Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry
Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 69; no. 11; pp. 4918 - 4925 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry–based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism. [Cancer Res 2009;69(11):4918–25] |
---|---|
AbstractList | Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry–based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism. [Cancer Res 2009;69(11):4918–25] Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry-based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism. Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry-based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism.Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry-based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism. |
Author | Hirayama, Akiyoshi Soga, Tomoyoshi Onozuka, Hiroko Tomita, Masaru Sugawara, Maki Ochiai, Atsushi Esumi, Hiroyasu Sugimoto, Masahiro Saito, Norio Kami, Kenjiro Toki, Naoko Kinoshita, Taira |
Author_xml | – sequence: 1 givenname: Akiyoshi surname: Hirayama fullname: Hirayama, Akiyoshi – sequence: 2 givenname: Kenjiro surname: Kami fullname: Kami, Kenjiro – sequence: 3 givenname: Masahiro surname: Sugimoto fullname: Sugimoto, Masahiro – sequence: 4 givenname: Maki surname: Sugawara fullname: Sugawara, Maki – sequence: 5 givenname: Naoko surname: Toki fullname: Toki, Naoko – sequence: 6 givenname: Hiroko surname: Onozuka fullname: Onozuka, Hiroko – sequence: 7 givenname: Taira surname: Kinoshita fullname: Kinoshita, Taira – sequence: 8 givenname: Norio surname: Saito fullname: Saito, Norio – sequence: 9 givenname: Atsushi surname: Ochiai fullname: Ochiai, Atsushi – sequence: 10 givenname: Masaru surname: Tomita fullname: Tomita, Masaru – sequence: 11 givenname: Hiroyasu surname: Esumi fullname: Esumi, Hiroyasu – sequence: 12 givenname: Tomoyoshi surname: Soga fullname: Soga, Tomoyoshi |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21816406$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19458066$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd9uFCEUxompsds_j6Dhxt5NhR0Y2HjVTFo16apN22vCMIcuZgZGYJvsO_jQMu1aE2-84gC_7-Sc7ztCBz54QOgtJeeUcvmBECIrzsTyvL34WpWaSdK8QgvKa1kJxvgBWrwwh-gopR_lyinhb9AhXTFe8GaBft1stc8u6-weAa8h6y4MYQT8PQbrBucfcLC4LW8ea9_j2xxGbTa41d5AxGtnYgD_6GLwI_iMu135mtww6LjDlwOYHMO0CRGSS_jOjVAFW10N7mGT8VqnhG-nJ2aEHHcn6LXVQ4LT_XmM7q8u79rP1fW3T1_ai-vKMMlyJQQFCcZo21NblzVqYVd1A11tgS4pCKtBUgAKlBvRyHpJOi14b5kG0vRQH6Oz575TDD-3kLIaXTJQhvYQtkk1oqailqsCvtuD226EXk3RjWUx9ce_ArzfAzoZPdhYbHHphVtSSRtGZo4_c8WulCLYv62ImvNUc1ZqzkqVPFWp5zyL7uM_OvOUVfA5ajf8R_0b3Paovg |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1039_D0TB01245A crossref_primary_10_1016_j_jff_2019_103522 crossref_primary_10_1007_s00726_021_03013_8 crossref_primary_10_1139_bcb_2018_0076 crossref_primary_10_3390_sym15010042 crossref_primary_10_1038_ncomms4295 crossref_primary_10_1186_s40170_024_00337_3 crossref_primary_10_1371_journal_pone_0120106 crossref_primary_10_1016_j_ymeth_2018_04_027 crossref_primary_10_1016_j_chroma_2014_10_007 crossref_primary_10_1002_jssc_201000171 crossref_primary_10_1016_j_critrevonc_2020_103061 crossref_primary_10_2116_analsci_32_893 crossref_primary_10_3390_biology9110380 crossref_primary_10_1007_s12029_015_9700_9 crossref_primary_10_1002_rcm_4420 crossref_primary_10_1007_s11306_014_0631_4 crossref_primary_10_1091_mbc_E22_12_0560 crossref_primary_10_1146_annurev_pathol_011811_120856 crossref_primary_10_1007_s11306_011_0297_0 crossref_primary_10_1016_j_biomaterials_2024_122605 crossref_primary_10_1038_bjc_2015_414 crossref_primary_10_1021_ac1019039 crossref_primary_10_1371_journal_pone_0098581 crossref_primary_10_5012_bkcs_2013_34_1_35 crossref_primary_10_1016_j_talanta_2016_04_049 crossref_primary_10_1021_acs_jafc_6b03844 crossref_primary_10_1007_s11306_012_0463_z crossref_primary_10_1111_his_13504 crossref_primary_10_18632_oncotarget_24466 crossref_primary_10_3724_abbs_2023158 crossref_primary_10_1111_imcb_12168 crossref_primary_10_1186_s13287_021_02377_8 crossref_primary_10_1002_nbm_1616 crossref_primary_10_1186_s13578_023_01148_7 crossref_primary_10_2174_0109298673284520240112055108 crossref_primary_10_1158_0008_5472_CAN_12_0080 crossref_primary_10_18632_oncotarget_16602 crossref_primary_10_3389_fimmu_2019_00868 crossref_primary_10_1038_s41591_019_0406_6 crossref_primary_10_3390_metabo12090778 crossref_primary_10_1038_s41577_019_0139_2 crossref_primary_10_1016_j_jpba_2015_11_007 crossref_primary_10_1186_s40170_020_0208_9 crossref_primary_10_1016_j_nut_2018_06_002 crossref_primary_10_1126_science_1223066 crossref_primary_10_1016_j_bbrc_2019_04_072 crossref_primary_10_1016_j_jes_2016_07_013 crossref_primary_10_2217_hep_2016_0012 crossref_primary_10_3390_ijms21031041 crossref_primary_10_1016_j_canlet_2022_215617 crossref_primary_10_1074_mcp_M112_024109 crossref_primary_10_1002_iub_1748 crossref_primary_10_1016_j_canlet_2020_12_010 crossref_primary_10_1016_j_semcancer_2020_02_007 crossref_primary_10_1038_onc_2014_57 crossref_primary_10_1016_j_jsbmb_2019_105539 crossref_primary_10_1039_D0NJ05569G crossref_primary_10_1080_15548627_2021_2008690 crossref_primary_10_3390_molecules28020740 crossref_primary_10_1111_cas_15472 crossref_primary_10_1016_j_jconrel_2022_07_017 crossref_primary_10_1016_j_metabol_2021_154778 crossref_primary_10_1111_cas_12085 crossref_primary_10_1111_febs_17203 crossref_primary_10_18632_aging_203622 crossref_primary_10_1007_s00432_022_04124_9 crossref_primary_10_1016_j_bbagrm_2014_11_002 crossref_primary_10_1007_s10120_020_01065_5 crossref_primary_10_1111_j_1749_6632_2010_05620_x crossref_primary_10_1039_D1AY00994J crossref_primary_10_3748_wjg_v20_i36_12874 crossref_primary_10_1371_journal_pone_0132223 crossref_primary_10_1016_j_celrep_2017_12_071 crossref_primary_10_1016_j_trecan_2016_10_009 crossref_primary_10_18632_oncotarget_21093 crossref_primary_10_3748_wjg_v25_i14_1697 crossref_primary_10_1016_j_bone_2016_10_027 crossref_primary_10_1038_onc_2014_47 crossref_primary_10_2174_0113895575322436240924101642 crossref_primary_10_1111_cmi_12036 crossref_primary_10_1007_s00018_015_2122_9 crossref_primary_10_3390_cells10040762 crossref_primary_10_1016_j_chembiol_2010_06_017 crossref_primary_10_1038_s41374_020_00486_1 crossref_primary_10_1186_s12964_019_0478_4 crossref_primary_10_1292_jvms_21_0646 crossref_primary_10_1016_j_bbagen_2011_12_013 crossref_primary_10_1002_psc_3071 crossref_primary_10_1016_j_immuni_2024_07_003 crossref_primary_10_1016_j_jbc_2024_107784 crossref_primary_10_1002_adma_202007978 crossref_primary_10_1080_15476286_2016_1191737 crossref_primary_10_1002_bmc_3295 crossref_primary_10_1007_s11306_019_1610_6 crossref_primary_10_1186_s40425_019_0627_8 crossref_primary_10_1016_j_cbi_2012_12_017 crossref_primary_10_1007_s00204_014_1246_2 crossref_primary_10_1016_j_tiv_2022_105357 crossref_primary_10_1038_onc_2011_137 crossref_primary_10_1038_s41598_018_28074_w crossref_primary_10_1038_labinvest_2017_4 crossref_primary_10_1039_c004994h crossref_primary_10_18632_oncotarget_17868 crossref_primary_10_1016_j_ejca_2013_07_004 crossref_primary_10_1021_pr400260h crossref_primary_10_1016_j_jpba_2013_08_041 crossref_primary_10_1038_tp_2014_19 crossref_primary_10_3390_biomedicines9091101 crossref_primary_10_3389_fonc_2020_00717 crossref_primary_10_1016_j_aca_2009_11_042 crossref_primary_10_1016_j_bbrc_2018_10_136 crossref_primary_10_3389_fphys_2017_00217 crossref_primary_10_1039_C6TX00010J crossref_primary_10_1186_1471_2202_15_32 crossref_primary_10_1080_14737175_2020_1782746 crossref_primary_10_1371_journal_pone_0191230 crossref_primary_10_1271_bbb_130093 crossref_primary_10_1002_elps_201500060 crossref_primary_10_1021_acs_jproteome_4c00795 crossref_primary_10_3892_ijo_2018_4340 crossref_primary_10_3892_or_2016_4660 crossref_primary_10_1038_s41419_024_07052_3 crossref_primary_10_1016_j_isci_2021_102091 crossref_primary_10_1007_s11306_012_0452_2 crossref_primary_10_1186_s10020_022_00435_2 crossref_primary_10_26508_lsa_202000683 crossref_primary_10_3390_cancers11020156 crossref_primary_10_1016_j_celrep_2017_02_054 crossref_primary_10_1159_000492680 crossref_primary_10_3390_ijms21228684 crossref_primary_10_1038_s43587_024_00642_y crossref_primary_10_1186_s13039_016_0293_1 crossref_primary_10_3389_fmicb_2018_00614 crossref_primary_10_1007_s00432_024_05857_5 crossref_primary_10_5487_TR_2014_30_4_235 crossref_primary_10_1007_s10295_015_1681_y crossref_primary_10_1038_s41598_021_04612_x crossref_primary_10_1155_2014_126586 crossref_primary_10_1021_pr3010106 crossref_primary_10_1158_0008_5472_CAN_11_1543 crossref_primary_10_1371_journal_pone_0063054 crossref_primary_10_1016_j_biocel_2010_08_009 crossref_primary_10_2131_jts_39_717 crossref_primary_10_3390_ijms18050918 crossref_primary_10_1080_29933935_2025_2454002 crossref_primary_10_1016_j_mito_2012_07_113 crossref_primary_10_1074_jbc_TM117_000239 crossref_primary_10_3390_md10081873 crossref_primary_10_1158_1055_9965_EPI_13_0584 crossref_primary_10_1124_pr_116_012492 crossref_primary_10_1007_s11306_010_0250_7 crossref_primary_10_1021_pr5013152 crossref_primary_10_3892_mmr_2023_13106 crossref_primary_10_1158_1940_6207_CAPR_16_0095 crossref_primary_10_1007_s00394_024_03469_w crossref_primary_10_1016_j_aca_2018_04_006 crossref_primary_10_1158_1078_0432_CCR_15_2973 crossref_primary_10_3390_ijms25179509 crossref_primary_10_1002_emmm_201303016 crossref_primary_10_1021_pr500443c crossref_primary_10_1186_s12902_022_01113_4 crossref_primary_10_1002_2211_5463_13860 crossref_primary_10_1158_0008_5472_CAN_20_1541 crossref_primary_10_1186_s12935_023_03169_1 crossref_primary_10_1371_journal_pone_0182422 crossref_primary_10_1371_journal_pone_0056628 crossref_primary_10_1002_ags3_12058 crossref_primary_10_3892_ijo_2014_2367 crossref_primary_10_1007_s11033_022_08090_w crossref_primary_10_1038_nrmicro2819 crossref_primary_10_4155_bio_2015_0010 crossref_primary_10_3390_biom11121888 crossref_primary_10_1172_JCI83005 crossref_primary_10_1007_s00253_018_9261_5 crossref_primary_10_1007_s10120_021_01223_3 crossref_primary_10_1111_cas_13086 crossref_primary_10_1371_journal_pone_0070803 crossref_primary_10_1016_j_cellin_2024_100186 crossref_primary_10_1016_j_heliyon_2024_e38718 crossref_primary_10_1186_s40364_018_0119_x crossref_primary_10_1111_cas_14298 crossref_primary_10_1158_1940_6207_CAPR_12_0160 crossref_primary_10_1002_jbt_23807 crossref_primary_10_1016_j_bbrc_2010_01_050 crossref_primary_10_1016_j_jphotobiol_2016_08_030 crossref_primary_10_1016_j_heliyon_2024_e37985 crossref_primary_10_1016_j_fct_2022_113129 crossref_primary_10_1111_cas_14170 crossref_primary_10_1371_journal_pone_0024143 crossref_primary_10_1038_s41598_019_46404_4 crossref_primary_10_1007_s00726_021_02968_y crossref_primary_10_1371_journal_pone_0269620 crossref_primary_10_1038_s41467_023_41952_w crossref_primary_10_1016_j_metabol_2018_03_020 crossref_primary_10_1021_pr201001a crossref_primary_10_1186_s10020_025_01069_w crossref_primary_10_1007_s00216_011_5098_9 crossref_primary_10_4155_bio_2017_0195 crossref_primary_10_1007_s00216_015_8662_x crossref_primary_10_1016_j_molmet_2020_101093 crossref_primary_10_1038_s41419_018_1244_z crossref_primary_10_1007_s00535_011_0493_8 crossref_primary_10_1016_j_cca_2024_119965 crossref_primary_10_1074_jbc_M115_680579 crossref_primary_10_1038_s41419_018_0564_3 crossref_primary_10_1016_j_molcel_2018_01_024 crossref_primary_10_1158_1078_0432_CCR_12_3300 crossref_primary_10_1007_s11306_009_0178_y crossref_primary_10_1007_s11306_012_0443_3 crossref_primary_10_1080_01635581_2013_789118 crossref_primary_10_3390_cancers16010069 crossref_primary_10_3748_wjg_v24_i33_3760 crossref_primary_10_1089_dna_2018_4579 crossref_primary_10_1007_s11307_013_0680_5 crossref_primary_10_1016_j_bbcan_2012_05_005 crossref_primary_10_1016_j_aca_2011_09_042 crossref_primary_10_1016_j_bbabio_2010_09_003 crossref_primary_10_2188_jea_JE20230170 crossref_primary_10_1002_nbm_3072 crossref_primary_10_1002_1873_3468_12849 crossref_primary_10_18632_oncotarget_28306 crossref_primary_10_1007_s11306_018_1376_2 crossref_primary_10_1038_s42255_019_0109_9 crossref_primary_10_1158_0008_5472_CAN_16_0268 crossref_primary_10_1242_jcs_175349 crossref_primary_10_1002_elps_201800017 crossref_primary_10_1111_cas_15836 crossref_primary_10_3390_ncrna3020020 crossref_primary_10_1038_cddis_2017_14 crossref_primary_10_1038_onc_2017_345 crossref_primary_10_3390_pharmaceutics11030119 crossref_primary_10_1002_mrc_4658 crossref_primary_10_1038_s41598_022_19245_x crossref_primary_10_1021_acs_analchem_7b04565 crossref_primary_10_2116_analsci_30_751 crossref_primary_10_1016_j_jpba_2022_114643 crossref_primary_10_1016_j_jelechem_2023_117326 crossref_primary_10_1186_s13046_016_0358_3 crossref_primary_10_1038_s41467_019_10015_4 crossref_primary_10_1002_mas_20338 crossref_primary_10_1016_j_lungcan_2011_02_008 crossref_primary_10_1038_s41419_018_0542_9 crossref_primary_10_4161_auto_25418 crossref_primary_10_1016_j_celrep_2022_111193 crossref_primary_10_3390_ijms17060870 crossref_primary_10_1097_MPA_0000000000000680 crossref_primary_10_1016_j_bcp_2024_116161 crossref_primary_10_1111_cas_15625 crossref_primary_10_3390_cancers12102904 crossref_primary_10_1111_jcmm_14764 crossref_primary_10_1186_s13046_023_02779_x crossref_primary_10_1016_j_jpba_2024_116060 crossref_primary_10_1111_cas_13208 crossref_primary_10_1021_pr900738b crossref_primary_10_1038_s41374_019_0353_3 crossref_primary_10_1158_0008_5472_CAN_13_0308 crossref_primary_10_1172_jci_insight_142464 crossref_primary_10_1002_jssc_201100528 crossref_primary_10_1126_scisignal_aab2610 crossref_primary_10_3390_cancers14153799 crossref_primary_10_1248_bpb_b18_00055 crossref_primary_10_1074_jbc_M115_712166 crossref_primary_10_1016_j_trac_2014_06_004 crossref_primary_10_1038_s41598_021_02729_7 crossref_primary_10_1093_carcin_bgu131 crossref_primary_10_1016_j_ccr_2011_02_014 crossref_primary_10_1016_j_foodres_2012_11_010 crossref_primary_10_1038_nrclinonc_2016_60 crossref_primary_10_1152_physrev_00035_2018 crossref_primary_10_2188_jea_JE20230192 crossref_primary_10_1016_j_drup_2009_07_001 crossref_primary_10_3322_caac_21670 crossref_primary_10_3390_antibiotics13020184 crossref_primary_10_1172_JCI137845 crossref_primary_10_1016_j_molmet_2021_101389 crossref_primary_10_2131_jts_42_445 crossref_primary_10_1021_acs_analchem_6b03269 crossref_primary_10_1038_s42003_024_06186_6 crossref_primary_10_1039_D1MO00387A crossref_primary_10_1186_s13046_019_1029_y crossref_primary_10_18632_oncotarget_25299 crossref_primary_10_1007_s11082_016_0634_7 crossref_primary_10_1002_jcp_25617 crossref_primary_10_1371_journal_pone_0154747 crossref_primary_10_1136_esmoopen_2019_000563 crossref_primary_10_1016_j_bbrc_2012_04_081 crossref_primary_10_1111_cas_13562 crossref_primary_10_1007_s40495_017_0088_z crossref_primary_10_3389_fonc_2021_574318 crossref_primary_10_1038_s41467_018_02951_4 crossref_primary_10_1093_carcin_bgt053 crossref_primary_10_1016_j_critrevonc_2016_02_010 crossref_primary_10_1371_journal_pone_0163694 crossref_primary_10_1016_j_cca_2024_119836 crossref_primary_10_1016_j_jbiotec_2016_12_001 crossref_primary_10_1016_j_pdpdt_2025_104556 crossref_primary_10_1042_BSR20221682 crossref_primary_10_1007_s00216_012_6412_x crossref_primary_10_3892_ijo_2015_2887 crossref_primary_10_1038_srep03852 crossref_primary_10_1155_2012_474907 crossref_primary_10_1158_1535_7163_MCT_11_0871 crossref_primary_10_1111_j_1349_7006_2012_02262_x crossref_primary_10_1016_j_gene_2016_04_039 crossref_primary_10_1371_journal_pone_0212889 crossref_primary_10_1016_j_bbrc_2017_01_045 crossref_primary_10_1007_s00216_013_6777_5 crossref_primary_10_1038_srep13896 crossref_primary_10_1111_cas_14443 crossref_primary_10_1038_s41591_019_0458_7 crossref_primary_10_3390_md21050271 crossref_primary_10_1093_nar_gkad444 crossref_primary_10_3390_cancers15041070 crossref_primary_10_1038_s41467_024_55768_9 crossref_primary_10_3390_ijms18071351 crossref_primary_10_1021_acschembio_1c00625 crossref_primary_10_3389_fcell_2020_559486 crossref_primary_10_1016_j_ccell_2015_09_021 crossref_primary_10_1152_ajpcell_00452_2024 crossref_primary_10_1155_2020_8015024 crossref_primary_10_1016_j_jare_2024_05_001 crossref_primary_10_1016_j_isci_2024_109735 crossref_primary_10_3389_fimmu_2021_765705 crossref_primary_10_1016_j_tem_2024_11_004 crossref_primary_10_1111_1346_8138_13921 crossref_primary_10_1016_j_canlet_2016_11_023 crossref_primary_10_4251_wjgo_v15_i1_36 crossref_primary_10_1002_jcsm_12322 crossref_primary_10_5487_TR_2015_31_4_323 crossref_primary_10_1007_s12094_021_02738_y crossref_primary_10_1186_s12885_019_6354_1 crossref_primary_10_4161_cc_20948 crossref_primary_10_1038_s41598_017_08433_9 crossref_primary_10_1101_gr_271205_120 crossref_primary_10_1038_s41598_020_80668_5 crossref_primary_10_1016_j_xcrm_2023_101043 crossref_primary_10_1021_acsami_5b07395 crossref_primary_10_3389_fmicb_2015_00020 crossref_primary_10_1007_s00216_011_4837_2 crossref_primary_10_1016_j_physa_2016_02_065 crossref_primary_10_1053_j_gastro_2021_04_041 crossref_primary_10_1021_pr500494u crossref_primary_10_1038_srep04927 crossref_primary_10_1016_j_pharmthera_2016_01_014 crossref_primary_10_1126_science_aaf5171 crossref_primary_10_1038_sigtrans_2016_47 crossref_primary_10_1038_s41598_021_97787_2 crossref_primary_10_1002_jbmr_3477 crossref_primary_10_1186_s12864_016_3351_5 crossref_primary_10_3390_metabo11020119 crossref_primary_10_1158_1940_6207_CAPR_20_0014 crossref_primary_10_1186_s13167_015_0030_6 crossref_primary_10_1021_es400490f crossref_primary_10_1038_s41598_021_96252_4 crossref_primary_10_1021_acs_analchem_1c03650 crossref_primary_10_1016_S1349_0079_10_80025_8 crossref_primary_10_1016_j_prp_2015_09_011 crossref_primary_10_1002_elps_201300243 crossref_primary_10_1016_j_bmc_2011_10_081 crossref_primary_10_1016_j_aca_2018_10_060 crossref_primary_10_3390_metabo13080950 crossref_primary_10_1186_s40170_021_00269_2 crossref_primary_10_32604_or_2023_030241 crossref_primary_10_1016_j_trac_2014_05_005 crossref_primary_10_3109_1354750X_2016_1171903 crossref_primary_10_1038_ncomms4634 crossref_primary_10_3390_md18110568 crossref_primary_10_3389_fonc_2021_622896 crossref_primary_10_1016_j_bbabio_2011_03_006 crossref_primary_10_1111_febs_12864 crossref_primary_10_1016_j_oooo_2014_04_003 crossref_primary_10_1016_j_celrep_2023_112790 crossref_primary_10_3389_fonc_2023_1173424 crossref_primary_10_1016_j_bbrc_2020_07_082 crossref_primary_10_1002_mc_22998 crossref_primary_10_2478_jvetres_2020_0070 crossref_primary_10_1021_acsnano_9b02466 crossref_primary_10_1002_1873_3468_13874 crossref_primary_10_1080_09553002_2025_2470226 crossref_primary_10_1007_s00216_023_04944_9 crossref_primary_10_2220_biomedres_31_161 crossref_primary_10_1016_j_bbalip_2024_159531 crossref_primary_10_1038_srep26138 crossref_primary_10_1016_j_ccell_2025_02_004 crossref_primary_10_3390_nano8020099 crossref_primary_10_18632_oncotarget_15081 crossref_primary_10_18632_oncotarget_8832 crossref_primary_10_1007_s00216_009_3317_4 crossref_primary_10_3390_ijms161126020 crossref_primary_10_3748_wjg_v22_i6_2046 crossref_primary_10_1158_0008_5472_CAN_16_1645 crossref_primary_10_1016_j_molcel_2015_08_013 crossref_primary_10_1126_science_adj4857 crossref_primary_10_1155_2021_7615126 crossref_primary_10_1038_s44319_024_00278_4 crossref_primary_10_1158_1078_0432_CCR_13_1939 crossref_primary_10_1038_s41598_021_94031_9 crossref_primary_10_1016_j_cytogfr_2020_07_006 crossref_primary_10_16984_saufenbilder_349567 crossref_primary_10_1002_mas_21362 crossref_primary_10_1155_2016_8678634 crossref_primary_10_1002_eji_201545835 crossref_primary_10_1080_19490976_2015_1039223 crossref_primary_10_1016_j_chroma_2013_05_054 crossref_primary_10_1364_BOE_10_003533 crossref_primary_10_1038_s41419_021_04120_w crossref_primary_10_1152_physrev_00001_2017 crossref_primary_10_1007_s00432_022_04447_7 crossref_primary_10_1002_jcb_26175 crossref_primary_10_1016_j_aca_2017_07_019 crossref_primary_10_1016_j_lfs_2018_07_008 crossref_primary_10_3390_metabo12060550 crossref_primary_10_1152_physrev_00030_2009 crossref_primary_10_1371_journal_pone_0073814 crossref_primary_10_1016_j_celrep_2018_08_024 crossref_primary_10_1007_s12199_015_0494_y crossref_primary_10_3390_metabo12010059 crossref_primary_10_1007_s11306_011_0357_5 crossref_primary_10_1126_scisignal_2004761 crossref_primary_10_3233_CBM_181500 crossref_primary_10_1002_jat_2933 crossref_primary_10_3389_fendo_2023_1216193 crossref_primary_10_3390_cancers11121993 crossref_primary_10_18632_oncotarget_21665 crossref_primary_10_1038_jid_2015_153 crossref_primary_10_1074_jbc_R111_238691 crossref_primary_10_1074_mcp_M112_019315 crossref_primary_10_1038_s42255_019_0117_9 crossref_primary_10_3390_pharmaceutics16040444 crossref_primary_10_1111_cbdd_12249 crossref_primary_10_3389_fcimb_2018_00019 crossref_primary_10_1016_j_canlet_2013_08_013 crossref_primary_10_1152_ajpgi_00110_2011 crossref_primary_10_1007_s13277_014_1784_5 crossref_primary_10_3390_ijms22094750 crossref_primary_10_1007_s11306_022_01952_1 crossref_primary_10_1016_j_freeradbiomed_2024_01_043 crossref_primary_10_3390_metabo11100671 crossref_primary_10_1016_j_chembiol_2021_01_004 crossref_primary_10_1038_onc_2014_204 crossref_primary_10_1158_0008_5472_CAN_17_0381 crossref_primary_10_1053_j_gastro_2014_01_001 crossref_primary_10_1007_s00216_014_7681_3 crossref_primary_10_18632_oncotarget_3058 crossref_primary_10_1158_1055_9965_EPI_12_1033 crossref_primary_10_1158_2159_8290_CD_13_0929 crossref_primary_10_1038_s41419_021_04396_y crossref_primary_10_1002_elps_201300561 crossref_primary_10_1002_ijc_32146 crossref_primary_10_3390_cancers15215271 crossref_primary_10_1016_j_jbc_2024_107270 crossref_primary_10_1039_c2an35492f crossref_primary_10_3389_fonc_2019_01053 crossref_primary_10_1016_j_cbi_2014_12_023 crossref_primary_10_1007_s11306_015_0782_y crossref_primary_10_1016_j_taap_2023_116630 crossref_primary_10_1371_journal_ppat_1005648 crossref_primary_10_1016_j_bbadis_2011_03_017 crossref_primary_10_3748_wjg_v20_i35_12407 crossref_primary_10_3390_metabo12060532 crossref_primary_10_1186_s12935_016_0281_x crossref_primary_10_3389_fcell_2022_983599 crossref_primary_10_1002_jcp_25336 crossref_primary_10_1016_j_canlet_2015_05_030 crossref_primary_10_1111_j_1751_2980_2011_00551_x crossref_primary_10_1038_s41598_021_86209_y crossref_primary_10_1016_j_ijantimicag_2009_08_016 crossref_primary_10_1016_j_canlet_2017_09_039 crossref_primary_10_4142_jvs_2012_13_4_433 crossref_primary_10_1002_bmc_1671 crossref_primary_10_1016_j_bbrc_2016_04_098 crossref_primary_10_1002_biof_1283 crossref_primary_10_1038_srep31520 crossref_primary_10_1007_s11306_009_0175_1 crossref_primary_10_1042_BST20150116 crossref_primary_10_1016_j_bbamcr_2015_06_006 crossref_primary_10_1002_elps_201000378 crossref_primary_10_2220_biomedres_38_41 crossref_primary_10_1007_s11306_011_0302_7 crossref_primary_10_1089_ars_2021_0038 crossref_primary_10_1016_j_tips_2023_08_009 crossref_primary_10_1016_j_xpro_2022_101531 crossref_primary_10_1038_s41388_018_0651_z crossref_primary_10_2217_pme_13_73 crossref_primary_10_3892_or_2014_3054 crossref_primary_10_2139_ssrn_3992090 crossref_primary_10_1080_15287394_2010_511545 crossref_primary_10_1016_j_jconrel_2018_02_034 crossref_primary_10_1007_s00198_019_04892_0 crossref_primary_10_1016_j_cca_2015_05_008 crossref_primary_10_1002_biof_1036 crossref_primary_10_1016_j_tox_2011_05_012 crossref_primary_10_1021_acsomega_2c00083 crossref_primary_10_1016_j_jpba_2014_12_026 crossref_primary_10_2217_crc_12_44 crossref_primary_10_1002_jev2_12029 crossref_primary_10_1021_acs_analchem_0c02051 crossref_primary_10_1242_jcs_259090 crossref_primary_10_3390_cancers13174375 crossref_primary_10_18632_genesandcancer_23 crossref_primary_10_1039_D1MO00022E crossref_primary_10_18632_oncotarget_11754 crossref_primary_10_1371_journal_pone_0210755 crossref_primary_10_1016_j_freeradbiomed_2017_07_033 crossref_primary_10_1128_msystems_00018_22 crossref_primary_10_1016_j_immuni_2017_04_028 crossref_primary_10_1002_eji_201545885 crossref_primary_10_1016_j_phrs_2018_03_019 crossref_primary_10_1021_pr901173v crossref_primary_10_3892_ol_2022_13342 crossref_primary_10_1007_s11306_010_0224_9 crossref_primary_10_1016_j_heliyon_2023_e18013 crossref_primary_10_1007_s00216_016_9355_9 crossref_primary_10_1002_nbm_3024 crossref_primary_10_5114_bta_2016_60783 crossref_primary_10_2183_pjab_85_258 crossref_primary_10_1111_j_1469_185X_2012_00218_x crossref_primary_10_1021_jf903680d crossref_primary_10_1371_journal_pone_0231430 crossref_primary_10_1038_s41598_022_15673_x crossref_primary_10_3390_cells7020015 crossref_primary_10_1007_s11033_013_2691_3 crossref_primary_10_3390_cancers11081069 crossref_primary_10_1002_bmc_3999 crossref_primary_10_1016_j_jbiosc_2013_03_019 crossref_primary_10_1007_s00604_021_04818_w crossref_primary_10_1080_14737159_2022_2065196 crossref_primary_10_4155_bio_2016_0216 crossref_primary_10_1002_hep_28415 crossref_primary_10_1021_pr400337b crossref_primary_10_1038_s41598_017_01801_5 crossref_primary_10_3389_fonc_2023_1117810 crossref_primary_10_1111_j_1349_7006_2011_01880_x crossref_primary_10_1158_1078_0432_CCR_17_1957 crossref_primary_10_1074_mcp_M110_000661 crossref_primary_10_1007_s11306_023_02002_0 crossref_primary_10_1021_pr500390y crossref_primary_10_1016_j_chembiol_2023_06_016 crossref_primary_10_1002_elps_200900584 crossref_primary_10_1248_bpb_b17_00746 crossref_primary_10_1038_bjc_2012_398 crossref_primary_10_1016_j_ctrv_2024_102802 crossref_primary_10_1038_s41467_019_12124_6 crossref_primary_10_1074_mcp_M113_035105 crossref_primary_10_1038_s42003_021_02323_7 crossref_primary_10_3390_genes10040270 crossref_primary_10_7554_eLife_95652 crossref_primary_10_1038_jcbfm_2011_1 crossref_primary_10_1038_onc_2013_454 crossref_primary_10_1371_journal_pone_0198342 crossref_primary_10_1021_acssensors_0c00078 crossref_primary_10_3892_ijo_2017_4000 crossref_primary_10_3389_fonc_2021_698951 crossref_primary_10_3390_cancers13215262 crossref_primary_10_1038_s44324_024_00017_2 crossref_primary_10_1074_jbc_R115_693903 crossref_primary_10_1126_scisignal_aam7893 crossref_primary_10_1021_pr100634d crossref_primary_10_1016_j_jchromb_2024_124270 crossref_primary_10_3892_or_2014_3655 crossref_primary_10_3390_ph8010062 crossref_primary_10_1002_anbr_202000104 crossref_primary_10_3390_metabo10110442 crossref_primary_10_1155_2019_3817879 crossref_primary_10_3390_metabo14070396 crossref_primary_10_3390_jcm10091826 crossref_primary_10_1007_s00216_014_7722_y crossref_primary_10_18632_oncotarget_2220 crossref_primary_10_12677_acm_2024_143901 crossref_primary_10_1002_wsbm_1582 crossref_primary_10_3389_fmed_2023_1205897 crossref_primary_10_1002_elps_200900451 crossref_primary_10_1007_s11427_010_4041_1 crossref_primary_10_3390_life13071529 crossref_primary_10_1158_2767_9764_CRC_22_0415 crossref_primary_10_1038_srep00930 crossref_primary_10_1371_journal_pone_0250453 crossref_primary_10_1134_S1061934813040035 crossref_primary_10_1016_j_tibs_2015_01_004 crossref_primary_10_1016_j_tibs_2017_01_004 crossref_primary_10_1186_s13046_019_1131_1 crossref_primary_10_1177_15347354211045349 crossref_primary_10_1371_journal_pone_0020447 crossref_primary_10_3892_or_2017_5561 crossref_primary_10_1111_cas_16256 crossref_primary_10_1038_srep38407 crossref_primary_10_1111_bph_12668 crossref_primary_10_1245_s10434_014_3886_0 crossref_primary_10_3390_metabo11040215 crossref_primary_10_1007_s00011_011_0340_7 crossref_primary_10_1021_acs_jproteome_1c00430 crossref_primary_10_1016_j_jchromb_2024_124144 crossref_primary_10_18632_oncotarget_6817 crossref_primary_10_1073_pnas_1610954113 crossref_primary_10_1080_19490976_2020_1854641 crossref_primary_10_1021_jf501142k crossref_primary_10_1093_jrr_rru078 crossref_primary_10_1007_s12200_017_0720_x crossref_primary_10_1016_j_jasms_2010_04_003 crossref_primary_10_1021_acschembio_1c00480 crossref_primary_10_1002_jssc_201200692 crossref_primary_10_3892_ol_2017_7148 crossref_primary_10_1007_s11060_013_1090_x crossref_primary_10_1016_j_nano_2020_102328 crossref_primary_10_1007_s00216_012_5870_5 crossref_primary_10_1253_circj_CJ_17_1184 crossref_primary_10_1038_ncomms13732 crossref_primary_10_1039_C6AY02827F crossref_primary_10_1159_000436972 crossref_primary_10_1186_s12943_015_0481_3 crossref_primary_10_1016_j_mehy_2011_07_027 crossref_primary_10_1016_j_biomaterials_2015_01_068 crossref_primary_10_1016_j_celrep_2016_03_026 crossref_primary_10_1007_s00216_015_8984_8 crossref_primary_10_1038_s41467_018_04719_2 crossref_primary_10_1021_ac900675k crossref_primary_10_1134_S0026893322050077 crossref_primary_10_1186_bcr2892 crossref_primary_10_1265_ehpm_23_00218 crossref_primary_10_1007_s00210_023_02403_x crossref_primary_10_1111_cas_16154 crossref_primary_10_1186_1756_9966_32_34 crossref_primary_10_1016_j_febslet_2014_09_004 crossref_primary_10_3389_fimmu_2021_657293 crossref_primary_10_1016_j_bbabio_2017_01_012 crossref_primary_10_4049_jimmunol_1401558 crossref_primary_10_1248_bpb_b17_00992 crossref_primary_10_1186_s12943_023_01893_w crossref_primary_10_3390_cancers15051417 crossref_primary_10_1007_s00535_016_1261_6 crossref_primary_10_1016_j_molcel_2013_05_003 crossref_primary_10_1007_s00216_016_0100_1 crossref_primary_10_18632_oncotarget_21288 crossref_primary_10_1158_1055_9965_EPI_15_1223 crossref_primary_10_1038_srep26337 crossref_primary_10_3390_cancers12123542 crossref_primary_10_1007_s10337_016_3061_9 crossref_primary_10_1016_j_ejca_2020_04_049 crossref_primary_10_3390_ijms22031476 crossref_primary_10_1016_j_jpba_2011_02_001 crossref_primary_10_1038_srep19763 crossref_primary_10_1038_s41467_019_11447_8 crossref_primary_10_1016_j_jpba_2019_06_025 crossref_primary_10_1002_ctm2_37 crossref_primary_10_1016_j_jpba_2020_113520 crossref_primary_10_1038_nature13110 crossref_primary_10_1038_s41577_021_00624_w crossref_primary_10_1080_08839514_2018_1464285 crossref_primary_10_3389_fonc_2021_712746 crossref_primary_10_3389_fcimb_2021_640309 crossref_primary_10_1016_j_molcel_2015_09_025 crossref_primary_10_1074_jbc_M117_809459 crossref_primary_10_2147_CMAR_S271277 crossref_primary_10_1021_pr501084s crossref_primary_10_18632_oncotarget_3234 crossref_primary_10_1371_journal_pone_0161920 crossref_primary_10_3389_fendo_2023_1228136 crossref_primary_10_3892_or_2015_4280 crossref_primary_10_3390_biom10060868 crossref_primary_10_3390_cells11050768 crossref_primary_10_7554_eLife_95652_3 crossref_primary_10_3389_fmicb_2023_1233460 crossref_primary_10_1172_jci_insight_139900 crossref_primary_10_3892_or_2012_2182 crossref_primary_10_1111_j_1474_9726_2010_00590_x crossref_primary_10_3390_cancers12051153 crossref_primary_10_1016_j_cca_2012_12_024 crossref_primary_10_3389_fimmu_2018_03036 crossref_primary_10_1016_S1473_3099_13_70107_5 crossref_primary_10_18632_oncotarget_15959 crossref_primary_10_1007_s11306_016_0988_7 crossref_primary_10_1186_1471_2407_10_690 crossref_primary_10_1186_s40170_019_0199_6 crossref_primary_10_3390_microorganisms12050955 crossref_primary_10_1186_1476_4598_12_121 crossref_primary_10_1111_j_1440_1746_2011_06724_x crossref_primary_10_1038_s41416_020_0777_y crossref_primary_10_1111_jgh_14497 crossref_primary_10_3390_magnetochemistry9010006 crossref_primary_10_1111_j_1349_7006_2012_02346_x crossref_primary_10_1016_j_celrep_2017_04_061 crossref_primary_10_1590_S0100_879X2011007500158 crossref_primary_10_1038_srep28415 crossref_primary_10_1016_j_smim_2016_09_001 crossref_primary_10_1158_1055_9965_EPI_14_0980 crossref_primary_10_1016_j_isci_2022_104268 crossref_primary_10_1002_hed_25511 crossref_primary_10_1093_jb_mvs041 crossref_primary_10_3389_fonc_2019_01143 crossref_primary_10_2174_1568009622666220413083534 crossref_primary_10_3390_ijms252413308 crossref_primary_10_1039_D4RA01130A crossref_primary_10_1016_j_apsb_2015_03_010 crossref_primary_10_3390_gastroent13010006 crossref_primary_10_1021_ac101151k crossref_primary_10_1038_s41598_020_66568_8 crossref_primary_10_1152_ajpendo_00774_2009 crossref_primary_10_1016_j_jnutbio_2011_05_016 crossref_primary_10_1021_acs_analchem_6b02417 crossref_primary_10_1038_s41388_017_0070_6 crossref_primary_10_1038_s41416_021_01306_z crossref_primary_10_1021_acs_jproteome_5b00388 crossref_primary_10_1097_MPA_0000000000000092 crossref_primary_10_3389_fendo_2018_00814 crossref_primary_10_1093_rheumatology_kez199 crossref_primary_10_1097_HJH_0b013e3283569c5a crossref_primary_10_3892_or_2013_2945 crossref_primary_10_3390_ijms23042354 crossref_primary_10_3389_fimmu_2019_03038 crossref_primary_10_1186_s12967_015_0576_z crossref_primary_10_2220_biomedres_34_221 crossref_primary_10_1371_journal_pone_0040459 crossref_primary_10_1016_j_bbrc_2021_10_072 crossref_primary_10_1152_ajpcell_00139_2021 crossref_primary_10_1016_j_bbcan_2019_05_006 crossref_primary_10_1002_cmtd_202400008 crossref_primary_10_1016_j_cmet_2025_01_002 |
Cites_doi | 10.1038/nbt1192 10.1016/j.bbrc.2005.07.041 10.1111/j.1349-7006.2008.00893.x 10.1038/sj.bjc.6603922 10.1007/BF00230880 10.1126/science.123.3191.309 10.1016/j.ceb.2007.02.003 10.1016/S0021-9258(20)82128-0 10.1007/BF00225648 10.1111/j.1349-7006.2004.tb03247.x 10.1016/S0005-2728(02)00248-7 10.1021/ac051437y 10.1128/jb.108.3.1072-1086.1971 10.1186/1471-2105-7-530 10.1007/s00726-008-0063-4 10.1128/JB.01020-07 10.2144/03342mt01 10.1146/annurev.nutr.27.061406.093749 10.3892/ijo.22.4.795 10.1016/j.yexcr.2008.03.007 10.1111/j.1471-4159.1986.tb00763.x 10.1021/pr8006232 10.1111/j.1349-7006.2006.00220.x 10.1021/ac020064n 10.1016/j.chroma.2007.05.054 10.1126/stke.3812007pe14 10.1016/S0005-2728(01)00237-7 10.1111/j.1349-7006.2006.00298.x 10.1111/j.1365-313X.2004.02187.x 10.1186/1476-4598-7-72 10.1002/nbm.1296 10.1158/0008-5472.CAN-06-0755 10.1016/0005-2728(88)90258-7 10.1016/j.mad.2003.12.003 10.1074/jbc.M601876200 10.1152/ajpgi.00563.2005 10.1021/ac990976y 10.1021/pr034020m 10.1039/b304296k 10.1158/0008-5472.CAN-07-1462 10.1128/JB.182.20.5757-5764.2000 10.1007/s10863-007-9086-x 10.1016/S0021-9258(19)43229-8 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/0008-5472.CAN-08-4806 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 4925 |
ExternalDocumentID | 19458066 21816406 10_1158_0008_5472_CAN_08_4806 |
Genre | Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET .55 18M 29B 2WC 34G 39C 3O- 53G 5GY 5RE 5VS 6J9 8WZ A6W AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW AENEX AETEA AFFNX AFHIN AFOSN AFRAH AFUMD AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OHT OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 UDS VH1 W2D W8F WH7 WOQ X7M XJT YKV YZZ ZCG .GJ ADNWM D0S IQODW J5H MVM WHG ZGI CGR CUY CVF ECM EIF NPM RHF VXZ 7X8 |
ID | FETCH-LOGICAL-c484t-771e8eccafd1f306637f936eb3fe121e7fae81ee1e15c768320ba75df4ae06de3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Fri Jul 11 10:55:26 EDT 2025 Wed Feb 19 01:49:42 EST 2025 Mon Jul 21 09:14:48 EDT 2025 Tue Jul 01 03:44:38 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Capillary electrophoresis Metabolome Exploration Malignant tumor Microenvironment Stomach cancer Colonic disease Colon cancer Digestive diseases Intestinal disease Mass spectrometry Cancer Gastric disease Quantitative analysis |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c484t-771e8eccafd1f306637f936eb3fe121e7fae81ee1e15c768320ba75df4ae06de3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://aacrjournals.org/cancerres/article-pdf/69/11/4918/2611707/4918.pdf |
PMID | 19458066 |
PQID | 67317389 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_67317389 pubmed_primary_19458066 pascalfrancis_primary_21816406 crossref_primary_10_1158_0008_5472_CAN_08_4806 crossref_citationtrail_10_1158_0008_5472_CAN_08_4806 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2009 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061700432602400_B30 2022061700432602400_B10 2022061700432602400_B32 2022061700432602400_B31 2022061700432602400_B12 2022061700432602400_B34 2022061700432602400_B11 2022061700432602400_B33 2022061700432602400_B14 2022061700432602400_B36 2022061700432602400_B13 2022061700432602400_B35 2022061700432602400_B16 2022061700432602400_B38 2022061700432602400_B15 2022061700432602400_B37 2022061700432602400_B18 2022061700432602400_B17 2022061700432602400_B39 2022061700432602400_B19 2022061700432602400_B1 2022061700432602400_B3 2022061700432602400_B2 2022061700432602400_B5 2022061700432602400_B41 2022061700432602400_B4 2022061700432602400_B40 2022061700432602400_B7 2022061700432602400_B21 2022061700432602400_B43 2022061700432602400_B6 2022061700432602400_B20 2022061700432602400_B42 2022061700432602400_B23 2022061700432602400_B22 2022061700432602400_B44 2022061700432602400_B25 2022061700432602400_B24 2022061700432602400_B27 2022061700432602400_B26 2022061700432602400_B29 2022061700432602400_B28 2022061700432602400_B9 2022061700432602400_B8 |
References_xml | – ident: 2022061700432602400_B5 doi: 10.1038/nbt1192 – ident: 2022061700432602400_B23 doi: 10.1016/j.bbrc.2005.07.041 – ident: 2022061700432602400_B39 doi: 10.1111/j.1349-7006.2008.00893.x – ident: 2022061700432602400_B44 doi: 10.1038/sj.bjc.6603922 – ident: 2022061700432602400_B33 doi: 10.1007/BF00230880 – ident: 2022061700432602400_B2 doi: 10.1126/science.123.3191.309 – ident: 2022061700432602400_B28 doi: 10.1016/j.ceb.2007.02.003 – ident: 2022061700432602400_B34 doi: 10.1016/S0021-9258(20)82128-0 – ident: 2022061700432602400_B26 doi: 10.1007/BF00225648 – ident: 2022061700432602400_B29 doi: 10.1111/j.1349-7006.2004.tb03247.x – ident: 2022061700432602400_B22 doi: 10.1016/S0005-2728(02)00248-7 – ident: 2022061700432602400_B18 doi: 10.1021/ac051437y – ident: 2022061700432602400_B40 doi: 10.1128/jb.108.3.1072-1086.1971 – ident: 2022061700432602400_B19 doi: 10.1186/1471-2105-7-530 – ident: 2022061700432602400_B35 doi: 10.1007/s00726-008-0063-4 – ident: 2022061700432602400_B41 doi: 10.1128/JB.01020-07 – ident: 2022061700432602400_B20 doi: 10.2144/03342mt01 – ident: 2022061700432602400_B37 doi: 10.1146/annurev.nutr.27.061406.093749 – ident: 2022061700432602400_B1 doi: 10.3892/ijo.22.4.795 – ident: 2022061700432602400_B4 doi: 10.1016/j.yexcr.2008.03.007 – ident: 2022061700432602400_B42 doi: 10.1111/j.1471-4159.1986.tb00763.x – ident: 2022061700432602400_B9 doi: 10.1021/pr8006232 – ident: 2022061700432602400_B24 doi: 10.1111/j.1349-7006.2006.00220.x – ident: 2022061700432602400_B13 doi: 10.1021/ac020064n – ident: 2022061700432602400_B17 doi: 10.1016/j.chroma.2007.05.054 – ident: 2022061700432602400_B27 doi: 10.1126/stke.3812007pe14 – ident: 2022061700432602400_B31 doi: 10.1016/S0005-2728(01)00237-7 – ident: 2022061700432602400_B21 doi: 10.1111/j.1349-7006.2006.00298.x – ident: 2022061700432602400_B14 doi: 10.1111/j.1365-313X.2004.02187.x – ident: 2022061700432602400_B11 doi: 10.1186/1476-4598-7-72 – ident: 2022061700432602400_B7 doi: 10.1002/nbm.1296 – ident: 2022061700432602400_B10 doi: 10.1158/0008-5472.CAN-06-0755 – ident: 2022061700432602400_B30 doi: 10.1016/0005-2728(88)90258-7 – ident: 2022061700432602400_B36 doi: 10.1016/j.mad.2003.12.003 – ident: 2022061700432602400_B15 doi: 10.1074/jbc.M601876200 – ident: 2022061700432602400_B25 doi: 10.1152/ajpgi.00563.2005 – ident: 2022061700432602400_B8 – ident: 2022061700432602400_B16 doi: 10.1021/ac990976y – ident: 2022061700432602400_B12 doi: 10.1021/pr034020m – ident: 2022061700432602400_B6 doi: 10.1039/b304296k – ident: 2022061700432602400_B38 doi: 10.1158/0008-5472.CAN-07-1462 – ident: 2022061700432602400_B32 doi: 10.1128/JB.182.20.5757-5764.2000 – ident: 2022061700432602400_B3 doi: 10.1007/s10863-007-9086-x – ident: 2022061700432602400_B43 doi: 10.1016/S0021-9258(19)43229-8 |
SSID | ssj0005105 |
Score | 2.5314376 |
Snippet | Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 4918 |
SubjectTerms | Antineoplastic agents Biological and medical sciences Citric Acid Cycle - physiology Colonic Neoplasms - metabolism Colonic Neoplasms - pathology Electrophoresis, Capillary - methods Female Gastroenterology. Liver. Pancreas. Abdomen Glycolysis - physiology Humans Male Mass Spectrometry - methods Medical sciences Metabolome Metabolomics - methods Models, Biological Pharmacology. Drug treatments Stomach Neoplasms - metabolism Stomach Neoplasms - pathology Stomach. Duodenum. Small intestine. Colon. Rectum. Anus Tumors |
Title | Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19458066 https://www.proquest.com/docview/67317389 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3battAEF3cFEqhlN7rXtJ96FuQa0m70uoxmATT4kBoAnkTK2lVK5EtY8sU9xv6jf2WzmjXurjuJX0RsuS9oDkazeyemSHkvRN5qbKZb8VcphZzRWIFPEhBGSqGuV28QFZsizNvfMk-XvGrXu9Hi7W0LqNB_G1vXMn_SBWugVwxSvYWkq07hQtwDvKFI0gYjv8k4_O1nFdBYkj_magSBJoXM4Xs_zTLDZ95BNc04_hzWcwwfGqEkl4iY35ZtALd0BIdyQWWIVpujk50fZzFtACHPFtVsSJWkVqnObrzRxMwuqvi9SXmOyi7gdVmAJNIaFrtFGvKR6WS8nzQWoAYZ0u5kTO9vnuTbYrVNKs_A3KWmeiha5hms4P1BSFW6GCjlZx278mvsqqeBPduss6yRtDQr2pVLSzOdF2fgWq0s890_smt-taVXrYwtVvKmAVGtSvzU4dY__rR4EKzLPWAg9HxGa4aMzHck6R75-NZUxorZ4oL3MwXIXYTQjchnGM3d8hdB9wY1MOfzpts9txQbLcjmwgz6ObD3tl0bKcHC7mC1zjV9Vd-7yBVhtLFI_LQeDj0WMP1Memp-RNyb2I4HE_J9zZqaYNaWqOWFimtUEsBtdSglmpQ0V3U0mhDa9TSHdTSLmopopa2UfuMXJ6eXIzGlqkJYsVMsBKcQVsJVDtpYqcu2st-GrieilxQOY6t_FQqYStlK5vH4Eq7zjCSPk9SJtXQS5T7nBzMi7l6SagKeCI4j_zET1gUOyJxGI_A3BWKqdgVfcK2TzuMTcJ8rNuSh3-UdZ8M6mYLnTHmbw0OO6KsW6H17TH8w7utbENQ_rijJ-eqWK-QlGn74HL0yQst8mbEgHHo23t129m8Jveb1_ENOSiXa_UW7O4yOqzA-xMiR9aS |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Metabolome+Profiling+of+Colon+and+Stomach+Cancer+Microenvironment+by+Capillary+Electrophoresis+Time-of-Flight+Mass+Spectrometry&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Hirayama%2C+Akiyoshi&rft.au=Kami%2C+Kenjiro&rft.au=Sugimoto%2C+Masahiro&rft.au=Sugawara%2C+Maki&rft.date=2009-06-01&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=69&rft.issue=11&rft.spage=4918&rft.epage=4925&rft_id=info:doi/10.1158%2F0008-5472.CAN-08-4806&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_08_4806 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |