Fitting latent growth models with small sample sizes and non-normal missing data

This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very smal...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of behavioral development Vol. 45; no. 2; pp. 179 - 192
Main Authors Shi, Dexin, DiStefano, Christine, Zheng, Xiaying, Liu, Ren, Jiang, Zhehan
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.03.2021
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text
ISSN0165-0254
1464-0651
DOI10.1177/0165025420979365

Cover

Loading…
Abstract This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML estimators, “MLR” was the optimal choice, as it was found to be robust to both non-normality and missing data while also yielding more accurate standard error estimates and growth parameter coverage. However, the choice “MLMV” produced the most accurate p values for the χ2 test statistic under conditions studied. Regarding the goodness of fit indices, as sample size decreased, all three fit indices studied (i.e., comparative fit index, root mean square error of approximation, and standardized root mean square residual) exhibited worse fit. When the sample size was very small (e.g., N < 60), the fit indices would imply that a proposed model fit poorly, when this might not be actually the case in the population.
AbstractList This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML estimators, “MLR” was the optimal choice, as it was found to be robust to both non-normality and missing data while also yielding more accurate standard error estimates and growth parameter coverage. However, the choice “MLMV” produced the most accurate p values for the χ 2 test statistic under conditions studied. Regarding the goodness of fit indices, as sample size decreased, all three fit indices studied (i.e., comparative fit index, root mean square error of approximation, and standardized root mean square residual) exhibited worse fit. When the sample size was very small (e.g., N < 60), the fit indices would imply that a proposed model fit poorly, when this might not be actually the case in the population.
This study investigates the performance of robust ML estimators when fitting and evaluating small sample latent growth models (LGM) with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., < 100). Among the robust ML estimators, "MLR" was the optimal choice, as it was found to be robust to both non-normality and missing data while also yielding more accurate standard error estimates and growth parameter coverage. However, the choice "MLMV" produced the most accurate values for the Chi-square test statistic under conditions studied. Regarding the goodness of fit indices, as sample size decreased, all three fit indices studied (i.e., CFI, RMSEA, and SRMR) exhibited worse fit. When the sample size was very small (e.g., < 60), the fit indices would imply that a proposed model fit poorly, when this might not be actually the case in the population.
This study investigates the performance of robust ML estimators when fitting and evaluating small sample latent growth models (LGM) with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML estimators, “MLR” was the optimal choice, as it was found to be robust to both non-normality and missing data while also yielding more accurate standard error estimates and growth parameter coverage. However, the choice “MLMV” produced the most accurate p values for the Chi-square test statistic under conditions studied. Regarding the goodness of fit indices, as sample size decreased, all three fit indices studied (i.e., CFI, RMSEA, and SRMR) exhibited worse fit. When the sample size was very small (e.g., N < 60), the fit indices would imply that a proposed model fit poorly, when this might not be actually the case in the population.
This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML estimators, “MLR” was the optimal choice, as it was found to be robust to both non-normality and missing data while also yielding more accurate standard error estimates and growth parameter coverage. However, the choice “MLMV” produced the most accurate p values for the χ2 test statistic under conditions studied. Regarding the goodness of fit indices, as sample size decreased, all three fit indices studied (i.e., comparative fit index, root mean square error of approximation, and standardized root mean square residual) exhibited worse fit. When the sample size was very small (e.g., N < 60), the fit indices would imply that a proposed model fit poorly, when this might not be actually the case in the population.
This study investigates the performance of robust ML estimators when fitting and evaluating small sample latent growth models (LGM) with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML estimators, "MLR" was the optimal choice, as it was found to be robust to both non-normality and missing data while also yielding more accurate standard error estimates and growth parameter coverage. However, the choice "MLMV" produced the most accurate p values for the Chi-square test statistic under conditions studied. Regarding the goodness of fit indices, as sample size decreased, all three fit indices studied (i.e., CFI, RMSEA, and SRMR) exhibited worse fit. When the sample size was very small (e.g., N < 60), the fit indices would imply that a proposed model fit poorly, when this might not be actually the case in the population.This study investigates the performance of robust ML estimators when fitting and evaluating small sample latent growth models (LGM) with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML estimators, "MLR" was the optimal choice, as it was found to be robust to both non-normality and missing data while also yielding more accurate standard error estimates and growth parameter coverage. However, the choice "MLMV" produced the most accurate p values for the Chi-square test statistic under conditions studied. Regarding the goodness of fit indices, as sample size decreased, all three fit indices studied (i.e., CFI, RMSEA, and SRMR) exhibited worse fit. When the sample size was very small (e.g., N < 60), the fit indices would imply that a proposed model fit poorly, when this might not be actually the case in the population.
This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML estimators, "MLR" was the optimal choice, as it was found to be robust to both non-normality and missing data while also yielding more accurate standard error estimates and growth parameter coverage. However, the choice "MLMV" produced the most accurate p values for the X[superscript 2] test statistic under conditions studied. Regarding the goodness of fit indices, as sample size decreased, all three fit indices studied (i.e., comparative fit index, root mean square error of approximation, and standardized root mean square residual) exhibited worse fit. When the sample size was very small (e.g., N < 60), the fit indices would imply that a proposed model fit poorly, when this might not be actually the case in the population.
Author Zheng, Xiaying
Jiang, Zhehan
DiStefano, Christine
Liu, Ren
Shi, Dexin
Author_xml – sequence: 1
  givenname: Dexin
  orcidid: 0000-0002-4120-6756
  surname: Shi
  fullname: Shi, Dexin
  email: shid@mailbox.sc.edu
– sequence: 2
  givenname: Christine
  surname: DiStefano
  fullname: DiStefano, Christine
– sequence: 3
  givenname: Xiaying
  surname: Zheng
  fullname: Zheng, Xiaying
– sequence: 4
  givenname: Ren
  surname: Liu
  fullname: Liu, Ren
– sequence: 5
  givenname: Zhehan
  surname: Jiang
  fullname: Jiang, Zhehan
  email: jiangzhehan@gmail.com
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1283707$$DView record in ERIC
https://www.ncbi.nlm.nih.gov/pubmed/33664535$$D View this record in MEDLINE/PubMed
BookMark eNp9UT1vFDEQtVAQuQR6GpAlGpoF2-uPdYMURQkJihQKqK2J13dx5LUP20cEvx4vlwRyErgZS-_Nm_dmDtBeTNEh9JKSd5Qq9Z5QKQgTnBGtdC_FE7SgXPKOSEH30GKGuxnfRwel3JD2ekWeof2-l5KLXizQ51Nfq48rHKC6WPEqp9t6jac0ulDwrW__MkEIuMC0Dg4X_9MVDHHEzUoXU24gnnwps8YIFZ6jp0sIxb24q4fo6-nJl-Oz7uLy4_nx0UVn-cBrpzQbBgEjc9Ite0tlq6IHQth4tSSWSQtq0BKYHgSXbgCptRWgnOtHqlqOQ_Rhq7veXE1utM18hmDW2U-Qf5gE3jxGor82q_TdzJM5G5rA2zuBnL5tXKmmxbAuBIgubYphXA9cU_ab-maHepM2ObZ4jTXItm3d68Z6_bejByv3y26EV1uCy94-wCefaBuhiGq43OI2p1KyWxrrK1Sf5gA-GErMfHWze_XWSHYa78X_09JtWwqs3J84_-T_Amg-uP0
CitedBy_id crossref_primary_10_1111_jopy_12742
crossref_primary_10_1016_j_ijhm_2024_103748
crossref_primary_10_1016_j_infbeh_2022_101801
crossref_primary_10_1371_journal_pone_0265480
crossref_primary_10_1123_jsep_2024_0109
crossref_primary_10_1016_j_heliyon_2023_e21321
crossref_primary_10_1016_j_mhp_2023_200295
crossref_primary_10_1016_j_jvb_2022_103809
crossref_primary_10_52380_ijcer_2023_10_2_308
crossref_primary_10_1007_s41542_024_00206_x
crossref_primary_10_1007_s11121_024_01749_9
crossref_primary_10_1111_jora_12823
crossref_primary_10_1016_j_lindif_2024_102408
crossref_primary_10_1177_00131644211010234
crossref_primary_10_1016_j_bone_2025_117428
crossref_primary_10_1080_10705511_2022_2032078
crossref_primary_10_1186_s13561_023_00472_5
crossref_primary_10_1007_s10459_023_10279_y
crossref_primary_10_1080_1750399X_2025_2453349
crossref_primary_10_1136_bmjopen_2024_092724
crossref_primary_10_1007_s10803_021_05373_2
crossref_primary_10_1016_j_jpeds_2022_09_047
crossref_primary_10_1007_s12144_024_06437_z
crossref_primary_10_1080_29933021_2025_2469036
crossref_primary_10_1080_21642850_2022_2104724
crossref_primary_10_1111_hex_14176
crossref_primary_10_1080_10615806_2023_2290667
crossref_primary_10_1080_09500693_2024_2394706
crossref_primary_10_1016_j_ejon_2024_102687
crossref_primary_10_1002_gps_5893
crossref_primary_10_1080_10640266_2024_2357942
crossref_primary_10_1186_s40359_024_01692_y
crossref_primary_10_3390_psycholint6020029
crossref_primary_10_1007_s11482_024_10397_8
crossref_primary_10_1007_s10802_023_01140_2
crossref_primary_10_1016_j_jpain_2024_02_005
crossref_primary_10_1177_00131644231158854
crossref_primary_10_5964_ps_7237
crossref_primary_10_1111_jan_16068
crossref_primary_10_1080_10705511_2021_1931870
crossref_primary_10_1007_s13178_024_01038_8
crossref_primary_10_1080_10705511_2023_2264514
crossref_primary_10_1080_14616734_2023_2286228
Cites_doi 10.1037/0033-2909.107.2.238
10.1080/10705511.2020.1717957
10.1080/03610918.2014.983648
10.1093/biomet/63.3.581
10.1080/10705511.2013.824793
10.1080/10705511.2017.1369088
10.1037/1082-989X.1.1.16
10.1002/ajmg.a.31286
10.1037/a0015858
10.1027/1614-2241.4.1.22
10.1080/00273171.2014.933697
10.1007/BF02294746
10.1080/10705511.2019.1637741
10.1177/0013164414548894
10.1177/0049124198026003003
10.1080/00273171.2016.1167008
10.1007/BF02293687
10.1080/10705511.2012.634724
10.3758/s13428-017-0976-5
10.1207/S15328007SEM0904_8
10.32614/CRAN.package.simsem
10.1002/9781118619179
10.1177/0013164419845039
10.1177/0013164418783530
10.1037/a0015808
10.1080/00273171.2015.1133274
10.1111/j.2044-8317.1978.tb00581.x
10.1080/10705519809540104
10.1177/0013164416661824
10.1007/s10648-014-9287-x
10.1080/00273171.2018.1455142
10.1080/10705511.2016.1269606
10.1080/00273171.2012.715252
10.1037/0033-2909.105.1.156
10.1037/1082-989X.8.3.338
10.1037/a0020143
10.1080/10705519909540118
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
NPM
7QJ
AHOVV
7X8
5PM
DOI 10.1177/0165025420979365
DatabaseName CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
PubMed
Applied Social Sciences Index & Abstracts (ASSIA)
Education Research Index
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ERIC
PubMed
Applied Social Sciences Index and Abstracts (ASSIA)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Applied Social Sciences Index and Abstracts (ASSIA)
MEDLINE - Academic
ERIC

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1464-0651
ERIC EJ1283707
EndPage 192
ExternalDocumentID PMC7928428
33664535
EJ1283707
10_1177_0165025420979365
10.1177_0165025420979365
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R21DC017252
  funderid: https://doi.org/10.13039/100000002
– fundername: university of south carolina
  grantid: 13580-17-44758
  funderid: https://doi.org/10.13039/100008899
– fundername: NIMH NIH HHS
  grantid: K23 MH120476
– fundername: NIDCD NIH HHS
  grantid: R21 DC017252
GroupedDBID ---
--Z
-ET
-TM
-W8
-~X
.2G
.2J
.2L
.2N
.GO
01A
09Z
0R~
1~K
29J
31S
31U
31V
31W
31X
31Y
31Z
4.4
41~
53G
56W
5GY
5VS
AABMB
AABOD
AACKU
AACMV
AACTG
AADIR
AADUE
AAEWN
AAGGD
AAGLT
AAHSB
AAJIQ
AAJOX
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWLO
AAYTG
ABAWP
ABCCA
ABCJG
ABDBF
ABDWY
ABEIX
ABFWQ
ABFXH
ABHKI
ABHQH
ABIDT
ABIVO
ABJNI
ABKRH
ABLUO
ABOPQ
ABPGX
ABPNF
ABQKF
ABQPY
ABQXT
ABRHV
ABRLO
ABUJY
ABVFX
ABYTW
ACABN
ACAEP
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACFUR
ACFZE
ACGBL
ACGEJ
ACGFS
ACGZU
ACHQT
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUFS
ACUHS
ACUIR
ACXKE
ACXMB
ADBBV
ADCVX
ADDLC
ADEBD
ADEIA
ADMHG
ADNMO
ADNON
ADPEE
ADRRZ
ADSTG
ADTBJ
ADTOS
ADUKL
ADVBO
ADXPE
ADYCS
AECGH
AECVZ
AEDTQ
AEDXQ
AEOBU
AEONT
AEPTA
AEQLS
AERKM
AESMA
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWFA
AGWNL
AHDMH
AHHFK
AHOJL
AHWHD
AJEFB
AJMMQ
AJUZI
AJWEG
AJXAJ
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AWYRJ
AYAKG
AYPQM
AZFZN
B0M
B8O
B8R
B8S
B8T
B8Z
B93
B94
BBRGL
BDDNI
BDZRT
BKIIM
BMVBW
BPACV
BSEHC
BYIEH
CAG
CBRKF
CCGJY
CEADM
CFDXU
COF
CORYS
CQQTX
CS3
DC-
DC.
DD-
DD0
DD~
DE-
DF0
DG~
DO-
DOPDO
DU5
DV7
DV8
D~Y
EAP
EAS
EBS
EDJ
EJD
EMK
EPS
ESO
ESX
F5P
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HZ~
J8X
K.F
K.J
M4Z
N9A
O9-
OHT
OVD
P.B
P2P
Q1R
Q7K
Q7L
Q7O
Q7P
Q7X
Q82
Q83
RIG
ROL
S01
SASJQ
SAUOL
SBI
SCNPE
SDB
SFB
SFC
SFK
SFT
SFX
SFY
SGA
SGP
SGR
SGU
SGV
SGX
SGZ
SHB
SHF
SHG
SHM
SNB
SPJ
SPP
SPV
SQCSI
SSDHQ
STM
TDBHL
TEORI
TFW
TN5
UPT
WH7
ZGI
ZONMY
ZPLXX
ZPPRI
ZRKOI
~32
~8M
AAYXX
ACCVC
AJGYC
AMNSR
CITATION
7SW
AAEJI
AAPII
AJHME
AJVBE
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
NPM
7QJ
AHOVV
7X8
5PM
ID FETCH-LOGICAL-c484t-792885ad2e6ef3c16e6e53a002dbf0c26ca7896a298546e8a699c5a7ee3d17003
ISSN 0165-0254
IngestDate Thu Aug 21 18:27:38 EDT 2025
Wed Jul 30 11:24:41 EDT 2025
Thu Aug 14 00:04:15 EDT 2025
Mon Jul 21 06:01:52 EDT 2025
Tue Sep 02 19:14:43 EDT 2025
Tue Jul 01 05:26:40 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Tue Jun 17 22:29:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Latent growth models
non-normality
missing data
small sample
latent growth models
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-792885ad2e6ef3c16e6e53a002dbf0c26ca7896a298546e8a699c5a7ee3d17003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4120-6756
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7928428
PMID 33664535
PQID 2486065939
PQPubID 2033251
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7928428
proquest_miscellaneous_2498491228
proquest_journals_2486065939
pubmed_primary_33664535
eric_primary_EJ1283707
crossref_citationtrail_10_1177_0165025420979365
crossref_primary_10_1177_0165025420979365
sage_journals_10_1177_0165025420979365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: England
– name: Amsterdam
PublicationTitle International journal of behavioral development
PublicationTitleAlternate Int J Behav Dev
PublicationYear 2021
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Savalei 2010; 15
Ferguson 2009; 40
Rubin 1976; 63
McNeish, Stapleton 2016; 51
Meredith, Tisak 1990; 55
Pavlov, Shi, Maydeu-Olivares 2020; 27
Shi, Lee, Terry 2018; 25
McNeish, Matta 2018; 50
Curran, West, Finch 1996; 1
Moshagen 2012; 19
Shi, Lee, Maydeu-Olivares 2019; 79
Hatton, Sideris, Skinner, Mankowski, Bailey, Roberts, Mirrett 2006; 140
Gao, Shi, Maydeu-Olivares 2020; 27
Micceri 1989; 105
Boomsma, Jöreskog, Wold 1982
McNeish, Harring 2017; 46
Muthén, Muthén 2002; 9
Bauer, Curran 2003; 8
Bentler 1990; 107
McNeish, Stapleton 2016; 28
Ferrer, Balluerka, Widaman 2008; 4
Bradley 1978; 31
Brosseau-Liard, Savalei 2014; 49
Foldnes, Olsson 2016; 51
Savalei 2018; 53
Savalei 2014; 21
Wu, West, Taylor 2009; 14
Hu, Bentler 1999; 6
Maydeu-Olivares 2017; 24
Olvera Astivia, Zumbo 2015; 75
Brosseau-Liard, Savalei, Li 2012; 47
McNeish 2017; 86
Shi, Lee, Fairchild, Maydeu-Olivares 2019; 80
Chou, Bentler, Pentz 1998; 5
McNeish, Harring 2017; 77
Vale, Maurelli 1983; 48
Hoogland, Boomsma 1998; 26
bibr39-0165025420979365
bibr38-0165025420979365
Jöreskog K. G. (bibr23-0165025420979365) 1988
bibr13-0165025420979365
bibr21-0165025420979365
bibr8-0165025420979365
bibr47-0165025420979365
bibr30-0165025420979365
bibr11-0165025420979365
bibr54-0165025420979365
bibr29-0165025420979365
bibr7-0165025420979365
Zheng X. (bibr55-0165025420979365) 2017
Enders C. K. (bibr12-0165025420979365) 2010
bibr46-0165025420979365
bibr28-0165025420979365
bibr36-0165025420979365
bibr10-0165025420979365
Boomsma A. (bibr6-0165025420979365) 1982
Grimm K. J. (bibr18-0165025420979365) 2017
bibr49-0165025420979365
Nunnally J. C. (bibr37-0165025420979365) 1967; 226
Finney S. (bibr15-0165025420979365) 2013
Hedeker D. (bibr20-0165025420979365) 2006
bibr52-0165025420979365
Steiger J. (bibr51-0165025420979365) 1980
Ross C. A. (bibr42-0165025420979365) 1997
McNeish D. (bibr25-0165025420979365) 2017; 86
Meredith W. (bibr31-0165025420979365) 1984
bibr4-0165025420979365
bibr50-0165025420979365
bibr26-0165025420979365
bibr34-0165025420979365
bibr43-0165025420979365
bibr17-0165025420979365
bibr16-0165025420979365
R Development Core Team (bibr41-0165025420979365) 2015
bibr2-0165025420979365
bibr3-0165025420979365
bibr24-0165025420979365
bibr33-0165025420979365
Bollen K. A. (bibr5-0165025420979365) 2006; 467
Asparouhov T. (bibr202-0165025420979365) 2010
bibr1-0165025420979365
bibr19-0165025420979365
bibr45-0165025420979365
Asparouhov T. (bibr201-0165025420979365) 2005
bibr32-0165025420979365
Muthén L. K. (bibr35-0165025420979365) 1998
bibr48-0165025420979365
Satorra A. (bibr44-0165025420979365) 1994
bibr22-0165025420979365
bibr27-0165025420979365
bibr9-0165025420979365
bibr40-0165025420979365
bibr14-0165025420979365
References_xml – volume: 49
  start-page: 460
  issue: 5
  year: 2014
  end-page: 470
  article-title: Adjusting incremental fit indices for nonnormality
  publication-title: Multivariate Behavioral Research
– volume: 27
  start-page: 192
  issue: 2
  year: 2020
  end-page: 201
  article-title: Estimating the maximum likelihood root mean square error of approximation (RMSEA) with non-normal data: A Monte-Carlo study
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 107
  start-page: 238
  issue: 2
  year: 1990
  end-page: 246
  article-title: Comparative fit indexes in structural models
  publication-title: Psychological Bulletin
– volume: 140
  start-page: 1804
  issue: 17
  year: 2006
  end-page: 1813
  article-title: Autistic behavior in children with fragile X syndrome: Prevalence, stability, and the impact of FMRP
  publication-title: American Journal of Medical Genetics Part A
– volume: 19
  start-page: 86
  issue: 1
  year: 2012
  end-page: 98
  article-title: The model size effect in SEM: Inflated goodness-of-fit statistics are due to the size of the covariance matrix
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 77
  start-page: 990
  issue: 6
  year: 2017
  end-page: 1018
  article-title: Correcting model fit criteria for small sample latent growth models with incomplete data
  publication-title: Educational and Psychological Measurement
– volume: 75
  start-page: 541
  issue: 4
  year: 2015
  end-page: 567
  article-title: A cautionary note on the use of the Vale and Maurelli method to generate multivariate, nonnormal data for simulation purposes
  publication-title: Educational and Psychological Measurement
– volume: 14
  start-page: 183
  issue: 3
  year: 2009
  article-title: Evaluating model fit for growth curve models: Integration of fit indices from SEM and MLM frameworks
  publication-title: Psychological Methods
– volume: 31
  start-page: 144
  issue: 2
  year: 1978
  end-page: 152
  article-title: Robustness?
  publication-title: British Journal of Mathematical and Statistical Psychology
– volume: 86
  start-page: 1
  issue: 4
  year: 2017
  end-page: 12
  article-title: Brief research report: Growth models with small samples and missing data
  publication-title: The Journal of Experimental Education
– volume: 51
  start-page: 207
  issue: 2-3
  year: 2016
  end-page: 219
  article-title: A simple simulation technique for nonnormal data with prespecified skewness, kurtosis, and covariance matrix
  publication-title: Multivariate Behavioral Research
– volume: 21
  start-page: 149
  issue: 1
  year: 2014
  end-page: 160
  article-title: Understanding robust corrections in structural equation modeling
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 79
  start-page: 310
  issue: 2
  year: 2019
  end-page: 334
  article-title: Understanding the model size effect on SEM fit indices
  publication-title: Educational and Psychological Measurement
– volume: 40
  start-page: 532
  year: 2009
  end-page: 538
  article-title: An effect size primer: A guide for clinicians and researchers
  publication-title: Professional Psychology: Research and Practice
– volume: 8
  start-page: 338
  issue: 3
  year: 2003
  end-page: 363
  article-title: Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes
  publication-title: Psychological Methods
– volume: 47
  start-page: 904
  issue: 6
  year: 2012
  end-page: 930
  article-title: An investigation of the sample performance of two nonnormality corrections for RMSEA
  publication-title: Multivariate Behavioral Research
– volume: 48
  start-page: 465
  issue: 3
  year: 1983
  end-page: 471
  article-title: Simulating multivariate nonnormal distributions
  publication-title: Psychometrika
– volume: 53
  start-page: 419
  issue: 3
  year: 2018
  end-page: 429
  article-title: On the computation of the RMSEA and CFI from the mean-and-variance corrected test statistic with nonnormal data in SEM
  publication-title: Multivariate Behavioral Research
– volume: 28
  start-page: 295
  issue: 2
  year: 2016
  end-page: 314
  article-title: The effect of small sample size on two-level model estimates: A review and illustration
  publication-title: Educational Psychology Review
– volume: 46
  start-page: 855
  issue: 2
  year: 2017
  end-page: 869
  article-title: Clustered data with small sample sizes: Comparing the performance of model-based and design-based approaches
  publication-title: Communications in Statistics-Simulation and Computation
– volume: 25
  start-page: 21
  issue: 1
  year: 2018
  end-page: 40
  article-title: Revisiting the model size effect in structural equation modeling
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 51
  start-page: 495
  issue: 4
  year: 2016
  end-page: 518
  article-title: Modeling clustered data with very few clusters
  publication-title: Multivariate Behavioral Research
– volume: 15
  start-page: 352
  year: 2010
  end-page: 367
  article-title: Expected versus observed information in SEM with incomplete normal and nonnormal data
  publication-title: Psychological Methods
– volume: 55
  start-page: 107
  issue: 1
  year: 1990
  end-page: 122
  article-title: Latent curve analysis
  publication-title: Psychometrika
– volume: 105
  start-page: 156
  issue: 1
  year: 1989
  end-page: 166
  article-title: The unicorn, the normal curve, and other improbable creatures
  publication-title: Psychological Bulletin
– volume: 1
  start-page: 16
  issue: 1
  year: 1996
  article-title: The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis
  publication-title: Psychological Methods
– volume: 24
  start-page: 383
  issue: 3
  year: 2017
  end-page: 394
  article-title: Maximum likelihood estimation of structural equation models for continuous data: Standard errors and goodness of fit
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 5
  start-page: 247
  issue: 3
  year: 1998
  end-page: 266
  article-title: Comparisons of two statistical approaches to study growth curves: The multilevel model and the latent curve analysis
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 80
  start-page: 41
  issue: 1
  year: 2019
  end-page: 66
  article-title: Fitting ordinal factor analysis models with missing data: A comparison between pairwise deletion and multiple imputation
  publication-title: Educational and Psychological Measurement
– volume: 50
  start-page: 1398
  issue: 4
  year: 2018
  end-page: 1414
  article-title: Differentiating between mixed-effects and latent-curve approaches to growth modeling
  publication-title: Behavior Research Methods
– volume: 27
  start-page: 908
  issue: 6
  year: 2020
  end-page: 917
  article-title: Chi-square difference tests for comparing nested models: An evaluation with non-normal data
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 9
  start-page: 599
  issue: 4
  year: 2002
  end-page: 620
  article-title: How to use a Monte Carlo study to decide on sample size and determine power
  publication-title: Structural Equation Modeling
– volume: 26
  start-page: 329
  issue: 3
  year: 1998
  end-page: 367
  article-title: Robustness studies in covariance structure modeling: An overview and a meta-analysis
  publication-title: Sociological Methods & Research
– volume: 6
  start-page: 1
  issue: 1
  year: 1999
  end-page: 55
  article-title: Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 63
  start-page: 581
  issue: 3
  year: 1976
  end-page: 592
  article-title: Inference and missing data
  publication-title: Biometrika
– start-page: 149
  year: 1982
  end-page: 173
  article-title: The robustness of LISREL against small sample sizes in factor analysis models
  publication-title: Systems under indirect observation: Causality, structure, prediction
– volume: 4
  start-page: 22
  issue: 1
  year: 2008
  article-title: Factorial invariance and the specification of second-order latent growth models
  publication-title: Methodology: European Journal of Research Methods for the Behavioral and Social Sciences
– ident: bibr3-0165025420979365
  doi: 10.1037/0033-2909.107.2.238
– ident: bibr39-0165025420979365
  doi: 10.1080/10705511.2020.1717957
– start-page: 399
  volume-title: Latent variable analysis. Applications for developmental research
  year: 1994
  ident: bibr44-0165025420979365
– ident: bibr29-0165025420979365
  doi: 10.1080/03610918.2014.983648
– ident: bibr43-0165025420979365
  doi: 10.1093/biomet/63.3.581
– ident: bibr46-0165025420979365
  doi: 10.1080/10705511.2013.824793
– ident: bibr50-0165025420979365
  doi: 10.1080/10705511.2017.1369088
– ident: bibr11-0165025420979365
  doi: 10.1037/1082-989X.1.1.16
– ident: bibr19-0165025420979365
  doi: 10.1002/ajmg.a.31286
– volume-title: Longitudinal data analysis
  year: 2006
  ident: bibr20-0165025420979365
– ident: bibr54-0165025420979365
  doi: 10.1037/a0015858
– ident: bibr14-0165025420979365
  doi: 10.1027/1614-2241.4.1.22
– ident: bibr8-0165025420979365
  doi: 10.1080/00273171.2014.933697
– volume-title: R: A Language and environment for statistical computing
  year: 2015
  ident: bibr41-0165025420979365
– volume-title: LISREL 7: A guide to the program and applications
  year: 1988
  ident: bibr23-0165025420979365
– volume-title: Simple second order chi-square correction scaled chi-square statistics (Technical appendix)
  year: 2010
  ident: bibr202-0165025420979365
– ident: bibr32-0165025420979365
  doi: 10.1007/BF02294746
– ident: bibr17-0165025420979365
  doi: 10.1080/10705511.2019.1637741
– volume-title: Proceedings of the Federal Committee on Statistical Methodology (FCSM) Research Conference
  year: 2005
  ident: bibr201-0165025420979365
– ident: bibr38-0165025420979365
  doi: 10.1177/0013164414548894
– ident: bibr21-0165025420979365
  doi: 10.1177/0049124198026003003
– ident: bibr28-0165025420979365
  doi: 10.1080/00273171.2016.1167008
– ident: bibr52-0165025420979365
  doi: 10.1007/BF02293687
– ident: bibr34-0165025420979365
  doi: 10.1080/10705511.2012.634724
– volume-title: Latent growth curve analysis with item response data: Model specification, estimation, and panel attrition
  year: 2017
  ident: bibr55-0165025420979365
– ident: bibr27-0165025420979365
  doi: 10.3758/s13428-017-0976-5
– ident: bibr36-0165025420979365
  doi: 10.1207/S15328007SEM0904_8
– start-page: 439
  volume-title: Structural equation modeling: A second course
  year: 2013
  ident: bibr15-0165025420979365
– volume-title: Dissociative identity disorder: Diagnosis, clinical features, and treatment of multiple personality
  year: 1997
  ident: bibr42-0165025420979365
– ident: bibr40-0165025420979365
  doi: 10.32614/CRAN.package.simsem
– volume: 467
  volume-title: Latent curve models: A structural equation perspective
  year: 2006
  ident: bibr5-0165025420979365
– start-page: 149
  year: 1982
  ident: bibr6-0165025420979365
  publication-title: Systems under indirect observation: Causality, structure, prediction
– ident: bibr4-0165025420979365
  doi: 10.1002/9781118619179
– volume-title: Applied missing data analysis
  year: 2010
  ident: bibr12-0165025420979365
– ident: bibr48-0165025420979365
  doi: 10.1177/0013164419845039
– volume: 226
  volume-title: Psychometric theory
  year: 1967
  ident: bibr37-0165025420979365
– ident: bibr49-0165025420979365
  doi: 10.1177/0013164418783530
– ident: bibr13-0165025420979365
  doi: 10.1037/a0015808
– ident: bibr16-0165025420979365
  doi: 10.1080/00273171.2015.1133274
– ident: bibr7-0165025420979365
  doi: 10.1111/j.2044-8317.1978.tb00581.x
– ident: bibr10-0165025420979365
  doi: 10.1080/10705519809540104
– ident: bibr1-0165025420979365
– volume-title: Paper presented at the annual meeting of the annual spring meeting of the psychometric society
  year: 1980
  ident: bibr51-0165025420979365
– ident: bibr26-0165025420979365
  doi: 10.1177/0013164416661824
– volume: 86
  start-page: 1
  issue: 4
  year: 2017
  ident: bibr25-0165025420979365
  publication-title: The Journal of Experimental Education
– ident: bibr30-0165025420979365
  doi: 10.1007/s10648-014-9287-x
– ident: bibr47-0165025420979365
  doi: 10.1080/00273171.2018.1455142
– ident: bibr24-0165025420979365
  doi: 10.1080/10705511.2016.1269606
– volume-title: Growth modeling: Structural equation and multilevel modeling approaches
  year: 2017
  ident: bibr18-0165025420979365
– volume-title: Paper presented at the meeting of the psychometric society
  year: 1984
  ident: bibr31-0165025420979365
– ident: bibr9-0165025420979365
  doi: 10.1080/00273171.2012.715252
– ident: bibr33-0165025420979365
  doi: 10.1037/0033-2909.105.1.156
– ident: bibr2-0165025420979365
  doi: 10.1037/1082-989X.8.3.338
– volume-title: Mplus user’s guide
  year: 1998
  ident: bibr35-0165025420979365
– ident: bibr45-0165025420979365
  doi: 10.1037/a0020143
– ident: bibr22-0165025420979365
  doi: 10.1080/10705519909540118
SSID ssj0000370
Score 2.5091045
Snippet This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with...
This study investigates the performance of robust ML estimators when fitting and evaluating small sample latent growth models (LGM) with non-normal missing...
SourceID pubmedcentral
proquest
pubmed
eric
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 179
SubjectTerms Error of Measurement
Factor Analysis
Goodness of Fit
Growth Models
Indexes
Maximum Likelihood Statistics
Missing data
Normality
Research Problems
Robustness (Statistics)
Sample Size
Title Fitting latent growth models with small sample sizes and non-normal missing data
URI https://journals.sagepub.com/doi/full/10.1177/0165025420979365
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1283707
https://www.ncbi.nlm.nih.gov/pubmed/33664535
https://www.proquest.com/docview/2486065939
https://www.proquest.com/docview/2498491228
https://pubmed.ncbi.nlm.nih.gov/PMC7928428
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZCyMvY7eu3rqiwRiM4TaWZFl6LL1QylIy2kK2lyDLMjEkTtkctvY_7D9PF1-UdBtbX5xgK1Ks8-noSDrnOwC8ZYYwJZIkFIKgkMRZFDIsaSgHecpUnueDxMQOD8_p6RU5G8fjXu-n57W0rNI9efvbuJL7SFXf03I1UbL_Idm2Un1Df9fy1VctYX39JxmfFM5r-aM2GMvK7CN9r6Y2vdmsjlq7mNujZzG3PoPFrXKUzOeLMiyNtTr7MNQ9b-o4ckFqraW6ulXoEUx4gf1Z53HU7tRMXeS6-lG0sDsqLiqVi3LRsRl4p_lfpsrpm3EhbpqJ1LgIFUsn_9LfmUCea1azWUlN9Lcjid5TTsESSkJt9kS-BnaEkjXSkKdOI5dopp6ZI5c1767St8fOpjXTGBpwrXNcAgoPA9dzCwKMKSWxY0hZI9oeDQ8TrmdrxB6ATaRXHVrPbx58Hn0adlM7ttkH2xfrzr3315vvg4dNWysmz6pXvbecueuV67kWWmvn8jF4VC9T4IHD3BPQU-VT0G9ny5tnYFSDDzrwQQc-6MAHDfigBR904IMWfFCDD3bggzX4oAHfc3B1cnx5eBrW6TlCSRipQtNZLBYZUlTlWEZUf8ZY6Ck2S_OBRFSKhHEqEGcxoYoJyrmMRaIUzgwrJN4CG-WiVNsAMjnAmRK6D2VKJIl5mmaCM0UlznJGswDsNz04kTV3vUmhMptEDV39WvcH4H37i2vH2_KXsltGKG2547PIckIlAdhpxDSpx9m3CTJp22jMMQ_Am_axVsrmpE2UarE0ZTgjPEKIBeCFk2pbe4OKACQr8m4LGML31SdlMbXE7zU8A_DOIKP7S396sZf3buIV6HcjegdsVF-X6rW2vqt0tx4Tu3an6RcZDNYZ
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9kAv5VkIFDASQuKQNvEr9rFCXS2lWxWplQqXyHEcuiJNEcke6K_Hk02yu61AiFMOHj_GHttj-8s3AG8VEqbElofGcBpykcehYlaGNioy5YqiiBL8d3h6LCdn_PBcnK-E-up6sN5FWJVvUbtYD7MbmZJi71P4Uw2NtDctKe7ChkI_fAQb-19OPk-XyzBrI8WhfIgZlm-Ut8pY25PWYc8r_uZt2OQK9qvdjsb34WuvyAKF8n133ngdrm9wPP6Xpg9gq3NSyf7Cqh7CHVc9gs1hrfz1GE7GsxYwTUrvq1YN-eZP880FaePq1AQvd0l9acqS1Abph0k9u3Y1MVVOqqsqrNBRLok3MbypIIhSfQJn44PTD5OwC84QWq54EyaaKiVMTp10BbOx9F_BjF9g86yILJXWJEpLQ7USXDplpNZWmMQ5liMnINuGka_RPQOibMRyZ7y-NuOWC51ludHKScvyQsk8gL1-eFLbMZdjAI0yjXuy8htdFcD7IcePBWvHX2S3ccQHuYPDuGUESgLY6W0g7QcrpRi0SwrNdABvhmTfX_jOYip3NUcZrbiOKVUBPF2YzFA6Y1JywXytyZoxDQJI972eUs0uWtpv7HGOZb5Di1k26U-KPf9Xwddwb3I6PUqPPh5_egGbFFE7LcpuB0bNz7l76d2uJnvVTbDfktAfDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglVAvvFsCbTESQuLgbuJX7GMFXZVCq0WiUjlFju3QFSGtSPZAfz0ebzbbbQVCnHLw-DH22J7Yn79B6LUCwpTMcmIMp4QLlxHFrCQ2rUrlq6pKc3g7fHwiD0_50Zk467E58Bam78F2D2BVoUVxsYbZfemqUX_HOIInOPCKm6Y6mJcUd9F62KdomJfr-18nn4-XSzGL0eJAnkCG5T3lrTJW9qVV6PM1n_M2dPIa_ituSeMH87irbWQyBCTK971ZF_S4usHz-N_aPkT3e2cV78-t6xG645vHaGNYM389QZPxNAKncR181qbD38JffXeOY3ydFsMhL25_mLrGrQEaYtxOr3yLTeNwc9GQBhzmGgdTgxMLDGjVp-h0fPDl3SHpgzQQyxXvSK6pUsI46qWvmM1k-ApmwkLryiq1VFqTKy0N1Upw6ZWRWlthcu-ZA25AtonWQo3-GcLKpsx5E_S1Jbdc6LJ0RisvLXOVki5Bo8UQFbZnMIdAGnWRLUjLb3RVgt4OOS7n7B1_kd2EUR_kDo6yyAyUJ2h7YQfFYsAKCsG7pNBMJ-jVkBz6C-5bTOMvZiCjFdfBMFWCtuZmM5TOmJRcsFBrvmJQgwDQfq-mNNPzSP8NPc6hzDdgNcsm_Umx5_8q-BLdm7wfF58-nHx8gTYogHci2G4brXU_Z34neF9dudvPsd_hyyGD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitting+Latent+Growth+Models+with+Small+Sample+Sizes+and+Non-normal+Missing+Data&rft.jtitle=International+journal+of+behavioral+development&rft.au=Shi%2C+Dexin&rft.au=DiStefano%2C+Christine&rft.au=Zheng%2C+Xiaying&rft.au=Liu%2C+Ren&rft.date=2021-03-01&rft.issn=0165-0254&rft.eissn=1464-0651&rft.volume=45&rft.issue=2&rft.spage=179&rft.epage=192&rft_id=info:doi/10.1177%2F0165025420979365&rft_id=info%3Apmid%2F33664535&rft.externalDocID=PMC7928428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0254&client=summon