Biology of Zika Virus Infection in Human Skin Cells
Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of...
Saved in:
Published in | Journal of virology Vol. 89; no. 17; pp. 8880 - 8896 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zika virus (ZIKV) is an emerging arbovirus of the
Flaviviridae
family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the
Aedes
genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus.
IMPORTANCE
Zika virus (ZIKV) is an arbovirus belonging to the
Flaviviridae
family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female
Aedes
mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host. |
---|---|
AbstractList | UNLABELLEDZika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus.IMPORTANCEZika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host. Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host. Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. IMPORTANCE Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host. Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host. |
Author | Luplertlop, Natthanej Surasombatpattana, Pornapat Amara, Ali Cao-Lormeau, Van-Mai Neyret, Aymeric Choumet, Valérie Missé, Dorothée Talignani, Loïc Thomas, Frédéric Perera-Lecoin, Manuel Desprès, Philippe Ekchariyawat, Peeraya Hamel, Rodolphe Dejarnac, Ophélie Wichit, Sineewanlaya Briant, Laurence Yssel, Hans |
Author_xml | – sequence: 1 givenname: Rodolphe surname: Hamel fullname: Hamel, Rodolphe organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France – sequence: 2 givenname: Ophélie surname: Dejarnac fullname: Dejarnac, Ophélie organization: INSERM, U944, Laboratoire de Pathologie et Virologie Moléculaire, Paris, France – sequence: 3 givenname: Sineewanlaya surname: Wichit fullname: Wichit, Sineewanlaya organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France – sequence: 4 givenname: Peeraya surname: Ekchariyawat fullname: Ekchariyawat, Peeraya organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France – sequence: 5 givenname: Aymeric surname: Neyret fullname: Neyret, Aymeric organization: Centre d'Étude d'Agents Pathogènes et Biotechnologies pour la Santé, CNRS-UMR 5236/UM, Montpellier, France – sequence: 6 givenname: Natthanej surname: Luplertlop fullname: Luplertlop, Natthanej organization: Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand – sequence: 7 givenname: Manuel surname: Perera-Lecoin fullname: Perera-Lecoin, Manuel organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France – sequence: 8 givenname: Pornapat surname: Surasombatpattana fullname: Surasombatpattana, Pornapat organization: Pathology Department, Prince of Songkla University, Songkla, Thailand – sequence: 9 givenname: Loïc surname: Talignani fullname: Talignani, Loïc organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France – sequence: 10 givenname: Frédéric surname: Thomas fullname: Thomas, Frédéric organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France – sequence: 11 givenname: Van-Mai surname: Cao-Lormeau fullname: Cao-Lormeau, Van-Mai organization: Institut Louis Malardé, Papeete, Tahiti, French Polynesia – sequence: 12 givenname: Valérie surname: Choumet fullname: Choumet, Valérie organization: Environment and Infectious Risks Unit, Institut Pasteur, Paris, France – sequence: 13 givenname: Laurence surname: Briant fullname: Briant, Laurence organization: Centre d'Étude d'Agents Pathogènes et Biotechnologies pour la Santé, CNRS-UMR 5236/UM, Montpellier, France – sequence: 14 givenname: Philippe surname: Desprès fullname: Desprès, Philippe organization: Département Infections et Epidémiologie, Institut Pasteur, Paris, France, and UMR PIMIT (I2T Team), Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, GIP-CYROI, Saint Clotilde, La Réunion, France – sequence: 15 givenname: Ali surname: Amara fullname: Amara, Ali organization: INSERM, U944, Laboratoire de Pathologie et Virologie Moléculaire, Paris, France – sequence: 16 givenname: Hans surname: Yssel fullname: Yssel, Hans organization: Centre d'Immunologie et des Maladies Infectieuses, INSERM, U1135, Sorbonne Universités, UPMC, APHP Hôpital Pitié-Salpêtrière, Paris, France – sequence: 17 givenname: Dorothée surname: Missé fullname: Missé, Dorothée organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26085147$$D View this record in MEDLINE/PubMed https://hal.science/hal-01228435$$DView record in HAL |
BookMark | eNptkc9P2zAcxa0JBKVw23nKkUkLfP0rdi5IXbXRoko7jKGJi-U4DhhSG-KkEv_9XFomQJxs2Z_3_Px9B2jHB28R-ozhBGMiTy-u5icAlLMc809ohKGUOeeY7aARACE5p_LvPjqI8Q4AM1awPbRPCpAJESNEv7vQhpunLDTZtbvX2ZXrhpjNfWNN74LPnM9mw1L77Pd92k5t28ZDtNvoNtqj7TpGf37-uJzO8sWv8_l0ssgNk6zPSyptSaoahKWmbLjUuGi0AGqwrQStWFVLYFVhbC0Io4YbY7itaWNBFEIwOkZnG9-HoVra2ljfd7pVD51b6u5JBe3U2xvvbtVNWCnGCQNZJoOvG4Pbd7LZZKHWZ4AJkYzyFU7s8faxLjwONvZq6aJJ39XehiEqLADLEkOxzvXlda7_zi9TTQDZAKYLMXa2Ucb1ej3OFNO1CoNaV6dSdeq5OoV5En17J3rx_RD_B74PmD4 |
CitedBy_id | crossref_primary_10_1007_s13337_016_0317_9 crossref_primary_10_1016_j_ejmech_2018_07_014 crossref_primary_10_1007_s13365_020_00835_2 crossref_primary_10_4049_jimmunol_1700256 crossref_primary_10_1016_j_cellin_2024_100196 crossref_primary_10_1155_2018_6106582 crossref_primary_10_3390_applmicrobiol2040059 crossref_primary_10_1007_s11434_016_1068_0 crossref_primary_10_3201_eid2311_170337 crossref_primary_10_1111_exd_14870 crossref_primary_10_1002_jmv_24822 crossref_primary_10_1007_s13235_021_00418_8 crossref_primary_10_3390_v14081735 crossref_primary_10_5501_wjv_v14_i1_100489 crossref_primary_10_1016_j_medcli_2016_03_012 crossref_primary_10_3389_fviro_2022_959586 crossref_primary_10_1016_j_antiviral_2017_02_002 crossref_primary_10_1371_journal_pntd_0004695 crossref_primary_10_2174_0929867328666210714160954 crossref_primary_10_1016_j_celrep_2017_02_014 crossref_primary_10_1038_s41587_019_0225_9 crossref_primary_10_1098_rsob_160231 crossref_primary_10_1371_journal_pntd_0004682 crossref_primary_10_1038_emi_2017_9 crossref_primary_10_7554_eLife_94347_3 crossref_primary_10_1016_j_celrep_2017_10_016 crossref_primary_10_1371_journal_pntd_0012066 crossref_primary_10_3390_v14081727 crossref_primary_10_3389_fimmu_2021_610456 crossref_primary_10_1016_j_celrep_2016_08_038 crossref_primary_10_1155_2017_5649214 crossref_primary_10_1128_MMBR_00024_15 crossref_primary_10_1093_infdis_jiz392 crossref_primary_10_1038_s41598_018_25236_8 crossref_primary_10_1016_j_virusres_2020_198087 crossref_primary_10_3389_fmicb_2022_1062499 crossref_primary_10_3390_v16101535 crossref_primary_10_1016_j_coviro_2017_05_002 crossref_primary_10_1073_pnas_1619735114 crossref_primary_10_1016_j_celrep_2017_03_058 crossref_primary_10_1017_erm_2018_6 crossref_primary_10_3389_fimmu_2019_01736 crossref_primary_10_1128_mSphereDirect_00120_18 crossref_primary_10_1016_j_virusres_2021_198534 crossref_primary_10_1016_j_virol_2017_11_007 crossref_primary_10_1021_acs_chemrev_7b00719 crossref_primary_10_1016_j_envpol_2021_117654 crossref_primary_10_1371_journal_pone_0307902 crossref_primary_10_3390_tropicalmed7060106 crossref_primary_10_1186_s12985_025_02622_z crossref_primary_10_1016_j_bbadis_2024_167097 crossref_primary_10_1038_s41598_019_52307_1 crossref_primary_10_3389_fmicb_2023_1257024 crossref_primary_10_1016_j_xjidi_2022_100128 crossref_primary_10_1128_JVI_00163_17 crossref_primary_10_1155_2023_9145289 crossref_primary_10_1186_s13071_017_2286_2 crossref_primary_10_1128_JVI_01018_18 crossref_primary_10_1146_annurev_immunol_042617_053142 crossref_primary_10_33590_emjmicrobiolinfectdis_21_00256 crossref_primary_10_1097_INF_0000000000002080 crossref_primary_10_1128_jvi_01705_23 crossref_primary_10_3390_ijms20051101 crossref_primary_10_1371_journal_pntd_0007537 crossref_primary_10_1371_journal_ppat_1006164 crossref_primary_10_1016_j_intimp_2023_111368 crossref_primary_10_3389_fcimb_2016_00206 crossref_primary_10_3390_v11090797 crossref_primary_10_1128_JVI_00785_17 crossref_primary_10_1371_journal_pone_0209097 crossref_primary_10_1128_JVI_00403_20 crossref_primary_10_3390_pathogens11030294 crossref_primary_10_1074_jbc_RA120_015165 crossref_primary_10_1007_s00705_024_06050_2 crossref_primary_10_1371_journal_pone_0261821 crossref_primary_10_3389_fimmu_2018_02340 crossref_primary_10_1016_j_cellsig_2021_110204 crossref_primary_10_1038_srep44286 crossref_primary_10_1038_s41598_019_46389_0 crossref_primary_10_1016_j_virusres_2021_198593 crossref_primary_10_1016_j_chom_2016_05_009 crossref_primary_10_1038_s41593_017_0038_4 crossref_primary_10_1128_JVI_01982_18 crossref_primary_10_1371_journal_ppat_1009899 crossref_primary_10_3390_cancers8100097 crossref_primary_10_1007_s15010_016_0935_6 crossref_primary_10_1128_jvi_01122_22 crossref_primary_10_1016_j_joi_2020_101075 crossref_primary_10_5501_wjv_v7_i1_10 crossref_primary_10_1016_j_plipres_2016_09_005 crossref_primary_10_1016_j_virol_2020_04_009 crossref_primary_10_3390_pathogens10040448 crossref_primary_10_1021_acs_biochem_6b01056 crossref_primary_10_1128_AAC_00113_21 crossref_primary_10_3389_fimmu_2023_1125565 crossref_primary_10_1038_s41598_019_51954_8 crossref_primary_10_1177_1093526618790742 crossref_primary_10_1016_j_coviro_2017_06_009 crossref_primary_10_1590_s1678_9946201658089 crossref_primary_10_3389_fviro_2022_801778 crossref_primary_10_1002_med_22073 crossref_primary_10_1073_pnas_1900867116 crossref_primary_10_3390_v12030267 crossref_primary_10_1016_j_chom_2016_05_015 crossref_primary_10_1016_j_microb_2024_100180 crossref_primary_10_3390_v8060152 crossref_primary_10_1038_s41467_024_54628_w crossref_primary_10_1038_s41598_020_79803_z crossref_primary_10_3390_microorganisms12091840 crossref_primary_10_3390_ph17080988 crossref_primary_10_3390_molecules26144321 crossref_primary_10_1016_j_antiviral_2021_105117 crossref_primary_10_1016_j_meegid_2019_01_018 crossref_primary_10_1099_jgv_0_000886 crossref_primary_10_1016_j_chom_2018_09_008 crossref_primary_10_1111_trf_13964 crossref_primary_10_3390_v12070700 crossref_primary_10_1016_j_meegid_2019_01_023 crossref_primary_10_3390_ijms242417271 crossref_primary_10_1155_2022_2044577 crossref_primary_10_3390_pathogens8040169 crossref_primary_10_1007_s12016_016_8554_7 crossref_primary_10_1371_journal_pntd_0008424 crossref_primary_10_1016_j_jid_2023_11_014 crossref_primary_10_1016_j_neuint_2016_10_004 crossref_primary_10_3389_fimmu_2020_00352 crossref_primary_10_1016_j_celrep_2019_05_059 crossref_primary_10_1371_journal_ppat_1008538 crossref_primary_10_3389_fmicb_2016_01233 crossref_primary_10_1016_j_antiviral_2017_12_017 crossref_primary_10_1128_JVI_02079_20 crossref_primary_10_3390_ijms26030951 crossref_primary_10_1523_JNEUROSCI_3124_16_2017 crossref_primary_10_1074_mcp_R116_065649 crossref_primary_10_1140_epjp_s13360_021_01657_9 crossref_primary_10_1371_journal_ppat_1010843 crossref_primary_10_1038_s42003_022_03902_y crossref_primary_10_1093_bmb_ldw023 crossref_primary_10_3390_v10110649 crossref_primary_10_3390_v10110646 crossref_primary_10_1080_21505594_2019_1605803 crossref_primary_10_3389_fimmu_2021_750365 crossref_primary_10_1016_j_biopha_2023_115175 crossref_primary_10_1016_j_jbc_2022_102471 crossref_primary_10_1128_mBio_01372_19 crossref_primary_10_3390_v12050510 crossref_primary_10_1038_srep41389 crossref_primary_10_3389_fimmu_2020_00592 crossref_primary_10_3389_fncel_2019_00389 crossref_primary_10_1093_femsle_fnw202 crossref_primary_10_1186_s12964_020_00687_7 crossref_primary_10_1021_acscentsci_8b00494 crossref_primary_10_1099_jgv_0_001726 crossref_primary_10_3390_v10110630 crossref_primary_10_1016_j_virol_2023_03_006 crossref_primary_10_3390_v12050503 crossref_primary_10_33442_978_981_14_0914_1_2b crossref_primary_10_3390_tropicalmed6020095 crossref_primary_10_4103_apjtb_apjtb_35_24 crossref_primary_10_1080_15548627_2016_1265192 crossref_primary_10_2217_fvl_2018_0115 crossref_primary_10_3389_fviro_2021_720760 crossref_primary_10_1016_j_ebiom_2016_11_017 crossref_primary_10_1016_j_ebiom_2017_09_021 crossref_primary_10_2174_1874357901812010134 crossref_primary_10_1038_s44321_024_00103_4 crossref_primary_10_3389_fimmu_2021_764746 crossref_primary_10_3390_v13010013 crossref_primary_10_1371_journal_ppat_1007656 crossref_primary_10_1172_JCI89857 crossref_primary_10_1155_2020_9527147 crossref_primary_10_1007_s13365_017_0513_4 crossref_primary_10_1128_JVI_01047_19 crossref_primary_10_3389_fmicb_2017_01469 crossref_primary_10_1177_20503121241229847 crossref_primary_10_3390_membranes11050335 crossref_primary_10_3390_vaccines9030294 crossref_primary_10_1371_journal_ppat_1007640 crossref_primary_10_1007_s13365_018_0614_8 crossref_primary_10_1093_infdis_jix153 crossref_primary_10_3389_fimmu_2020_593901 crossref_primary_10_1093_infdis_jix396 crossref_primary_10_1007_s12250_021_00442_3 crossref_primary_10_1007_s40588_017_0070_x crossref_primary_10_3390_ijms26010047 crossref_primary_10_1038_s41598_019_50918_2 crossref_primary_10_1016_j_neuron_2018_10_007 crossref_primary_10_1098_rsob_190009 crossref_primary_10_1128_CMR_00014_16 crossref_primary_10_4049_jimmunol_2000713 crossref_primary_10_3389_fcimb_2020_00407 crossref_primary_10_1080_01652176_2016_1188333 crossref_primary_10_1371_journal_pone_0161355 crossref_primary_10_1016_j_vetmic_2024_110062 crossref_primary_10_1038_s41467_022_32565_w crossref_primary_10_1016_j_celrep_2016_06_028 crossref_primary_10_1016_j_celrep_2016_08_079 crossref_primary_10_1080_22221751_2022_2082888 crossref_primary_10_1146_annurev_virology_092818_015740 crossref_primary_10_5812_archcid_12848 crossref_primary_10_1084_jem_20170957 crossref_primary_10_1159_000495660 crossref_primary_10_3389_fmicb_2017_00110 crossref_primary_10_1038_s41598_023_36871_1 crossref_primary_10_1016_j_jaut_2016_12_007 crossref_primary_10_1016_j_chom_2016_07_002 crossref_primary_10_1128_jvi_01830_23 crossref_primary_10_1016_j_isci_2019_03_003 crossref_primary_10_1016_j_antiviral_2016_12_023 crossref_primary_10_1128_JVI_01583_16 crossref_primary_10_1016_j_jinf_2016_02_011 crossref_primary_10_15252_embr_201949183 crossref_primary_10_1016_j_medcle_2016_10_022 crossref_primary_10_1007_s11033_020_05349_y crossref_primary_10_1002_rmv_2145 crossref_primary_10_1074_jbc_RA119_007555 crossref_primary_10_4137_BCI_S30379 crossref_primary_10_1155_2018_2450540 crossref_primary_10_3389_fcimb_2022_890750 crossref_primary_10_3390_pathogens13070555 crossref_primary_10_1038_s41467_019_10446_z crossref_primary_10_1080_22221751_2021_1932606 crossref_primary_10_1186_s40409_017_0131_x crossref_primary_10_1016_j_intimp_2023_110512 crossref_primary_10_1093_glycob_cww057 crossref_primary_10_1002_jcp_30933 crossref_primary_10_1128_JVI_01575_20 crossref_primary_10_3390_v11060524 crossref_primary_10_1080_15548627_2017_1356978 crossref_primary_10_1186_s40709_020_00115_4 crossref_primary_10_3389_fmicb_2021_825049 crossref_primary_10_1016_j_antiviral_2019_02_008 crossref_primary_10_1016_j_rmu_2016_05_003 crossref_primary_10_1002_rmv_2166 crossref_primary_10_1371_journal_pntd_0009575 crossref_primary_10_1128_jvi_01873_24 crossref_primary_10_1002_jobm_201700398 crossref_primary_10_1038_s41598_017_16072_3 crossref_primary_10_1007_s12035_017_0635_y crossref_primary_10_1128_JVI_00113_19 crossref_primary_10_1371_journal_pone_0239238 crossref_primary_10_3389_fcimb_2017_00402 crossref_primary_10_1016_j_stem_2016_07_019 crossref_primary_10_1038_s41467_023_41158_0 crossref_primary_10_1172_JCI87490 crossref_primary_10_3390_v16010024 crossref_primary_10_1590_0074_02760170542 crossref_primary_10_1002_eji_201848070 crossref_primary_10_3390_ijms20071695 crossref_primary_10_3389_fmicb_2018_01350 crossref_primary_10_1016_j_chom_2017_01_004 crossref_primary_10_1038_emi_2017_67 crossref_primary_10_1016_j_antiviral_2017_06_001 crossref_primary_10_1073_pnas_1620558114 crossref_primary_10_3390_v10030139 crossref_primary_10_1186_s12929_023_00906_6 crossref_primary_10_3390_microorganisms12071499 crossref_primary_10_1111_ijd_13399 crossref_primary_10_1007_s42770_024_01543_3 crossref_primary_10_3390_v9110338 crossref_primary_10_3390_v10040198 crossref_primary_10_1093_cid_cix732 crossref_primary_10_1128_JVI_01050_20 crossref_primary_10_1002_jmv_28422 crossref_primary_10_1016_j_tcb_2019_11_004 crossref_primary_10_1016_j_cell_2016_01_040 crossref_primary_10_3390_v9120383 crossref_primary_10_1016_j_micpath_2023_106096 crossref_primary_10_3390_ph12020097 crossref_primary_10_1177_10738584211009149 crossref_primary_10_1007_s12250_020_00316_0 crossref_primary_10_1128_CMR_00034_18 crossref_primary_10_1128_JVI_00904_21 crossref_primary_10_3390_v11060560 crossref_primary_10_1590_0074_02760190150 crossref_primary_10_1002_cti2_1066 crossref_primary_10_1080_15548627_2018_1539585 crossref_primary_10_3389_fmicb_2018_03340 crossref_primary_10_1016_j_meegid_2021_105066 crossref_primary_10_1007_s00018_018_2751_x crossref_primary_10_12688_f1000research_9364_2 crossref_primary_10_1371_journal_pntd_0010366 crossref_primary_10_1002_mbo3_831 crossref_primary_10_1007_s00018_018_2882_0 crossref_primary_10_1177_0022034517723325 crossref_primary_10_3390_ijms22010035 crossref_primary_10_1038_emi_2017_10 crossref_primary_10_1007_s40588_020_00150_8 crossref_primary_10_1371_journal_pntd_0008282 crossref_primary_10_1093_nar_gkw765 crossref_primary_10_3390_v16050727 crossref_primary_10_1080_22221751_2019_1637283 crossref_primary_10_3390_v12080857 crossref_primary_10_3390_pathogens9030158 crossref_primary_10_1093_infdis_jix436 crossref_primary_10_1016_j_apjtm_2017_03_020 crossref_primary_10_1186_s12985_019_1200_2 crossref_primary_10_1051_e3sconf_202021803048 crossref_primary_10_3390_biomedicines11020642 crossref_primary_10_1128_JVI_00705_21 crossref_primary_10_1002_med_21786 crossref_primary_10_1038_s41564_017_0092_4 crossref_primary_10_3389_fviro_2023_1325282 crossref_primary_10_3390_ijms19041093 crossref_primary_10_3389_fmicb_2020_01745 crossref_primary_10_3390_ijms23137023 crossref_primary_10_3390_v12050547 crossref_primary_10_1159_000543608 crossref_primary_10_1016_j_antiviral_2022_105464 crossref_primary_10_1080_22221751_2019_1590130 crossref_primary_10_1371_journal_pone_0208543 crossref_primary_10_1111_cts_12529 crossref_primary_10_1002_jmv_28451 crossref_primary_10_1128_JVI_01849_15 crossref_primary_10_1016_j_cclet_2024_109574 crossref_primary_10_15252_embr_201642586 crossref_primary_10_7554_eLife_39023 crossref_primary_10_1111_ced_13294 crossref_primary_10_1590_1806_9282_63_06_500 crossref_primary_10_1073_pnas_2421573122 crossref_primary_10_1016_j_jcv_2016_09_012 crossref_primary_10_1007_s00430_017_0493_2 crossref_primary_10_1093_cid_ciw210 crossref_primary_10_3390_ijms20081860 crossref_primary_10_17533_udea_hm_323271 crossref_primary_10_1073_pnas_1719266115 crossref_primary_10_1590_1981_6723_16116 crossref_primary_10_1111_imm_13889 crossref_primary_10_1007_s11481_017_9736_7 crossref_primary_10_3389_fcimb_2017_00486 crossref_primary_10_1002_1873_3468_14103 crossref_primary_10_1016_j_ebiom_2016_03_014 crossref_primary_10_1186_s12864_022_08919_5 crossref_primary_10_1371_journal_pntd_0010166 crossref_primary_10_1016_j_virusres_2023_199040 crossref_primary_10_3389_fmicb_2023_1162554 crossref_primary_10_1186_s13578_016_0096_4 crossref_primary_10_1111_nan_12326 crossref_primary_10_1186_s12985_024_02547_z crossref_primary_10_3390_v13061060 crossref_primary_10_1172_jci_insight_88461 crossref_primary_10_1016_j_chom_2016_10_002 crossref_primary_10_3389_fimmu_2022_773191 crossref_primary_10_18699_VJ18_344 crossref_primary_10_1039_D2CS00741J crossref_primary_10_1007_s12026_016_8873_z crossref_primary_10_3389_fmed_2018_00025 crossref_primary_10_1016_j_antiviral_2017_04_017 crossref_primary_10_1016_j_micinf_2018_03_001 crossref_primary_10_2174_2210315513666221114112253 crossref_primary_10_1038_s41426_018_0170_6 crossref_primary_10_3390_cells8111338 crossref_primary_10_1016_j_cyto_2019_154864 crossref_primary_10_1016_j_ebiom_2017_10_006 crossref_primary_10_1016_j_cll_2017_01_002 crossref_primary_10_1038_s41579_018_0003_6 crossref_primary_10_1002_jmv_25306 crossref_primary_10_3390_pathogens10081010 crossref_primary_10_1038_s41467_020_20747_3 crossref_primary_10_3390_cells9061476 crossref_primary_10_1016_j_virol_2021_04_008 crossref_primary_10_1080_21505594_2021_1935613 crossref_primary_10_1017_dmp_2016_43 crossref_primary_10_1371_journal_pone_0166260 crossref_primary_10_3390_ph10020044 crossref_primary_10_1099_jgv_0_001153 crossref_primary_10_1371_journal_pntd_0004530 crossref_primary_10_7868_S0042132418060054 crossref_primary_10_1016_j_virol_2021_04_013 crossref_primary_10_1590_0004_282X20160035 crossref_primary_10_1016_j_virol_2016_11_002 crossref_primary_10_1021_acs_molpharmaceut_8b00068 crossref_primary_10_1371_journal_pntd_0011055 crossref_primary_10_3390_vaccines8030530 crossref_primary_10_1038_nm_4184 crossref_primary_10_1007_s12250_020_00264_9 crossref_primary_10_1002_jmv_27991 crossref_primary_10_1128_JVI_02019_17 crossref_primary_10_3390_v13061020 crossref_primary_10_1016_j_gene_2022_146217 crossref_primary_10_1007_s10815_019_01493_y crossref_primary_10_3390_tropicalmed8050284 crossref_primary_10_4049_jimmunol_1601949 crossref_primary_10_1002_jmv_25345 crossref_primary_10_1126_science_aam9243 crossref_primary_10_1016_j_micinf_2018_02_009 crossref_primary_10_1016_j_tibtech_2018_10_004 crossref_primary_10_1016_j_cmet_2019_01_024 crossref_primary_10_1021_acsinfecdis_9b00230 crossref_primary_10_1038_srep40780 crossref_primary_10_1371_journal_ppat_1012408 crossref_primary_10_1016_j_jns_2016_11_030 crossref_primary_10_1016_j_meegid_2017_03_027 crossref_primary_10_3389_fimmu_2021_815020 crossref_primary_10_1016_j_isci_2018_02_005 crossref_primary_10_1128_JVI_02024_20 crossref_primary_10_3390_vaccines8010022 crossref_primary_10_1097_MOP_0000000000000446 crossref_primary_10_1016_j_dci_2020_103759 crossref_primary_10_1007_s11481_017_9743_8 crossref_primary_10_1038_ncomms13679 crossref_primary_10_1371_journal_pntd_0008707 crossref_primary_10_3389_fmicb_2019_01465 crossref_primary_10_1016_j_apjtm_2016_05_010 crossref_primary_10_1038_nature17994 crossref_primary_10_1155_2020_1372494 crossref_primary_10_3934_molsci_2018_1_96 crossref_primary_10_1186_s42466_019_0020_6 crossref_primary_10_3390_v9100297 crossref_primary_10_1097_MRM_0000000000000112 crossref_primary_10_1371_journal_pone_0200358 crossref_primary_10_1016_j_virol_2023_109939 crossref_primary_10_1126_scitranslmed_aax2421 crossref_primary_10_1016_j_celrep_2018_04_013 crossref_primary_10_3389_fnins_2021_654078 crossref_primary_10_1016_j_ebiom_2016_09_022 crossref_primary_10_3390_v14081619 crossref_primary_10_1016_j_ebiom_2016_09_020 crossref_primary_10_1016_j_antiviral_2018_04_016 crossref_primary_10_1097_MOP_0000000000000441 crossref_primary_10_3389_fcimb_2021_575346 crossref_primary_10_1016_j_pathol_2017_07_008 crossref_primary_10_3389_fmicb_2023_1247377 crossref_primary_10_1016_j_it_2018_02_003 crossref_primary_10_1017_erm_2024_35 crossref_primary_10_1007_s12035_017_0442_5 crossref_primary_10_1002_pmic_201800309 crossref_primary_10_1016_S1473_3099_18_30063_X crossref_primary_10_1093_infdis_jiy179 crossref_primary_10_1186_s12879_017_2338_4 crossref_primary_10_2217_fvl_2017_0014 crossref_primary_10_1016_j_virusres_2022_198707 crossref_primary_10_1038_s41564_024_01637_6 crossref_primary_10_1126_sciadv_aay3245 crossref_primary_10_1016_j_cell_2017_04_008 crossref_primary_10_1016_j_virusres_2017_08_018 crossref_primary_10_1093_brain_awx133 crossref_primary_10_3390_ijms20051048 crossref_primary_10_1038_emi_2016_141 crossref_primary_10_3390_v13061102 crossref_primary_10_1186_s12985_020_01313_1 crossref_primary_10_4103_0366_6999_187864 crossref_primary_10_3390_ijms25031638 crossref_primary_10_1021_acs_jmedchem_9b00142 crossref_primary_10_3389_fcimb_2020_00172 crossref_primary_10_3390_ph16101385 crossref_primary_10_1128_JVI_00395_19 crossref_primary_10_3389_fimmu_2019_01617 crossref_primary_10_1038_s41598_018_21894_w crossref_primary_10_1016_j_stem_2016_11_014 crossref_primary_10_1016_j_stem_2016_11_011 crossref_primary_10_1002_jmv_24731 crossref_primary_10_1016_j_stem_2016_03_012 crossref_primary_10_1128_MMBR_00015_18 crossref_primary_10_1155_2017_4894598 crossref_primary_10_1172_jci_insight_133653 crossref_primary_10_1007_s13311_016_0450_6 crossref_primary_10_1128_jvi_02117_21 crossref_primary_10_1039_C7RA05918C crossref_primary_10_1016_j_jmb_2018_06_024 crossref_primary_10_1007_s11427_020_1818_4 crossref_primary_10_1371_journal_pntd_0008730 crossref_primary_10_1038_s41598_024_63407_y crossref_primary_10_3390_v13091823 crossref_primary_10_1186_s12964_019_0349_z crossref_primary_10_1016_j_pt_2019_09_006 crossref_primary_10_1128_JVI_00701_18 crossref_primary_10_1111_cmi_13302 crossref_primary_10_3389_fimmu_2018_01376 crossref_primary_10_1038_ncomms14575 crossref_primary_10_1016_j_virusres_2022_198778 crossref_primary_10_1016_j_pathol_2017_08_002 crossref_primary_10_1016_j_jmb_2016_04_024 crossref_primary_10_3390_v11100970 crossref_primary_10_1089_jir_2017_0011 crossref_primary_10_1002_bdr2_2232 crossref_primary_10_1371_journal_ppat_1008204 crossref_primary_10_3390_v14081808 crossref_primary_10_1186_s12929_017_0362_8 crossref_primary_10_1161_CIRCRESAHA_116_310001 crossref_primary_10_1038_s41598_017_17765_5 crossref_primary_10_1007_s00705_018_3911_x crossref_primary_10_1590_0037_8682_0263_2022 crossref_primary_10_3390_v13050896 crossref_primary_10_1016_j_stem_2016_04_009 crossref_primary_10_1038_emi_2016_103 crossref_primary_10_1038_ncomms15674 crossref_primary_10_1038_emi_2016_100 crossref_primary_10_1038_ncomms15672 crossref_primary_10_1093_infdis_jiz075 crossref_primary_10_3389_fcimb_2022_809135 crossref_primary_10_4103_0972_9062_217611 crossref_primary_10_1016_j_stem_2016_04_017 crossref_primary_10_3390_insects14060514 crossref_primary_10_1038_nm_4206 crossref_primary_10_1016_j_stem_2016_04_014 crossref_primary_10_1073_pnas_1618029113 crossref_primary_10_1007_s12539_017_0238_3 crossref_primary_10_1016_j_apjtm_2016_06_019 crossref_primary_10_1007_s12551_020_00748_8 crossref_primary_10_5858_arpa_2016_0409_RA crossref_primary_10_1016_j_bmcl_2019_126626 crossref_primary_10_1016_j_chom_2016_09_006 crossref_primary_10_3389_fmicb_2016_00496 crossref_primary_10_1126_sciadv_add8095 crossref_primary_10_1186_s12929_020_0618_6 crossref_primary_10_1016_j_stem_2016_02_016 crossref_primary_10_1371_journal_ppat_1006004 crossref_primary_10_1016_j_ebiom_2016_07_026 crossref_primary_10_1016_j_drudis_2020_10_009 crossref_primary_10_1161_CIRCRESAHA_116_309866 crossref_primary_10_3389_fimmu_2022_1058862 crossref_primary_10_1128_JVI_01195_21 crossref_primary_10_1371_journal_pntd_0007443 crossref_primary_10_1016_j_virusres_2017_09_006 crossref_primary_10_1371_journal_pntd_0008531 crossref_primary_10_1080_15622975_2018_1500027 crossref_primary_10_1007_s00203_016_1268_7 crossref_primary_10_1016_j_jid_2018_07_038 crossref_primary_10_1007_s12250_020_00310_6 crossref_primary_10_3390_v17030382 crossref_primary_10_1177_1352458518781992 crossref_primary_10_1371_journal_pone_0257408 crossref_primary_10_3389_fmicb_2019_02715 crossref_primary_10_1128_spectrum_01137_22 crossref_primary_10_1128_mBio_00452_17 crossref_primary_10_3389_fcell_2020_00571 crossref_primary_10_3389_fphar_2019_00642 crossref_primary_10_1371_journal_pone_0184871 crossref_primary_10_1016_S1473_3099_16_30336_X crossref_primary_10_1038_s41598_019_44559_8 crossref_primary_10_1155_2017_1734151 crossref_primary_10_2217_fvl_2017_0099 crossref_primary_10_1007_s13365_019_00720_7 crossref_primary_10_1111_bjd_16096 crossref_primary_10_3389_fimmu_2022_1000861 crossref_primary_10_1038_s41598_022_13043_1 crossref_primary_10_1016_j_celrep_2016_12_068 crossref_primary_10_1128_CMR_00072_15 crossref_primary_10_1016_j_ymeth_2017_04_012 crossref_primary_10_1016_j_cell_2016_09_020 crossref_primary_10_1111_imr_12687 crossref_primary_10_1016_j_ijpam_2019_05_004 crossref_primary_10_1146_annurev_virology_091919_072546 crossref_primary_10_1016_j_pharmthera_2023_108559 crossref_primary_10_1002_jmv_28483 crossref_primary_10_1073_pnas_1704011114 crossref_primary_10_1126_scisignal_aas9332 crossref_primary_10_3390_v10020053 crossref_primary_10_1089_vim_2017_0116 crossref_primary_10_1128_AAC_00394_19 crossref_primary_10_3389_fmicb_2017_01761 crossref_primary_10_3389_fmicb_2019_00753 crossref_primary_10_1099_jgv_0_000992 crossref_primary_10_3389_fmicb_2020_574054 crossref_primary_10_1089_dna_2022_0375 crossref_primary_10_1016_j_jid_2017_10_018 crossref_primary_10_1186_s12974_023_02736_7 crossref_primary_10_3390_v12080887 crossref_primary_10_3899_jrheum_170835 crossref_primary_10_3390_vaccines7020055 crossref_primary_10_1126_scisignal_aay6736 crossref_primary_10_1016_j_jiph_2016_05_007 crossref_primary_10_1371_journal_pntd_0010426 crossref_primary_10_1371_journal_pone_0206093 crossref_primary_10_1016_j_ebiom_2016_06_026 crossref_primary_10_1128_JVI_01445_20 crossref_primary_10_1016_j_celrep_2016_12_045 crossref_primary_10_1084_jem_20191792 crossref_primary_10_3390_vaccines8020266 crossref_primary_10_1016_j_antiviral_2016_11_018 crossref_primary_10_1016_j_bbi_2021_08_008 crossref_primary_10_1128_spectrum_02192_23 crossref_primary_10_1016_j_toxlet_2020_11_013 crossref_primary_10_3389_fmicb_2017_02677 crossref_primary_10_3389_fmicb_2021_667146 crossref_primary_10_3390_ijms20215404 crossref_primary_10_3390_microorganisms11102427 crossref_primary_10_1128_MMBR_00055_16 crossref_primary_10_1093_infdis_jix276 crossref_primary_10_3390_ijms19123940 crossref_primary_10_1038_nature20556 crossref_primary_10_3390_pathogens11030321 crossref_primary_10_1016_j_bmcl_2017_12_019 crossref_primary_10_1172_jci_insight_92340 crossref_primary_10_1007_s00430_019_00588_8 crossref_primary_10_3390_microbiolres15020044 crossref_primary_10_1080_17513758_2021_1970261 crossref_primary_10_1371_journal_pntd_0009425 crossref_primary_10_3389_fcimb_2021_637710 crossref_primary_10_1371_journal_pone_0244587 crossref_primary_10_1016_j_celrep_2017_09_047 crossref_primary_10_1007_s12098_020_03260_9 crossref_primary_10_3389_fmicb_2019_02725 crossref_primary_10_1007_s13365_017_0514_3 crossref_primary_10_3390_v11010049 crossref_primary_10_1038_s41598_020_58135_y crossref_primary_10_1111_ced_13793 crossref_primary_10_1139_cjm_2019_0331 crossref_primary_10_3346_jkms_2016_31_7_1173 crossref_primary_10_1146_annurev_pathmechdis_031521_034739 crossref_primary_10_1186_s12974_018_1311_5 crossref_primary_10_1186_s13039_016_0240_1 crossref_primary_10_47430_ujmr_1722_023 crossref_primary_10_1089_jir_2019_0058 crossref_primary_10_1021_acs_biochem_0c00732 crossref_primary_10_1186_s40659_018_0204_5 crossref_primary_10_1016_j_virol_2018_03_009 crossref_primary_10_1038_cmi_2017_44 crossref_primary_10_1038_s41564_017_0035_0 crossref_primary_10_1016_j_bbrc_2017_01_158 crossref_primary_10_1016_j_micinf_2016_03_009 crossref_primary_10_3390_v15010247 crossref_primary_10_3390_v12060616 crossref_primary_10_1016_j_micinf_2016_03_003 crossref_primary_10_1186_s12974_023_02898_4 crossref_primary_10_1007_s11101_022_09808_1 crossref_primary_10_15252_embr_201642627 crossref_primary_10_3389_fimmu_2020_538240 crossref_primary_10_1038_nature18296 crossref_primary_10_1126_sciadv_adg3444 crossref_primary_10_1016_j_jrid_2017_01_002 crossref_primary_10_1684_ecn_2019_0433 crossref_primary_10_3390_v11010029 crossref_primary_10_1111_1748_5967_12439 crossref_primary_10_3390_vaccines10060834 crossref_primary_10_1073_pnas_1616097114 crossref_primary_10_1557_mrc_2017_20 crossref_primary_10_3390_v11010020 crossref_primary_10_2217_fmb_2017_0213 crossref_primary_10_1016_j_stem_2021_03_004 crossref_primary_10_1007_s41745_016_0015_z crossref_primary_10_3389_fmicb_2022_743147 crossref_primary_10_3389_fmicb_2019_00810 crossref_primary_10_1038_s41467_023_43665_6 crossref_primary_10_1038_s41598_025_88481_8 crossref_primary_10_1099_jgv_0_001472 crossref_primary_10_3390_v15091870 crossref_primary_10_1089_dna_2016_3404 crossref_primary_10_1172_jci_insight_92428 crossref_primary_10_3390_v15091872 crossref_primary_10_1159_000452950 crossref_primary_10_1016_j_celrep_2023_112126 crossref_primary_10_1128_jvi_00194_24 crossref_primary_10_15252_emmm_201911793 crossref_primary_10_1128_mSphere_00173_19 crossref_primary_10_3390_pathogens7020051 crossref_primary_10_1038_s41586_020_2457_8 crossref_primary_10_4103_ijmr_IJMR_169_20 crossref_primary_10_3389_fcimb_2018_00387 crossref_primary_10_1038_cddis_2016_266 crossref_primary_10_1038_s44298_025_00102_3 crossref_primary_10_1099_jgv_0_001683 crossref_primary_10_1111_imr_13256 crossref_primary_10_1093_infdis_jix515 crossref_primary_10_3390_cells13070598 crossref_primary_10_1080_22221751_2020_1738278 crossref_primary_10_1016_j_jtos_2019_03_006 crossref_primary_10_1038_s41420_020_00379_8 crossref_primary_10_1038_emi_2016_99 crossref_primary_10_3390_v10100559 crossref_primary_10_3390_v10110593 crossref_primary_10_3390_v17030405 crossref_primary_10_1016_j_virs_2022_07_012 crossref_primary_10_1016_j_jfma_2016_03_001 crossref_primary_10_1128_mSphere_00505_21 crossref_primary_10_1016_j_virusres_2016_10_016 crossref_primary_10_1038_s41467_019_12371_7 crossref_primary_10_1080_22221751_2021_1929503 crossref_primary_10_3390_v12040418 crossref_primary_10_1099_jgv_0_001416 crossref_primary_10_1093_infdis_jix540 crossref_primary_10_15252_embj_201695597 crossref_primary_10_3390_microorganisms8020270 crossref_primary_10_1016_j_chom_2018_05_022 crossref_primary_10_1016_j_pharmthera_2018_03_002 crossref_primary_10_1016_j_annder_2017_05_013 crossref_primary_10_1038_s41467_024_54479_5 crossref_primary_10_1007_s10067_023_06851_x crossref_primary_10_3390_ijms20205206 crossref_primary_10_3389_fnmol_2018_00116 crossref_primary_10_3390_pathogens7030068 crossref_primary_10_1002_rmv_2050 crossref_primary_10_1038_emi_2016_37 crossref_primary_10_1146_annurev_virology_092917_043300 crossref_primary_10_3390_bios14080362 crossref_primary_10_1016_j_virol_2022_02_001 crossref_primary_10_1038_celldisc_2017_6 crossref_primary_10_1007_s10565_021_09580_6 crossref_primary_10_12688_f1000research_8213_1 crossref_primary_10_1371_journal_pone_0184397 crossref_primary_10_12688_f1000research_8213_2 crossref_primary_10_1016_j_micpath_2025_107408 crossref_primary_10_1186_s12859_017_1894_3 crossref_primary_10_1016_j_jfma_2016_02_002 crossref_primary_10_3390_ijms222010996 crossref_primary_10_1126_science_aag2419 crossref_primary_10_1038_s41598_017_03316_5 crossref_primary_10_1371_journal_pntd_0007071 crossref_primary_10_3389_fcimb_2017_00327 crossref_primary_10_1515_hsz_2017_0236 crossref_primary_10_1016_j_celrep_2019_11_020 crossref_primary_10_3390_pathogens7030066 crossref_primary_10_1371_journal_pcbi_1008564 crossref_primary_10_3389_fcimb_2024_1502770 crossref_primary_10_1016_j_xphs_2016_07_004 crossref_primary_10_1016_j_antiviral_2016_03_010 crossref_primary_10_1016_j_celrep_2016_05_075 crossref_primary_10_1111_aji_12605 crossref_primary_10_1016_j_ijid_2016_07_015 crossref_primary_10_1128_spectrum_01772_22 crossref_primary_10_1155_2018_9480497 crossref_primary_10_1099_jgv_0_001885 crossref_primary_10_1101_gad_298216_117 crossref_primary_10_1038_s41598_019_52626_3 crossref_primary_10_1371_journal_pbio_2006926 crossref_primary_10_1186_s12916_016_0660_0 crossref_primary_10_3390_pharmaceutics14020309 crossref_primary_10_1080_22221751_2018_1559707 crossref_primary_10_1038_s41467_018_04442_y crossref_primary_10_1146_annurev_med_050715_105122 crossref_primary_10_1038_s41564_017_0016_3 crossref_primary_10_1242_dev_143768 crossref_primary_10_1016_S0140_6736_16_00650_4 crossref_primary_10_1152_physrev_00021_2019 crossref_primary_10_1016_j_ebiom_2023_104457 crossref_primary_10_3390_v13030465 crossref_primary_10_3390_pathogens11121410 crossref_primary_10_1186_s12985_022_01860_9 crossref_primary_10_1016_j_meegid_2017_01_015 crossref_primary_10_1038_s41598_018_23899_x crossref_primary_10_1038_s41598_019_43303_6 crossref_primary_10_3201_eid2207_151990 crossref_primary_10_1039_C6RA12142J crossref_primary_10_3390_v11030278 crossref_primary_10_3389_fmicb_2021_710359 crossref_primary_10_3389_fcimb_2016_00144 crossref_primary_10_3389_fphys_2021_749770 crossref_primary_10_1016_j_bioorg_2021_105303 crossref_primary_10_3390_v10050233 crossref_primary_10_3390_v14122776 crossref_primary_10_1111_imm_12681 crossref_primary_10_4049_jimmunol_2001180 crossref_primary_10_1186_s12964_019_0452_1 crossref_primary_10_3389_fncel_2021_695106 crossref_primary_10_14218_ERHM_2020_00060 crossref_primary_10_3389_fcimb_2022_975222 crossref_primary_10_1080_20477724_2020_1845005 crossref_primary_10_1016_j_antiviral_2019_104547 crossref_primary_10_1016_j_virol_2018_07_009 crossref_primary_10_1371_journal_pntd_0005704 crossref_primary_10_1038_s41598_021_85571_1 crossref_primary_10_3390_biomedicines11123316 crossref_primary_10_1371_journal_pmed_1002203 crossref_primary_10_3389_fitd_2022_1059283 crossref_primary_10_1002_1873_3468_14227 crossref_primary_10_1016_j_virusres_2024_199422 crossref_primary_10_3390_jpm15030098 crossref_primary_10_3389_fmicb_2023_1201640 crossref_primary_10_3390_microorganisms7090350 crossref_primary_10_1128_mBio_02134_16 crossref_primary_10_1016_j_semcdb_2020_06_001 crossref_primary_10_1038_s41467_020_16217_5 crossref_primary_10_1016_j_bbadis_2021_166264 crossref_primary_10_2139_ssrn_3346979 crossref_primary_10_1016_j_coviro_2017_11_008 crossref_primary_10_1128_JVI_00104_20 crossref_primary_10_1016_j_onehlt_2023_100506 crossref_primary_10_1016_j_jaut_2016_02_006 crossref_primary_10_3389_fmicb_2018_03252 crossref_primary_10_3390_v11111024 crossref_primary_10_7554_eLife_94347 crossref_primary_10_1002_jmv_24563 crossref_primary_10_1038_s41598_018_27027_7 crossref_primary_10_7705_biomedica_v37i0_3807 crossref_primary_10_1051_medsci_20163204016 crossref_primary_10_3390_ph12030101 crossref_primary_10_1016_j_virol_2024_110276 crossref_primary_10_1016_j_bios_2020_112291 crossref_primary_10_3390_v10050259 crossref_primary_10_1371_journal_pone_0156376 crossref_primary_10_1155_2019_1409582 crossref_primary_10_12688_f1000research_12271_1 crossref_primary_10_1016_j_virol_2016_03_006 crossref_primary_10_3390_microorganisms7120686 crossref_primary_10_1016_j_imu_2021_100613 crossref_primary_10_1002_eji_201847483 crossref_primary_10_1107_S2053230X18003813 crossref_primary_10_1016_j_cyto_2018_08_008 crossref_primary_10_1021_jacs_9b08003 crossref_primary_10_1016_j_amjms_2016_12_018 crossref_primary_10_3390_vaccines11030583 crossref_primary_10_1016_j_clp_2020_08_005 crossref_primary_10_1016_j_jiph_2019_05_004 crossref_primary_10_1016_j_micinf_2015_12_006 crossref_primary_10_3390_molecules27217362 crossref_primary_10_3389_fmicb_2021_746589 crossref_primary_10_1016_j_micinf_2019_04_005 crossref_primary_10_1016_j_amjmed_2016_02_027 crossref_primary_10_1016_j_virusres_2017_07_025 crossref_primary_10_1016_j_ebiom_2017_02_003 crossref_primary_10_1038_srep35296 crossref_primary_10_3390_v16040629 crossref_primary_10_1111_cmi_12740 crossref_primary_10_1186_s12974_016_0748_7 crossref_primary_10_1080_21645515_2020_1775460 crossref_primary_10_1016_j_omto_2021_11_001 crossref_primary_10_1038_s41598_017_06536_x crossref_primary_10_1099_jgv_0_001024 crossref_primary_10_1021_acsinfecdis_6b00161 crossref_primary_10_1128_JVI_00787_20 crossref_primary_10_1016_j_celrep_2017_11_087 crossref_primary_10_31482_mmsl_2016_018 crossref_primary_10_1089_vim_2022_0082 crossref_primary_10_3390_v16050679 crossref_primary_10_1016_j_micinf_2015_12_010 crossref_primary_10_1016_j_anai_2017_07_007 crossref_primary_10_1128_JVI_00252_16 crossref_primary_10_1016_j_virol_2019_01_019 crossref_primary_10_3389_fcimb_2021_662447 crossref_primary_10_1038_s41467_018_05826_w crossref_primary_10_1016_j_mayocp_2016_12_019 crossref_primary_10_1097_IIO_0000000000000539 crossref_primary_10_1002_jmv_25440 crossref_primary_10_1038_s41598_018_33528_2 crossref_primary_10_1128_spectrum_02212_21 crossref_primary_10_3389_fimmu_2018_02180 crossref_primary_10_3390_v13061156 crossref_primary_10_1126_sciimmunol_adk9872 crossref_primary_10_1016_j_stem_2016_12_005 crossref_primary_10_1016_j_neuron_2016_11_031 crossref_primary_10_1002_wdev_273 crossref_primary_10_1016_j_ebiom_2019_08_060 crossref_primary_10_1016_j_stem_2016_12_007 crossref_primary_10_4103_tcmj_tcmj_129_20 crossref_primary_10_1016_j_cyto_2023_156327 crossref_primary_10_1007_s12275_017_7063_6 crossref_primary_10_1016_j_cyto_2019_02_009 crossref_primary_10_1016_j_ijid_2016_09_001 crossref_primary_10_3390_ijms18112384 crossref_primary_10_1016_j_pt_2017_04_003 crossref_primary_10_1016_j_cell_2019_08_005 crossref_primary_10_1016_j_chom_2016_03_010 crossref_primary_10_1007_s10989_022_10486_y crossref_primary_10_3390_v12090925 crossref_primary_10_1016_j_virol_2017_12_003 crossref_primary_10_1016_j_isci_2022_105481 crossref_primary_10_1371_journal_pntd_0004877 |
Cites_doi | 10.1017/S0022172400025997 10.1016/S0042-6822(02)00097-1 10.1016/j.chom.2012.08.009 10.2807/1560-7917.ES2014.19.4.20685 10.1080/00034983.1975.11686983 10.1016/0035-9203(83)90108-6 10.1371/journal.pntd.0001792 10.1038/nature07013 10.1016/0035-9203(64)90200-7 10.1038/nri2303 10.1084/jem.20021840 10.1038/nature03464 10.1128/JVI.02692-10 10.1016/j.meegid.2011.06.009 10.4269/ajtmh.1958.7.323 10.1016/j.antiviral.2005.08.006 10.1371/journal.pntd.0001477 10.4269/ajtmh.14-0151 10.4161/auto.2176 10.1111/1469-0691.12707 10.1038/nm0897-866 10.3201/eid1408.080287 10.1128/JVI.00316-07 10.4269/ajtmh.13-0029 10.1006/viro.2001.1232 10.2807/1560-7917.ES2014.19.9.20720 10.1371/journal.pone.0045800 10.4049/jimmunol.177.11.8008 10.1172/JCI41474 10.1002/eji.200324136 10.1016/j.chom.2010.10.006 10.1038/ncb1007-1102 10.1089/vbz.2006.0562 10.1371/journal.pntd.0001420 10.3390/v3081332 10.1016/0035-9203(58)90085-3 10.1038/sj.embor.embor866 10.1111/j.0959-9673.2005.00445.x 10.1016/j.virusres.2014.03.013 10.1016/0035-9203(56)90029-3 10.1016/0035-9203(52)90042-4 10.1053/jhep.2000.18713 10.1128/JVI.72.1.73-83.1998 10.1089/vbz.2011.0814 10.1016/0035-9203(63)90100-7 10.1056/NEJMoa0805715 10.1016/j.micinf.2011.09.001 10.4269/ajtmh.1969.18.411 10.1371/currents.outbreaks.4635a54dbffba2156fb2fd76dc49f65e 10.1016/j.immuni.2009.02.009 10.3390/v6010069 10.1186/1743-422X-8-432 10.1073/pnas.0907344106 10.1371/journal.ppat.1004548 10.1016/j.virol.2011.07.010 10.1016/j.virol.2014.06.023 10.1126/science.1136880 10.1016/0035-9203(81)90100-0 10.1016/j.virol.2008.02.016 10.1371/journal.pntd.0002681 10.1128/JVI.01305-07 |
ContentType | Journal Article |
Copyright | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
DOI | 10.1128/JVI.00354-15 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Cellular Tropism and Entry Receptors of Zika Virus |
EISSN | 1098-5514 |
EndPage | 8896 |
ExternalDocumentID | PMC4524089 oai_HAL_hal_01228435v1 26085147 10_1128_JVI_00354_15 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ AAYXX ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c484t-938e92bd07e3c9f58a16fa703c1eb73b4bd804b6ced7243c5ccc5ed3fe0767743 |
ISSN | 0022-538X |
IngestDate | Thu Aug 21 13:51:48 EDT 2025 Thu Aug 14 06:48:24 EDT 2025 Thu Jul 10 17:17:52 EDT 2025 Mon Jul 21 05:45:58 EDT 2025 Tue Jul 01 01:02:39 EDT 2025 Thu Apr 24 22:58:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c484t-938e92bd07e3c9f58a16fa703c1eb73b4bd804b6ced7243c5ccc5ed3fe0767743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4524089 Citation Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, Surasombatpattana P, Talignani L, Thomas F, Cao-Lormeau V-M, Choumet V, Briant L, Desprès P, Amara A, Yssel H, Missé D. 2015. Biology of Zika virus infection in human skin cells. J Virol 89:8880–8896. doi:10.1128/JVI.00354-15. O.D. and S.W. contributed equally to this article. |
ORCID | 0000-0001-8926-4050 0000-0002-6485-3841 0000-0003-2238-1978 0000-0002-1995-3501 0000-0001-7454-1836 0000-0002-8774-8323 0000-0001-8603-7039 0000-0002-4163-7353 0000-0001-5606-7480 0000-0001-8265-0936 0000-0003-4714-1006 0000-0002-0283-1815 |
OpenAccessLink | https://jvi.asm.org/content/jvi/89/17/8880.full.pdf |
PMID | 26085147 |
PQID | 1701891064 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4524089 hal_primary_oai_HAL_hal_01228435v1 proquest_miscellaneous_1701891064 pubmed_primary_26085147 crossref_citationtrail_10_1128_JVI_00354_15 crossref_primary_10_1128_JVI_00354_15 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2015 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 Haddow AJ (e_1_3_3_16_2) 1964; 31 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 Monlun E (e_1_3_3_14_2) 1993; 86 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 Smithburn KC (e_1_3_3_5_2) 1954; 59 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_6_2 doi: 10.1017/S0022172400025997 – ident: e_1_3_3_38_2 doi: 10.1016/S0042-6822(02)00097-1 – ident: e_1_3_3_27_2 doi: 10.1016/j.chom.2012.08.009 – ident: e_1_3_3_21_2 doi: 10.2807/1560-7917.ES2014.19.4.20685 – ident: e_1_3_3_3_2 doi: 10.1080/00034983.1975.11686983 – ident: e_1_3_3_10_2 doi: 10.1016/0035-9203(83)90108-6 – ident: e_1_3_3_12_2 doi: 10.1371/journal.pntd.0001792 – ident: e_1_3_3_42_2 doi: 10.1038/nature07013 – ident: e_1_3_3_4_2 doi: 10.1016/0035-9203(64)90200-7 – ident: e_1_3_3_43_2 doi: 10.1038/nri2303 – ident: e_1_3_3_41_2 doi: 10.1084/jem.20021840 – ident: e_1_3_3_31_2 doi: 10.1038/nature03464 – ident: e_1_3_3_33_2 doi: 10.1128/JVI.02692-10 – ident: e_1_3_3_26_2 doi: 10.1016/j.meegid.2011.06.009 – ident: e_1_3_3_7_2 doi: 10.4269/ajtmh.1958.7.323 – ident: e_1_3_3_39_2 doi: 10.1016/j.antiviral.2005.08.006 – ident: e_1_3_3_17_2 doi: 10.1371/journal.pntd.0001477 – ident: e_1_3_3_23_2 doi: 10.4269/ajtmh.14-0151 – ident: e_1_3_3_53_2 doi: 10.4161/auto.2176 – ident: e_1_3_3_19_2 doi: 10.1111/1469-0691.12707 – ident: e_1_3_3_35_2 doi: 10.1038/nm0897-866 – ident: e_1_3_3_29_2 doi: 10.3201/eid1408.080287 – ident: e_1_3_3_49_2 doi: 10.1128/JVI.00316-07 – ident: e_1_3_3_20_2 doi: 10.4269/ajtmh.13-0029 – ident: e_1_3_3_36_2 doi: 10.1006/viro.2001.1232 – ident: e_1_3_3_24_2 doi: 10.2807/1560-7917.ES2014.19.9.20720 – ident: e_1_3_3_58_2 doi: 10.1371/journal.pone.0045800 – ident: e_1_3_3_47_2 doi: 10.4049/jimmunol.177.11.8008 – ident: e_1_3_3_60_2 doi: 10.1172/JCI41474 – ident: e_1_3_3_48_2 doi: 10.1002/eji.200324136 – ident: e_1_3_3_62_2 doi: 10.1016/j.chom.2010.10.006 – ident: e_1_3_3_50_2 doi: 10.1038/ncb1007-1102 – ident: e_1_3_3_64_2 doi: 10.1089/vbz.2006.0562 – ident: e_1_3_3_45_2 doi: 10.1371/journal.pntd.0001420 – ident: e_1_3_3_55_2 doi: 10.3390/v3081332 – ident: e_1_3_3_15_2 doi: 10.1016/0035-9203(58)90085-3 – ident: e_1_3_3_40_2 doi: 10.1038/sj.embor.embor866 – ident: e_1_3_3_28_2 doi: 10.1111/j.0959-9673.2005.00445.x – ident: e_1_3_3_46_2 doi: 10.1016/j.virusres.2014.03.013 – volume: 86 start-page: 21 year: 1993 ident: e_1_3_3_14_2 article-title: Surveillance of the circulation of arbovirus of medical interest in the region of eastern Senegal publication-title: Bull Soc Pathol Exot – ident: e_1_3_3_13_2 doi: 10.1016/0035-9203(56)90029-3 – ident: e_1_3_3_32_2 doi: 10.1016/0035-9203(52)90042-4 – ident: e_1_3_3_37_2 doi: 10.1053/jhep.2000.18713 – ident: e_1_3_3_2_2 doi: 10.1128/JVI.72.1.73-83.1998 – ident: e_1_3_3_65_2 doi: 10.1089/vbz.2011.0814 – ident: e_1_3_3_8_2 doi: 10.1016/0035-9203(63)90100-7 – ident: e_1_3_3_18_2 doi: 10.1056/NEJMoa0805715 – volume: 59 start-page: 157 year: 1954 ident: e_1_3_3_5_2 article-title: Neutralizing antibodies against arthropod-borne viruses in the sera of long-time residents of Malaya and Borneo publication-title: Am J Hyg – ident: e_1_3_3_57_2 doi: 10.1016/j.micinf.2011.09.001 – ident: e_1_3_3_11_2 doi: 10.4269/ajtmh.1969.18.411 – ident: e_1_3_3_22_2 doi: 10.1371/currents.outbreaks.4635a54dbffba2156fb2fd76dc49f65e – ident: e_1_3_3_51_2 doi: 10.1016/j.immuni.2009.02.009 – ident: e_1_3_3_30_2 doi: 10.3390/v6010069 – ident: e_1_3_3_56_2 doi: 10.1186/1743-422X-8-432 – ident: e_1_3_3_61_2 doi: 10.1073/pnas.0907344106 – ident: e_1_3_3_34_2 doi: 10.1371/journal.ppat.1004548 – ident: e_1_3_3_59_2 doi: 10.1016/j.virol.2011.07.010 – ident: e_1_3_3_25_2 doi: 10.1016/j.virol.2014.06.023 – ident: e_1_3_3_52_2 doi: 10.1126/science.1136880 – ident: e_1_3_3_9_2 doi: 10.1016/0035-9203(81)90100-0 – volume: 31 start-page: 57 year: 1964 ident: e_1_3_3_16_2 article-title: Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest publication-title: Bull World Health Organ – ident: e_1_3_3_54_2 doi: 10.1016/j.virol.2008.02.016 – ident: e_1_3_3_63_2 doi: 10.1371/journal.pntd.0002681 – ident: e_1_3_3_44_2 doi: 10.1128/JVI.01305-07 |
SSID | ssj0014464 |
Score | 2.6610448 |
Snippet | Zika virus (ZIKV) is an emerging arbovirus of the
Flaviviridae
family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that... Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that... UNLABELLEDZika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8880 |
SubjectTerms | Aedes Aedes - virology Animals Autophagy Autophagy - immunology Axl Receptor Tyrosine Kinase Biochemistry, Molecular Biology Cell Adhesion Molecules Cell Adhesion Molecules - genetics Cell Adhesion Molecules - metabolism Cells, Cultured Cellular Biology Chlorocebus aethiops Cytokines Cytokines - biosynthesis DEAD Box Protein 58 DEAD-Box RNA Helicases DEAD-box RNA Helicases - genetics DEAD-box RNA Helicases - metabolism Dendritic Cells Dendritic Cells - immunology Dendritic Cells - virology Fibroblasts Fibroblasts - virology Flaviviridae Flaviviridae - immunology Flaviviridae - physiology Flaviviridae Infections Flaviviridae Infections - immunology Flaviviridae Infections - virology HEK293 Cells Hepatitis A VIrus Cellular Receptor 1 Humans Insect Vectors Insect Vectors - virology Interferon-beta Interferon-beta - biosynthesis Interferon-beta - immunology Interferon-Induced Helicase, IFIH1 Keratinocytes Keratinocytes - virology Lectins, C-Type Lectins, C-Type - genetics Lectins, C-Type - metabolism Life Sciences Membrane Glycoproteins Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism Microbiology and Parasitology Myxovirus Resistance Proteins Myxovirus Resistance Proteins - biosynthesis Phagosomes Phagosomes - immunology Proto-Oncogene Proteins Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism Receptor Protein-Tyrosine Kinases Receptor Protein-Tyrosine Kinases - genetics Receptor Protein-Tyrosine Kinases - metabolism Receptors, Cell Surface Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Receptors, Immunologic Receptors, Virus Receptors, Virus - genetics Receptors, Virus - metabolism RNA Interference RNA, Small Interfering Skin Skin - immunology Skin - virology Toll-Like Receptor 3 Toll-Like Receptor 3 - genetics Toll-Like Receptor 3 - immunology Toll-Like Receptor 3 - metabolism Toll-Like Receptor 7 Toll-Like Receptor 7 - immunology Ubiquitins Ubiquitins - biosynthesis Vero Cells Virology Virus Internalization Virus Replication Virus-Cell Interactions |
Title | Biology of Zika Virus Infection in Human Skin Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26085147 https://www.proquest.com/docview/1701891064 https://hal.science/hal-01228435 https://pubmed.ncbi.nlm.nih.gov/PMC4524089 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYEBIvaFxXBiggeKoykthJnMcxOnWj2iTUThUvlu04alhIq16Yxq_n2E6yhDFp8BJFiZNI_k6Oz-dzQ-i9wiLkKsZuonzpEliC3CTj2E0VUDEaCViCTIDsaTSckJNpOK17tVfZJWuxL3_9Na_kf1CFa4CrzpL9B2Sbl8IFOAd84QgIw_FOGH-qKiiBwfctv-D983y5WcEvb-OrTAyj3aTXLbb6h6ooVrcYozrbrb2_PuQ_rPv-K9DWYjFr4P-svnN4yPRFP1vMrJ-9yK89PLl2TJg9VV3n8JKXBb9qVP_gQmd55Vf8klfRwWpZ3662Hvywia2ClcOqS12NVNtcbX1qWwLVchO3tCOwba-90lLbzPamFg90ZsLJ-fG-dnQS1yZ8dotln56xo8loxMaD6XgL3Q-AJRhGffylcSIB0yV1rkNAP7bf17FCtmY6BvYmwfgzTrZleIx30KMKJOfAwv8Y3VPlE_Sggv4pwtWZM88cLQSOEQKnEQInLx0jBI4WAscIwTM0ORqMD4du1QnDlYSStZtgqpJApF6ssEyykHI_yjgoa-krEWNBREo9IiKp0jggWIZSylClOFNeHIGBj5-j7XJeql3kUI7DiAtCFElIFng8Booc88BLU09FUdBD_XpmmKzKxOtuJQUzdDGgDOaRmXlkfthDH5rRC1se5ZZx72CSmyG6pvnwYMT0Ne3bpWC0__R76G2NAQMlpz1XvFTzzYrppgEUDNuI9NALi0nzLiDkwBpI3ENxB63Ox7p3ynxmCqmTUBf4S17e4bt76OH1H_AKba-XG_UazNG1eGOE7jdEw4sp |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biology+of+Zika+Virus+Infection+in+Human+Skin+Cells&rft.jtitle=Journal+of+virology&rft.au=Hamel%2C+Rodolphe&rft.au=Dejarnac%2C+Oph%C3%A9lie&rft.au=Wichit%2C+Sineewanlaya&rft.au=Ekchariyawat%2C+Peeraya&rft.date=2015-09-01&rft.eissn=1098-5514&rft.volume=89&rft.issue=17&rft.spage=8880&rft.epage=8896&rft_id=info:doi/10.1128%2FJVI.00354-15&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |