detection publication-title: Annual review of pathology doi: 10.1146/annurev-pathmechdis-012418-012751 – volume: 550 start-page: 407 issue: 7676 year: 2017 ident: 10.1016/j.bios.2021.113212_bib5 article-title: Enhanced proofreading governs CRISPR-Cas9 targeting accuracy publication-title: Nature doi: 10.1038/nature24268 – volume: 534 start-page: 129 issue: 7605 year: 2016 ident: 10.1016/j.bios.2021.113212_bib14 article-title: Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors publication-title: Nature doi: 10.1038/nature17960 – year: 2020 ident: 10.1016/j.bios.2021.113212_bib9 – volume: 43 start-page: 3389 issue: 6 year: 2015 ident: 10.1016/j.bios.2021.113212_bib23 article-title: A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv137 – volume: 28 start-page: E63 issue: 12 year: 2000 ident: 10.1016/j.bios.2021.113212_bib22 article-title: Loop-mediated isothermal amplification of DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.12.e63 – volume: 4 issue: 7 year: 2006 ident: 10.1016/j.bios.2021.113212_bib25 article-title: DNA detection using recombination proteins publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040204 – volume: 86 start-page: 1614 issue: 3 year: 2014 ident: 10.1016/j.bios.2021.113212_bib33 article-title: Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units publication-title: Anal. Chem. doi: 10.1021/ac4033033 – volume: 32 start-page: 670 issue: 7 year: 2014 ident: 10.1016/j.bios.2021.113212_bib36 article-title: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2889 – volume: 356 start-page: 438 issue: 6336 year: 2017 ident: 10.1016/j.bios.2021.113212_bib11 article-title: Nucleic acid detection with CRISPR-Cas13a/C2c2 publication-title: Science (New York, N.Y.) doi: 10.1126/science.aam9321 – volume: 159 start-page: 112143 year: 2020 ident: 10.1016/j.bios.2021.113212_bib20 article-title: An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112143 |
SSID | ssj0007190 ssib006546448 |
Score | 2.4716601 |
Snippet | Methods that enable specific and sensitive detection of DNA are greatly required for high-fidelity sequence measurement and single-nucleotide variations (SNVs)... |
SourceID | proquest pubmed crossref nii elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113212 |
SubjectTerms | Biosensing Techniques biosensors blood serum Clustered Regularly Interspaced Short Palindromic Repeats Clustered Regularly Interspaced Short Palindromic Repeats - genetics CRISPR CRISPR-Cas Systems CRISPR-Cas Systems - genetics detection limit DNA DNA - genetics Gene Editing genotyping Hairpin probe Isothermal amplification Limit of Detection Nucleic acid detection nucleotide sequences sequence analysis SNVs genotyping |
Title | High-fidelity detection of DNA combining the CRISPR/Cas9 system and hairpin probe |
URI | https://dx.doi.org/10.1016/j.bios.2021.113212 https://cir.nii.ac.jp/crid/1871991017482854272 https://www.ncbi.nlm.nih.gov/pubmed/33862567 https://www.proquest.com/docview/2514601239 https://www.proquest.com/docview/2574311157 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpQqE9hDR9bV6okFtxV5Jlyzoum4ZNCkubB-Rm9KQuxbukm0Mv_e2dsewkPWQPPdhgWzLSaKz5JM98Q8ixFUxFpmPmojEZWCiZWWN9FkUedOFK73znIDsvZ9fy_Ka42SDTIRYG3Sr7uT_N6d1s3d8Z99IcL5tmfIkUegBGMAgFee8wiE9KhVr-6c-Dm4fiaZ8F-fawdB84k3y8bLNAym7BMbWJ4OIp4_SsbZqnIWhnik53yHaPIekkNfMV2QjtLnmeskr-3iUvH3EMvibf0JMji8hmBYCb-rDqnK9auoj0ZD6h0HHbJYmgAAXp9OLs8uvFeGp-aZpInqlpPf1umttl01JMPxPekOvTz1fTWdbnUcicrOQqM1yHomKxUlVRecmZZWW0UbnSwOGZVr6UkUWba6Y9l8LnUrAi4uJJGF3lb8lmu2jDe0KNMNFox5EHT5ZOa-uZccoACGC5DHxE-CDA2vUk45jr4mc9eJP9qFHoNQq9TkIfkY_3dZaJYmNt6WIYl_ofRanBBqytdwiDCI3CM4dlIgBjmI0kMvhJoeD5h2F4a_jC8LeJacPiDl4CmLJE6KnXlUEkhsRFI_Iu6cZ9X_IcVo1Fqfb-s-X75AVe4YYyLw7I5ur2LhwCElrZo07Vj8jW5OzLbP4Xi7cBLw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyHggKBQWKBgJG4oWttxHj6uFqpdWlbQh9Rb5KcIQtlV2R7498zksYJD98AhOcR2ZI-dmW-c8TcA763kReQ6Ji4ak6CFUok11idRpkFnLvfOtwGyy3x-pT5fZ9d7MBvOwlBYZa_7O53eauv-yaSX5mRd15MLotBDMEKHUIj3Tu_DAbFTZSM4mC5O58utQi5Et9VClHvUoD8704V52XpFrN1SUHYTKeRd9mm_qeu7UWhrjU4ew6MeRrJp19MnsBeaQ7jXJZb8fQgP_6IZfArfKJgjiURohZib-bBp468ators43LKcOy2zRPBEA2y2fni4uv5ZGZ-adbxPDPTePbd1DfrumGUgSY8g6uTT5ezedKnUkicKtUmMUKHrOSxLMqs9Epwy_NoY-Fyg5fnuvC5ijzaVHPthZI-VZJnkfwnaXSZHsGoWTXhBTAjTTTaCaLCU7nT2npuXGEQB_BUBTEGMQiwcj3POKW7-FkNAWU_KhJ6RUKvOqGP4cO2zbpj2dhZOxvmpfpnrVRoBna2O8ZJxE7RXaCniNgYFZIiEj8lCyx_N0xvhR8Z_TkxTVjd4ksQVuaEPvWuOgTGiLtoDM-7tbEdS5qi45jlxcv_7PlbuD-__HJWnS2Wp6_gAZXQ_rLIXsNoc3MbjhEYbeybfuH_AWiaA-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-fidelity+detection+of+DNA+combining+the+CRISPR%2FCas9+system+and+hairpin+probe&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Wang%2C+Meng&rft.au=Han%2C+Dongsheng&rft.au=Zhang%2C+Jiawei&rft.au=Zhang%2C+Rui&rft.date=2021-07-15&rft.issn=0956-5663&rft.volume=184&rft.spage=113212&rft_id=info:doi/10.1016%2Fj.bios.2021.113212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bios_2021_113212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |