The magnitudes of hyperpolarization-activated and low-voltage-activated potassium currents co-vary in neurons of the ventral cochlear nucleus
In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. C...
Saved in:
Published in | Journal of neurophysiology Vol. 106; no. 2; pp. 630 - 640 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.08.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1 −/− ) ( Nolan et al. 2003 ) with wild-type controls (HCN1 +/+ ) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I h ) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1 −/− than in HCN1 +/+ in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I h , input resistances, and time constants between HCN1 +/+ and ICR mice, but the resting potentials did not differ between strains. I h is opposed by a low-voltage-activated potassium (I KL ) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I h and I KL were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I h and I KL is linked in bushy and octopus cells and varies not only between HCN1 −/− and HCN1 +/+ but also between “wild-type” strains of mice, raising the question to what extent the wild-type strains reflect normal mice. |
---|---|
AbstractList | In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1
−/−
) (
Nolan et al. 2003
) with wild-type controls (HCN1
+/+
) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I
h
) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1
−/−
than in HCN1
+/+
in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I
h
, input resistances, and time constants between HCN1
+/+
and ICR mice, but the resting potentials did not differ between strains. I
h
is opposed by a low-voltage-activated potassium (I
KL
) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I
h
and I
KL
were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I
h
and I
KL
is linked in bushy and octopus cells and varies not only between HCN1
−/−
and HCN1
+/+
but also between “wild-type” strains of mice, raising the question to what extent the wild-type strains reflect normal mice. In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1(-/-)) (Nolan et al. 2003) with wild-type controls (HCN1(+/+)) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I(h)) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1(-/-) than in HCN1(+/+) in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I(h), input resistances, and time constants between HCN1(+/+) and ICR mice, but the resting potentials did not differ between strains. I(h) is opposed by a low-voltage-activated potassium (I(KL)) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I(h) and I(KL) were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I(h) and I(KL) is linked in bushy and octopus cells and varies not only between HCN1(-/-) and HCN1(+/+) but also between "wild-type" strains of mice, raising the question to what extent the wild-type strains reflect normal mice. In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1 −/− ) ( Nolan et al. 2003 ) with wild-type controls (HCN1 +/+ ) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I h ) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1 −/− than in HCN1 +/+ in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I h , input resistances, and time constants between HCN1 +/+ and ICR mice, but the resting potentials did not differ between strains. I h is opposed by a low-voltage-activated potassium (I KL ) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I h and I KL were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I h and I KL is linked in bushy and octopus cells and varies not only between HCN1 −/− and HCN1 +/+ but also between “wild-type” strains of mice, raising the question to what extent the wild-type strains reflect normal mice. In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel alpha subunit 1 (HCN1-/-) (Nolan et al. 2003) with wild-type controls (HCN1+/+) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (Ih) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1-/- than in HCN1+/+ in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of Ih, input resistances, and time constants between HCN1+/+ and ICR mice, but the resting potentials did not differ between strains. Ih is opposed by a low-voltage-activated potassium (IKL) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of Ih and IKL were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of Ih and IKL is linked in bushy and octopus cells and varies not only between HCN1-/- and HCN1+/+ but also between "wild-type" strains of mice, raising the question to what extent the wild-type strains reflect normal mice. In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1(-/-)) (Nolan et al. 2003) with wild-type controls (HCN1(+/+)) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I(h)) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1(-/-) than in HCN1(+/+) in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I(h), input resistances, and time constants between HCN1(+/+) and ICR mice, but the resting potentials did not differ between strains. I(h) is opposed by a low-voltage-activated potassium (I(KL)) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I(h) and I(KL) were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I(h) and I(KL) is linked in bushy and octopus cells and varies not only between HCN1(-/-) and HCN1(+/+) but also between "wild-type" strains of mice, raising the question to what extent the wild-type strains reflect normal mice.In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability of neurons to convey acoustic information in the timing of their firing by decreasing the input resistance and speeding-up voltage changes. Comparisons of the electrophysiological properties of neurons in the VCN of mutant mice that lack the hyperpolarization-activated cyclic nucleotide-gated channel α subunit 1 (HCN1(-/-)) (Nolan et al. 2003) with wild-type controls (HCN1(+/+)) and with outbred ICR mice reveal that octopus, T stellate, and bushy cells maintain their electrophysiological distinctions in all strains. Hyperpolarization-activated (I(h)) currents were smaller and slower, input resistances were higher, and membrane time constants were longer in HCN1(-/-) than in HCN1(+/+) in octopus, bushy, and T stellate cells. There were significant differences in the average magnitudes of I(h), input resistances, and time constants between HCN1(+/+) and ICR mice, but the resting potentials did not differ between strains. I(h) is opposed by a low-voltage-activated potassium (I(KL)) current in bushy and octopus cells, whose magnitudes varied widely between neuronal types and between strains. The magnitudes of I(h) and I(KL) were correlated across neuronal types and across mouse strains. Furthermore, these currents balanced one another at the resting potential in individual cells. The magnitude of I(h) and I(KL) is linked in bushy and octopus cells and varies not only between HCN1(-/-) and HCN1(+/+) but also between "wild-type" strains of mice, raising the question to what extent the wild-type strains reflect normal mice. |
Author | Oertel, Donata Cao, Xiao-Jie |
Author_xml | – sequence: 1 givenname: Xiao-Jie surname: Cao fullname: Cao, Xiao-Jie organization: Department of Neuroscience, School of Neuroscience Medicine and Public Health, University of Wisconsin, Madison, Wisconsin – sequence: 2 givenname: Donata surname: Oertel fullname: Oertel, Donata organization: Department of Neuroscience, School of Neuroscience Medicine and Public Health, University of Wisconsin, Madison, Wisconsin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21562186$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URLeFI1fkG6cstpM49gUJVfyTKnEpZ2viOLteOXawnaDyHfjOuLstKgiJky2_3zw_zcwFOvPBG4ReUrKltGVvDn5LCKHtlhFKnqBNeWMVbaU4QxtCyr0mXXeOLlI6FK5rCXuGzhltOaOCb9DPm73BE-y8zctgEg4j3t_OJs7BQbQ_INvgK9DZrpDNgMEP2IXv1Rpchp15pMwhQ0p2mbBeYjQ-J6xDtUK8xdZjb5YY_NE-lw_XokdwhdB7ZyBiv2hnlvQcPR3BJfPi_rxEXz-8v7n6VF1_-fj56t11pRvR5Ep2YIZW6H40XNacNgODugfejKKXmndMiFrQUUJdGgGSj7p0aBxqIunQS87rS_T25Dsv_WQGfYqj5minElgFsOpPxdu92oVVFcNGkKYYvL43iOHbYlJWk03aOAfehCUpSToqKGv5f8kSteRitSzkq8ehfqd5GFYB6hOgY0gpmlFpm48TKhmtU5Sou5VQB6-OK6HuVqJUVX9VPRj_m_8FQ_a8Aw |
CitedBy_id | crossref_primary_10_1152_jn_00459_2018 crossref_primary_10_1038_s41598_018_38405_6 crossref_primary_10_1113_jphysiol_2012_229328 crossref_primary_10_1152_jn_01122_2011 crossref_primary_10_1152_jn_00234_2019 crossref_primary_10_1152_jn_00433_2012 crossref_primary_10_1152_jn_00435_2020 crossref_primary_10_3389_fncel_2016_00249 crossref_primary_10_1016_j_tins_2017_08_001 crossref_primary_10_1007_s10162_016_0610_8 crossref_primary_10_1007_s12576_015_0394_3 crossref_primary_10_1124_pr_117_014035 crossref_primary_10_1152_jn_00427_2011 crossref_primary_10_1152_jn_00660_2011 crossref_primary_10_1146_annurev_neuro_092920_121538 crossref_primary_10_1073_pnas_2203748119 crossref_primary_10_1523_JNEUROSCI_1811_18_2019 crossref_primary_10_1038_srep28584 crossref_primary_10_1371_journal_pone_0223137 crossref_primary_10_1016_j_heares_2015_06_014 crossref_primary_10_1113_JP275240 crossref_primary_10_1523_ENEURO_0166_22_2022 crossref_primary_10_1523_JNEUROSCI_2552_21_2022 crossref_primary_10_1074_jbc_M112_375832 crossref_primary_10_1113_jphysiol_2014_282194 crossref_primary_10_1085_jgp_201812031 crossref_primary_10_1111_ejn_12116 crossref_primary_10_1016_j_heares_2017_01_001 crossref_primary_10_1016_j_heares_2012_07_002 crossref_primary_10_1523_JNEUROSCI_5297_11_2012 crossref_primary_10_1038_s41467_024_55257_z crossref_primary_10_1080_19336950_2017_1348870 crossref_primary_10_1152_jn_00523_2016 crossref_primary_10_1371_journal_pone_0085451 crossref_primary_10_3390_ijms23169260 crossref_primary_10_1007_s10162_016_0605_5 crossref_primary_10_1016_j_heares_2017_12_017 crossref_primary_10_1152_jn_00092_2012 crossref_primary_10_1523_JNEUROSCI_6500_11_2012 crossref_primary_10_3389_fnmol_2018_00183 crossref_primary_10_7554_eLife_83393 |
Cites_doi | 10.1152/ajpcell.00389.2009 10.1113/jphysiol.2009.182873 10.1523/JNEUROSCI.21-18-07372.2001 10.1038/36103 10.1098/rspb.1993.0021 10.1111/j.1469-7793.2001.00733.x 10.1152/jn.1998.79.4.1755 10.1121/1.392494 10.1523/JNEUROSCI.1016-05.2005 10.1111/j.1460-9568.2005.04185.x 10.1152/jn.00624.2005 10.1038/nn.2735 10.1016/S0306-3623(96)00173-5 10.1523/JNEUROSCI.11-09-02865.1991 10.1113/jphysiol.2004.067421 10.1152/jn.00125.2002 10.1074/jbc.270.42.24776 10.1016/S0896-6273(00)80643-1 10.1016/S0026-895X(25)10594-4 10.1152/jn.01049.2004 10.1152/jn.1995.73.3.1043 10.1523/JNEUROSCI.0980-10.2010 10.1038/sj.bjp.0701004 10.1146/annurev.neuro.28.061604.135751 10.1152/jn.00052.2007 10.1152/jn.91300.2008 10.1152/jn.1999.81.6.2862 10.1016/j.heares.2006.02.006 10.1113/jphysiol.2002.027698 10.1523/JNEUROSCI.15-04-03138.1995 10.1002/cne.20407 10.1073/pnas.97.22.11773 10.1038/nn1639 10.1016/j.heares.2010.10.018 10.1016/j.neuroscience.2008.01.085 10.1523/JNEUROSCI.19-08-02897.1999 10.1016/S0022-3565(24)37521-4 10.1016/j.heares.2009.07.004 10.1152/jn.1990.63.5.1191 10.1523/JNEUROSCI.23-15-06357.2003 10.1523/JNEUROSCI.0740-10.2010 10.1152/jn.00587.2001 10.1002/cne.11039 10.1016/S0026-895X(25)13197-0 10.1038/nn.2530 10.1523/JNEUROSCI.04-06-01577.1984 10.1152/jn.2001.86.5.2299 10.1046/j.1432-1327.2001.02036.x 10.1152/jn.1998.79.1.51 10.1002/cne.902950112 10.1016/0014-5793(96)00211-6 10.1046/j.1432-1327.1999.00493.x 10.1111/j.1460-9568.2009.06925.x 10.1152/jn.2000.84.2.806 10.1073/pnas.0813058106 10.1038/31255 10.1152/jn.00582.2006 10.1152/jn.00385.2006 10.1152/jn.1993.70.4.1420 10.1074/jbc.C000738200 10.1523/JNEUROSCI.1738-07.2007 10.1111/j.0953-816X.2003.03133.x 10.1002/cne.903600110 10.1016/j.neuron.2008.10.020 10.1515/BC.1999.121 10.1146/annurev.physiol.65.092101.142734 10.1007/978-1-4757-3654-0_4 10.1016/S0092-8674(00)81434-8 10.1113/jphysiol.2006.114702 10.1007/BF02110698 10.1111/j.0953-816X.2004.03456.x 10.1074/jbc.M610978200 10.1152/jn.1997.78.6.3019 10.1016/S0092-8674(03)00884-5 |
ContentType | Journal Article |
Copyright | Copyright © 2011 the American Physiological Society 2011 |
Copyright_xml | – notice: Copyright © 2011 the American Physiological Society 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 7TN F1W H95 L.G 5PM |
DOI | 10.1152/jn.00015.2010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Neurosciences Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | MEDLINE CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 640 |
ExternalDocumentID | PMC3154804 21562186 10_1152_jn_00015_2010 |
Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: DC00176 – fundername: NIDCD NIH HHS grantid: R01 DC000176 |
GroupedDBID | --- -DZ -~X .55 .GJ 0VX 18M 1CY 1Z7 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5VS 8M5 AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AI. AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B MVM NEJ OHT OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT UQL VH1 W8F WH7 WOQ WOW X7M XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7TK 7TN F1W H95 L.G 5PM |
ID | FETCH-LOGICAL-c484t-97aed58cbfe693614d2a3ba64f8b9c67288381f9a3159a96fc001fd3091db9663 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Thu Aug 21 18:24:46 EDT 2025 Thu Jul 10 18:04:19 EDT 2025 Fri Jul 11 00:58:38 EDT 2025 Mon Jul 21 05:54:55 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Tue Jul 01 05:21:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c484t-97aed58cbfe693614d2a3ba64f8b9c67288381f9a3159a96fc001fd3091db9663 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3154804 |
PMID | 21562186 |
PQID | 883309239 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3154804 proquest_miscellaneous_907181256 proquest_miscellaneous_883309239 pubmed_primary_21562186 crossref_citationtrail_10_1152_jn_00015_2010 crossref_primary_10_1152_jn_00015_2010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-01 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2011 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B64 B21 B65 B22 B66 B67 B24 B68 B25 B69 B26 B27 B29 B71 B72 B73 B30 B74 B31 B75 B32 B33 B34 B35 B36 B37 B38 B39 Hopkins WF (B28) 1998; 285 B2 B3 B4 B5 B6 B7 B8 Adams JC (B1) 1997; 3 B9 B40 B41 B42 B43 B44 B45 B46 Werkman TR (B70) 1993; 44 B47 B48 B49 Grissmer S (B23) 1994; 45 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 B60 B61 B62 B63 14651847 - Cell. 2003 Nov 26;115(5):551-64 8355670 - Mol Pharmacol. 1993 Aug;44(2):430-6 20610748 - J Neurosci. 2010 Jul 7;30(27):9145-56 2993393 - J Acoust Soc Am. 1985 Jul;78(1 Pt 2):328-33 15235085 - J Physiol. 2004 Aug 15;559(Pt 1):25-33 2341631 - J Comp Neurol. 1990 May 1;295(1):136-54 7506755 - J Neurophysiol. 1993 Oct;70(4):1420-32 19788576 - Eur J Neurosci. 2009 Oct;30(7):1227-38 16029204 - Eur J Neurosci. 2005 Jul;22(1):147-57 12783951 - J Neurophysiol. 2003 Jun;89(6):3070-82 17553794 - J Biol Chem. 2007 Aug 3;282(31):22900-9 18995822 - Neuron. 2008 Nov 6;60(3):477-82 11698520 - J Neurophysiol. 2001 Nov;86(5):2299-311 11483704 - J Physiol. 2001 Aug 1;534(Pt 3):733-44 16135745 - J Neurosci. 2005 Aug 31;25(35):7887-95 1880553 - J Neurosci. 1991 Sep;11(9):2865-80 16807346 - J Neurophysiol. 2006 Oct;96(4):1860-76 9634236 - Nature. 1998 Jun 11;393(6685):587-91 9630217 - Cell. 1998 May 29;93(5):717-29 16647828 - Hear Res. 2006 Jun-Jul;216-217:52-63 9425176 - J Neurophysiol. 1998 Jan;79(1):51-63 14725627 - Eur J Neurosci. 2004 Jan;19(2):325-33 9134213 - Br J Pharmacol. 1997 Mar;120(6):1029-34 21270780 - Nat Neurosci. 2011 Feb;14(2):133-8 19346492 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6760-5 11976365 - J Neurophysiol. 2002 May;87(5):2262-70 18424000 - Neuroscience. 2008 Jun 12;154(1):77-86 8096080 - Proc Biol Sci. 1993 Feb 22;251(1331):143-50 15800074 - J Neurophysiol. 2005 Jul;94(1):821-32 16444270 - Nat Neurosci. 2006 Mar;9(3):356-62 14991560 - J Comp Neurol. 2004 Apr 5;471(3):241-76 20364143 - Nat Neurosci. 2010 May;13(5):601-9 9535945 - J Neurophysiol. 1998 Apr;79(4):1755-67 6726347 - J Neurosci. 1984 Jun;4(6):1577-88 20130205 - Am J Physiol Cell Physiol. 2010 May;298(5):C1066-76 11549747 - J Neurosci. 2001 Sep 15;21(18):7372-83 12867521 - J Neurosci. 2003 Jul 16;23(15):6357-61 19403742 - J Neurophysiol. 2009 Jul;102(1):167-80 15245481 - Eur J Neurosci. 2004 Jul;20(1):79-91 11133998 - J Biol Chem. 2001 Mar 2;276(9):6069-72 11050208 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11773-9 19615433 - Hear Res. 2009 Oct;256(1-2):93-103 20100739 - J Physiol. 2010 Mar 15;588(Pt 6):923-38 2358869 - J Neurophysiol. 1990 May;63(5):1191-212 11248683 - Eur J Biochem. 2001 Mar;268(6):1646-52 10429208 - Eur J Biochem. 1999 Jul;263(1):230-7 12702747 - J Physiol. 2003 Jun 1;549(Pt 2):347-59 8612784 - FEBS Lett. 1996 Mar 25;383(1-2):26-30 8807399 - J Bioenerg Biomembr. 1996 Jun;28(3):231-53 16776588 - Annu Rev Neurosci. 2006;29:307-23 7517498 - Mol Pharmacol. 1994 Jun;45(6):1227-34 16916913 - J Physiol. 2006 Nov 1;576(Pt 3):849-64 17670973 - J Neurosci. 2007 Aug 1;27(31):8268-77 9618407 - J Pharmacol Exp Ther. 1998 Jun;285(3):1051-60 12471170 - Annu Rev Physiol. 2003;65:453-80 10191307 - J Neurosci. 1999 Apr 15;19(8):2897-905 20861392 - J Neurosci. 2010 Sep 22;30(38):12885-95 7608754 - J Neurophysiol. 1995 Mar;73(3):1043-62 7559595 - J Biol Chem. 1995 Oct 20;270(42):24776-81 16192334 - J Neurophysiol. 2006 Jan;95(1):76-87 16943313 - J Neurophysiol. 2006 Dec;96(6):2857-67 10938307 - J Neurophysiol. 2000 Aug;84(2):806-17 10494850 - Biol Chem. 1999 Jul-Aug;380(7-8):975-80 15669051 - J Comp Neurol. 2005 Feb 21;482(4):349-71 17428908 - J Neurophysiol. 2007 Jun;97(6):3961-75 9405521 - J Neurophysiol. 1997 Dec;78(6):3019-27 9495341 - Nature. 1998 Feb 26;391(6670):892-6 21056098 - Hear Res. 2011 Jun;276(1-2):61-9 9883717 - Neuron. 1998 Dec;21(6):1235-8 10368403 - J Neurophysiol. 1999 Jun;81(6):2862-74 7499559 - J Comp Neurol. 1995 Sep 11;360(1):135-49 9112070 - Gen Pharmacol. 1997 Jan;28(1):7-12 7722652 - J Neurosci. 1995 Apr;15(4):3138-53 |
References_xml | – ident: B27 doi: 10.1152/ajpcell.00389.2009 – ident: B32 doi: 10.1113/jphysiol.2009.182873 – ident: B18 doi: 10.1523/JNEUROSCI.21-18-07372.2001 – ident: B66 doi: 10.1038/36103 – ident: B17 doi: 10.1098/rspb.1993.0021 – ident: B12 doi: 10.1111/j.1469-7793.2001.00733.x – ident: B40 doi: 10.1152/jn.1998.79.4.1755 – ident: B49 doi: 10.1121/1.392494 – ident: B64 doi: 10.1523/JNEUROSCI.1016-05.2005 – ident: B35 doi: 10.1111/j.1460-9568.2005.04185.x – ident: B59 doi: 10.1152/jn.00624.2005 – ident: B38 doi: 10.1038/nn.2735 – ident: B25 doi: 10.1016/S0306-3623(96)00173-5 – ident: B37 doi: 10.1523/JNEUROSCI.11-09-02865.1991 – ident: B34 doi: 10.1113/jphysiol.2004.067421 – ident: B60 doi: 10.1152/jn.00125.2002 – ident: B67 doi: 10.1074/jbc.270.42.24776 – ident: B29 doi: 10.1016/S0896-6273(00)80643-1 – volume: 45 start-page: 1227 year: 1994 ident: B23 publication-title: Mol Pharmacol doi: 10.1016/S0026-895X(25)10594-4 – ident: B9 doi: 10.1152/jn.01049.2004 – ident: B30 doi: 10.1152/jn.1995.73.3.1043 – ident: B22 doi: 10.1523/JNEUROSCI.0980-10.2010 – ident: B55 doi: 10.1038/sj.bjp.0701004 – ident: B13 doi: 10.1146/annurev.neuro.28.061604.135751 – ident: B10 doi: 10.1152/jn.00052.2007 – ident: B19 doi: 10.1152/jn.91300.2008 – ident: B73 doi: 10.1152/jn.1999.81.6.2862 – ident: B41 doi: 10.1016/j.heares.2006.02.006 – ident: B2 doi: 10.1113/jphysiol.2002.027698 – ident: B21 doi: 10.1523/JNEUROSCI.15-04-03138.1995 – ident: B65 doi: 10.1002/cne.20407 – ident: B50 doi: 10.1073/pnas.97.22.11773 – ident: B63 doi: 10.1038/nn1639 – ident: B52 doi: 10.1016/j.heares.2010.10.018 – ident: B51 doi: 10.1016/j.neuroscience.2008.01.085 – ident: B20 doi: 10.1523/JNEUROSCI.19-08-02897.1999 – volume: 285 start-page: 1051 year: 1998 ident: B28 publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(24)37521-4 – ident: B3 doi: 10.1016/j.heares.2009.07.004 – ident: B8 doi: 10.1152/jn.1990.63.5.1191 – ident: B45 doi: 10.1523/JNEUROSCI.23-15-06357.2003 – ident: B11 doi: 10.1523/JNEUROSCI.0740-10.2010 – ident: B16 doi: 10.1152/jn.00587.2001 – ident: B48 doi: 10.1002/cne.11039 – volume: 44 start-page: 430 year: 1993 ident: B70 publication-title: Mol Pharmacol doi: 10.1016/S0026-895X(25)13197-0 – ident: B39 doi: 10.1038/nn.2530 – ident: B74 doi: 10.1523/JNEUROSCI.04-06-01577.1984 – ident: B5 doi: 10.1152/jn.2001.86.5.2299 – ident: B44 doi: 10.1046/j.1432-1327.2001.02036.x – ident: B15 doi: 10.1152/jn.1998.79.1.51 – ident: B53 doi: 10.1002/cne.902950112 – ident: B57 doi: 10.1016/0014-5793(96)00211-6 – ident: B69 doi: 10.1046/j.1432-1327.1999.00493.x – ident: B26 doi: 10.1111/j.1460-9568.2009.06925.x – ident: B4 doi: 10.1152/jn.2000.84.2.806 – volume: 3 start-page: 335 year: 1997 ident: B1 publication-title: Auditory Neurosci – ident: B72 doi: 10.1073/pnas.0813058106 – ident: B36 doi: 10.1038/31255 – ident: B54 doi: 10.1152/jn.00582.2006 – ident: B24 doi: 10.1152/jn.00385.2006 – ident: B6 doi: 10.1152/jn.1993.70.4.1420 – ident: B68 doi: 10.1074/jbc.C000738200 – ident: B56 doi: 10.1523/JNEUROSCI.1738-07.2007 – ident: B7 doi: 10.1111/j.0953-816X.2003.03133.x – ident: B62 doi: 10.1002/cne.903600110 – ident: B46 doi: 10.1016/j.neuron.2008.10.020 – ident: B43 doi: 10.1515/BC.1999.121 – ident: B58 doi: 10.1146/annurev.physiol.65.092101.142734 – ident: B75 doi: 10.1007/978-1-4757-3654-0_4 – ident: B61 doi: 10.1016/S0092-8674(00)81434-8 – ident: B33 doi: 10.1113/jphysiol.2006.114702 – ident: B14 doi: 10.1007/BF02110698 – ident: B31 doi: 10.1111/j.0953-816X.2004.03456.x – ident: B71 doi: 10.1074/jbc.M610978200 – ident: B42 doi: 10.1152/jn.1997.78.6.3019 – ident: B47 doi: 10.1016/S0092-8674(03)00884-5 – reference: 20100739 - J Physiol. 2010 Mar 15;588(Pt 6):923-38 – reference: 11698520 - J Neurophysiol. 2001 Nov;86(5):2299-311 – reference: 18995822 - Neuron. 2008 Nov 6;60(3):477-82 – reference: 11483704 - J Physiol. 2001 Aug 1;534(Pt 3):733-44 – reference: 9634236 - Nature. 1998 Jun 11;393(6685):587-91 – reference: 12471170 - Annu Rev Physiol. 2003;65:453-80 – reference: 19788576 - Eur J Neurosci. 2009 Oct;30(7):1227-38 – reference: 14725627 - Eur J Neurosci. 2004 Jan;19(2):325-33 – reference: 20364143 - Nat Neurosci. 2010 May;13(5):601-9 – reference: 15800074 - J Neurophysiol. 2005 Jul;94(1):821-32 – reference: 7499559 - J Comp Neurol. 1995 Sep 11;360(1):135-49 – reference: 19346492 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6760-5 – reference: 14991560 - J Comp Neurol. 2004 Apr 5;471(3):241-76 – reference: 15669051 - J Comp Neurol. 2005 Feb 21;482(4):349-71 – reference: 16916913 - J Physiol. 2006 Nov 1;576(Pt 3):849-64 – reference: 15245481 - Eur J Neurosci. 2004 Jul;20(1):79-91 – reference: 7722652 - J Neurosci. 1995 Apr;15(4):3138-53 – reference: 16192334 - J Neurophysiol. 2006 Jan;95(1):76-87 – reference: 11248683 - Eur J Biochem. 2001 Mar;268(6):1646-52 – reference: 15235085 - J Physiol. 2004 Aug 15;559(Pt 1):25-33 – reference: 16776588 - Annu Rev Neurosci. 2006;29:307-23 – reference: 2993393 - J Acoust Soc Am. 1985 Jul;78(1 Pt 2):328-33 – reference: 9618407 - J Pharmacol Exp Ther. 1998 Jun;285(3):1051-60 – reference: 16444270 - Nat Neurosci. 2006 Mar;9(3):356-62 – reference: 11976365 - J Neurophysiol. 2002 May;87(5):2262-70 – reference: 10368403 - J Neurophysiol. 1999 Jun;81(6):2862-74 – reference: 8807399 - J Bioenerg Biomembr. 1996 Jun;28(3):231-53 – reference: 10429208 - Eur J Biochem. 1999 Jul;263(1):230-7 – reference: 16807346 - J Neurophysiol. 2006 Oct;96(4):1860-76 – reference: 21056098 - Hear Res. 2011 Jun;276(1-2):61-9 – reference: 12783951 - J Neurophysiol. 2003 Jun;89(6):3070-82 – reference: 19615433 - Hear Res. 2009 Oct;256(1-2):93-103 – reference: 8096080 - Proc Biol Sci. 1993 Feb 22;251(1331):143-50 – reference: 9883717 - Neuron. 1998 Dec;21(6):1235-8 – reference: 11050208 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11773-9 – reference: 16029204 - Eur J Neurosci. 2005 Jul;22(1):147-57 – reference: 16135745 - J Neurosci. 2005 Aug 31;25(35):7887-95 – reference: 8612784 - FEBS Lett. 1996 Mar 25;383(1-2):26-30 – reference: 9112070 - Gen Pharmacol. 1997 Jan;28(1):7-12 – reference: 10938307 - J Neurophysiol. 2000 Aug;84(2):806-17 – reference: 1880553 - J Neurosci. 1991 Sep;11(9):2865-80 – reference: 18424000 - Neuroscience. 2008 Jun 12;154(1):77-86 – reference: 12867521 - J Neurosci. 2003 Jul 16;23(15):6357-61 – reference: 20130205 - Am J Physiol Cell Physiol. 2010 May;298(5):C1066-76 – reference: 7559595 - J Biol Chem. 1995 Oct 20;270(42):24776-81 – reference: 10494850 - Biol Chem. 1999 Jul-Aug;380(7-8):975-80 – reference: 12702747 - J Physiol. 2003 Jun 1;549(Pt 2):347-59 – reference: 9134213 - Br J Pharmacol. 1997 Mar;120(6):1029-34 – reference: 7506755 - J Neurophysiol. 1993 Oct;70(4):1420-32 – reference: 21270780 - Nat Neurosci. 2011 Feb;14(2):133-8 – reference: 7517498 - Mol Pharmacol. 1994 Jun;45(6):1227-34 – reference: 20610748 - J Neurosci. 2010 Jul 7;30(27):9145-56 – reference: 9425176 - J Neurophysiol. 1998 Jan;79(1):51-63 – reference: 16943313 - J Neurophysiol. 2006 Dec;96(6):2857-67 – reference: 7608754 - J Neurophysiol. 1995 Mar;73(3):1043-62 – reference: 17553794 - J Biol Chem. 2007 Aug 3;282(31):22900-9 – reference: 9630217 - Cell. 1998 May 29;93(5):717-29 – reference: 9535945 - J Neurophysiol. 1998 Apr;79(4):1755-67 – reference: 16647828 - Hear Res. 2006 Jun-Jul;216-217:52-63 – reference: 20861392 - J Neurosci. 2010 Sep 22;30(38):12885-95 – reference: 11133998 - J Biol Chem. 2001 Mar 2;276(9):6069-72 – reference: 8355670 - Mol Pharmacol. 1993 Aug;44(2):430-6 – reference: 6726347 - J Neurosci. 1984 Jun;4(6):1577-88 – reference: 14651847 - Cell. 2003 Nov 26;115(5):551-64 – reference: 17428908 - J Neurophysiol. 2007 Jun;97(6):3961-75 – reference: 17670973 - J Neurosci. 2007 Aug 1;27(31):8268-77 – reference: 10191307 - J Neurosci. 1999 Apr 15;19(8):2897-905 – reference: 2341631 - J Comp Neurol. 1990 May 1;295(1):136-54 – reference: 11549747 - J Neurosci. 2001 Sep 15;21(18):7372-83 – reference: 2358869 - J Neurophysiol. 1990 May;63(5):1191-212 – reference: 19403742 - J Neurophysiol. 2009 Jul;102(1):167-80 – reference: 9405521 - J Neurophysiol. 1997 Dec;78(6):3019-27 – reference: 9495341 - Nature. 1998 Feb 26;391(6670):892-6 |
SSID | ssj0007502 |
Score | 2.2383494 |
Snippet | In the ventral cochlear nucleus (VCN), neurons have hyperpolarization-activated conductances, which in some cells are enormous, that contribute to the ability... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 630 |
SubjectTerms | Animals Cochlear Nucleus - cytology Cochlear Nucleus - physiology Cyclic Nucleotide-Gated Cation Channels - deficiency Cyclic Nucleotide-Gated Cation Channels - physiology Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels Membrane Potentials - genetics Mice Mice, 129 Strain Mice, Inbred C57BL Mice, Inbred ICR Mice, Knockout Mice, Transgenic Neural Inhibition - genetics Neurons - classification Neurons - physiology Octopus Potassium Channels - deficiency Potassium Channels - genetics Potassium Channels - physiology Species Specificity |
Title | The magnitudes of hyperpolarization-activated and low-voltage-activated potassium currents co-vary in neurons of the ventral cochlear nucleus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21562186 https://www.proquest.com/docview/883309239 https://www.proquest.com/docview/907181256 https://pubmed.ncbi.nlm.nih.gov/PMC3154804 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5F5cIFAeWR8tAeUC9hS-LH2nusIlBVVChSK-Vmrddr1VVjR6kTVP4DP4X_yMzu2rFJi6AXK7LXtuL5PPvNePYbQt4FOs-DWGmG4mwsyMYRk56vWARbmC91LCe4OPnkCz86D45n4Www-NWpWlrV6YH6ceu6kvtYFfaBXXGV7H9Ytr0o7IDfYF_YgoVh-882nkus_1llVjz2AsLK5QLDVbe-kuHChbVEXokp8qvqOwOHVIMX6RxZVDVw6GI1Hykr13Q9UhVbY0FdUY6M5KWtlkOWurb5YBihLrDnxKhESWSXP9imueZskz_pJfCn0uRoZ4Ws2HHRouurXta2bgCT1rXsJiVslrVb4NF8bTptLm8Q5wpRu_4Y1xKMXSMX7Vww7AOSFfd89Jh3wOh1PC53n3Xs5M2t9tP2vBCizuxleWDWjpuKvu44MOtibkACDIhjm67N9NgWLZ6eTH0M8FB99oEHUQm61c_fNuL0QL424vTwpxpJ19D70LuzEaC2t-mzoa0Q589K3Q71OXtMHjlj0kMLwCdkoMunZPcQ7FPNb-g-bR__zS75CZikG0zSKqd_wSQFTNJbMUlbTNIGk9RhkhYldZjEywMmqcMkbTBJHSafkfNPH8-mR8y1_GAqiIOaiUjqLIxVmmsufKCOmSf9VPIgj1OheIS9seNJLiRYQkjBcwVPNc98YL1ZCpG7_5zslFWpXxLKRZ5OlOBRmqsAAm8RaoiOJjE2GIBJVQzJ--bRJ8rp4WNblqvExMWhl1yWpjQjTNBoQ7LfDl9YIZi7BtLGjgm4avz-Jktdra4T7Os9hoBK3D1EAOMHyh3yIXlhLd_erIHMkEQ9TLQDUCi-f6QsLoxgvIPt3r3PfEUebt7y12SnXq70GyDjdfrWvAK_AfGe6YA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+magnitudes+of+hyperpolarization-activated+and+low-voltage-activated+potassium+currents+co-vary+in+neurons+of+the+ventral+cochlear+nucleus&rft.jtitle=Journal+of+neurophysiology&rft.au=Cao%2C+Xiao-Jie&rft.au=Oertel%2C+Donata&rft.date=2011-08-01&rft.pub=American+Physiological+Society&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=106&rft.issue=2&rft.spage=630&rft.epage=640&rft_id=info:doi/10.1152%2Fjn.00015.2010&rft_id=info%3Apmid%2F21562186&rft.externalDocID=PMC3154804 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |