Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry

Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 69; no. 11; pp. 4918 - 4925
Main Authors Hirayama, Akiyoshi, Kami, Kenjiro, Sugimoto, Masahiro, Sugawara, Maki, Toki, Naoko, Onozuka, Hiroko, Kinoshita, Taira, Saito, Norio, Ochiai, Atsushi, Tomita, Masaru, Esumi, Hiroyasu, Soga, Tomoyoshi
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry–based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism. [Cancer Res 2009;69(11):4918–25]
AbstractList Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry–based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism. [Cancer Res 2009;69(11):4918–25]
Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry-based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism.
Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry-based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism.Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry-based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism.
Author Hirayama, Akiyoshi
Soga, Tomoyoshi
Onozuka, Hiroko
Tomita, Masaru
Sugawara, Maki
Ochiai, Atsushi
Esumi, Hiroyasu
Sugimoto, Masahiro
Saito, Norio
Kami, Kenjiro
Toki, Naoko
Kinoshita, Taira
Author_xml – sequence: 1
  givenname: Akiyoshi
  surname: Hirayama
  fullname: Hirayama, Akiyoshi
– sequence: 2
  givenname: Kenjiro
  surname: Kami
  fullname: Kami, Kenjiro
– sequence: 3
  givenname: Masahiro
  surname: Sugimoto
  fullname: Sugimoto, Masahiro
– sequence: 4
  givenname: Maki
  surname: Sugawara
  fullname: Sugawara, Maki
– sequence: 5
  givenname: Naoko
  surname: Toki
  fullname: Toki, Naoko
– sequence: 6
  givenname: Hiroko
  surname: Onozuka
  fullname: Onozuka, Hiroko
– sequence: 7
  givenname: Taira
  surname: Kinoshita
  fullname: Kinoshita, Taira
– sequence: 8
  givenname: Norio
  surname: Saito
  fullname: Saito, Norio
– sequence: 9
  givenname: Atsushi
  surname: Ochiai
  fullname: Ochiai, Atsushi
– sequence: 10
  givenname: Masaru
  surname: Tomita
  fullname: Tomita, Masaru
– sequence: 11
  givenname: Hiroyasu
  surname: Esumi
  fullname: Esumi, Hiroyasu
– sequence: 12
  givenname: Tomoyoshi
  surname: Soga
  fullname: Soga, Tomoyoshi
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21816406$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19458066$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9uFCEUxompsds_j6Dhxt5NhR0Y2HjVTFo16apN22vCMIcuZgZGYJvsO_jQMu1aE2-84gC_7-Sc7ztCBz54QOgtJeeUcvmBECIrzsTyvL34WpWaSdK8QgvKa1kJxvgBWrwwh-gopR_lyinhb9AhXTFe8GaBft1stc8u6-weAa8h6y4MYQT8PQbrBucfcLC4LW8ea9_j2xxGbTa41d5AxGtnYgD_6GLwI_iMu135mtww6LjDlwOYHMO0CRGSS_jOjVAFW10N7mGT8VqnhG-nJ2aEHHcn6LXVQ4LT_XmM7q8u79rP1fW3T1_ai-vKMMlyJQQFCcZo21NblzVqYVd1A11tgS4pCKtBUgAKlBvRyHpJOi14b5kG0vRQH6Oz575TDD-3kLIaXTJQhvYQtkk1oqailqsCvtuD226EXk3RjWUx9ce_ArzfAzoZPdhYbHHphVtSSRtGZo4_c8WulCLYv62ImvNUc1ZqzkqVPFWp5zyL7uM_OvOUVfA5ajf8R_0b3Paovg
CODEN CNREA8
CitedBy_id crossref_primary_10_1039_D0TB01245A
crossref_primary_10_1016_j_jff_2019_103522
crossref_primary_10_1007_s00726_021_03013_8
crossref_primary_10_1139_bcb_2018_0076
crossref_primary_10_3390_sym15010042
crossref_primary_10_1038_ncomms4295
crossref_primary_10_1186_s40170_024_00337_3
crossref_primary_10_1371_journal_pone_0120106
crossref_primary_10_1016_j_ymeth_2018_04_027
crossref_primary_10_1016_j_chroma_2014_10_007
crossref_primary_10_1002_jssc_201000171
crossref_primary_10_1016_j_critrevonc_2020_103061
crossref_primary_10_2116_analsci_32_893
crossref_primary_10_3390_biology9110380
crossref_primary_10_1007_s12029_015_9700_9
crossref_primary_10_1002_rcm_4420
crossref_primary_10_1007_s11306_014_0631_4
crossref_primary_10_1091_mbc_E22_12_0560
crossref_primary_10_1146_annurev_pathol_011811_120856
crossref_primary_10_1007_s11306_011_0297_0
crossref_primary_10_1016_j_biomaterials_2024_122605
crossref_primary_10_1038_bjc_2015_414
crossref_primary_10_1021_ac1019039
crossref_primary_10_1371_journal_pone_0098581
crossref_primary_10_5012_bkcs_2013_34_1_35
crossref_primary_10_1016_j_talanta_2016_04_049
crossref_primary_10_1021_acs_jafc_6b03844
crossref_primary_10_1007_s11306_012_0463_z
crossref_primary_10_1111_his_13504
crossref_primary_10_18632_oncotarget_24466
crossref_primary_10_3724_abbs_2023158
crossref_primary_10_1111_imcb_12168
crossref_primary_10_1186_s13287_021_02377_8
crossref_primary_10_1002_nbm_1616
crossref_primary_10_1186_s13578_023_01148_7
crossref_primary_10_2174_0109298673284520240112055108
crossref_primary_10_1158_0008_5472_CAN_12_0080
crossref_primary_10_18632_oncotarget_16602
crossref_primary_10_3389_fimmu_2019_00868
crossref_primary_10_1038_s41591_019_0406_6
crossref_primary_10_3390_metabo12090778
crossref_primary_10_1038_s41577_019_0139_2
crossref_primary_10_1016_j_jpba_2015_11_007
crossref_primary_10_1186_s40170_020_0208_9
crossref_primary_10_1016_j_nut_2018_06_002
crossref_primary_10_1126_science_1223066
crossref_primary_10_1016_j_bbrc_2019_04_072
crossref_primary_10_1016_j_jes_2016_07_013
crossref_primary_10_2217_hep_2016_0012
crossref_primary_10_3390_ijms21031041
crossref_primary_10_1016_j_canlet_2022_215617
crossref_primary_10_1074_mcp_M112_024109
crossref_primary_10_1002_iub_1748
crossref_primary_10_1016_j_canlet_2020_12_010
crossref_primary_10_1016_j_semcancer_2020_02_007
crossref_primary_10_1038_onc_2014_57
crossref_primary_10_1016_j_jsbmb_2019_105539
crossref_primary_10_1039_D0NJ05569G
crossref_primary_10_1080_15548627_2021_2008690
crossref_primary_10_3390_molecules28020740
crossref_primary_10_1111_cas_15472
crossref_primary_10_1016_j_jconrel_2022_07_017
crossref_primary_10_1016_j_metabol_2021_154778
crossref_primary_10_1111_cas_12085
crossref_primary_10_1111_febs_17203
crossref_primary_10_18632_aging_203622
crossref_primary_10_1007_s00432_022_04124_9
crossref_primary_10_1016_j_bbagrm_2014_11_002
crossref_primary_10_1007_s10120_020_01065_5
crossref_primary_10_1111_j_1749_6632_2010_05620_x
crossref_primary_10_1039_D1AY00994J
crossref_primary_10_3748_wjg_v20_i36_12874
crossref_primary_10_1371_journal_pone_0132223
crossref_primary_10_1016_j_celrep_2017_12_071
crossref_primary_10_1016_j_trecan_2016_10_009
crossref_primary_10_18632_oncotarget_21093
crossref_primary_10_3748_wjg_v25_i14_1697
crossref_primary_10_1016_j_bone_2016_10_027
crossref_primary_10_1038_onc_2014_47
crossref_primary_10_2174_0113895575322436240924101642
crossref_primary_10_1111_cmi_12036
crossref_primary_10_1007_s00018_015_2122_9
crossref_primary_10_3390_cells10040762
crossref_primary_10_1016_j_chembiol_2010_06_017
crossref_primary_10_1038_s41374_020_00486_1
crossref_primary_10_1186_s12964_019_0478_4
crossref_primary_10_1292_jvms_21_0646
crossref_primary_10_1016_j_bbagen_2011_12_013
crossref_primary_10_1002_psc_3071
crossref_primary_10_1016_j_immuni_2024_07_003
crossref_primary_10_1016_j_jbc_2024_107784
crossref_primary_10_1002_adma_202007978
crossref_primary_10_1080_15476286_2016_1191737
crossref_primary_10_1002_bmc_3295
crossref_primary_10_1007_s11306_019_1610_6
crossref_primary_10_1186_s40425_019_0627_8
crossref_primary_10_1016_j_cbi_2012_12_017
crossref_primary_10_1007_s00204_014_1246_2
crossref_primary_10_1016_j_tiv_2022_105357
crossref_primary_10_1038_onc_2011_137
crossref_primary_10_1038_s41598_018_28074_w
crossref_primary_10_1038_labinvest_2017_4
crossref_primary_10_1039_c004994h
crossref_primary_10_18632_oncotarget_17868
crossref_primary_10_1016_j_ejca_2013_07_004
crossref_primary_10_1021_pr400260h
crossref_primary_10_1016_j_jpba_2013_08_041
crossref_primary_10_1038_tp_2014_19
crossref_primary_10_3390_biomedicines9091101
crossref_primary_10_3389_fonc_2020_00717
crossref_primary_10_1016_j_aca_2009_11_042
crossref_primary_10_1016_j_bbrc_2018_10_136
crossref_primary_10_3389_fphys_2017_00217
crossref_primary_10_1039_C6TX00010J
crossref_primary_10_1186_1471_2202_15_32
crossref_primary_10_1080_14737175_2020_1782746
crossref_primary_10_1371_journal_pone_0191230
crossref_primary_10_1271_bbb_130093
crossref_primary_10_1002_elps_201500060
crossref_primary_10_1021_acs_jproteome_4c00795
crossref_primary_10_3892_ijo_2018_4340
crossref_primary_10_3892_or_2016_4660
crossref_primary_10_1038_s41419_024_07052_3
crossref_primary_10_1016_j_isci_2021_102091
crossref_primary_10_1007_s11306_012_0452_2
crossref_primary_10_1186_s10020_022_00435_2
crossref_primary_10_26508_lsa_202000683
crossref_primary_10_3390_cancers11020156
crossref_primary_10_1016_j_celrep_2017_02_054
crossref_primary_10_1159_000492680
crossref_primary_10_3390_ijms21228684
crossref_primary_10_1038_s43587_024_00642_y
crossref_primary_10_1186_s13039_016_0293_1
crossref_primary_10_3389_fmicb_2018_00614
crossref_primary_10_1007_s00432_024_05857_5
crossref_primary_10_5487_TR_2014_30_4_235
crossref_primary_10_1007_s10295_015_1681_y
crossref_primary_10_1038_s41598_021_04612_x
crossref_primary_10_1155_2014_126586
crossref_primary_10_1021_pr3010106
crossref_primary_10_1158_0008_5472_CAN_11_1543
crossref_primary_10_1371_journal_pone_0063054
crossref_primary_10_1016_j_biocel_2010_08_009
crossref_primary_10_2131_jts_39_717
crossref_primary_10_3390_ijms18050918
crossref_primary_10_1080_29933935_2025_2454002
crossref_primary_10_1016_j_mito_2012_07_113
crossref_primary_10_1074_jbc_TM117_000239
crossref_primary_10_3390_md10081873
crossref_primary_10_1158_1055_9965_EPI_13_0584
crossref_primary_10_1124_pr_116_012492
crossref_primary_10_1007_s11306_010_0250_7
crossref_primary_10_1021_pr5013152
crossref_primary_10_3892_mmr_2023_13106
crossref_primary_10_1158_1940_6207_CAPR_16_0095
crossref_primary_10_1007_s00394_024_03469_w
crossref_primary_10_1016_j_aca_2018_04_006
crossref_primary_10_1158_1078_0432_CCR_15_2973
crossref_primary_10_3390_ijms25179509
crossref_primary_10_1002_emmm_201303016
crossref_primary_10_1021_pr500443c
crossref_primary_10_1186_s12902_022_01113_4
crossref_primary_10_1002_2211_5463_13860
crossref_primary_10_1158_0008_5472_CAN_20_1541
crossref_primary_10_1186_s12935_023_03169_1
crossref_primary_10_1371_journal_pone_0182422
crossref_primary_10_1371_journal_pone_0056628
crossref_primary_10_1002_ags3_12058
crossref_primary_10_3892_ijo_2014_2367
crossref_primary_10_1007_s11033_022_08090_w
crossref_primary_10_1038_nrmicro2819
crossref_primary_10_4155_bio_2015_0010
crossref_primary_10_3390_biom11121888
crossref_primary_10_1172_JCI83005
crossref_primary_10_1007_s00253_018_9261_5
crossref_primary_10_1007_s10120_021_01223_3
crossref_primary_10_1111_cas_13086
crossref_primary_10_1371_journal_pone_0070803
crossref_primary_10_1016_j_cellin_2024_100186
crossref_primary_10_1016_j_heliyon_2024_e38718
crossref_primary_10_1186_s40364_018_0119_x
crossref_primary_10_1111_cas_14298
crossref_primary_10_1158_1940_6207_CAPR_12_0160
crossref_primary_10_1002_jbt_23807
crossref_primary_10_1016_j_bbrc_2010_01_050
crossref_primary_10_1016_j_jphotobiol_2016_08_030
crossref_primary_10_1016_j_heliyon_2024_e37985
crossref_primary_10_1016_j_fct_2022_113129
crossref_primary_10_1111_cas_14170
crossref_primary_10_1371_journal_pone_0024143
crossref_primary_10_1038_s41598_019_46404_4
crossref_primary_10_1007_s00726_021_02968_y
crossref_primary_10_1371_journal_pone_0269620
crossref_primary_10_1038_s41467_023_41952_w
crossref_primary_10_1016_j_metabol_2018_03_020
crossref_primary_10_1021_pr201001a
crossref_primary_10_1186_s10020_025_01069_w
crossref_primary_10_1007_s00216_011_5098_9
crossref_primary_10_4155_bio_2017_0195
crossref_primary_10_1007_s00216_015_8662_x
crossref_primary_10_1016_j_molmet_2020_101093
crossref_primary_10_1038_s41419_018_1244_z
crossref_primary_10_1007_s00535_011_0493_8
crossref_primary_10_1016_j_cca_2024_119965
crossref_primary_10_1074_jbc_M115_680579
crossref_primary_10_1038_s41419_018_0564_3
crossref_primary_10_1016_j_molcel_2018_01_024
crossref_primary_10_1158_1078_0432_CCR_12_3300
crossref_primary_10_1007_s11306_009_0178_y
crossref_primary_10_1007_s11306_012_0443_3
crossref_primary_10_1080_01635581_2013_789118
crossref_primary_10_3390_cancers16010069
crossref_primary_10_3748_wjg_v24_i33_3760
crossref_primary_10_1089_dna_2018_4579
crossref_primary_10_1007_s11307_013_0680_5
crossref_primary_10_1016_j_bbcan_2012_05_005
crossref_primary_10_1016_j_aca_2011_09_042
crossref_primary_10_1016_j_bbabio_2010_09_003
crossref_primary_10_2188_jea_JE20230170
crossref_primary_10_1002_nbm_3072
crossref_primary_10_1002_1873_3468_12849
crossref_primary_10_18632_oncotarget_28306
crossref_primary_10_1007_s11306_018_1376_2
crossref_primary_10_1038_s42255_019_0109_9
crossref_primary_10_1158_0008_5472_CAN_16_0268
crossref_primary_10_1242_jcs_175349
crossref_primary_10_1002_elps_201800017
crossref_primary_10_1111_cas_15836
crossref_primary_10_3390_ncrna3020020
crossref_primary_10_1038_cddis_2017_14
crossref_primary_10_1038_onc_2017_345
crossref_primary_10_3390_pharmaceutics11030119
crossref_primary_10_1002_mrc_4658
crossref_primary_10_1038_s41598_022_19245_x
crossref_primary_10_1021_acs_analchem_7b04565
crossref_primary_10_2116_analsci_30_751
crossref_primary_10_1016_j_jpba_2022_114643
crossref_primary_10_1016_j_jelechem_2023_117326
crossref_primary_10_1186_s13046_016_0358_3
crossref_primary_10_1038_s41467_019_10015_4
crossref_primary_10_1002_mas_20338
crossref_primary_10_1016_j_lungcan_2011_02_008
crossref_primary_10_1038_s41419_018_0542_9
crossref_primary_10_4161_auto_25418
crossref_primary_10_1016_j_celrep_2022_111193
crossref_primary_10_3390_ijms17060870
crossref_primary_10_1097_MPA_0000000000000680
crossref_primary_10_1016_j_bcp_2024_116161
crossref_primary_10_1111_cas_15625
crossref_primary_10_3390_cancers12102904
crossref_primary_10_1111_jcmm_14764
crossref_primary_10_1186_s13046_023_02779_x
crossref_primary_10_1016_j_jpba_2024_116060
crossref_primary_10_1111_cas_13208
crossref_primary_10_1021_pr900738b
crossref_primary_10_1038_s41374_019_0353_3
crossref_primary_10_1158_0008_5472_CAN_13_0308
crossref_primary_10_1172_jci_insight_142464
crossref_primary_10_1002_jssc_201100528
crossref_primary_10_1126_scisignal_aab2610
crossref_primary_10_3390_cancers14153799
crossref_primary_10_1248_bpb_b18_00055
crossref_primary_10_1074_jbc_M115_712166
crossref_primary_10_1016_j_trac_2014_06_004
crossref_primary_10_1038_s41598_021_02729_7
crossref_primary_10_1093_carcin_bgu131
crossref_primary_10_1016_j_ccr_2011_02_014
crossref_primary_10_1016_j_foodres_2012_11_010
crossref_primary_10_1038_nrclinonc_2016_60
crossref_primary_10_1152_physrev_00035_2018
crossref_primary_10_2188_jea_JE20230192
crossref_primary_10_1016_j_drup_2009_07_001
crossref_primary_10_3322_caac_21670
crossref_primary_10_3390_antibiotics13020184
crossref_primary_10_1172_JCI137845
crossref_primary_10_1016_j_molmet_2021_101389
crossref_primary_10_2131_jts_42_445
crossref_primary_10_1021_acs_analchem_6b03269
crossref_primary_10_1038_s42003_024_06186_6
crossref_primary_10_1039_D1MO00387A
crossref_primary_10_1186_s13046_019_1029_y
crossref_primary_10_18632_oncotarget_25299
crossref_primary_10_1007_s11082_016_0634_7
crossref_primary_10_1002_jcp_25617
crossref_primary_10_1371_journal_pone_0154747
crossref_primary_10_1136_esmoopen_2019_000563
crossref_primary_10_1016_j_bbrc_2012_04_081
crossref_primary_10_1111_cas_13562
crossref_primary_10_1007_s40495_017_0088_z
crossref_primary_10_3389_fonc_2021_574318
crossref_primary_10_1038_s41467_018_02951_4
crossref_primary_10_1093_carcin_bgt053
crossref_primary_10_1016_j_critrevonc_2016_02_010
crossref_primary_10_1371_journal_pone_0163694
crossref_primary_10_1016_j_cca_2024_119836
crossref_primary_10_1016_j_jbiotec_2016_12_001
crossref_primary_10_1016_j_pdpdt_2025_104556
crossref_primary_10_1042_BSR20221682
crossref_primary_10_1007_s00216_012_6412_x
crossref_primary_10_3892_ijo_2015_2887
crossref_primary_10_1038_srep03852
crossref_primary_10_1155_2012_474907
crossref_primary_10_1158_1535_7163_MCT_11_0871
crossref_primary_10_1111_j_1349_7006_2012_02262_x
crossref_primary_10_1016_j_gene_2016_04_039
crossref_primary_10_1371_journal_pone_0212889
crossref_primary_10_1016_j_bbrc_2017_01_045
crossref_primary_10_1007_s00216_013_6777_5
crossref_primary_10_1038_srep13896
crossref_primary_10_1111_cas_14443
crossref_primary_10_1038_s41591_019_0458_7
crossref_primary_10_3390_md21050271
crossref_primary_10_1093_nar_gkad444
crossref_primary_10_3390_cancers15041070
crossref_primary_10_1038_s41467_024_55768_9
crossref_primary_10_3390_ijms18071351
crossref_primary_10_1021_acschembio_1c00625
crossref_primary_10_3389_fcell_2020_559486
crossref_primary_10_1016_j_ccell_2015_09_021
crossref_primary_10_1152_ajpcell_00452_2024
crossref_primary_10_1155_2020_8015024
crossref_primary_10_1016_j_jare_2024_05_001
crossref_primary_10_1016_j_isci_2024_109735
crossref_primary_10_3389_fimmu_2021_765705
crossref_primary_10_1016_j_tem_2024_11_004
crossref_primary_10_1111_1346_8138_13921
crossref_primary_10_1016_j_canlet_2016_11_023
crossref_primary_10_4251_wjgo_v15_i1_36
crossref_primary_10_1002_jcsm_12322
crossref_primary_10_5487_TR_2015_31_4_323
crossref_primary_10_1007_s12094_021_02738_y
crossref_primary_10_1186_s12885_019_6354_1
crossref_primary_10_4161_cc_20948
crossref_primary_10_1038_s41598_017_08433_9
crossref_primary_10_1101_gr_271205_120
crossref_primary_10_1038_s41598_020_80668_5
crossref_primary_10_1016_j_xcrm_2023_101043
crossref_primary_10_1021_acsami_5b07395
crossref_primary_10_3389_fmicb_2015_00020
crossref_primary_10_1007_s00216_011_4837_2
crossref_primary_10_1016_j_physa_2016_02_065
crossref_primary_10_1053_j_gastro_2021_04_041
crossref_primary_10_1021_pr500494u
crossref_primary_10_1038_srep04927
crossref_primary_10_1016_j_pharmthera_2016_01_014
crossref_primary_10_1126_science_aaf5171
crossref_primary_10_1038_sigtrans_2016_47
crossref_primary_10_1038_s41598_021_97787_2
crossref_primary_10_1002_jbmr_3477
crossref_primary_10_1186_s12864_016_3351_5
crossref_primary_10_3390_metabo11020119
crossref_primary_10_1158_1940_6207_CAPR_20_0014
crossref_primary_10_1186_s13167_015_0030_6
crossref_primary_10_1021_es400490f
crossref_primary_10_1038_s41598_021_96252_4
crossref_primary_10_1021_acs_analchem_1c03650
crossref_primary_10_1016_S1349_0079_10_80025_8
crossref_primary_10_1016_j_prp_2015_09_011
crossref_primary_10_1002_elps_201300243
crossref_primary_10_1016_j_bmc_2011_10_081
crossref_primary_10_1016_j_aca_2018_10_060
crossref_primary_10_3390_metabo13080950
crossref_primary_10_1186_s40170_021_00269_2
crossref_primary_10_32604_or_2023_030241
crossref_primary_10_1016_j_trac_2014_05_005
crossref_primary_10_3109_1354750X_2016_1171903
crossref_primary_10_1038_ncomms4634
crossref_primary_10_3390_md18110568
crossref_primary_10_3389_fonc_2021_622896
crossref_primary_10_1016_j_bbabio_2011_03_006
crossref_primary_10_1111_febs_12864
crossref_primary_10_1016_j_oooo_2014_04_003
crossref_primary_10_1016_j_celrep_2023_112790
crossref_primary_10_3389_fonc_2023_1173424
crossref_primary_10_1016_j_bbrc_2020_07_082
crossref_primary_10_1002_mc_22998
crossref_primary_10_2478_jvetres_2020_0070
crossref_primary_10_1021_acsnano_9b02466
crossref_primary_10_1002_1873_3468_13874
crossref_primary_10_1080_09553002_2025_2470226
crossref_primary_10_1007_s00216_023_04944_9
crossref_primary_10_2220_biomedres_31_161
crossref_primary_10_1016_j_bbalip_2024_159531
crossref_primary_10_1038_srep26138
crossref_primary_10_1016_j_ccell_2025_02_004
crossref_primary_10_3390_nano8020099
crossref_primary_10_18632_oncotarget_15081
crossref_primary_10_18632_oncotarget_8832
crossref_primary_10_1007_s00216_009_3317_4
crossref_primary_10_3390_ijms161126020
crossref_primary_10_3748_wjg_v22_i6_2046
crossref_primary_10_1158_0008_5472_CAN_16_1645
crossref_primary_10_1016_j_molcel_2015_08_013
crossref_primary_10_1126_science_adj4857
crossref_primary_10_1155_2021_7615126
crossref_primary_10_1038_s44319_024_00278_4
crossref_primary_10_1158_1078_0432_CCR_13_1939
crossref_primary_10_1038_s41598_021_94031_9
crossref_primary_10_1016_j_cytogfr_2020_07_006
crossref_primary_10_16984_saufenbilder_349567
crossref_primary_10_1002_mas_21362
crossref_primary_10_1155_2016_8678634
crossref_primary_10_1002_eji_201545835
crossref_primary_10_1080_19490976_2015_1039223
crossref_primary_10_1016_j_chroma_2013_05_054
crossref_primary_10_1364_BOE_10_003533
crossref_primary_10_1038_s41419_021_04120_w
crossref_primary_10_1152_physrev_00001_2017
crossref_primary_10_1007_s00432_022_04447_7
crossref_primary_10_1002_jcb_26175
crossref_primary_10_1016_j_aca_2017_07_019
crossref_primary_10_1016_j_lfs_2018_07_008
crossref_primary_10_3390_metabo12060550
crossref_primary_10_1152_physrev_00030_2009
crossref_primary_10_1371_journal_pone_0073814
crossref_primary_10_1016_j_celrep_2018_08_024
crossref_primary_10_1007_s12199_015_0494_y
crossref_primary_10_3390_metabo12010059
crossref_primary_10_1007_s11306_011_0357_5
crossref_primary_10_1126_scisignal_2004761
crossref_primary_10_3233_CBM_181500
crossref_primary_10_1002_jat_2933
crossref_primary_10_3389_fendo_2023_1216193
crossref_primary_10_3390_cancers11121993
crossref_primary_10_18632_oncotarget_21665
crossref_primary_10_1038_jid_2015_153
crossref_primary_10_1074_jbc_R111_238691
crossref_primary_10_1074_mcp_M112_019315
crossref_primary_10_1038_s42255_019_0117_9
crossref_primary_10_3390_pharmaceutics16040444
crossref_primary_10_1111_cbdd_12249
crossref_primary_10_3389_fcimb_2018_00019
crossref_primary_10_1016_j_canlet_2013_08_013
crossref_primary_10_1152_ajpgi_00110_2011
crossref_primary_10_1007_s13277_014_1784_5
crossref_primary_10_3390_ijms22094750
crossref_primary_10_1007_s11306_022_01952_1
crossref_primary_10_1016_j_freeradbiomed_2024_01_043
crossref_primary_10_3390_metabo11100671
crossref_primary_10_1016_j_chembiol_2021_01_004
crossref_primary_10_1038_onc_2014_204
crossref_primary_10_1158_0008_5472_CAN_17_0381
crossref_primary_10_1053_j_gastro_2014_01_001
crossref_primary_10_1007_s00216_014_7681_3
crossref_primary_10_18632_oncotarget_3058
crossref_primary_10_1158_1055_9965_EPI_12_1033
crossref_primary_10_1158_2159_8290_CD_13_0929
crossref_primary_10_1038_s41419_021_04396_y
crossref_primary_10_1002_elps_201300561
crossref_primary_10_1002_ijc_32146
crossref_primary_10_3390_cancers15215271
crossref_primary_10_1016_j_jbc_2024_107270
crossref_primary_10_1039_c2an35492f
crossref_primary_10_3389_fonc_2019_01053
crossref_primary_10_1016_j_cbi_2014_12_023
crossref_primary_10_1007_s11306_015_0782_y
crossref_primary_10_1016_j_taap_2023_116630
crossref_primary_10_1371_journal_ppat_1005648
crossref_primary_10_1016_j_bbadis_2011_03_017
crossref_primary_10_3748_wjg_v20_i35_12407
crossref_primary_10_3390_metabo12060532
crossref_primary_10_1186_s12935_016_0281_x
crossref_primary_10_3389_fcell_2022_983599
crossref_primary_10_1002_jcp_25336
crossref_primary_10_1016_j_canlet_2015_05_030
crossref_primary_10_1111_j_1751_2980_2011_00551_x
crossref_primary_10_1038_s41598_021_86209_y
crossref_primary_10_1016_j_ijantimicag_2009_08_016
crossref_primary_10_1016_j_canlet_2017_09_039
crossref_primary_10_4142_jvs_2012_13_4_433
crossref_primary_10_1002_bmc_1671
crossref_primary_10_1016_j_bbrc_2016_04_098
crossref_primary_10_1002_biof_1283
crossref_primary_10_1038_srep31520
crossref_primary_10_1007_s11306_009_0175_1
crossref_primary_10_1042_BST20150116
crossref_primary_10_1016_j_bbamcr_2015_06_006
crossref_primary_10_1002_elps_201000378
crossref_primary_10_2220_biomedres_38_41
crossref_primary_10_1007_s11306_011_0302_7
crossref_primary_10_1089_ars_2021_0038
crossref_primary_10_1016_j_tips_2023_08_009
crossref_primary_10_1016_j_xpro_2022_101531
crossref_primary_10_1038_s41388_018_0651_z
crossref_primary_10_2217_pme_13_73
crossref_primary_10_3892_or_2014_3054
crossref_primary_10_2139_ssrn_3992090
crossref_primary_10_1080_15287394_2010_511545
crossref_primary_10_1016_j_jconrel_2018_02_034
crossref_primary_10_1007_s00198_019_04892_0
crossref_primary_10_1016_j_cca_2015_05_008
crossref_primary_10_1002_biof_1036
crossref_primary_10_1016_j_tox_2011_05_012
crossref_primary_10_1021_acsomega_2c00083
crossref_primary_10_1016_j_jpba_2014_12_026
crossref_primary_10_2217_crc_12_44
crossref_primary_10_1002_jev2_12029
crossref_primary_10_1021_acs_analchem_0c02051
crossref_primary_10_1242_jcs_259090
crossref_primary_10_3390_cancers13174375
crossref_primary_10_18632_genesandcancer_23
crossref_primary_10_1039_D1MO00022E
crossref_primary_10_18632_oncotarget_11754
crossref_primary_10_1371_journal_pone_0210755
crossref_primary_10_1016_j_freeradbiomed_2017_07_033
crossref_primary_10_1128_msystems_00018_22
crossref_primary_10_1016_j_immuni_2017_04_028
crossref_primary_10_1002_eji_201545885
crossref_primary_10_1016_j_phrs_2018_03_019
crossref_primary_10_1021_pr901173v
crossref_primary_10_3892_ol_2022_13342
crossref_primary_10_1007_s11306_010_0224_9
crossref_primary_10_1016_j_heliyon_2023_e18013
crossref_primary_10_1007_s00216_016_9355_9
crossref_primary_10_1002_nbm_3024
crossref_primary_10_5114_bta_2016_60783
crossref_primary_10_2183_pjab_85_258
crossref_primary_10_1111_j_1469_185X_2012_00218_x
crossref_primary_10_1021_jf903680d
crossref_primary_10_1371_journal_pone_0231430
crossref_primary_10_1038_s41598_022_15673_x
crossref_primary_10_3390_cells7020015
crossref_primary_10_1007_s11033_013_2691_3
crossref_primary_10_3390_cancers11081069
crossref_primary_10_1002_bmc_3999
crossref_primary_10_1016_j_jbiosc_2013_03_019
crossref_primary_10_1007_s00604_021_04818_w
crossref_primary_10_1080_14737159_2022_2065196
crossref_primary_10_4155_bio_2016_0216
crossref_primary_10_1002_hep_28415
crossref_primary_10_1021_pr400337b
crossref_primary_10_1038_s41598_017_01801_5
crossref_primary_10_3389_fonc_2023_1117810
crossref_primary_10_1111_j_1349_7006_2011_01880_x
crossref_primary_10_1158_1078_0432_CCR_17_1957
crossref_primary_10_1074_mcp_M110_000661
crossref_primary_10_1007_s11306_023_02002_0
crossref_primary_10_1021_pr500390y
crossref_primary_10_1016_j_chembiol_2023_06_016
crossref_primary_10_1002_elps_200900584
crossref_primary_10_1248_bpb_b17_00746
crossref_primary_10_1038_bjc_2012_398
crossref_primary_10_1016_j_ctrv_2024_102802
crossref_primary_10_1038_s41467_019_12124_6
crossref_primary_10_1074_mcp_M113_035105
crossref_primary_10_1038_s42003_021_02323_7
crossref_primary_10_3390_genes10040270
crossref_primary_10_7554_eLife_95652
crossref_primary_10_1038_jcbfm_2011_1
crossref_primary_10_1038_onc_2013_454
crossref_primary_10_1371_journal_pone_0198342
crossref_primary_10_1021_acssensors_0c00078
crossref_primary_10_3892_ijo_2017_4000
crossref_primary_10_3389_fonc_2021_698951
crossref_primary_10_3390_cancers13215262
crossref_primary_10_1038_s44324_024_00017_2
crossref_primary_10_1074_jbc_R115_693903
crossref_primary_10_1126_scisignal_aam7893
crossref_primary_10_1021_pr100634d
crossref_primary_10_1016_j_jchromb_2024_124270
crossref_primary_10_3892_or_2014_3655
crossref_primary_10_3390_ph8010062
crossref_primary_10_1002_anbr_202000104
crossref_primary_10_3390_metabo10110442
crossref_primary_10_1155_2019_3817879
crossref_primary_10_3390_metabo14070396
crossref_primary_10_3390_jcm10091826
crossref_primary_10_1007_s00216_014_7722_y
crossref_primary_10_18632_oncotarget_2220
crossref_primary_10_12677_acm_2024_143901
crossref_primary_10_1002_wsbm_1582
crossref_primary_10_3389_fmed_2023_1205897
crossref_primary_10_1002_elps_200900451
crossref_primary_10_1007_s11427_010_4041_1
crossref_primary_10_3390_life13071529
crossref_primary_10_1158_2767_9764_CRC_22_0415
crossref_primary_10_1038_srep00930
crossref_primary_10_1371_journal_pone_0250453
crossref_primary_10_1134_S1061934813040035
crossref_primary_10_1016_j_tibs_2015_01_004
crossref_primary_10_1016_j_tibs_2017_01_004
crossref_primary_10_1186_s13046_019_1131_1
crossref_primary_10_1177_15347354211045349
crossref_primary_10_1371_journal_pone_0020447
crossref_primary_10_3892_or_2017_5561
crossref_primary_10_1111_cas_16256
crossref_primary_10_1038_srep38407
crossref_primary_10_1111_bph_12668
crossref_primary_10_1245_s10434_014_3886_0
crossref_primary_10_3390_metabo11040215
crossref_primary_10_1007_s00011_011_0340_7
crossref_primary_10_1021_acs_jproteome_1c00430
crossref_primary_10_1016_j_jchromb_2024_124144
crossref_primary_10_18632_oncotarget_6817
crossref_primary_10_1073_pnas_1610954113
crossref_primary_10_1080_19490976_2020_1854641
crossref_primary_10_1021_jf501142k
crossref_primary_10_1093_jrr_rru078
crossref_primary_10_1007_s12200_017_0720_x
crossref_primary_10_1016_j_jasms_2010_04_003
crossref_primary_10_1021_acschembio_1c00480
crossref_primary_10_1002_jssc_201200692
crossref_primary_10_3892_ol_2017_7148
crossref_primary_10_1007_s11060_013_1090_x
crossref_primary_10_1016_j_nano_2020_102328
crossref_primary_10_1007_s00216_012_5870_5
crossref_primary_10_1253_circj_CJ_17_1184
crossref_primary_10_1038_ncomms13732
crossref_primary_10_1039_C6AY02827F
crossref_primary_10_1159_000436972
crossref_primary_10_1186_s12943_015_0481_3
crossref_primary_10_1016_j_mehy_2011_07_027
crossref_primary_10_1016_j_biomaterials_2015_01_068
crossref_primary_10_1016_j_celrep_2016_03_026
crossref_primary_10_1007_s00216_015_8984_8
crossref_primary_10_1038_s41467_018_04719_2
crossref_primary_10_1021_ac900675k
crossref_primary_10_1134_S0026893322050077
crossref_primary_10_1186_bcr2892
crossref_primary_10_1265_ehpm_23_00218
crossref_primary_10_1007_s00210_023_02403_x
crossref_primary_10_1111_cas_16154
crossref_primary_10_1186_1756_9966_32_34
crossref_primary_10_1016_j_febslet_2014_09_004
crossref_primary_10_3389_fimmu_2021_657293
crossref_primary_10_1016_j_bbabio_2017_01_012
crossref_primary_10_4049_jimmunol_1401558
crossref_primary_10_1248_bpb_b17_00992
crossref_primary_10_1186_s12943_023_01893_w
crossref_primary_10_3390_cancers15051417
crossref_primary_10_1007_s00535_016_1261_6
crossref_primary_10_1016_j_molcel_2013_05_003
crossref_primary_10_1007_s00216_016_0100_1
crossref_primary_10_18632_oncotarget_21288
crossref_primary_10_1158_1055_9965_EPI_15_1223
crossref_primary_10_1038_srep26337
crossref_primary_10_3390_cancers12123542
crossref_primary_10_1007_s10337_016_3061_9
crossref_primary_10_1016_j_ejca_2020_04_049
crossref_primary_10_3390_ijms22031476
crossref_primary_10_1016_j_jpba_2011_02_001
crossref_primary_10_1038_srep19763
crossref_primary_10_1038_s41467_019_11447_8
crossref_primary_10_1016_j_jpba_2019_06_025
crossref_primary_10_1002_ctm2_37
crossref_primary_10_1016_j_jpba_2020_113520
crossref_primary_10_1038_nature13110
crossref_primary_10_1038_s41577_021_00624_w
crossref_primary_10_1080_08839514_2018_1464285
crossref_primary_10_3389_fonc_2021_712746
crossref_primary_10_3389_fcimb_2021_640309
crossref_primary_10_1016_j_molcel_2015_09_025
crossref_primary_10_1074_jbc_M117_809459
crossref_primary_10_2147_CMAR_S271277
crossref_primary_10_1021_pr501084s
crossref_primary_10_18632_oncotarget_3234
crossref_primary_10_1371_journal_pone_0161920
crossref_primary_10_3389_fendo_2023_1228136
crossref_primary_10_3892_or_2015_4280
crossref_primary_10_3390_biom10060868
crossref_primary_10_3390_cells11050768
crossref_primary_10_7554_eLife_95652_3
crossref_primary_10_3389_fmicb_2023_1233460
crossref_primary_10_1172_jci_insight_139900
crossref_primary_10_3892_or_2012_2182
crossref_primary_10_1111_j_1474_9726_2010_00590_x
crossref_primary_10_3390_cancers12051153
crossref_primary_10_1016_j_cca_2012_12_024
crossref_primary_10_3389_fimmu_2018_03036
crossref_primary_10_1016_S1473_3099_13_70107_5
crossref_primary_10_18632_oncotarget_15959
crossref_primary_10_1007_s11306_016_0988_7
crossref_primary_10_1186_1471_2407_10_690
crossref_primary_10_1186_s40170_019_0199_6
crossref_primary_10_3390_microorganisms12050955
crossref_primary_10_1186_1476_4598_12_121
crossref_primary_10_1111_j_1440_1746_2011_06724_x
crossref_primary_10_1038_s41416_020_0777_y
crossref_primary_10_1111_jgh_14497
crossref_primary_10_3390_magnetochemistry9010006
crossref_primary_10_1111_j_1349_7006_2012_02346_x
crossref_primary_10_1016_j_celrep_2017_04_061
crossref_primary_10_1590_S0100_879X2011007500158
crossref_primary_10_1038_srep28415
crossref_primary_10_1016_j_smim_2016_09_001
crossref_primary_10_1158_1055_9965_EPI_14_0980
crossref_primary_10_1016_j_isci_2022_104268
crossref_primary_10_1002_hed_25511
crossref_primary_10_1093_jb_mvs041
crossref_primary_10_3389_fonc_2019_01143
crossref_primary_10_2174_1568009622666220413083534
crossref_primary_10_3390_ijms252413308
crossref_primary_10_1039_D4RA01130A
crossref_primary_10_1016_j_apsb_2015_03_010
crossref_primary_10_3390_gastroent13010006
crossref_primary_10_1021_ac101151k
crossref_primary_10_1038_s41598_020_66568_8
crossref_primary_10_1152_ajpendo_00774_2009
crossref_primary_10_1016_j_jnutbio_2011_05_016
crossref_primary_10_1021_acs_analchem_6b02417
crossref_primary_10_1038_s41388_017_0070_6
crossref_primary_10_1038_s41416_021_01306_z
crossref_primary_10_1021_acs_jproteome_5b00388
crossref_primary_10_1097_MPA_0000000000000092
crossref_primary_10_3389_fendo_2018_00814
crossref_primary_10_1093_rheumatology_kez199
crossref_primary_10_1097_HJH_0b013e3283569c5a
crossref_primary_10_3892_or_2013_2945
crossref_primary_10_3390_ijms23042354
crossref_primary_10_3389_fimmu_2019_03038
crossref_primary_10_1186_s12967_015_0576_z
crossref_primary_10_2220_biomedres_34_221
crossref_primary_10_1371_journal_pone_0040459
crossref_primary_10_1016_j_bbrc_2021_10_072
crossref_primary_10_1152_ajpcell_00139_2021
crossref_primary_10_1016_j_bbcan_2019_05_006
crossref_primary_10_1002_cmtd_202400008
crossref_primary_10_1016_j_cmet_2025_01_002
Cites_doi 10.1038/nbt1192
10.1016/j.bbrc.2005.07.041
10.1111/j.1349-7006.2008.00893.x
10.1038/sj.bjc.6603922
10.1007/BF00230880
10.1126/science.123.3191.309
10.1016/j.ceb.2007.02.003
10.1016/S0021-9258(20)82128-0
10.1007/BF00225648
10.1111/j.1349-7006.2004.tb03247.x
10.1016/S0005-2728(02)00248-7
10.1021/ac051437y
10.1128/jb.108.3.1072-1086.1971
10.1186/1471-2105-7-530
10.1007/s00726-008-0063-4
10.1128/JB.01020-07
10.2144/03342mt01
10.1146/annurev.nutr.27.061406.093749
10.3892/ijo.22.4.795
10.1016/j.yexcr.2008.03.007
10.1111/j.1471-4159.1986.tb00763.x
10.1021/pr8006232
10.1111/j.1349-7006.2006.00220.x
10.1021/ac020064n
10.1016/j.chroma.2007.05.054
10.1126/stke.3812007pe14
10.1016/S0005-2728(01)00237-7
10.1111/j.1349-7006.2006.00298.x
10.1111/j.1365-313X.2004.02187.x
10.1186/1476-4598-7-72
10.1002/nbm.1296
10.1158/0008-5472.CAN-06-0755
10.1016/0005-2728(88)90258-7
10.1016/j.mad.2003.12.003
10.1074/jbc.M601876200
10.1152/ajpgi.00563.2005
10.1021/ac990976y
10.1021/pr034020m
10.1039/b304296k
10.1158/0008-5472.CAN-07-1462
10.1128/JB.182.20.5757-5764.2000
10.1007/s10863-007-9086-x
10.1016/S0021-9258(19)43229-8
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright_xml – notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/0008-5472.CAN-08-4806
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 4925
ExternalDocumentID 19458066
21816406
10_1158_0008_5472_CAN_08_4806
Genre Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
.55
18M
29B
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
8WZ
A6W
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OHT
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
VH1
W2D
W8F
WH7
WOQ
X7M
XJT
YKV
YZZ
ZCG
.GJ
ADNWM
D0S
IQODW
J5H
MVM
WHG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VXZ
7X8
ID FETCH-LOGICAL-c484t-771e8eccafd1f306637f936eb3fe121e7fae81ee1e15c768320ba75df4ae06de3
ISSN 0008-5472
1538-7445
IngestDate Fri Jul 11 10:55:26 EDT 2025
Wed Feb 19 01:49:42 EST 2025
Mon Jul 21 09:14:48 EDT 2025
Tue Jul 01 03:44:38 EDT 2025
Thu Apr 24 23:01:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Capillary electrophoresis
Metabolome
Exploration
Malignant tumor
Microenvironment
Stomach cancer
Colonic disease
Colon cancer
Digestive diseases
Intestinal disease
Mass spectrometry
Cancer
Gastric disease
Quantitative analysis
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-771e8eccafd1f306637f936eb3fe121e7fae81ee1e15c768320ba75df4ae06de3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://aacrjournals.org/cancerres/article-pdf/69/11/4918/2611707/4918.pdf
PMID 19458066
PQID 67317389
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_67317389
pubmed_primary_19458066
pascalfrancis_primary_21816406
crossref_primary_10_1158_0008_5472_CAN_08_4806
crossref_citationtrail_10_1158_0008_5472_CAN_08_4806
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2009
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061700432602400_B30
2022061700432602400_B10
2022061700432602400_B32
2022061700432602400_B31
2022061700432602400_B12
2022061700432602400_B34
2022061700432602400_B11
2022061700432602400_B33
2022061700432602400_B14
2022061700432602400_B36
2022061700432602400_B13
2022061700432602400_B35
2022061700432602400_B16
2022061700432602400_B38
2022061700432602400_B15
2022061700432602400_B37
2022061700432602400_B18
2022061700432602400_B17
2022061700432602400_B39
2022061700432602400_B19
2022061700432602400_B1
2022061700432602400_B3
2022061700432602400_B2
2022061700432602400_B5
2022061700432602400_B41
2022061700432602400_B4
2022061700432602400_B40
2022061700432602400_B7
2022061700432602400_B21
2022061700432602400_B43
2022061700432602400_B6
2022061700432602400_B20
2022061700432602400_B42
2022061700432602400_B23
2022061700432602400_B22
2022061700432602400_B44
2022061700432602400_B25
2022061700432602400_B24
2022061700432602400_B27
2022061700432602400_B26
2022061700432602400_B29
2022061700432602400_B28
2022061700432602400_B9
2022061700432602400_B8
References_xml – ident: 2022061700432602400_B5
  doi: 10.1038/nbt1192
– ident: 2022061700432602400_B23
  doi: 10.1016/j.bbrc.2005.07.041
– ident: 2022061700432602400_B39
  doi: 10.1111/j.1349-7006.2008.00893.x
– ident: 2022061700432602400_B44
  doi: 10.1038/sj.bjc.6603922
– ident: 2022061700432602400_B33
  doi: 10.1007/BF00230880
– ident: 2022061700432602400_B2
  doi: 10.1126/science.123.3191.309
– ident: 2022061700432602400_B28
  doi: 10.1016/j.ceb.2007.02.003
– ident: 2022061700432602400_B34
  doi: 10.1016/S0021-9258(20)82128-0
– ident: 2022061700432602400_B26
  doi: 10.1007/BF00225648
– ident: 2022061700432602400_B29
  doi: 10.1111/j.1349-7006.2004.tb03247.x
– ident: 2022061700432602400_B22
  doi: 10.1016/S0005-2728(02)00248-7
– ident: 2022061700432602400_B18
  doi: 10.1021/ac051437y
– ident: 2022061700432602400_B40
  doi: 10.1128/jb.108.3.1072-1086.1971
– ident: 2022061700432602400_B19
  doi: 10.1186/1471-2105-7-530
– ident: 2022061700432602400_B35
  doi: 10.1007/s00726-008-0063-4
– ident: 2022061700432602400_B41
  doi: 10.1128/JB.01020-07
– ident: 2022061700432602400_B20
  doi: 10.2144/03342mt01
– ident: 2022061700432602400_B37
  doi: 10.1146/annurev.nutr.27.061406.093749
– ident: 2022061700432602400_B1
  doi: 10.3892/ijo.22.4.795
– ident: 2022061700432602400_B4
  doi: 10.1016/j.yexcr.2008.03.007
– ident: 2022061700432602400_B42
  doi: 10.1111/j.1471-4159.1986.tb00763.x
– ident: 2022061700432602400_B9
  doi: 10.1021/pr8006232
– ident: 2022061700432602400_B24
  doi: 10.1111/j.1349-7006.2006.00220.x
– ident: 2022061700432602400_B13
  doi: 10.1021/ac020064n
– ident: 2022061700432602400_B17
  doi: 10.1016/j.chroma.2007.05.054
– ident: 2022061700432602400_B27
  doi: 10.1126/stke.3812007pe14
– ident: 2022061700432602400_B31
  doi: 10.1016/S0005-2728(01)00237-7
– ident: 2022061700432602400_B21
  doi: 10.1111/j.1349-7006.2006.00298.x
– ident: 2022061700432602400_B14
  doi: 10.1111/j.1365-313X.2004.02187.x
– ident: 2022061700432602400_B11
  doi: 10.1186/1476-4598-7-72
– ident: 2022061700432602400_B7
  doi: 10.1002/nbm.1296
– ident: 2022061700432602400_B10
  doi: 10.1158/0008-5472.CAN-06-0755
– ident: 2022061700432602400_B30
  doi: 10.1016/0005-2728(88)90258-7
– ident: 2022061700432602400_B36
  doi: 10.1016/j.mad.2003.12.003
– ident: 2022061700432602400_B15
  doi: 10.1074/jbc.M601876200
– ident: 2022061700432602400_B25
  doi: 10.1152/ajpgi.00563.2005
– ident: 2022061700432602400_B8
– ident: 2022061700432602400_B16
  doi: 10.1021/ac990976y
– ident: 2022061700432602400_B12
  doi: 10.1021/pr034020m
– ident: 2022061700432602400_B6
  doi: 10.1039/b304296k
– ident: 2022061700432602400_B38
  doi: 10.1158/0008-5472.CAN-07-1462
– ident: 2022061700432602400_B32
  doi: 10.1128/JB.182.20.5757-5764.2000
– ident: 2022061700432602400_B3
  doi: 10.1007/s10863-007-9086-x
– ident: 2022061700432602400_B43
  doi: 10.1016/S0021-9258(19)43229-8
SSID ssj0005105
Score 2.5314376
Snippet Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 4918
SubjectTerms Antineoplastic agents
Biological and medical sciences
Citric Acid Cycle - physiology
Colonic Neoplasms - metabolism
Colonic Neoplasms - pathology
Electrophoresis, Capillary - methods
Female
Gastroenterology. Liver. Pancreas. Abdomen
Glycolysis - physiology
Humans
Male
Mass Spectrometry - methods
Medical sciences
Metabolome
Metabolomics - methods
Models, Biological
Pharmacology. Drug treatments
Stomach Neoplasms - metabolism
Stomach Neoplasms - pathology
Stomach. Duodenum. Small intestine. Colon. Rectum. Anus
Tumors
Title Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry
URI https://www.ncbi.nlm.nih.gov/pubmed/19458066
https://www.proquest.com/docview/67317389
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3battAEF3cFEqhlN7rXtJ96FuQa0m70uoxmATT4kBoAnkTK2lVK5EtY8sU9xv6jf2WzmjXurjuJX0RsuS9oDkazeyemSHkvRN5qbKZb8VcphZzRWIFPEhBGSqGuV28QFZsizNvfMk-XvGrXu9Hi7W0LqNB_G1vXMn_SBWugVwxSvYWkq07hQtwDvKFI0gYjv8k4_O1nFdBYkj_magSBJoXM4Xs_zTLDZ95BNc04_hzWcwwfGqEkl4iY35ZtALd0BIdyQWWIVpujk50fZzFtACHPFtVsSJWkVqnObrzRxMwuqvi9SXmOyi7gdVmAJNIaFrtFGvKR6WS8nzQWoAYZ0u5kTO9vnuTbYrVNKs_A3KWmeiha5hms4P1BSFW6GCjlZx278mvsqqeBPduss6yRtDQr2pVLSzOdF2fgWq0s890_smt-taVXrYwtVvKmAVGtSvzU4dY__rR4EKzLPWAg9HxGa4aMzHck6R75-NZUxorZ4oL3MwXIXYTQjchnGM3d8hdB9wY1MOfzpts9txQbLcjmwgz6ObD3tl0bKcHC7mC1zjV9Vd-7yBVhtLFI_LQeDj0WMP1Memp-RNyb2I4HE_J9zZqaYNaWqOWFimtUEsBtdSglmpQ0V3U0mhDa9TSHdTSLmopopa2UfuMXJ6eXIzGlqkJYsVMsBKcQVsJVDtpYqcu2st-GrieilxQOY6t_FQqYStlK5vH4Eq7zjCSPk9SJtXQS5T7nBzMi7l6SagKeCI4j_zET1gUOyJxGI_A3BWKqdgVfcK2TzuMTcJ8rNuSh3-UdZ8M6mYLnTHmbw0OO6KsW6H17TH8w7utbENQ_rijJ-eqWK-QlGn74HL0yQst8mbEgHHo23t129m8Jveb1_ENOSiXa_UW7O4yOqzA-xMiR9aS
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Metabolome+Profiling+of+Colon+and+Stomach+Cancer+Microenvironment+by+Capillary+Electrophoresis+Time-of-Flight+Mass+Spectrometry&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Hirayama%2C+Akiyoshi&rft.au=Kami%2C+Kenjiro&rft.au=Sugimoto%2C+Masahiro&rft.au=Sugawara%2C+Maki&rft.date=2009-06-01&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=69&rft.issue=11&rft.spage=4918&rft.epage=4925&rft_id=info:doi/10.1158%2F0008-5472.CAN-08-4806&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_08_4806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon