Individual tree segmentation from UAS Lidar data based on hierarchical filtering and clustering
Accurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar) from Unoccupied Aerial Systems (UAS) has shown strengths in ITS and tree parameter estimation at stand and landscape scales. However, dense woodlands...
Saved in:
Published in | International journal of digital earth Vol. 17; no. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2024
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar) from Unoccupied Aerial Systems (UAS) has shown strengths in ITS and tree parameter estimation at stand and landscape scales. However, dense woodlands with tightly interspersed canopies and highly diverse tree species challenge the performance of ITS, and current research has not delved into the impact of mixed tree species and different leaf conditions on algorithm accuracy. Therefore, this study firstly evaluates the performance of open-source ITS methods, including both deep learning and non-deep learning algorithms, on data with mixed tree species and different leaf conditions, then proposes a hierarchical filtering and clustering (HFC) algorithm to mitigate the influence and improve the robustness. Hierarchical filtering consists of intensity filtering, Singular Value Decomposition (SVD) filtering, and Statistical Outlier Removal (SOR). Hierarchical clustering involves point-based clustering, cluster merging, and filtered point assignment. Through experiments on three distinct UAS Lidar datasets of forests with mixed tree species and different leaf conditions, HFC achieved the optimal segmentation results while maintaining high robustness. The variations of F1-score are 1-3 percentage points for mixed tree species and 1-2 percentage points for different leaf conditions across different datasets. |
---|---|
AbstractList | Accurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar) from Unoccupied Aerial Systems (UAS) has shown strengths in ITS and tree parameter estimation at stand and landscape scales. However, dense woodlands with tightly interspersed canopies and highly diverse tree species challenge the performance of ITS, and current research has not delved into the impact of mixed tree species and different leaf conditions on algorithm accuracy. Therefore, this study firstly evaluates the performance of open-source ITS methods, including both deep learning and non-deep learning algorithms, on data with mixed tree species and different leaf conditions, then proposes a hierarchical filtering and clustering (HFC) algorithm to mitigate the influence and improve the robustness. Hierarchical filtering consists of intensity filtering, Singular Value Decomposition (SVD) filtering, and Statistical Outlier Removal (SOR). Hierarchical clustering involves point-based clustering, cluster merging, and filtered point assignment. Through experiments on three distinct UAS Lidar datasets of forests with mixed tree species and different leaf conditions, HFC achieved the optimal segmentation results while maintaining high robustness. The variations of F1-score are 1–3 percentage points for mixed tree species and 1–2 percentage points for different leaf conditions across different datasets. ABSTRACTAccurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar) from Unoccupied Aerial Systems (UAS) has shown strengths in ITS and tree parameter estimation at stand and landscape scales. However, dense woodlands with tightly interspersed canopies and highly diverse tree species challenge the performance of ITS, and current research has not delved into the impact of mixed tree species and different leaf conditions on algorithm accuracy. Therefore, this study firstly evaluates the performance of open-source ITS methods, including both deep learning and non-deep learning algorithms, on data with mixed tree species and different leaf conditions, then proposes a hierarchical filtering and clustering (HFC) algorithm to mitigate the influence and improve the robustness. Hierarchical filtering consists of intensity filtering, Singular Value Decomposition (SVD) filtering, and Statistical Outlier Removal (SOR). Hierarchical clustering involves point-based clustering, cluster merging, and filtered point assignment. Through experiments on three distinct UAS Lidar datasets of forests with mixed tree species and different leaf conditions, HFC achieved the optimal segmentation results while maintaining high robustness. The variations of F1-score are 1–3 percentage points for mixed tree species and 1–2 percentage points for different leaf conditions across different datasets. |
Author | Zaforemska, Aleksandra Gaulton, Rachel Dai, Wenxia Zhang, Cailian Zhang, Jiaxing Song, Chengwen Xiao, Wen |
Author_xml | – sequence: 1 givenname: Cailian surname: Zhang fullname: Zhang, Cailian organization: China University of Geosciences – sequence: 2 givenname: Chengwen surname: Song fullname: Song, Chengwen organization: China University of Geosciences – sequence: 3 givenname: Aleksandra surname: Zaforemska fullname: Zaforemska, Aleksandra organization: Newcastle University – sequence: 4 givenname: Jiaxing surname: Zhang fullname: Zhang, Jiaxing organization: Purdue University – sequence: 5 givenname: Rachel surname: Gaulton fullname: Gaulton, Rachel organization: Newcastle University – sequence: 6 givenname: Wenxia surname: Dai fullname: Dai, Wenxia organization: China University of Geosciences – sequence: 7 givenname: Wen surname: Xiao fullname: Xiao, Wen email: wen.xiao@cug.edu.cn organization: China University of Geosciences |
BookMark | eNqFkTtvFDEUhUcoSCSBn4BkiYZmF8_4LRqiiMdKK1FAauuOHxuvPHawvaD8e2aYkCIFVLavzzn32t9Fd5Zycl33usfbHkv8rheMSEXFdsAD3Q6E8X6gz7rzpb6RirGzxz0VL7qLWo8Yc0wpOe_0LtnwM9gTRNSKc6i6w-RSgxZyQr7kCd1cfUP7YKEgCw3QCNVZNF_eBlegmNtgZq8PsbkS0gFBssjEU12PL7vnHmJ1rx7Wy-7m08fv1182-6-fd9dX-42hkraNoE6YUWAYyegFU73EBhPp5TAaCl6MlhgA6iwbmfMEACvHhVEMU064leSy2625NsNR35UwQbnXGYL-U8jloKG0YKLTzBLHMGbc8oEq55WdP8dyoFJ4o0Y1Z71ds-5K_nFytekpVONihOTyqWrScyaZ4v3S9s0T6TGfSppfOquY7AUXis4qtqpMybUW5x8H7LFeEOq_CPWCUD8gnH3vn_hMWMm0AiH-1_1hdYfkc5ngVy7R6gb3MRdfIJmwDPnPiN_dd7aD |
CitedBy_id | crossref_primary_10_3390_agriculture15030295 crossref_primary_10_3390_rs17061010 crossref_primary_10_3390_a17120594 crossref_primary_10_3390_drones8120772 |
Cites_doi | 10.1016/j.optlaseng.2022.107240 10.1080/07038992.2016.1196582 10.1016/j.softx.2021.100889 10.1080/17538947.2021.1943018 10.3390/rs14071713 10.1002/ece3.v13.7 10.5281/zenodo.1252955 10.1109/TIT.1975.1055330 10.1080/17538947.2023.2198261 10.1007/978-981-99-0479-2_301 10.1111/phor.2018.33.issue-164 10.3390/rs11111263 10.3390/rs14122787 10.1016/j.jag.2022.102684 10.1016/j.rse.2019.01.010 10.1016/j.rse.2021.112382 10.3389/fpls.2022.914974 10.3390/rs14153738 10.3390/rs8060501 10.3390/rs9020148 10.1093/forestry/cpr051 10.5194/isprs-archives-XLII-2-W13-657-2019 10.1016/j.ifacol.2018.11.566 10.1038/s41467-022-33136-9 10.1016/j.isprsjprs.2019.08.008 10.1016/j.isprsjprs.2012.12.002 10.1111/phor.2018.33.issue-163 10.3390/drones6110325 10.1016/j.jag.2022.103028 10.1111/mee3.2016.7.issue-10 10.1016/j.rse.2023.113618 10.3390/rs14122753 10.14358/PERS.78.1.75 10.1016/j.jag.2014.05.001 10.1111/phor.v38.182 10.3390/rs2030833 10.1109/36.921414 10.3390/f12020131 10.3390/rs15061619 10.3390/rs13204050 10.5194/essd-14-2989-2022 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7ST 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M SOI 7S9 L.6 DOA |
DOI | 10.1080/17538947.2024.2356124 |
DatabaseName | Taylor & Francis Open Access CrossRef Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1753-8955 |
ExternalDocumentID | oai_doaj_org_article_5d3e50056d6249ef9d175d6a487fc9b9 10_1080_17538947_2024_2356124 2356124 |
Genre | Research Article |
GroupedDBID | .7F 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABDBF ABFIM ABPEM ABTAI ACGFS ACIWK ACTIO ACUHS ADCVX ADMSI AEISY AENEX AEYOC AFKVX AFRAH AHDSZ AHDZW AIJEM AJWEG ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS ESX GROUPED_DOAJ GTTXZ HZ~ J~4 KYCEM LJTGL M4Z ML. O9- OK1 RIG SNACF TDBHL TFL TFT TFW TTHFI TWF TWN UU3 VAE AAYXX AIYEW CITATION DGEBU 7ST 7UA 8FD C1K F1W FR3 H13 H8D H96 KR7 L.G L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c484t-74e7cb70ab3bf759180c038f82bc4af7bd3caa4ed5b5ef3aa09e67c9504636d83 |
IEDL.DBID | DOA |
ISSN | 1753-8947 1753-8955 |
IngestDate | Wed Aug 27 01:13:52 EDT 2025 Fri Jul 11 02:37:41 EDT 2025 Fri Jul 25 12:15:35 EDT 2025 Thu Apr 24 23:03:44 EDT 2025 Tue Jul 01 01:05:59 EDT 2025 Wed Jan 22 07:59:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-74e7cb70ab3bf759180c038f82bc4af7bd3caa4ed5b5ef3aa09e67c9504636d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/5d3e50056d6249ef9d175d6a487fc9b9 |
PQID | 3158176794 |
PQPubID | 176143 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_17538947_2024_2356124 proquest_journals_3158176794 proquest_miscellaneous_3165859618 crossref_primary_10_1080_17538947_2024_2356124 crossref_citationtrail_10_1080_17538947_2024_2356124 doaj_primary_oai_doaj_org_article_5d3e50056d6249ef9d175d6a487fc9b9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-31 |
PublicationDateYYYYMMDD | 2024-12-31 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of digital earth |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_6_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_45_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_25_1 e_1_3_4_26_1 e_1_3_4_29_1 e_1_3_4_31_1 e_1_3_4_30_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_18_1 e_1_3_4_19_1 |
References_xml | – ident: e_1_3_4_21_1 doi: 10.1016/j.optlaseng.2022.107240 – ident: e_1_3_4_32_1 doi: 10.1080/07038992.2016.1196582 – ident: e_1_3_4_25_1 doi: 10.1016/j.softx.2021.100889 – ident: e_1_3_4_26_1 doi: 10.1080/17538947.2021.1943018 – ident: e_1_3_4_42_1 doi: 10.3390/rs14071713 – ident: e_1_3_4_22_1 doi: 10.1002/ece3.v13.7 – ident: e_1_3_4_27_1 doi: 10.5281/zenodo.1252955 – ident: e_1_3_4_14_1 doi: 10.1109/TIT.1975.1055330 – ident: e_1_3_4_9_1 doi: 10.1080/17538947.2023.2198261 – ident: e_1_3_4_15_1 doi: 10.1007/978-981-99-0479-2_301 – ident: e_1_3_4_38_1 doi: 10.1111/phor.2018.33.issue-164 – ident: e_1_3_4_41_1 doi: 10.3390/rs11111263 – ident: e_1_3_4_6_1 doi: 10.3390/rs14122787 – ident: e_1_3_4_12_1 doi: 10.1016/j.jag.2022.102684 – ident: e_1_3_4_3_1 doi: 10.1016/j.rse.2019.01.010 – ident: e_1_3_4_23_1 doi: 10.1016/j.rse.2021.112382 – ident: e_1_3_4_5_1 – ident: e_1_3_4_33_1 doi: 10.3389/fpls.2022.914974 – ident: e_1_3_4_45_1 doi: 10.3390/rs14153738 – ident: e_1_3_4_44_1 doi: 10.3390/rs8060501 – ident: e_1_3_4_16_1 doi: 10.3390/rs9020148 – ident: e_1_3_4_35_1 doi: 10.1093/forestry/cpr051 – ident: e_1_3_4_43_1 doi: 10.5194/isprs-archives-XLII-2-W13-657-2019 – ident: e_1_3_4_2_1 doi: 10.1016/j.ifacol.2018.11.566 – ident: e_1_3_4_28_1 doi: 10.1038/s41467-022-33136-9 – ident: e_1_3_4_40_1 – ident: e_1_3_4_10_1 doi: 10.1016/j.isprsjprs.2019.08.008 – ident: e_1_3_4_31_1 – ident: e_1_3_4_29_1 doi: 10.1016/j.isprsjprs.2012.12.002 – ident: e_1_3_4_37_1 doi: 10.1111/phor.2018.33.issue-163 – ident: e_1_3_4_4_1 doi: 10.3390/drones6110325 – ident: e_1_3_4_17_1 doi: 10.1016/j.jag.2022.103028 – ident: e_1_3_4_11_1 doi: 10.1111/mee3.2016.7.issue-10 – ident: e_1_3_4_19_1 doi: 10.1016/j.rse.2023.113618 – ident: e_1_3_4_13_1 doi: 10.3390/rs14122753 – ident: e_1_3_4_20_1 doi: 10.14358/PERS.78.1.75 – ident: e_1_3_4_36_1 doi: 10.1016/j.jag.2014.05.001 – ident: e_1_3_4_8_1 doi: 10.1111/phor.v38.182 – ident: e_1_3_4_24_1 doi: 10.3390/rs2030833 – ident: e_1_3_4_18_1 doi: 10.1109/36.921414 – ident: e_1_3_4_7_1 doi: 10.3390/f12020131 – ident: e_1_3_4_30_1 doi: 10.3390/rs15061619 – ident: e_1_3_4_34_1 doi: 10.3390/rs13204050 – ident: e_1_3_4_39_1 doi: 10.5194/essd-14-2989-2022 |
SSID | ssj0060443 |
Score | 2.39176 |
Snippet | Accurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar) from... ABSTRACTAccurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar)... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Cluster analysis cluster merging Clustering data collection Datasets Deep learning Filtration Forest management forests Hydrofluorocarbons Individual tree segmentation (ITS) intensity landscapes Leaves Lidar Machine learning Outliers (statistics) Parameter estimation Performance evaluation Plant species point cloud Robustness Segmentation Singular value decomposition Species Statistical analysis Trees unoccupied aerial systems (UAS) Woodlands |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXLigtlCx9CFX4pqSjd_Htmq1RZQLrAQny8-qUslWm93_z0zibCkV6oFjYo-TeDzjmXjmG0I-crDpo0yiUpqxiicdKiPBkEtS5tqlnBqPycnXX-Vszj__EGM0YVfCKtGHzgNQRK-rUbid78aIuE8ILqkNV-DdNfykYVjgkb8krxpcrbCk65-zURnLmg8x9kBSIc2YxPOvYR5tTz2K_18Ypk90dr8RXW6TN8WCpKcDy3fIi9Tukr2Lh4Q1aCwS270l9mqTcUXxAJp26eZXyTdqKSaX0PnpN_rlNrolxXBRivtapNCIVbL7cwZgI823eKwO-xyFaaPhbt0Nl-_I_PLi-_msKkUVqsA1X1WKJxW8qp1nPithproONdNZA1O4y8pHFpzjKQovUmbO1SZJFYzoocWiZntkq1206T2hweTGeAM2R5Q8A1nWAew5H5zRnKU8IXycSxsK4jgWvriz0wJMOrLAIgtsYcGEnGzI7gfIjecIzpBRm86ImN3fWCxvbBFAKyJLAoFPowSPM2UTYawoHThsOcBXTIj5k8121f8wyUN1E8ueeYGDcU3YogKQROipkqDvJuR40wzCiycyrk2LNfYBA1Bg0Z0P__H4ffIaLwf4yQOytVqu0yGYSit_1AvDb2NgCDs priority: 102 providerName: Taylor & Francis |
Title | Individual tree segmentation from UAS Lidar data based on hierarchical filtering and clustering |
URI | https://www.tandfonline.com/doi/abs/10.1080/17538947.2024.2356124 https://www.proquest.com/docview/3158176794 https://www.proquest.com/docview/3165859618 https://doaj.org/article/5d3e50056d6249ef9d175d6a487fc9b9 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagJy6IUioCpXKlXrd14vexRa0Cgl5KpHKy_ESVyrZqkv_PzNobChxy4bLS2h7J6_F4Pq893xByLADTJ5Vlpw3nncgmdlYBkMtKFeZzybOAwclfr9R8IT7fyJsnqb7wTlilB64DdyoTzxIJK5OCnUIuNoHDS8oD0C7RhiF0D3zeuJmqa7Biol6tBzDeGSv0GLtj2CmWYRHsDWfiZMYxPaT4wysN5P1_UZf-s1QP_ufyFXnZgCM9qx3eJc9y_5rsX_yOU4PKZqjLPeI-bQKtKJ4702X-8bOFGfUUY0ro4uyafrlN_pHiLVGK7ixRqMTk2MPxAmiPlls8TQf3Rn2faLxbL-vrG7K4vPj2cd61XApdFEasOi2yjkEzH3goWtqpYZFxUwzoQviiQ-LRe5GTDDIX7j2zWelo5cAolgzfJzv9fZ_fEhptmcHAA9RIShQQKyYCjAvRWyN4LhMixrF0sRGNY76LOzdtfKSjChyqwDUVTMjJRuyhMm1sEzhHRW0aI1H2UADTx7Xp47ZNnwmxT9XsVsN_klKTmji-pQMH45xwzfJRRJqpVrDMTcjRphpsFg9ifJ_v19gGcJ_EXDvv_sc3vCcvsFuVfvKA7Kwe1_kDQKVVOCTP2fc5PDm7Ohws5BfWYg0H |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagHOAC5VGR0lIjcd2wid_HglqlJc2FRurN8rOqWjYo2Vz665nZRyhFqIced-3Z9WM8nrFnviHkMwedPsokCqUZK3jSoTASFLkkZS5dymnsMTj5bCYnc356IS7uxMKgWyXa0LkFimhkNS5uPIzuXeK-ILqkNlyBeTfmwzHDDI_8KXkmjFSYxYCVs14ay5K3TvZAUiBNH8Xzv8_8tT81MP73QEz_EdrNTnT8ioS-D60DyvVwXfthuL0H7_i4Tm6Tl52iSg9bznpNnqTqDdk5-hMXB4WdYFi9JfZkE9hF8Z6brtLlzy6sqaIYw0Lnhz_o9Cq6JUWvVIrbZ6RQiMm4m-sM4Baar_D2HrZTCg2n4Wa9ah_fkfnx0fm3SdHlbigC17wuFE8qeFU6z3xWwox0GUqms4a55y4rH1lwjqcovEiZOVeaJFUwokEwi5rtkK1qUaX3hAaTx8YbUG2i5BnIsg6gNvrgjOYs5QHh_YzZ0AGbY36NGzvq8E_7obQ4lLYbygEZbsh-tcgeDxF8RXbYVEZg7ubFYnlpu3VuRWRJIL5qlGDYpmwifCtKB3ZhDtCLATF3mcnWzblMbpOoWPZAA_Z6zrOdpEESoUdKglgdkE-bYpARePHjqrRYYx3QMwXm9tl9xO8PyPPJ-dnUTk9m3z-QF1jUIl7uka16uU77oJ3V_mOz_H4DBvcrvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagSIgL74qUAkbiumETv48FGrVQIiSIxM3ys6oomyrZXPrrmdn1BihCPfS4tmfXj_F4Zj3zDSFvOOj0USZRKc1YxZMOlZGgyCUpc-1STlOPwcmf5_JowT9-F4M34bq4VaINnXugiE5W4-a-iHnwiHuL4JLacAXW3ZSPpwwTPPLb5I5E8HCM4qjngzCGot7HHkgqpBmCeP73mr-Opw7F_wqG6T8yuzuIZg-IH4bQ-5_8GG9aPw6XV9AdbzTGh-R-UVPpQc9Xj8it1Dwmu4e_o-KgsoiF9RNij7dhXRRvuek6nf4sQU0NxQgWujj4Sk_OoltR9EmleHhGCpWYiru7zABeofkM7-7hMKXQbxrON-v-8SlZzA6_vT-qSuaGKnDN20rxpIJXtfPMZyXMRNehZjprWHnusvKRBed4isKLlJlztUlSBSM6_LKo2S7ZaZZNekZoMHlqvAHFJkqegSzrAEqjD85ozlIeET4smA0F1hyza5zbSUE_HabS4lTaMpUjMt6SXfS4HtcRvENu2DZGWO6uYLk6tWWXWxFZEoiuGiWYtSmbCO-K0oFVmAOMYkTMn7xk2-6vTO5TqFh2TQf2B8azRc4gidATJUGojsjrbTVICLz2cU1abrANaJkCM_vs3eDzr8jdLx9m9uR4_uk5uYc1PdzlPtlpV5v0AlSz1r_sNt8vKc0qYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individual+tree+segmentation+from+UAS+Lidar+data+based+on+hierarchical+filtering+and+clustering&rft.jtitle=International+journal+of+digital+earth&rft.au=Zhang%2C+Cailian&rft.au=Song%2C+Chengwen&rft.au=Zaforemska%2C+Aleksandra&rft.au=Zhang%2C+Jiaxing&rft.date=2024-12-31&rft.issn=1753-8955&rft.volume=17&rft.issue=1+p.2356124-&rft_id=info:doi/10.1080%2F17538947.2024.2356124&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-8947&client=summon |