Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue

Laboratory of Physiology, Department of Biology, Morgan State University, Baltimore, Maryland Submitted 11 November 2004 ; accepted in final form 14 February 2005 A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Tw...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: endocrinology and metabolism Vol. 289; no. 1; pp. E68 - E74
Main Authors Koban, Michael, Swinson, Kevin L
Format Journal Article
LanguageEnglish
Published United States 01.07.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Laboratory of Physiology, Department of Biology, Morgan State University, Baltimore, Maryland Submitted 11 November 2004 ; accepted in final form 14 February 2005 A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1 ) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2 ) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3 ) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20 , rats more than doubled food consumption while losing 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT. rapid eye movement; oxygen consumption; uncoupling protein-1 Address for reprint requests and other correspondence: M. Koban, Laboratory of Physiology, Richard N. Dixon Science Research Bldg., Dept. of Biology, Morgan State University, 1700 E. Cold Spring Ln., Baltimore, MD 21251 (e-mail: mkoban{at}aol.com )
AbstractList Laboratory of Physiology, Department of Biology, Morgan State University, Baltimore, Maryland Submitted 11 November 2004 ; accepted in final form 14 February 2005 A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1 ) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2 ) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3 ) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20 , rats more than doubled food consumption while losing 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT. rapid eye movement; oxygen consumption; uncoupling protein-1 Address for reprint requests and other correspondence: M. Koban, Laboratory of Physiology, Richard N. Dixon Science Research Bldg., Dept. of Biology, Morgan State University, 1700 E. Cold Spring Ln., Baltimore, MD 21251 (e-mail: mkoban{at}aol.com )
A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing approximately 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.
A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing approximately 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing approximately 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.
A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing ∼11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.
A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing similar to 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.
Author Swinson, Kevin L
Koban, Michael
Author_xml – sequence: 1
  fullname: Koban, Michael
– sequence: 2
  fullname: Swinson, Kevin L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15727948$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFF2CBvGJFBv8lcZZoNAWkViDUri3HvplxlbGDndCZt8fz0yIhFVaW7v2-K-ucC3TmgweE3lIyp7RkH_X9AN6GOSGl4HNGiHiBZnnBClqW5RmaEdrwgkrRnKOLlO4JIXUp2Ct0Tsua1Y2QM7RdrGPwzuAfy5si9QADtjBE90uPLngcOhz1mDD0kCeQ8AZG3YY-C3kOWHuLnTcRdMrLu8V3ilfgAcN2iJDS_oTzuI3hwWNt3RAS4NGlNMFr9LLTfYI3p_cS3V0tbxdfiutvn78uPl0XRkgxFrKtGLeiFo1tjDZEGsNtSzURknLRlZzUmmjNy9pKY1kHla0a2gKznRWsNfwSvT_eHWL4OUEa1cYlA32vPYQpqapueL7O_wvSJoNNJTP47gRO7QasymltdNypx1AzwI6AiSGlCN0fhKh9c-rUnDo0p_bNZUn-JRk3HkoYo3b9v9UPR3XtVusHF0EN613Ovg-r3RPPZKOoWh7-L5_Hr6a-v4Xt-Og9aWqwHf8NeCPGkA
CitedBy_id crossref_primary_10_1196_annals_1417_033
crossref_primary_10_1155_2015_908159
crossref_primary_10_3109_07420528_2011_654018
crossref_primary_10_1097_MED_0b013e3282be9093
crossref_primary_10_1111_j_1467_789X_2012_00991_x
crossref_primary_10_1016_j_bbi_2014_12_002
crossref_primary_10_1152_ajpregu_00326_2011
crossref_primary_10_5665_sleep_2200
crossref_primary_10_1016_j_neubiorev_2012_01_001
crossref_primary_10_1210_en_2008_0038
crossref_primary_10_1111_jnc_14960
crossref_primary_10_1016_j_physbeh_2012_09_005
crossref_primary_10_1152_physrev_00031_2011
crossref_primary_10_1016_j_jneumeth_2022_109606
crossref_primary_10_1007_s13105_014_0356_x
crossref_primary_10_1016_j_sleep_2015_06_024
crossref_primary_10_1007_s00359_011_0690_1
crossref_primary_10_1186_1743_7075_8_86
crossref_primary_10_1111_j_1365_2869_2008_00731_x
crossref_primary_10_1073_pnas_0811400106
crossref_primary_10_3109_10409238_2013_786672
crossref_primary_10_1016_j_neuroscience_2013_08_021
crossref_primary_10_1016_j_neubiorev_2014_08_001
crossref_primary_10_1113_EP088667
crossref_primary_10_1155_2010_270832
crossref_primary_10_1038_s41366_018_0293_9
crossref_primary_10_1038_ejcn_2008_41
crossref_primary_10_1016_j_jpsychires_2010_01_015
crossref_primary_10_1016_j_cellsig_2021_109939
crossref_primary_10_1007_s00360_024_01590_0
crossref_primary_10_1016_j_chest_2024_01_005
crossref_primary_10_1016_j_molmet_2022_101437
crossref_primary_10_3389_fphys_2017_00624
crossref_primary_10_1093_sleep_zsad308
crossref_primary_10_1139_apnm_2015_0337
crossref_primary_10_1002_oby_21703
crossref_primary_10_1113_EP088474
crossref_primary_10_1016_j_smrv_2007_01_002
crossref_primary_10_1016_j_brainresbull_2006_04_001
crossref_primary_10_1371_journal_pone_0052983
crossref_primary_10_1016_j_physbeh_2007_08_026
crossref_primary_10_1038_npp_2013_174
crossref_primary_10_1111_j_1749_6632_2012_06616_x
crossref_primary_10_1016_j_neures_2011_01_008
crossref_primary_10_3390_clockssleep4040048
crossref_primary_10_3945_ajcn_112_038638
crossref_primary_10_1007_s12017_012_8175_0
crossref_primary_10_1016_j_appet_2016_10_005
crossref_primary_10_1016_j_lfs_2019_01_006
crossref_primary_10_1523_ENEURO_0108_16_2016
crossref_primary_10_1016_j_neubiorev_2021_06_039
crossref_primary_10_1093_sleep_33_9_1226
crossref_primary_10_3389_fphys_2021_764737
crossref_primary_10_1016_j_jtherbio_2021_102910
crossref_primary_10_36425_rehab345206
crossref_primary_10_1210_en_2005_0695
crossref_primary_10_1016_j_psyneuen_2009_03_003
crossref_primary_10_1111_j_1365_2826_2006_01412_x
crossref_primary_10_3389_fpsyt_2022_830541
crossref_primary_10_1016_j_neubiorev_2024_105597
crossref_primary_10_3389_fnut_2024_1397185
crossref_primary_10_1097_HNP_0000000000000362
crossref_primary_10_1021_acs_jproteome_9b00234
crossref_primary_10_3389_fpsyt_2018_00266
crossref_primary_10_1089_gg_2017_0001
crossref_primary_10_1016_j_bbr_2010_05_020
crossref_primary_10_1152_ajpendo_00660_2009
crossref_primary_10_3390_cimb46030138
crossref_primary_10_1038_ijo_2012_124
crossref_primary_10_3389_fnins_2022_907508
crossref_primary_10_1016_j_yhbeh_2014_08_015
crossref_primary_10_1016_j_pbb_2022_173410
crossref_primary_10_1016_j_febslet_2007_06_079
crossref_primary_10_1038_s41421_023_00541_3
crossref_primary_10_3390_clockssleep2040033
crossref_primary_10_1093_ajcn_87_2_310
crossref_primary_10_1007_s00213_023_06369_9
crossref_primary_10_1371_journal_pbio_3000548
crossref_primary_10_1038_nm_1994
crossref_primary_10_1016_j_metabol_2022_155158
crossref_primary_10_3389_fnins_2024_1452429
crossref_primary_10_1371_journal_pone_0011766
crossref_primary_10_1177_0148607108325180
crossref_primary_10_1093_aje_kwj280
crossref_primary_10_1111_ejn_12463
crossref_primary_10_1093_sleep_zsz177
crossref_primary_10_1113_EP085323
crossref_primary_10_1136_oemed_2014_102548
crossref_primary_10_1007_s11064_015_1575_4
crossref_primary_10_1016_j_smrv_2013_07_003
crossref_primary_10_1111_jre_12189
crossref_primary_10_3389_fendo_2022_885909
crossref_primary_10_1007_s12038_024_00450_x
crossref_primary_10_1242_jeb_005322
crossref_primary_10_3389_fneur_2020_565025
crossref_primary_10_1007_s12035_017_0541_3
crossref_primary_10_1007_s13679_012_0026_7
crossref_primary_10_1016_j_bbr_2011_06_018
crossref_primary_10_1093_sleep_32_9_1135
crossref_primary_10_1007_s13167_020_00222_1
crossref_primary_10_1016_j_ccc_2008_02_006
crossref_primary_10_1111_nyas_14926
crossref_primary_10_1111_j_1467_789X_2008_00478_x
Cites_doi 10.1152/ajpregu.2000.278.4.R905
10.1079/PNS2001101
10.1016/0166-4328(85)90031-2
10.1016/0091-3057(74)90018-5
10.1046/j.1365-2796.2003.01176.x
10.1016/S0031-9384(96)00363-0
10.1016/0165-1838(96)00037-9
10.1210/endo-127-2-882
10.1016/S0304-3940(02)00024-1
10.1016/S0140-6736(99)01376-8
10.1152/ajpregu.1997.273.5.R1612
10.1016/S0031-9384(99)00181-X
10.1016/0031-9384(94)90380-8
10.1097/00075198-200102000-00004
10.1046/j.1365-2826.2003.01067.x
10.1152/physrev.00015.2003
10.1073/pnas.0436428100
10.1210/endo.136.4.7895653
10.1111/j.1749-6632.1999.tb08120.x
10.1152/ajpendo.00558.2001
10.1093/sleep/12.1.13
10.1016/j.brainres.2004.01.019
10.2170/jjphysiol.53.205
10.1007/BF00583941
10.1152/ajpendo.00553.2003
10.1097/00044067-200302000-00004
10.1093/sleep/12.1.22
10.1038/421713a
10.1016/0031-9384(84)90283-X
10.1093/sleep/13.3.218
10.1093/sleep/12.1.31
10.1046/j.1365-2796.2001.00913.x
10.7326/0003-4819-141-11-200412070-00008
10.1126/science.6857280
10.1016/S0031-9384(03)00080-5
10.1590/S0100-879X2004000600003
10.1093/sleep/25.1.18
10.1046/j.1365-2869.1998.00122.x
10.1172/JCI118206
10.1139/y78-015
10.1146/annurev.nu.05.070185.001411
10.1210/mend-2-8-706
10.1046/j.1365-2826.2002.00812.x
10.1172/JCI110541
10.1016/0361-9230(89)90025-7
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
DOI 10.1152/ajpendo.00543.2004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1555
EndPage E74
ExternalDocumentID 15727948
10_1152_ajpendo_00543_2004
ajpendo_289_1_E68
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: 2-SO6-GM-51971-04
– fundername: NCRR NIH HHS
  grantid: G12-RR-17581-02
GroupedDBID -
23M
2WC
39C
53G
5GY
5VS
8M5
ABPTK
ACPRK
ADACO
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
C1A
DIK
DL
E3Z
EBS
F5P
GX1
H13
KQ8
O0-
OK1
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
WH7
WOQ
---
4.4
6J9
AAYXX
ABJNI
BKKCC
BTFSW
CITATION
EJD
EMOBN
ITBOX
P6G
RPRKH
TR2
W8F
XSW
YSK
AAFWJ
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c484t-8b623d4749d9cac08cc3db1a048134f5307a0aa357d8cd2fe6d691be2dfd42bc3
ISSN 0193-1849
IngestDate Fri Jul 11 03:02:34 EDT 2025
Fri Jul 11 12:34:13 EDT 2025
Wed Feb 19 01:44:13 EST 2025
Tue Jul 01 03:18:04 EDT 2025
Thu Apr 24 22:52:12 EDT 2025
Tue Jan 05 17:54:14 EST 2021
Mon May 06 11:41:24 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-8b623d4749d9cac08cc3db1a048134f5307a0aa357d8cd2fe6d691be2dfd42bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15727948
PQID 19937968
PQPubID 23462
ParticipantIDs crossref_primary_10_1152_ajpendo_00543_2004
highwire_physiology_ajpendo_289_1_E68
crossref_citationtrail_10_1152_ajpendo_00543_2004
proquest_miscellaneous_67937493
pubmed_primary_15727948
proquest_miscellaneous_19937968
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20050701
2005-07-00
2005-Jul
PublicationDateYYYYMMDD 2005-07-01
PublicationDate_xml – month: 07
  year: 2005
  text: 20050701
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology: endocrinology and metabolism
PublicationTitleAlternate Am J Physiol Endocrinol Metab
PublicationYear 2005
References R24A
R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R10
R12
R11
R14
R13
R16
R15
R18
R17
R19
References_xml – ident: R24A
– ident: R14
  doi: 10.1152/ajpregu.2000.278.4.R905
– ident: R33
  doi: 10.1079/PNS2001101
– ident: R20
  doi: 10.1016/0166-4328(85)90031-2
– ident: R28
  doi: 10.1016/0091-3057(74)90018-5
– ident: R4
  doi: 10.1046/j.1365-2796.2003.01176.x
– ident: R49
  doi: 10.1016/S0031-9384(96)00363-0
– ident: R19
  doi: 10.1016/0165-1838(96)00037-9
– ident: R2
  doi: 10.1210/endo-127-2-882
– ident: R43
  doi: 10.1016/S0304-3940(02)00024-1
– ident: R38
  doi: 10.1016/S0140-6736(99)01376-8
– ident: R36
  doi: 10.1152/ajpregu.1997.273.5.R1612
– ident: R44
  doi: 10.1016/S0031-9384(99)00181-X
– ident: R5
  doi: 10.1016/0031-9384(94)90380-8
– ident: R17
  doi: 10.1097/00075198-200102000-00004
– ident: R40
  doi: 10.1046/j.1365-2826.2003.01067.x
– ident: R6
  doi: 10.1152/physrev.00015.2003
– ident: R47
  doi: 10.1073/pnas.0436428100
– ident: R13
  doi: 10.1210/endo.136.4.7895653
– ident: R45
  doi: 10.1111/j.1749-6632.1999.tb08120.x
– ident: R12
  doi: 10.1152/ajpendo.00558.2001
– ident: R9
  doi: 10.1093/sleep/12.1.13
– ident: R27
  doi: 10.1016/j.brainres.2004.01.019
– ident: R18
  doi: 10.2170/jjphysiol.53.205
– ident: R25
  doi: 10.1007/BF00583941
– ident: R10
  doi: 10.1152/ajpendo.00553.2003
– ident: R11
– ident: R8
  doi: 10.1097/00044067-200302000-00004
– ident: R26
  doi: 10.1093/sleep/12.1.22
– ident: R46
  doi: 10.1038/421713a
– ident: R23
  doi: 10.1016/0031-9384(84)90283-X
– ident: R32
  doi: 10.1093/sleep/13.3.218
– ident: R21
– ident: R3
  doi: 10.1093/sleep/12.1.31
– ident: R29
  doi: 10.1046/j.1365-2796.2001.00913.x
– ident: R39
  doi: 10.7326/0003-4819-141-11-200412070-00008
– ident: R35
  doi: 10.1126/science.6857280
– ident: R31
– ident: R30
  doi: 10.1016/S0031-9384(03)00080-5
– ident: R1
  doi: 10.1590/S0100-879X2004000600003
– ident: R34
  doi: 10.1093/sleep/25.1.18
– ident: R41
  doi: 10.1046/j.1365-2869.1998.00122.x
– ident: R16
  doi: 10.1172/JCI118206
– ident: R24
– ident: R15
  doi: 10.1139/y78-015
– ident: R22
  doi: 10.1146/annurev.nu.05.070185.001411
– ident: R37
  doi: 10.1210/mend-2-8-706
– ident: R42
  doi: 10.1046/j.1365-2826.2002.00812.x
– ident: R48
  doi: 10.1172/JCI110541
– ident: R7
  doi: 10.1016/0361-9230(89)90025-7
SSID ssj0007542
Score 2.200098
Snippet Laboratory of Physiology, Department of Biology, Morgan State University, Baltimore, Maryland Submitted 11 November 2004 ; accepted in final form 14 February...
A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E68
SubjectTerms Adipose Tissue, Brown - metabolism
Animals
Carrier Proteins - metabolism
Energy Metabolism
Gene Expression Regulation
Hyperphagia - etiology
Hyperphagia - metabolism
Ion Channels
Membrane Proteins - metabolism
Men
Mitochondrial Proteins
Oxygen Consumption
Rats
Rats, Sprague-Dawley
Sleep Deprivation - complications
Sleep Deprivation - metabolism
Thermogenesis
Uncoupling Protein 1
Title Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue
URI http://ajpendo.physiology.org/cgi/content/abstract/289/1/E68
https://www.ncbi.nlm.nih.gov/pubmed/15727948
https://www.proquest.com/docview/19937968
https://www.proquest.com/docview/67937493
Volume 289
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYuHTc_AC9VRpM4afI4TUUTU9FArbQ3y44daWhLKppqwH_iP3KO7TgpHdPgJYpyqZyeL8ffcc75DiFvwixTUcx0oDOdBCxPwyDLJ2VQ5FkZlqlUVsB09ik9XrCPZ8nZYPCrl7W0buRB8fPaupL_sSocA7tilew_WNb_KByAfbAvbMHCsL2VjZ2y7ejLdBasLrRemsRW168MaSCYdzXCCnJklNgtGkyOqtaoD-F0l5A1ruDk4ug0xH7KGkX_bXKsSYKUGKePhDpfYmZ7Y-zUZ7T-k09Pg8Isl9gyGGz8U6kafFPVqT21A3HqhabyRoqtNH5c-Lny1WknMIVXrkiiXaZIfEqrX7nM4wDCSesftfO2EAkDoUn67jiyLYU2cGed69Q24Nl2-gmKyIqv2DS4PkASGpvAv38xPO7y0sAgTICy5Vbec1N_-4950Wcrul_mMDIechjFHXI3gqgE3erJ506cHpsJ2-p8-6RtjVYSvd8enOkHZUeySYlameq_hzyG-swfkgcuZqGHFoCPyEBXu2TvsBJNffmDvqOn3ty75N7MJWvske8OntTDk_bgSeuSIjxpC0_q4YnHNQWgUA9PivCkCE_awRNOUwNP6uBJLTwfk8WH6fzoOHCNPoKCZawJMgkkXLEJy1VeiGKcFUWsZChQyyhmZQLzkBgLEScT7LUVlTpVaR5KHalSsUgW8ROyU9WVfkaokKJU47HUKheMZSkQ3FjDXsziEtiyHpKw_a954VTwsRnLBTfRcBLx1trGVNillQ3JyN-ztBowN14dtibk3evGcUVpDrhq7_Bg4ktVDsnb6-7ZAt6QvG4xwWEawG97otL1esUxD3eS33RFikqYLI-H5KkFU_csDof7txzFc3K_e8NfkJ3m21q_BGreyFfmhfgNGVnr0A
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chronic+REM-sleep+deprivation+of+rats+elevates+metabolic+rate+and+increases+UCP1+gene+expression+in+brown+adipose+tissue&rft.jtitle=American+journal+of+physiology%3A+endocrinology+and+metabolism&rft.au=Koban%2C+Michael&rft.au=Swinson%2C+Kevin+L&rft.date=2005-07-01&rft.issn=0193-1849&rft.eissn=1522-1555&rft.volume=289&rft.issue=1&rft.spage=E68&rft_id=info:doi/10.1152%2Fajpendo.00543.2004&rft_id=info%3Apmid%2F15727948&rft.externalDBID=n%2Fa&rft.externalDocID=ajpendo_289_1_E68
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1849&client=summon