Biology of Zika Virus Infection in Human Skin Cells

Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 89; no. 17; pp. 8880 - 8896
Main Authors Hamel, Rodolphe, Dejarnac, Ophélie, Wichit, Sineewanlaya, Ekchariyawat, Peeraya, Neyret, Aymeric, Luplertlop, Natthanej, Perera-Lecoin, Manuel, Surasombatpattana, Pornapat, Talignani, Loïc, Thomas, Frédéric, Cao-Lormeau, Van-Mai, Choumet, Valérie, Briant, Laurence, Desprès, Philippe, Amara, Ali, Yssel, Hans, Missé, Dorothée
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. IMPORTANCE Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.
AbstractList UNLABELLEDZika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus.IMPORTANCEZika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.
Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.
Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. IMPORTANCE Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.
Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.
Author Luplertlop, Natthanej
Surasombatpattana, Pornapat
Amara, Ali
Cao-Lormeau, Van-Mai
Neyret, Aymeric
Choumet, Valérie
Missé, Dorothée
Talignani, Loïc
Thomas, Frédéric
Perera-Lecoin, Manuel
Desprès, Philippe
Ekchariyawat, Peeraya
Hamel, Rodolphe
Dejarnac, Ophélie
Wichit, Sineewanlaya
Briant, Laurence
Yssel, Hans
Author_xml – sequence: 1
  givenname: Rodolphe
  surname: Hamel
  fullname: Hamel, Rodolphe
  organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France
– sequence: 2
  givenname: Ophélie
  surname: Dejarnac
  fullname: Dejarnac, Ophélie
  organization: INSERM, U944, Laboratoire de Pathologie et Virologie Moléculaire, Paris, France
– sequence: 3
  givenname: Sineewanlaya
  surname: Wichit
  fullname: Wichit, Sineewanlaya
  organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France
– sequence: 4
  givenname: Peeraya
  surname: Ekchariyawat
  fullname: Ekchariyawat, Peeraya
  organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France
– sequence: 5
  givenname: Aymeric
  surname: Neyret
  fullname: Neyret, Aymeric
  organization: Centre d'Étude d'Agents Pathogènes et Biotechnologies pour la Santé, CNRS-UMR 5236/UM, Montpellier, France
– sequence: 6
  givenname: Natthanej
  surname: Luplertlop
  fullname: Luplertlop, Natthanej
  organization: Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
– sequence: 7
  givenname: Manuel
  surname: Perera-Lecoin
  fullname: Perera-Lecoin, Manuel
  organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France
– sequence: 8
  givenname: Pornapat
  surname: Surasombatpattana
  fullname: Surasombatpattana, Pornapat
  organization: Pathology Department, Prince of Songkla University, Songkla, Thailand
– sequence: 9
  givenname: Loïc
  surname: Talignani
  fullname: Talignani, Loïc
  organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France
– sequence: 10
  givenname: Frédéric
  surname: Thomas
  fullname: Thomas, Frédéric
  organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France
– sequence: 11
  givenname: Van-Mai
  surname: Cao-Lormeau
  fullname: Cao-Lormeau, Van-Mai
  organization: Institut Louis Malardé, Papeete, Tahiti, French Polynesia
– sequence: 12
  givenname: Valérie
  surname: Choumet
  fullname: Choumet, Valérie
  organization: Environment and Infectious Risks Unit, Institut Pasteur, Paris, France
– sequence: 13
  givenname: Laurence
  surname: Briant
  fullname: Briant, Laurence
  organization: Centre d'Étude d'Agents Pathogènes et Biotechnologies pour la Santé, CNRS-UMR 5236/UM, Montpellier, France
– sequence: 14
  givenname: Philippe
  surname: Desprès
  fullname: Desprès, Philippe
  organization: Département Infections et Epidémiologie, Institut Pasteur, Paris, France, and UMR PIMIT (I2T Team), Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, GIP-CYROI, Saint Clotilde, La Réunion, France
– sequence: 15
  givenname: Ali
  surname: Amara
  fullname: Amara, Ali
  organization: INSERM, U944, Laboratoire de Pathologie et Virologie Moléculaire, Paris, France
– sequence: 16
  givenname: Hans
  surname: Yssel
  fullname: Yssel, Hans
  organization: Centre d'Immunologie et des Maladies Infectieuses, INSERM, U1135, Sorbonne Universités, UPMC, APHP Hôpital Pitié-Salpêtrière, Paris, France
– sequence: 17
  givenname: Dorothée
  surname: Missé
  fullname: Missé, Dorothée
  organization: Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, Montpellier, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26085147$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01228435$$DView record in HAL
BookMark eNptkc9P2zAcxa0JBKVw23nKkUkLfP0rdi5IXbXRoko7jKGJi-U4DhhSG-KkEv_9XFomQJxs2Z_3_Px9B2jHB28R-ozhBGMiTy-u5icAlLMc809ohKGUOeeY7aARACE5p_LvPjqI8Q4AM1awPbRPCpAJESNEv7vQhpunLDTZtbvX2ZXrhpjNfWNN74LPnM9mw1L77Pd92k5t28ZDtNvoNtqj7TpGf37-uJzO8sWv8_l0ssgNk6zPSyptSaoahKWmbLjUuGi0AGqwrQStWFVLYFVhbC0Io4YbY7itaWNBFEIwOkZnG9-HoVra2ljfd7pVD51b6u5JBe3U2xvvbtVNWCnGCQNZJoOvG4Pbd7LZZKHWZ4AJkYzyFU7s8faxLjwONvZq6aJJ39XehiEqLADLEkOxzvXlda7_zi9TTQDZAKYLMXa2Ucb1ej3OFNO1CoNaV6dSdeq5OoV5En17J3rx_RD_B74PmD4
CitedBy_id crossref_primary_10_1007_s13337_016_0317_9
crossref_primary_10_1016_j_ejmech_2018_07_014
crossref_primary_10_1007_s13365_020_00835_2
crossref_primary_10_4049_jimmunol_1700256
crossref_primary_10_1016_j_cellin_2024_100196
crossref_primary_10_1155_2018_6106582
crossref_primary_10_3390_applmicrobiol2040059
crossref_primary_10_1007_s11434_016_1068_0
crossref_primary_10_3201_eid2311_170337
crossref_primary_10_1111_exd_14870
crossref_primary_10_1002_jmv_24822
crossref_primary_10_1007_s13235_021_00418_8
crossref_primary_10_3390_v14081735
crossref_primary_10_5501_wjv_v14_i1_100489
crossref_primary_10_1016_j_medcli_2016_03_012
crossref_primary_10_3389_fviro_2022_959586
crossref_primary_10_1016_j_antiviral_2017_02_002
crossref_primary_10_1371_journal_pntd_0004695
crossref_primary_10_2174_0929867328666210714160954
crossref_primary_10_1016_j_celrep_2017_02_014
crossref_primary_10_1038_s41587_019_0225_9
crossref_primary_10_1098_rsob_160231
crossref_primary_10_1371_journal_pntd_0004682
crossref_primary_10_1038_emi_2017_9
crossref_primary_10_7554_eLife_94347_3
crossref_primary_10_1016_j_celrep_2017_10_016
crossref_primary_10_1371_journal_pntd_0012066
crossref_primary_10_3390_v14081727
crossref_primary_10_3389_fimmu_2021_610456
crossref_primary_10_1016_j_celrep_2016_08_038
crossref_primary_10_1155_2017_5649214
crossref_primary_10_1128_MMBR_00024_15
crossref_primary_10_1093_infdis_jiz392
crossref_primary_10_1038_s41598_018_25236_8
crossref_primary_10_1016_j_virusres_2020_198087
crossref_primary_10_3389_fmicb_2022_1062499
crossref_primary_10_3390_v16101535
crossref_primary_10_1016_j_coviro_2017_05_002
crossref_primary_10_1073_pnas_1619735114
crossref_primary_10_1016_j_celrep_2017_03_058
crossref_primary_10_1017_erm_2018_6
crossref_primary_10_3389_fimmu_2019_01736
crossref_primary_10_1128_mSphereDirect_00120_18
crossref_primary_10_1016_j_virusres_2021_198534
crossref_primary_10_1016_j_virol_2017_11_007
crossref_primary_10_1021_acs_chemrev_7b00719
crossref_primary_10_1016_j_envpol_2021_117654
crossref_primary_10_1371_journal_pone_0307902
crossref_primary_10_3390_tropicalmed7060106
crossref_primary_10_1186_s12985_025_02622_z
crossref_primary_10_1016_j_bbadis_2024_167097
crossref_primary_10_1038_s41598_019_52307_1
crossref_primary_10_3389_fmicb_2023_1257024
crossref_primary_10_1016_j_xjidi_2022_100128
crossref_primary_10_1128_JVI_00163_17
crossref_primary_10_1155_2023_9145289
crossref_primary_10_1186_s13071_017_2286_2
crossref_primary_10_1128_JVI_01018_18
crossref_primary_10_1146_annurev_immunol_042617_053142
crossref_primary_10_33590_emjmicrobiolinfectdis_21_00256
crossref_primary_10_1097_INF_0000000000002080
crossref_primary_10_1128_jvi_01705_23
crossref_primary_10_3390_ijms20051101
crossref_primary_10_1371_journal_pntd_0007537
crossref_primary_10_1371_journal_ppat_1006164
crossref_primary_10_1016_j_intimp_2023_111368
crossref_primary_10_3389_fcimb_2016_00206
crossref_primary_10_3390_v11090797
crossref_primary_10_1128_JVI_00785_17
crossref_primary_10_1371_journal_pone_0209097
crossref_primary_10_1128_JVI_00403_20
crossref_primary_10_3390_pathogens11030294
crossref_primary_10_1074_jbc_RA120_015165
crossref_primary_10_1007_s00705_024_06050_2
crossref_primary_10_1371_journal_pone_0261821
crossref_primary_10_3389_fimmu_2018_02340
crossref_primary_10_1016_j_cellsig_2021_110204
crossref_primary_10_1038_srep44286
crossref_primary_10_1038_s41598_019_46389_0
crossref_primary_10_1016_j_virusres_2021_198593
crossref_primary_10_1016_j_chom_2016_05_009
crossref_primary_10_1038_s41593_017_0038_4
crossref_primary_10_1128_JVI_01982_18
crossref_primary_10_1371_journal_ppat_1009899
crossref_primary_10_3390_cancers8100097
crossref_primary_10_1007_s15010_016_0935_6
crossref_primary_10_1128_jvi_01122_22
crossref_primary_10_1016_j_joi_2020_101075
crossref_primary_10_5501_wjv_v7_i1_10
crossref_primary_10_1016_j_plipres_2016_09_005
crossref_primary_10_1016_j_virol_2020_04_009
crossref_primary_10_3390_pathogens10040448
crossref_primary_10_1021_acs_biochem_6b01056
crossref_primary_10_1128_AAC_00113_21
crossref_primary_10_3389_fimmu_2023_1125565
crossref_primary_10_1038_s41598_019_51954_8
crossref_primary_10_1177_1093526618790742
crossref_primary_10_1016_j_coviro_2017_06_009
crossref_primary_10_1590_s1678_9946201658089
crossref_primary_10_3389_fviro_2022_801778
crossref_primary_10_1002_med_22073
crossref_primary_10_1073_pnas_1900867116
crossref_primary_10_3390_v12030267
crossref_primary_10_1016_j_chom_2016_05_015
crossref_primary_10_1016_j_microb_2024_100180
crossref_primary_10_3390_v8060152
crossref_primary_10_1038_s41467_024_54628_w
crossref_primary_10_1038_s41598_020_79803_z
crossref_primary_10_3390_microorganisms12091840
crossref_primary_10_3390_ph17080988
crossref_primary_10_3390_molecules26144321
crossref_primary_10_1016_j_antiviral_2021_105117
crossref_primary_10_1016_j_meegid_2019_01_018
crossref_primary_10_1099_jgv_0_000886
crossref_primary_10_1016_j_chom_2018_09_008
crossref_primary_10_1111_trf_13964
crossref_primary_10_3390_v12070700
crossref_primary_10_1016_j_meegid_2019_01_023
crossref_primary_10_3390_ijms242417271
crossref_primary_10_1155_2022_2044577
crossref_primary_10_3390_pathogens8040169
crossref_primary_10_1007_s12016_016_8554_7
crossref_primary_10_1371_journal_pntd_0008424
crossref_primary_10_1016_j_jid_2023_11_014
crossref_primary_10_1016_j_neuint_2016_10_004
crossref_primary_10_3389_fimmu_2020_00352
crossref_primary_10_1016_j_celrep_2019_05_059
crossref_primary_10_1371_journal_ppat_1008538
crossref_primary_10_3389_fmicb_2016_01233
crossref_primary_10_1016_j_antiviral_2017_12_017
crossref_primary_10_1128_JVI_02079_20
crossref_primary_10_3390_ijms26030951
crossref_primary_10_1523_JNEUROSCI_3124_16_2017
crossref_primary_10_1074_mcp_R116_065649
crossref_primary_10_1140_epjp_s13360_021_01657_9
crossref_primary_10_1371_journal_ppat_1010843
crossref_primary_10_1038_s42003_022_03902_y
crossref_primary_10_1093_bmb_ldw023
crossref_primary_10_3390_v10110649
crossref_primary_10_3390_v10110646
crossref_primary_10_1080_21505594_2019_1605803
crossref_primary_10_3389_fimmu_2021_750365
crossref_primary_10_1016_j_biopha_2023_115175
crossref_primary_10_1016_j_jbc_2022_102471
crossref_primary_10_1128_mBio_01372_19
crossref_primary_10_3390_v12050510
crossref_primary_10_1038_srep41389
crossref_primary_10_3389_fimmu_2020_00592
crossref_primary_10_3389_fncel_2019_00389
crossref_primary_10_1093_femsle_fnw202
crossref_primary_10_1186_s12964_020_00687_7
crossref_primary_10_1021_acscentsci_8b00494
crossref_primary_10_1099_jgv_0_001726
crossref_primary_10_3390_v10110630
crossref_primary_10_1016_j_virol_2023_03_006
crossref_primary_10_3390_v12050503
crossref_primary_10_33442_978_981_14_0914_1_2b
crossref_primary_10_3390_tropicalmed6020095
crossref_primary_10_4103_apjtb_apjtb_35_24
crossref_primary_10_1080_15548627_2016_1265192
crossref_primary_10_2217_fvl_2018_0115
crossref_primary_10_3389_fviro_2021_720760
crossref_primary_10_1016_j_ebiom_2016_11_017
crossref_primary_10_1016_j_ebiom_2017_09_021
crossref_primary_10_2174_1874357901812010134
crossref_primary_10_1038_s44321_024_00103_4
crossref_primary_10_3389_fimmu_2021_764746
crossref_primary_10_3390_v13010013
crossref_primary_10_1371_journal_ppat_1007656
crossref_primary_10_1172_JCI89857
crossref_primary_10_1155_2020_9527147
crossref_primary_10_1007_s13365_017_0513_4
crossref_primary_10_1128_JVI_01047_19
crossref_primary_10_3389_fmicb_2017_01469
crossref_primary_10_1177_20503121241229847
crossref_primary_10_3390_membranes11050335
crossref_primary_10_3390_vaccines9030294
crossref_primary_10_1371_journal_ppat_1007640
crossref_primary_10_1007_s13365_018_0614_8
crossref_primary_10_1093_infdis_jix153
crossref_primary_10_3389_fimmu_2020_593901
crossref_primary_10_1093_infdis_jix396
crossref_primary_10_1007_s12250_021_00442_3
crossref_primary_10_1007_s40588_017_0070_x
crossref_primary_10_3390_ijms26010047
crossref_primary_10_1038_s41598_019_50918_2
crossref_primary_10_1016_j_neuron_2018_10_007
crossref_primary_10_1098_rsob_190009
crossref_primary_10_1128_CMR_00014_16
crossref_primary_10_4049_jimmunol_2000713
crossref_primary_10_3389_fcimb_2020_00407
crossref_primary_10_1080_01652176_2016_1188333
crossref_primary_10_1371_journal_pone_0161355
crossref_primary_10_1016_j_vetmic_2024_110062
crossref_primary_10_1038_s41467_022_32565_w
crossref_primary_10_1016_j_celrep_2016_06_028
crossref_primary_10_1016_j_celrep_2016_08_079
crossref_primary_10_1080_22221751_2022_2082888
crossref_primary_10_1146_annurev_virology_092818_015740
crossref_primary_10_5812_archcid_12848
crossref_primary_10_1084_jem_20170957
crossref_primary_10_1159_000495660
crossref_primary_10_3389_fmicb_2017_00110
crossref_primary_10_1038_s41598_023_36871_1
crossref_primary_10_1016_j_jaut_2016_12_007
crossref_primary_10_1016_j_chom_2016_07_002
crossref_primary_10_1128_jvi_01830_23
crossref_primary_10_1016_j_isci_2019_03_003
crossref_primary_10_1016_j_antiviral_2016_12_023
crossref_primary_10_1128_JVI_01583_16
crossref_primary_10_1016_j_jinf_2016_02_011
crossref_primary_10_15252_embr_201949183
crossref_primary_10_1016_j_medcle_2016_10_022
crossref_primary_10_1007_s11033_020_05349_y
crossref_primary_10_1002_rmv_2145
crossref_primary_10_1074_jbc_RA119_007555
crossref_primary_10_4137_BCI_S30379
crossref_primary_10_1155_2018_2450540
crossref_primary_10_3389_fcimb_2022_890750
crossref_primary_10_3390_pathogens13070555
crossref_primary_10_1038_s41467_019_10446_z
crossref_primary_10_1080_22221751_2021_1932606
crossref_primary_10_1186_s40409_017_0131_x
crossref_primary_10_1016_j_intimp_2023_110512
crossref_primary_10_1093_glycob_cww057
crossref_primary_10_1002_jcp_30933
crossref_primary_10_1128_JVI_01575_20
crossref_primary_10_3390_v11060524
crossref_primary_10_1080_15548627_2017_1356978
crossref_primary_10_1186_s40709_020_00115_4
crossref_primary_10_3389_fmicb_2021_825049
crossref_primary_10_1016_j_antiviral_2019_02_008
crossref_primary_10_1016_j_rmu_2016_05_003
crossref_primary_10_1002_rmv_2166
crossref_primary_10_1371_journal_pntd_0009575
crossref_primary_10_1128_jvi_01873_24
crossref_primary_10_1002_jobm_201700398
crossref_primary_10_1038_s41598_017_16072_3
crossref_primary_10_1007_s12035_017_0635_y
crossref_primary_10_1128_JVI_00113_19
crossref_primary_10_1371_journal_pone_0239238
crossref_primary_10_3389_fcimb_2017_00402
crossref_primary_10_1016_j_stem_2016_07_019
crossref_primary_10_1038_s41467_023_41158_0
crossref_primary_10_1172_JCI87490
crossref_primary_10_3390_v16010024
crossref_primary_10_1590_0074_02760170542
crossref_primary_10_1002_eji_201848070
crossref_primary_10_3390_ijms20071695
crossref_primary_10_3389_fmicb_2018_01350
crossref_primary_10_1016_j_chom_2017_01_004
crossref_primary_10_1038_emi_2017_67
crossref_primary_10_1016_j_antiviral_2017_06_001
crossref_primary_10_1073_pnas_1620558114
crossref_primary_10_3390_v10030139
crossref_primary_10_1186_s12929_023_00906_6
crossref_primary_10_3390_microorganisms12071499
crossref_primary_10_1111_ijd_13399
crossref_primary_10_1007_s42770_024_01543_3
crossref_primary_10_3390_v9110338
crossref_primary_10_3390_v10040198
crossref_primary_10_1093_cid_cix732
crossref_primary_10_1128_JVI_01050_20
crossref_primary_10_1002_jmv_28422
crossref_primary_10_1016_j_tcb_2019_11_004
crossref_primary_10_1016_j_cell_2016_01_040
crossref_primary_10_3390_v9120383
crossref_primary_10_1016_j_micpath_2023_106096
crossref_primary_10_3390_ph12020097
crossref_primary_10_1177_10738584211009149
crossref_primary_10_1007_s12250_020_00316_0
crossref_primary_10_1128_CMR_00034_18
crossref_primary_10_1128_JVI_00904_21
crossref_primary_10_3390_v11060560
crossref_primary_10_1590_0074_02760190150
crossref_primary_10_1002_cti2_1066
crossref_primary_10_1080_15548627_2018_1539585
crossref_primary_10_3389_fmicb_2018_03340
crossref_primary_10_1016_j_meegid_2021_105066
crossref_primary_10_1007_s00018_018_2751_x
crossref_primary_10_12688_f1000research_9364_2
crossref_primary_10_1371_journal_pntd_0010366
crossref_primary_10_1002_mbo3_831
crossref_primary_10_1007_s00018_018_2882_0
crossref_primary_10_1177_0022034517723325
crossref_primary_10_3390_ijms22010035
crossref_primary_10_1038_emi_2017_10
crossref_primary_10_1007_s40588_020_00150_8
crossref_primary_10_1371_journal_pntd_0008282
crossref_primary_10_1093_nar_gkw765
crossref_primary_10_3390_v16050727
crossref_primary_10_1080_22221751_2019_1637283
crossref_primary_10_3390_v12080857
crossref_primary_10_3390_pathogens9030158
crossref_primary_10_1093_infdis_jix436
crossref_primary_10_1016_j_apjtm_2017_03_020
crossref_primary_10_1186_s12985_019_1200_2
crossref_primary_10_1051_e3sconf_202021803048
crossref_primary_10_3390_biomedicines11020642
crossref_primary_10_1128_JVI_00705_21
crossref_primary_10_1002_med_21786
crossref_primary_10_1038_s41564_017_0092_4
crossref_primary_10_3389_fviro_2023_1325282
crossref_primary_10_3390_ijms19041093
crossref_primary_10_3389_fmicb_2020_01745
crossref_primary_10_3390_ijms23137023
crossref_primary_10_3390_v12050547
crossref_primary_10_1159_000543608
crossref_primary_10_1016_j_antiviral_2022_105464
crossref_primary_10_1080_22221751_2019_1590130
crossref_primary_10_1371_journal_pone_0208543
crossref_primary_10_1111_cts_12529
crossref_primary_10_1002_jmv_28451
crossref_primary_10_1128_JVI_01849_15
crossref_primary_10_1016_j_cclet_2024_109574
crossref_primary_10_15252_embr_201642586
crossref_primary_10_7554_eLife_39023
crossref_primary_10_1111_ced_13294
crossref_primary_10_1590_1806_9282_63_06_500
crossref_primary_10_1073_pnas_2421573122
crossref_primary_10_1016_j_jcv_2016_09_012
crossref_primary_10_1007_s00430_017_0493_2
crossref_primary_10_1093_cid_ciw210
crossref_primary_10_3390_ijms20081860
crossref_primary_10_17533_udea_hm_323271
crossref_primary_10_1073_pnas_1719266115
crossref_primary_10_1590_1981_6723_16116
crossref_primary_10_1111_imm_13889
crossref_primary_10_1007_s11481_017_9736_7
crossref_primary_10_3389_fcimb_2017_00486
crossref_primary_10_1002_1873_3468_14103
crossref_primary_10_1016_j_ebiom_2016_03_014
crossref_primary_10_1186_s12864_022_08919_5
crossref_primary_10_1371_journal_pntd_0010166
crossref_primary_10_1016_j_virusres_2023_199040
crossref_primary_10_3389_fmicb_2023_1162554
crossref_primary_10_1186_s13578_016_0096_4
crossref_primary_10_1111_nan_12326
crossref_primary_10_1186_s12985_024_02547_z
crossref_primary_10_3390_v13061060
crossref_primary_10_1172_jci_insight_88461
crossref_primary_10_1016_j_chom_2016_10_002
crossref_primary_10_3389_fimmu_2022_773191
crossref_primary_10_18699_VJ18_344
crossref_primary_10_1039_D2CS00741J
crossref_primary_10_1007_s12026_016_8873_z
crossref_primary_10_3389_fmed_2018_00025
crossref_primary_10_1016_j_antiviral_2017_04_017
crossref_primary_10_1016_j_micinf_2018_03_001
crossref_primary_10_2174_2210315513666221114112253
crossref_primary_10_1038_s41426_018_0170_6
crossref_primary_10_3390_cells8111338
crossref_primary_10_1016_j_cyto_2019_154864
crossref_primary_10_1016_j_ebiom_2017_10_006
crossref_primary_10_1016_j_cll_2017_01_002
crossref_primary_10_1038_s41579_018_0003_6
crossref_primary_10_1002_jmv_25306
crossref_primary_10_3390_pathogens10081010
crossref_primary_10_1038_s41467_020_20747_3
crossref_primary_10_3390_cells9061476
crossref_primary_10_1016_j_virol_2021_04_008
crossref_primary_10_1080_21505594_2021_1935613
crossref_primary_10_1017_dmp_2016_43
crossref_primary_10_1371_journal_pone_0166260
crossref_primary_10_3390_ph10020044
crossref_primary_10_1099_jgv_0_001153
crossref_primary_10_1371_journal_pntd_0004530
crossref_primary_10_7868_S0042132418060054
crossref_primary_10_1016_j_virol_2021_04_013
crossref_primary_10_1590_0004_282X20160035
crossref_primary_10_1016_j_virol_2016_11_002
crossref_primary_10_1021_acs_molpharmaceut_8b00068
crossref_primary_10_1371_journal_pntd_0011055
crossref_primary_10_3390_vaccines8030530
crossref_primary_10_1038_nm_4184
crossref_primary_10_1007_s12250_020_00264_9
crossref_primary_10_1002_jmv_27991
crossref_primary_10_1128_JVI_02019_17
crossref_primary_10_3390_v13061020
crossref_primary_10_1016_j_gene_2022_146217
crossref_primary_10_1007_s10815_019_01493_y
crossref_primary_10_3390_tropicalmed8050284
crossref_primary_10_4049_jimmunol_1601949
crossref_primary_10_1002_jmv_25345
crossref_primary_10_1126_science_aam9243
crossref_primary_10_1016_j_micinf_2018_02_009
crossref_primary_10_1016_j_tibtech_2018_10_004
crossref_primary_10_1016_j_cmet_2019_01_024
crossref_primary_10_1021_acsinfecdis_9b00230
crossref_primary_10_1038_srep40780
crossref_primary_10_1371_journal_ppat_1012408
crossref_primary_10_1016_j_jns_2016_11_030
crossref_primary_10_1016_j_meegid_2017_03_027
crossref_primary_10_3389_fimmu_2021_815020
crossref_primary_10_1016_j_isci_2018_02_005
crossref_primary_10_1128_JVI_02024_20
crossref_primary_10_3390_vaccines8010022
crossref_primary_10_1097_MOP_0000000000000446
crossref_primary_10_1016_j_dci_2020_103759
crossref_primary_10_1007_s11481_017_9743_8
crossref_primary_10_1038_ncomms13679
crossref_primary_10_1371_journal_pntd_0008707
crossref_primary_10_3389_fmicb_2019_01465
crossref_primary_10_1016_j_apjtm_2016_05_010
crossref_primary_10_1038_nature17994
crossref_primary_10_1155_2020_1372494
crossref_primary_10_3934_molsci_2018_1_96
crossref_primary_10_1186_s42466_019_0020_6
crossref_primary_10_3390_v9100297
crossref_primary_10_1097_MRM_0000000000000112
crossref_primary_10_1371_journal_pone_0200358
crossref_primary_10_1016_j_virol_2023_109939
crossref_primary_10_1126_scitranslmed_aax2421
crossref_primary_10_1016_j_celrep_2018_04_013
crossref_primary_10_3389_fnins_2021_654078
crossref_primary_10_1016_j_ebiom_2016_09_022
crossref_primary_10_3390_v14081619
crossref_primary_10_1016_j_ebiom_2016_09_020
crossref_primary_10_1016_j_antiviral_2018_04_016
crossref_primary_10_1097_MOP_0000000000000441
crossref_primary_10_3389_fcimb_2021_575346
crossref_primary_10_1016_j_pathol_2017_07_008
crossref_primary_10_3389_fmicb_2023_1247377
crossref_primary_10_1016_j_it_2018_02_003
crossref_primary_10_1017_erm_2024_35
crossref_primary_10_1007_s12035_017_0442_5
crossref_primary_10_1002_pmic_201800309
crossref_primary_10_1016_S1473_3099_18_30063_X
crossref_primary_10_1093_infdis_jiy179
crossref_primary_10_1186_s12879_017_2338_4
crossref_primary_10_2217_fvl_2017_0014
crossref_primary_10_1016_j_virusres_2022_198707
crossref_primary_10_1038_s41564_024_01637_6
crossref_primary_10_1126_sciadv_aay3245
crossref_primary_10_1016_j_cell_2017_04_008
crossref_primary_10_1016_j_virusres_2017_08_018
crossref_primary_10_1093_brain_awx133
crossref_primary_10_3390_ijms20051048
crossref_primary_10_1038_emi_2016_141
crossref_primary_10_3390_v13061102
crossref_primary_10_1186_s12985_020_01313_1
crossref_primary_10_4103_0366_6999_187864
crossref_primary_10_3390_ijms25031638
crossref_primary_10_1021_acs_jmedchem_9b00142
crossref_primary_10_3389_fcimb_2020_00172
crossref_primary_10_3390_ph16101385
crossref_primary_10_1128_JVI_00395_19
crossref_primary_10_3389_fimmu_2019_01617
crossref_primary_10_1038_s41598_018_21894_w
crossref_primary_10_1016_j_stem_2016_11_014
crossref_primary_10_1016_j_stem_2016_11_011
crossref_primary_10_1002_jmv_24731
crossref_primary_10_1016_j_stem_2016_03_012
crossref_primary_10_1128_MMBR_00015_18
crossref_primary_10_1155_2017_4894598
crossref_primary_10_1172_jci_insight_133653
crossref_primary_10_1007_s13311_016_0450_6
crossref_primary_10_1128_jvi_02117_21
crossref_primary_10_1039_C7RA05918C
crossref_primary_10_1016_j_jmb_2018_06_024
crossref_primary_10_1007_s11427_020_1818_4
crossref_primary_10_1371_journal_pntd_0008730
crossref_primary_10_1038_s41598_024_63407_y
crossref_primary_10_3390_v13091823
crossref_primary_10_1186_s12964_019_0349_z
crossref_primary_10_1016_j_pt_2019_09_006
crossref_primary_10_1128_JVI_00701_18
crossref_primary_10_1111_cmi_13302
crossref_primary_10_3389_fimmu_2018_01376
crossref_primary_10_1038_ncomms14575
crossref_primary_10_1016_j_virusres_2022_198778
crossref_primary_10_1016_j_pathol_2017_08_002
crossref_primary_10_1016_j_jmb_2016_04_024
crossref_primary_10_3390_v11100970
crossref_primary_10_1089_jir_2017_0011
crossref_primary_10_1002_bdr2_2232
crossref_primary_10_1371_journal_ppat_1008204
crossref_primary_10_3390_v14081808
crossref_primary_10_1186_s12929_017_0362_8
crossref_primary_10_1161_CIRCRESAHA_116_310001
crossref_primary_10_1038_s41598_017_17765_5
crossref_primary_10_1007_s00705_018_3911_x
crossref_primary_10_1590_0037_8682_0263_2022
crossref_primary_10_3390_v13050896
crossref_primary_10_1016_j_stem_2016_04_009
crossref_primary_10_1038_emi_2016_103
crossref_primary_10_1038_ncomms15674
crossref_primary_10_1038_emi_2016_100
crossref_primary_10_1038_ncomms15672
crossref_primary_10_1093_infdis_jiz075
crossref_primary_10_3389_fcimb_2022_809135
crossref_primary_10_4103_0972_9062_217611
crossref_primary_10_1016_j_stem_2016_04_017
crossref_primary_10_3390_insects14060514
crossref_primary_10_1038_nm_4206
crossref_primary_10_1016_j_stem_2016_04_014
crossref_primary_10_1073_pnas_1618029113
crossref_primary_10_1007_s12539_017_0238_3
crossref_primary_10_1016_j_apjtm_2016_06_019
crossref_primary_10_1007_s12551_020_00748_8
crossref_primary_10_5858_arpa_2016_0409_RA
crossref_primary_10_1016_j_bmcl_2019_126626
crossref_primary_10_1016_j_chom_2016_09_006
crossref_primary_10_3389_fmicb_2016_00496
crossref_primary_10_1126_sciadv_add8095
crossref_primary_10_1186_s12929_020_0618_6
crossref_primary_10_1016_j_stem_2016_02_016
crossref_primary_10_1371_journal_ppat_1006004
crossref_primary_10_1016_j_ebiom_2016_07_026
crossref_primary_10_1016_j_drudis_2020_10_009
crossref_primary_10_1161_CIRCRESAHA_116_309866
crossref_primary_10_3389_fimmu_2022_1058862
crossref_primary_10_1128_JVI_01195_21
crossref_primary_10_1371_journal_pntd_0007443
crossref_primary_10_1016_j_virusres_2017_09_006
crossref_primary_10_1371_journal_pntd_0008531
crossref_primary_10_1080_15622975_2018_1500027
crossref_primary_10_1007_s00203_016_1268_7
crossref_primary_10_1016_j_jid_2018_07_038
crossref_primary_10_1007_s12250_020_00310_6
crossref_primary_10_3390_v17030382
crossref_primary_10_1177_1352458518781992
crossref_primary_10_1371_journal_pone_0257408
crossref_primary_10_3389_fmicb_2019_02715
crossref_primary_10_1128_spectrum_01137_22
crossref_primary_10_1128_mBio_00452_17
crossref_primary_10_3389_fcell_2020_00571
crossref_primary_10_3389_fphar_2019_00642
crossref_primary_10_1371_journal_pone_0184871
crossref_primary_10_1016_S1473_3099_16_30336_X
crossref_primary_10_1038_s41598_019_44559_8
crossref_primary_10_1155_2017_1734151
crossref_primary_10_2217_fvl_2017_0099
crossref_primary_10_1007_s13365_019_00720_7
crossref_primary_10_1111_bjd_16096
crossref_primary_10_3389_fimmu_2022_1000861
crossref_primary_10_1038_s41598_022_13043_1
crossref_primary_10_1016_j_celrep_2016_12_068
crossref_primary_10_1128_CMR_00072_15
crossref_primary_10_1016_j_ymeth_2017_04_012
crossref_primary_10_1016_j_cell_2016_09_020
crossref_primary_10_1111_imr_12687
crossref_primary_10_1016_j_ijpam_2019_05_004
crossref_primary_10_1146_annurev_virology_091919_072546
crossref_primary_10_1016_j_pharmthera_2023_108559
crossref_primary_10_1002_jmv_28483
crossref_primary_10_1073_pnas_1704011114
crossref_primary_10_1126_scisignal_aas9332
crossref_primary_10_3390_v10020053
crossref_primary_10_1089_vim_2017_0116
crossref_primary_10_1128_AAC_00394_19
crossref_primary_10_3389_fmicb_2017_01761
crossref_primary_10_3389_fmicb_2019_00753
crossref_primary_10_1099_jgv_0_000992
crossref_primary_10_3389_fmicb_2020_574054
crossref_primary_10_1089_dna_2022_0375
crossref_primary_10_1016_j_jid_2017_10_018
crossref_primary_10_1186_s12974_023_02736_7
crossref_primary_10_3390_v12080887
crossref_primary_10_3899_jrheum_170835
crossref_primary_10_3390_vaccines7020055
crossref_primary_10_1126_scisignal_aay6736
crossref_primary_10_1016_j_jiph_2016_05_007
crossref_primary_10_1371_journal_pntd_0010426
crossref_primary_10_1371_journal_pone_0206093
crossref_primary_10_1016_j_ebiom_2016_06_026
crossref_primary_10_1128_JVI_01445_20
crossref_primary_10_1016_j_celrep_2016_12_045
crossref_primary_10_1084_jem_20191792
crossref_primary_10_3390_vaccines8020266
crossref_primary_10_1016_j_antiviral_2016_11_018
crossref_primary_10_1016_j_bbi_2021_08_008
crossref_primary_10_1128_spectrum_02192_23
crossref_primary_10_1016_j_toxlet_2020_11_013
crossref_primary_10_3389_fmicb_2017_02677
crossref_primary_10_3389_fmicb_2021_667146
crossref_primary_10_3390_ijms20215404
crossref_primary_10_3390_microorganisms11102427
crossref_primary_10_1128_MMBR_00055_16
crossref_primary_10_1093_infdis_jix276
crossref_primary_10_3390_ijms19123940
crossref_primary_10_1038_nature20556
crossref_primary_10_3390_pathogens11030321
crossref_primary_10_1016_j_bmcl_2017_12_019
crossref_primary_10_1172_jci_insight_92340
crossref_primary_10_1007_s00430_019_00588_8
crossref_primary_10_3390_microbiolres15020044
crossref_primary_10_1080_17513758_2021_1970261
crossref_primary_10_1371_journal_pntd_0009425
crossref_primary_10_3389_fcimb_2021_637710
crossref_primary_10_1371_journal_pone_0244587
crossref_primary_10_1016_j_celrep_2017_09_047
crossref_primary_10_1007_s12098_020_03260_9
crossref_primary_10_3389_fmicb_2019_02725
crossref_primary_10_1007_s13365_017_0514_3
crossref_primary_10_3390_v11010049
crossref_primary_10_1038_s41598_020_58135_y
crossref_primary_10_1111_ced_13793
crossref_primary_10_1139_cjm_2019_0331
crossref_primary_10_3346_jkms_2016_31_7_1173
crossref_primary_10_1146_annurev_pathmechdis_031521_034739
crossref_primary_10_1186_s12974_018_1311_5
crossref_primary_10_1186_s13039_016_0240_1
crossref_primary_10_47430_ujmr_1722_023
crossref_primary_10_1089_jir_2019_0058
crossref_primary_10_1021_acs_biochem_0c00732
crossref_primary_10_1186_s40659_018_0204_5
crossref_primary_10_1016_j_virol_2018_03_009
crossref_primary_10_1038_cmi_2017_44
crossref_primary_10_1038_s41564_017_0035_0
crossref_primary_10_1016_j_bbrc_2017_01_158
crossref_primary_10_1016_j_micinf_2016_03_009
crossref_primary_10_3390_v15010247
crossref_primary_10_3390_v12060616
crossref_primary_10_1016_j_micinf_2016_03_003
crossref_primary_10_1186_s12974_023_02898_4
crossref_primary_10_1007_s11101_022_09808_1
crossref_primary_10_15252_embr_201642627
crossref_primary_10_3389_fimmu_2020_538240
crossref_primary_10_1038_nature18296
crossref_primary_10_1126_sciadv_adg3444
crossref_primary_10_1016_j_jrid_2017_01_002
crossref_primary_10_1684_ecn_2019_0433
crossref_primary_10_3390_v11010029
crossref_primary_10_1111_1748_5967_12439
crossref_primary_10_3390_vaccines10060834
crossref_primary_10_1073_pnas_1616097114
crossref_primary_10_1557_mrc_2017_20
crossref_primary_10_3390_v11010020
crossref_primary_10_2217_fmb_2017_0213
crossref_primary_10_1016_j_stem_2021_03_004
crossref_primary_10_1007_s41745_016_0015_z
crossref_primary_10_3389_fmicb_2022_743147
crossref_primary_10_3389_fmicb_2019_00810
crossref_primary_10_1038_s41467_023_43665_6
crossref_primary_10_1038_s41598_025_88481_8
crossref_primary_10_1099_jgv_0_001472
crossref_primary_10_3390_v15091870
crossref_primary_10_1089_dna_2016_3404
crossref_primary_10_1172_jci_insight_92428
crossref_primary_10_3390_v15091872
crossref_primary_10_1159_000452950
crossref_primary_10_1016_j_celrep_2023_112126
crossref_primary_10_1128_jvi_00194_24
crossref_primary_10_15252_emmm_201911793
crossref_primary_10_1128_mSphere_00173_19
crossref_primary_10_3390_pathogens7020051
crossref_primary_10_1038_s41586_020_2457_8
crossref_primary_10_4103_ijmr_IJMR_169_20
crossref_primary_10_3389_fcimb_2018_00387
crossref_primary_10_1038_cddis_2016_266
crossref_primary_10_1038_s44298_025_00102_3
crossref_primary_10_1099_jgv_0_001683
crossref_primary_10_1111_imr_13256
crossref_primary_10_1093_infdis_jix515
crossref_primary_10_3390_cells13070598
crossref_primary_10_1080_22221751_2020_1738278
crossref_primary_10_1016_j_jtos_2019_03_006
crossref_primary_10_1038_s41420_020_00379_8
crossref_primary_10_1038_emi_2016_99
crossref_primary_10_3390_v10100559
crossref_primary_10_3390_v10110593
crossref_primary_10_3390_v17030405
crossref_primary_10_1016_j_virs_2022_07_012
crossref_primary_10_1016_j_jfma_2016_03_001
crossref_primary_10_1128_mSphere_00505_21
crossref_primary_10_1016_j_virusres_2016_10_016
crossref_primary_10_1038_s41467_019_12371_7
crossref_primary_10_1080_22221751_2021_1929503
crossref_primary_10_3390_v12040418
crossref_primary_10_1099_jgv_0_001416
crossref_primary_10_1093_infdis_jix540
crossref_primary_10_15252_embj_201695597
crossref_primary_10_3390_microorganisms8020270
crossref_primary_10_1016_j_chom_2018_05_022
crossref_primary_10_1016_j_pharmthera_2018_03_002
crossref_primary_10_1016_j_annder_2017_05_013
crossref_primary_10_1038_s41467_024_54479_5
crossref_primary_10_1007_s10067_023_06851_x
crossref_primary_10_3390_ijms20205206
crossref_primary_10_3389_fnmol_2018_00116
crossref_primary_10_3390_pathogens7030068
crossref_primary_10_1002_rmv_2050
crossref_primary_10_1038_emi_2016_37
crossref_primary_10_1146_annurev_virology_092917_043300
crossref_primary_10_3390_bios14080362
crossref_primary_10_1016_j_virol_2022_02_001
crossref_primary_10_1038_celldisc_2017_6
crossref_primary_10_1007_s10565_021_09580_6
crossref_primary_10_12688_f1000research_8213_1
crossref_primary_10_1371_journal_pone_0184397
crossref_primary_10_12688_f1000research_8213_2
crossref_primary_10_1016_j_micpath_2025_107408
crossref_primary_10_1186_s12859_017_1894_3
crossref_primary_10_1016_j_jfma_2016_02_002
crossref_primary_10_3390_ijms222010996
crossref_primary_10_1126_science_aag2419
crossref_primary_10_1038_s41598_017_03316_5
crossref_primary_10_1371_journal_pntd_0007071
crossref_primary_10_3389_fcimb_2017_00327
crossref_primary_10_1515_hsz_2017_0236
crossref_primary_10_1016_j_celrep_2019_11_020
crossref_primary_10_3390_pathogens7030066
crossref_primary_10_1371_journal_pcbi_1008564
crossref_primary_10_3389_fcimb_2024_1502770
crossref_primary_10_1016_j_xphs_2016_07_004
crossref_primary_10_1016_j_antiviral_2016_03_010
crossref_primary_10_1016_j_celrep_2016_05_075
crossref_primary_10_1111_aji_12605
crossref_primary_10_1016_j_ijid_2016_07_015
crossref_primary_10_1128_spectrum_01772_22
crossref_primary_10_1155_2018_9480497
crossref_primary_10_1099_jgv_0_001885
crossref_primary_10_1101_gad_298216_117
crossref_primary_10_1038_s41598_019_52626_3
crossref_primary_10_1371_journal_pbio_2006926
crossref_primary_10_1186_s12916_016_0660_0
crossref_primary_10_3390_pharmaceutics14020309
crossref_primary_10_1080_22221751_2018_1559707
crossref_primary_10_1038_s41467_018_04442_y
crossref_primary_10_1146_annurev_med_050715_105122
crossref_primary_10_1038_s41564_017_0016_3
crossref_primary_10_1242_dev_143768
crossref_primary_10_1016_S0140_6736_16_00650_4
crossref_primary_10_1152_physrev_00021_2019
crossref_primary_10_1016_j_ebiom_2023_104457
crossref_primary_10_3390_v13030465
crossref_primary_10_3390_pathogens11121410
crossref_primary_10_1186_s12985_022_01860_9
crossref_primary_10_1016_j_meegid_2017_01_015
crossref_primary_10_1038_s41598_018_23899_x
crossref_primary_10_1038_s41598_019_43303_6
crossref_primary_10_3201_eid2207_151990
crossref_primary_10_1039_C6RA12142J
crossref_primary_10_3390_v11030278
crossref_primary_10_3389_fmicb_2021_710359
crossref_primary_10_3389_fcimb_2016_00144
crossref_primary_10_3389_fphys_2021_749770
crossref_primary_10_1016_j_bioorg_2021_105303
crossref_primary_10_3390_v10050233
crossref_primary_10_3390_v14122776
crossref_primary_10_1111_imm_12681
crossref_primary_10_4049_jimmunol_2001180
crossref_primary_10_1186_s12964_019_0452_1
crossref_primary_10_3389_fncel_2021_695106
crossref_primary_10_14218_ERHM_2020_00060
crossref_primary_10_3389_fcimb_2022_975222
crossref_primary_10_1080_20477724_2020_1845005
crossref_primary_10_1016_j_antiviral_2019_104547
crossref_primary_10_1016_j_virol_2018_07_009
crossref_primary_10_1371_journal_pntd_0005704
crossref_primary_10_1038_s41598_021_85571_1
crossref_primary_10_3390_biomedicines11123316
crossref_primary_10_1371_journal_pmed_1002203
crossref_primary_10_3389_fitd_2022_1059283
crossref_primary_10_1002_1873_3468_14227
crossref_primary_10_1016_j_virusres_2024_199422
crossref_primary_10_3390_jpm15030098
crossref_primary_10_3389_fmicb_2023_1201640
crossref_primary_10_3390_microorganisms7090350
crossref_primary_10_1128_mBio_02134_16
crossref_primary_10_1016_j_semcdb_2020_06_001
crossref_primary_10_1038_s41467_020_16217_5
crossref_primary_10_1016_j_bbadis_2021_166264
crossref_primary_10_2139_ssrn_3346979
crossref_primary_10_1016_j_coviro_2017_11_008
crossref_primary_10_1128_JVI_00104_20
crossref_primary_10_1016_j_onehlt_2023_100506
crossref_primary_10_1016_j_jaut_2016_02_006
crossref_primary_10_3389_fmicb_2018_03252
crossref_primary_10_3390_v11111024
crossref_primary_10_7554_eLife_94347
crossref_primary_10_1002_jmv_24563
crossref_primary_10_1038_s41598_018_27027_7
crossref_primary_10_7705_biomedica_v37i0_3807
crossref_primary_10_1051_medsci_20163204016
crossref_primary_10_3390_ph12030101
crossref_primary_10_1016_j_virol_2024_110276
crossref_primary_10_1016_j_bios_2020_112291
crossref_primary_10_3390_v10050259
crossref_primary_10_1371_journal_pone_0156376
crossref_primary_10_1155_2019_1409582
crossref_primary_10_12688_f1000research_12271_1
crossref_primary_10_1016_j_virol_2016_03_006
crossref_primary_10_3390_microorganisms7120686
crossref_primary_10_1016_j_imu_2021_100613
crossref_primary_10_1002_eji_201847483
crossref_primary_10_1107_S2053230X18003813
crossref_primary_10_1016_j_cyto_2018_08_008
crossref_primary_10_1021_jacs_9b08003
crossref_primary_10_1016_j_amjms_2016_12_018
crossref_primary_10_3390_vaccines11030583
crossref_primary_10_1016_j_clp_2020_08_005
crossref_primary_10_1016_j_jiph_2019_05_004
crossref_primary_10_1016_j_micinf_2015_12_006
crossref_primary_10_3390_molecules27217362
crossref_primary_10_3389_fmicb_2021_746589
crossref_primary_10_1016_j_micinf_2019_04_005
crossref_primary_10_1016_j_amjmed_2016_02_027
crossref_primary_10_1016_j_virusres_2017_07_025
crossref_primary_10_1016_j_ebiom_2017_02_003
crossref_primary_10_1038_srep35296
crossref_primary_10_3390_v16040629
crossref_primary_10_1111_cmi_12740
crossref_primary_10_1186_s12974_016_0748_7
crossref_primary_10_1080_21645515_2020_1775460
crossref_primary_10_1016_j_omto_2021_11_001
crossref_primary_10_1038_s41598_017_06536_x
crossref_primary_10_1099_jgv_0_001024
crossref_primary_10_1021_acsinfecdis_6b00161
crossref_primary_10_1128_JVI_00787_20
crossref_primary_10_1016_j_celrep_2017_11_087
crossref_primary_10_31482_mmsl_2016_018
crossref_primary_10_1089_vim_2022_0082
crossref_primary_10_3390_v16050679
crossref_primary_10_1016_j_micinf_2015_12_010
crossref_primary_10_1016_j_anai_2017_07_007
crossref_primary_10_1128_JVI_00252_16
crossref_primary_10_1016_j_virol_2019_01_019
crossref_primary_10_3389_fcimb_2021_662447
crossref_primary_10_1038_s41467_018_05826_w
crossref_primary_10_1016_j_mayocp_2016_12_019
crossref_primary_10_1097_IIO_0000000000000539
crossref_primary_10_1002_jmv_25440
crossref_primary_10_1038_s41598_018_33528_2
crossref_primary_10_1128_spectrum_02212_21
crossref_primary_10_3389_fimmu_2018_02180
crossref_primary_10_3390_v13061156
crossref_primary_10_1126_sciimmunol_adk9872
crossref_primary_10_1016_j_stem_2016_12_005
crossref_primary_10_1016_j_neuron_2016_11_031
crossref_primary_10_1002_wdev_273
crossref_primary_10_1016_j_ebiom_2019_08_060
crossref_primary_10_1016_j_stem_2016_12_007
crossref_primary_10_4103_tcmj_tcmj_129_20
crossref_primary_10_1016_j_cyto_2023_156327
crossref_primary_10_1007_s12275_017_7063_6
crossref_primary_10_1016_j_cyto_2019_02_009
crossref_primary_10_1016_j_ijid_2016_09_001
crossref_primary_10_3390_ijms18112384
crossref_primary_10_1016_j_pt_2017_04_003
crossref_primary_10_1016_j_cell_2019_08_005
crossref_primary_10_1016_j_chom_2016_03_010
crossref_primary_10_1007_s10989_022_10486_y
crossref_primary_10_3390_v12090925
crossref_primary_10_1016_j_virol_2017_12_003
crossref_primary_10_1016_j_isci_2022_105481
crossref_primary_10_1371_journal_pntd_0004877
Cites_doi 10.1017/S0022172400025997
10.1016/S0042-6822(02)00097-1
10.1016/j.chom.2012.08.009
10.2807/1560-7917.ES2014.19.4.20685
10.1080/00034983.1975.11686983
10.1016/0035-9203(83)90108-6
10.1371/journal.pntd.0001792
10.1038/nature07013
10.1016/0035-9203(64)90200-7
10.1038/nri2303
10.1084/jem.20021840
10.1038/nature03464
10.1128/JVI.02692-10
10.1016/j.meegid.2011.06.009
10.4269/ajtmh.1958.7.323
10.1016/j.antiviral.2005.08.006
10.1371/journal.pntd.0001477
10.4269/ajtmh.14-0151
10.4161/auto.2176
10.1111/1469-0691.12707
10.1038/nm0897-866
10.3201/eid1408.080287
10.1128/JVI.00316-07
10.4269/ajtmh.13-0029
10.1006/viro.2001.1232
10.2807/1560-7917.ES2014.19.9.20720
10.1371/journal.pone.0045800
10.4049/jimmunol.177.11.8008
10.1172/JCI41474
10.1002/eji.200324136
10.1016/j.chom.2010.10.006
10.1038/ncb1007-1102
10.1089/vbz.2006.0562
10.1371/journal.pntd.0001420
10.3390/v3081332
10.1016/0035-9203(58)90085-3
10.1038/sj.embor.embor866
10.1111/j.0959-9673.2005.00445.x
10.1016/j.virusres.2014.03.013
10.1016/0035-9203(56)90029-3
10.1016/0035-9203(52)90042-4
10.1053/jhep.2000.18713
10.1128/JVI.72.1.73-83.1998
10.1089/vbz.2011.0814
10.1016/0035-9203(63)90100-7
10.1056/NEJMoa0805715
10.1016/j.micinf.2011.09.001
10.4269/ajtmh.1969.18.411
10.1371/currents.outbreaks.4635a54dbffba2156fb2fd76dc49f65e
10.1016/j.immuni.2009.02.009
10.3390/v6010069
10.1186/1743-422X-8-432
10.1073/pnas.0907344106
10.1371/journal.ppat.1004548
10.1016/j.virol.2011.07.010
10.1016/j.virol.2014.06.023
10.1126/science.1136880
10.1016/0035-9203(81)90100-0
10.1016/j.virol.2008.02.016
10.1371/journal.pntd.0002681
10.1128/JVI.01305-07
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
DOI 10.1128/JVI.00354-15
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Cellular Tropism and Entry Receptors of Zika Virus
EISSN 1098-5514
EndPage 8896
ExternalDocumentID PMC4524089
oai_HAL_hal_01228435v1
26085147
10_1128_JVI_00354_15
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
ID FETCH-LOGICAL-c484t-938e92bd07e3c9f58a16fa703c1eb73b4bd804b6ced7243c5ccc5ed3fe0767743
ISSN 0022-538X
IngestDate Thu Aug 21 13:51:48 EDT 2025
Thu Aug 14 06:48:24 EDT 2025
Thu Jul 10 17:17:52 EDT 2025
Mon Jul 21 05:45:58 EDT 2025
Tue Jul 01 01:02:39 EDT 2025
Thu Apr 24 22:58:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-938e92bd07e3c9f58a16fa703c1eb73b4bd804b6ced7243c5ccc5ed3fe0767743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4524089
Citation Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, Surasombatpattana P, Talignani L, Thomas F, Cao-Lormeau V-M, Choumet V, Briant L, Desprès P, Amara A, Yssel H, Missé D. 2015. Biology of Zika virus infection in human skin cells. J Virol 89:8880–8896. doi:10.1128/JVI.00354-15.
O.D. and S.W. contributed equally to this article.
ORCID 0000-0001-8926-4050
0000-0002-6485-3841
0000-0003-2238-1978
0000-0002-1995-3501
0000-0001-7454-1836
0000-0002-8774-8323
0000-0001-8603-7039
0000-0002-4163-7353
0000-0001-5606-7480
0000-0001-8265-0936
0000-0003-4714-1006
0000-0002-0283-1815
OpenAccessLink https://jvi.asm.org/content/jvi/89/17/8880.full.pdf
PMID 26085147
PQID 1701891064
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4524089
hal_primary_oai_HAL_hal_01228435v1
proquest_miscellaneous_1701891064
pubmed_primary_26085147
crossref_citationtrail_10_1128_JVI_00354_15
crossref_primary_10_1128_JVI_00354_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
Haddow AJ (e_1_3_3_16_2) 1964; 31
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
Monlun E (e_1_3_3_14_2) 1993; 86
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
Smithburn KC (e_1_3_3_5_2) 1954; 59
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
References_xml – ident: e_1_3_3_6_2
  doi: 10.1017/S0022172400025997
– ident: e_1_3_3_38_2
  doi: 10.1016/S0042-6822(02)00097-1
– ident: e_1_3_3_27_2
  doi: 10.1016/j.chom.2012.08.009
– ident: e_1_3_3_21_2
  doi: 10.2807/1560-7917.ES2014.19.4.20685
– ident: e_1_3_3_3_2
  doi: 10.1080/00034983.1975.11686983
– ident: e_1_3_3_10_2
  doi: 10.1016/0035-9203(83)90108-6
– ident: e_1_3_3_12_2
  doi: 10.1371/journal.pntd.0001792
– ident: e_1_3_3_42_2
  doi: 10.1038/nature07013
– ident: e_1_3_3_4_2
  doi: 10.1016/0035-9203(64)90200-7
– ident: e_1_3_3_43_2
  doi: 10.1038/nri2303
– ident: e_1_3_3_41_2
  doi: 10.1084/jem.20021840
– ident: e_1_3_3_31_2
  doi: 10.1038/nature03464
– ident: e_1_3_3_33_2
  doi: 10.1128/JVI.02692-10
– ident: e_1_3_3_26_2
  doi: 10.1016/j.meegid.2011.06.009
– ident: e_1_3_3_7_2
  doi: 10.4269/ajtmh.1958.7.323
– ident: e_1_3_3_39_2
  doi: 10.1016/j.antiviral.2005.08.006
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.pntd.0001477
– ident: e_1_3_3_23_2
  doi: 10.4269/ajtmh.14-0151
– ident: e_1_3_3_53_2
  doi: 10.4161/auto.2176
– ident: e_1_3_3_19_2
  doi: 10.1111/1469-0691.12707
– ident: e_1_3_3_35_2
  doi: 10.1038/nm0897-866
– ident: e_1_3_3_29_2
  doi: 10.3201/eid1408.080287
– ident: e_1_3_3_49_2
  doi: 10.1128/JVI.00316-07
– ident: e_1_3_3_20_2
  doi: 10.4269/ajtmh.13-0029
– ident: e_1_3_3_36_2
  doi: 10.1006/viro.2001.1232
– ident: e_1_3_3_24_2
  doi: 10.2807/1560-7917.ES2014.19.9.20720
– ident: e_1_3_3_58_2
  doi: 10.1371/journal.pone.0045800
– ident: e_1_3_3_47_2
  doi: 10.4049/jimmunol.177.11.8008
– ident: e_1_3_3_60_2
  doi: 10.1172/JCI41474
– ident: e_1_3_3_48_2
  doi: 10.1002/eji.200324136
– ident: e_1_3_3_62_2
  doi: 10.1016/j.chom.2010.10.006
– ident: e_1_3_3_50_2
  doi: 10.1038/ncb1007-1102
– ident: e_1_3_3_64_2
  doi: 10.1089/vbz.2006.0562
– ident: e_1_3_3_45_2
  doi: 10.1371/journal.pntd.0001420
– ident: e_1_3_3_55_2
  doi: 10.3390/v3081332
– ident: e_1_3_3_15_2
  doi: 10.1016/0035-9203(58)90085-3
– ident: e_1_3_3_40_2
  doi: 10.1038/sj.embor.embor866
– ident: e_1_3_3_28_2
  doi: 10.1111/j.0959-9673.2005.00445.x
– ident: e_1_3_3_46_2
  doi: 10.1016/j.virusres.2014.03.013
– volume: 86
  start-page: 21
  year: 1993
  ident: e_1_3_3_14_2
  article-title: Surveillance of the circulation of arbovirus of medical interest in the region of eastern Senegal
  publication-title: Bull Soc Pathol Exot
– ident: e_1_3_3_13_2
  doi: 10.1016/0035-9203(56)90029-3
– ident: e_1_3_3_32_2
  doi: 10.1016/0035-9203(52)90042-4
– ident: e_1_3_3_37_2
  doi: 10.1053/jhep.2000.18713
– ident: e_1_3_3_2_2
  doi: 10.1128/JVI.72.1.73-83.1998
– ident: e_1_3_3_65_2
  doi: 10.1089/vbz.2011.0814
– ident: e_1_3_3_8_2
  doi: 10.1016/0035-9203(63)90100-7
– ident: e_1_3_3_18_2
  doi: 10.1056/NEJMoa0805715
– volume: 59
  start-page: 157
  year: 1954
  ident: e_1_3_3_5_2
  article-title: Neutralizing antibodies against arthropod-borne viruses in the sera of long-time residents of Malaya and Borneo
  publication-title: Am J Hyg
– ident: e_1_3_3_57_2
  doi: 10.1016/j.micinf.2011.09.001
– ident: e_1_3_3_11_2
  doi: 10.4269/ajtmh.1969.18.411
– ident: e_1_3_3_22_2
  doi: 10.1371/currents.outbreaks.4635a54dbffba2156fb2fd76dc49f65e
– ident: e_1_3_3_51_2
  doi: 10.1016/j.immuni.2009.02.009
– ident: e_1_3_3_30_2
  doi: 10.3390/v6010069
– ident: e_1_3_3_56_2
  doi: 10.1186/1743-422X-8-432
– ident: e_1_3_3_61_2
  doi: 10.1073/pnas.0907344106
– ident: e_1_3_3_34_2
  doi: 10.1371/journal.ppat.1004548
– ident: e_1_3_3_59_2
  doi: 10.1016/j.virol.2011.07.010
– ident: e_1_3_3_25_2
  doi: 10.1016/j.virol.2014.06.023
– ident: e_1_3_3_52_2
  doi: 10.1126/science.1136880
– ident: e_1_3_3_9_2
  doi: 10.1016/0035-9203(81)90100-0
– volume: 31
  start-page: 57
  year: 1964
  ident: e_1_3_3_16_2
  article-title: Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest
  publication-title: Bull World Health Organ
– ident: e_1_3_3_54_2
  doi: 10.1016/j.virol.2008.02.016
– ident: e_1_3_3_63_2
  doi: 10.1371/journal.pntd.0002681
– ident: e_1_3_3_44_2
  doi: 10.1128/JVI.01305-07
SSID ssj0014464
Score 2.6610448
Snippet Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that...
Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that...
UNLABELLEDZika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8880
SubjectTerms Aedes
Aedes - virology
Animals
Autophagy
Autophagy - immunology
Axl Receptor Tyrosine Kinase
Biochemistry, Molecular Biology
Cell Adhesion Molecules
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Cells, Cultured
Cellular Biology
Chlorocebus aethiops
Cytokines
Cytokines - biosynthesis
DEAD Box Protein 58
DEAD-Box RNA Helicases
DEAD-box RNA Helicases - genetics
DEAD-box RNA Helicases - metabolism
Dendritic Cells
Dendritic Cells - immunology
Dendritic Cells - virology
Fibroblasts
Fibroblasts - virology
Flaviviridae
Flaviviridae - immunology
Flaviviridae - physiology
Flaviviridae Infections
Flaviviridae Infections - immunology
Flaviviridae Infections - virology
HEK293 Cells
Hepatitis A VIrus Cellular Receptor 1
Humans
Insect Vectors
Insect Vectors - virology
Interferon-beta
Interferon-beta - biosynthesis
Interferon-beta - immunology
Interferon-Induced Helicase, IFIH1
Keratinocytes
Keratinocytes - virology
Lectins, C-Type
Lectins, C-Type - genetics
Lectins, C-Type - metabolism
Life Sciences
Membrane Glycoproteins
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Microbiology and Parasitology
Myxovirus Resistance Proteins
Myxovirus Resistance Proteins - biosynthesis
Phagosomes
Phagosomes - immunology
Proto-Oncogene Proteins
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Receptor Protein-Tyrosine Kinases
Receptor Protein-Tyrosine Kinases - genetics
Receptor Protein-Tyrosine Kinases - metabolism
Receptors, Cell Surface
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Receptors, Immunologic
Receptors, Virus
Receptors, Virus - genetics
Receptors, Virus - metabolism
RNA Interference
RNA, Small Interfering
Skin
Skin - immunology
Skin - virology
Toll-Like Receptor 3
Toll-Like Receptor 3 - genetics
Toll-Like Receptor 3 - immunology
Toll-Like Receptor 3 - metabolism
Toll-Like Receptor 7
Toll-Like Receptor 7 - immunology
Ubiquitins
Ubiquitins - biosynthesis
Vero Cells
Virology
Virus Internalization
Virus Replication
Virus-Cell Interactions
Title Biology of Zika Virus Infection in Human Skin Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/26085147
https://www.proquest.com/docview/1701891064
https://hal.science/hal-01228435
https://pubmed.ncbi.nlm.nih.gov/PMC4524089
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYEBIvaFxXBiggeKoykthJnMcxOnWj2iTUThUvlu04alhIq16Yxq_n2E6yhDFp8BJFiZNI_k6Oz-dzQ-i9wiLkKsZuonzpEliC3CTj2E0VUDEaCViCTIDsaTSckJNpOK17tVfZJWuxL3_9Na_kf1CFa4CrzpL9B2Sbl8IFOAd84QgIw_FOGH-qKiiBwfctv-D983y5WcEvb-OrTAyj3aTXLbb6h6ooVrcYozrbrb2_PuQ_rPv-K9DWYjFr4P-svnN4yPRFP1vMrJ-9yK89PLl2TJg9VV3n8JKXBb9qVP_gQmd55Vf8klfRwWpZ3662Hvywia2ClcOqS12NVNtcbX1qWwLVchO3tCOwba-90lLbzPamFg90ZsLJ-fG-dnQS1yZ8dotln56xo8loxMaD6XgL3Q-AJRhGffylcSIB0yV1rkNAP7bf17FCtmY6BvYmwfgzTrZleIx30KMKJOfAwv8Y3VPlE_Sggv4pwtWZM88cLQSOEQKnEQInLx0jBI4WAscIwTM0ORqMD4du1QnDlYSStZtgqpJApF6ssEyykHI_yjgoa-krEWNBREo9IiKp0jggWIZSylClOFNeHIGBj5-j7XJeql3kUI7DiAtCFElIFng8Booc88BLU09FUdBD_XpmmKzKxOtuJQUzdDGgDOaRmXlkfthDH5rRC1se5ZZx72CSmyG6pvnwYMT0Ne3bpWC0__R76G2NAQMlpz1XvFTzzYrppgEUDNuI9NALi0nzLiDkwBpI3ENxB63Ox7p3ynxmCqmTUBf4S17e4bt76OH1H_AKba-XG_UazNG1eGOE7jdEw4sp
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biology+of+Zika+Virus+Infection+in+Human+Skin+Cells&rft.jtitle=Journal+of+virology&rft.au=Hamel%2C+Rodolphe&rft.au=Dejarnac%2C+Oph%C3%A9lie&rft.au=Wichit%2C+Sineewanlaya&rft.au=Ekchariyawat%2C+Peeraya&rft.date=2015-09-01&rft.eissn=1098-5514&rft.volume=89&rft.issue=17&rft.spage=8880&rft.epage=8896&rft_id=info:doi/10.1128%2FJVI.00354-15&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon