Individual tree segmentation from UAS Lidar data based on hierarchical filtering and clustering

Accurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar) from Unoccupied Aerial Systems (UAS) has shown strengths in ITS and tree parameter estimation at stand and landscape scales. However, dense woodlands...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of digital earth Vol. 17; no. 1
Main Authors Zhang, Cailian, Song, Chengwen, Zaforemska, Aleksandra, Zhang, Jiaxing, Gaulton, Rachel, Dai, Wenxia, Xiao, Wen
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2024
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar) from Unoccupied Aerial Systems (UAS) has shown strengths in ITS and tree parameter estimation at stand and landscape scales. However, dense woodlands with tightly interspersed canopies and highly diverse tree species challenge the performance of ITS, and current research has not delved into the impact of mixed tree species and different leaf conditions on algorithm accuracy. Therefore, this study firstly evaluates the performance of open-source ITS methods, including both deep learning and non-deep learning algorithms, on data with mixed tree species and different leaf conditions, then proposes a hierarchical filtering and clustering (HFC) algorithm to mitigate the influence and improve the robustness. Hierarchical filtering consists of intensity filtering, Singular Value Decomposition (SVD) filtering, and Statistical Outlier Removal (SOR). Hierarchical clustering involves point-based clustering, cluster merging, and filtered point assignment. Through experiments on three distinct UAS Lidar datasets of forests with mixed tree species and different leaf conditions, HFC achieved the optimal segmentation results while maintaining high robustness. The variations of F1-score are 1-3 percentage points for mixed tree species and 1-2 percentage points for different leaf conditions across different datasets.
AbstractList Accurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar) from Unoccupied Aerial Systems (UAS) has shown strengths in ITS and tree parameter estimation at stand and landscape scales. However, dense woodlands with tightly interspersed canopies and highly diverse tree species challenge the performance of ITS, and current research has not delved into the impact of mixed tree species and different leaf conditions on algorithm accuracy. Therefore, this study firstly evaluates the performance of open-source ITS methods, including both deep learning and non-deep learning algorithms, on data with mixed tree species and different leaf conditions, then proposes a hierarchical filtering and clustering (HFC) algorithm to mitigate the influence and improve the robustness. Hierarchical filtering consists of intensity filtering, Singular Value Decomposition (SVD) filtering, and Statistical Outlier Removal (SOR). Hierarchical clustering involves point-based clustering, cluster merging, and filtered point assignment. Through experiments on three distinct UAS Lidar datasets of forests with mixed tree species and different leaf conditions, HFC achieved the optimal segmentation results while maintaining high robustness. The variations of F1-score are 1–3 percentage points for mixed tree species and 1–2 percentage points for different leaf conditions across different datasets.
ABSTRACTAccurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar) from Unoccupied Aerial Systems (UAS) has shown strengths in ITS and tree parameter estimation at stand and landscape scales. However, dense woodlands with tightly interspersed canopies and highly diverse tree species challenge the performance of ITS, and current research has not delved into the impact of mixed tree species and different leaf conditions on algorithm accuracy. Therefore, this study firstly evaluates the performance of open-source ITS methods, including both deep learning and non-deep learning algorithms, on data with mixed tree species and different leaf conditions, then proposes a hierarchical filtering and clustering (HFC) algorithm to mitigate the influence and improve the robustness. Hierarchical filtering consists of intensity filtering, Singular Value Decomposition (SVD) filtering, and Statistical Outlier Removal (SOR). Hierarchical clustering involves point-based clustering, cluster merging, and filtered point assignment. Through experiments on three distinct UAS Lidar datasets of forests with mixed tree species and different leaf conditions, HFC achieved the optimal segmentation results while maintaining high robustness. The variations of F1-score are 1–3 percentage points for mixed tree species and 1–2 percentage points for different leaf conditions across different datasets.
Author Zaforemska, Aleksandra
Gaulton, Rachel
Dai, Wenxia
Zhang, Cailian
Zhang, Jiaxing
Song, Chengwen
Xiao, Wen
Author_xml – sequence: 1
  givenname: Cailian
  surname: Zhang
  fullname: Zhang, Cailian
  organization: China University of Geosciences
– sequence: 2
  givenname: Chengwen
  surname: Song
  fullname: Song, Chengwen
  organization: China University of Geosciences
– sequence: 3
  givenname: Aleksandra
  surname: Zaforemska
  fullname: Zaforemska, Aleksandra
  organization: Newcastle University
– sequence: 4
  givenname: Jiaxing
  surname: Zhang
  fullname: Zhang, Jiaxing
  organization: Purdue University
– sequence: 5
  givenname: Rachel
  surname: Gaulton
  fullname: Gaulton, Rachel
  organization: Newcastle University
– sequence: 6
  givenname: Wenxia
  surname: Dai
  fullname: Dai, Wenxia
  organization: China University of Geosciences
– sequence: 7
  givenname: Wen
  surname: Xiao
  fullname: Xiao, Wen
  email: wen.xiao@cug.edu.cn
  organization: China University of Geosciences
BookMark eNqFkTtvFDEUhUcoSCSBn4BkiYZmF8_4LRqiiMdKK1FAauuOHxuvPHawvaD8e2aYkCIFVLavzzn32t9Fd5Zycl33usfbHkv8rheMSEXFdsAD3Q6E8X6gz7rzpb6RirGzxz0VL7qLWo8Yc0wpOe_0LtnwM9gTRNSKc6i6w-RSgxZyQr7kCd1cfUP7YKEgCw3QCNVZNF_eBlegmNtgZq8PsbkS0gFBssjEU12PL7vnHmJ1rx7Wy-7m08fv1182-6-fd9dX-42hkraNoE6YUWAYyegFU73EBhPp5TAaCl6MlhgA6iwbmfMEACvHhVEMU064leSy2625NsNR35UwQbnXGYL-U8jloKG0YKLTzBLHMGbc8oEq55WdP8dyoFJ4o0Y1Z71ds-5K_nFytekpVONihOTyqWrScyaZ4v3S9s0T6TGfSppfOquY7AUXis4qtqpMybUW5x8H7LFeEOq_CPWCUD8gnH3vn_hMWMm0AiH-1_1hdYfkc5ngVy7R6gb3MRdfIJmwDPnPiN_dd7aD
CitedBy_id crossref_primary_10_3390_agriculture15030295
crossref_primary_10_3390_rs17061010
crossref_primary_10_3390_a17120594
crossref_primary_10_3390_drones8120772
Cites_doi 10.1016/j.optlaseng.2022.107240
10.1080/07038992.2016.1196582
10.1016/j.softx.2021.100889
10.1080/17538947.2021.1943018
10.3390/rs14071713
10.1002/ece3.v13.7
10.5281/zenodo.1252955
10.1109/TIT.1975.1055330
10.1080/17538947.2023.2198261
10.1007/978-981-99-0479-2_301
10.1111/phor.2018.33.issue-164
10.3390/rs11111263
10.3390/rs14122787
10.1016/j.jag.2022.102684
10.1016/j.rse.2019.01.010
10.1016/j.rse.2021.112382
10.3389/fpls.2022.914974
10.3390/rs14153738
10.3390/rs8060501
10.3390/rs9020148
10.1093/forestry/cpr051
10.5194/isprs-archives-XLII-2-W13-657-2019
10.1016/j.ifacol.2018.11.566
10.1038/s41467-022-33136-9
10.1016/j.isprsjprs.2019.08.008
10.1016/j.isprsjprs.2012.12.002
10.1111/phor.2018.33.issue-163
10.3390/drones6110325
10.1016/j.jag.2022.103028
10.1111/mee3.2016.7.issue-10
10.1016/j.rse.2023.113618
10.3390/rs14122753
10.14358/PERS.78.1.75
10.1016/j.jag.2014.05.001
10.1111/phor.v38.182
10.3390/rs2030833
10.1109/36.921414
10.3390/f12020131
10.3390/rs15061619
10.3390/rs13204050
10.5194/essd-14-2989-2022
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024
2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
SOI
7S9
L.6
DOA
DOI 10.1080/17538947.2024.2356124
DatabaseName Taylor & Francis Open Access
CrossRef
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1753-8955
ExternalDocumentID oai_doaj_org_article_5d3e50056d6249ef9d175d6a487fc9b9
10_1080_17538947_2024_2356124
2356124
Genre Research Article
GroupedDBID .7F
0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABDBF
ABFIM
ABPEM
ABTAI
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADMSI
AEISY
AENEX
AEYOC
AFKVX
AFRAH
AHDSZ
AHDZW
AIJEM
AJWEG
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
ESX
GROUPED_DOAJ
GTTXZ
HZ~
J~4
KYCEM
LJTGL
M4Z
ML.
O9-
OK1
RIG
SNACF
TDBHL
TFL
TFT
TFW
TTHFI
TWF
TWN
UU3
VAE
AAYXX
AIYEW
CITATION
DGEBU
7ST
7UA
8FD
C1K
F1W
FR3
H13
H8D
H96
KR7
L.G
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c484t-74e7cb70ab3bf759180c038f82bc4af7bd3caa4ed5b5ef3aa09e67c9504636d83
IEDL.DBID DOA
ISSN 1753-8947
1753-8955
IngestDate Wed Aug 27 01:13:52 EDT 2025
Fri Jul 11 02:37:41 EDT 2025
Fri Jul 25 12:15:35 EDT 2025
Thu Apr 24 23:03:44 EDT 2025
Tue Jul 01 01:05:59 EDT 2025
Wed Jan 22 07:59:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-74e7cb70ab3bf759180c038f82bc4af7bd3caa4ed5b5ef3aa09e67c9504636d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/5d3e50056d6249ef9d175d6a487fc9b9
PQID 3158176794
PQPubID 176143
ParticipantIDs informaworld_taylorfrancis_310_1080_17538947_2024_2356124
proquest_journals_3158176794
proquest_miscellaneous_3165859618
crossref_primary_10_1080_17538947_2024_2356124
crossref_citationtrail_10_1080_17538947_2024_2356124
doaj_primary_oai_doaj_org_article_5d3e50056d6249ef9d175d6a487fc9b9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of digital earth
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_29_1
e_1_3_4_31_1
e_1_3_4_30_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_21_1
  doi: 10.1016/j.optlaseng.2022.107240
– ident: e_1_3_4_32_1
  doi: 10.1080/07038992.2016.1196582
– ident: e_1_3_4_25_1
  doi: 10.1016/j.softx.2021.100889
– ident: e_1_3_4_26_1
  doi: 10.1080/17538947.2021.1943018
– ident: e_1_3_4_42_1
  doi: 10.3390/rs14071713
– ident: e_1_3_4_22_1
  doi: 10.1002/ece3.v13.7
– ident: e_1_3_4_27_1
  doi: 10.5281/zenodo.1252955
– ident: e_1_3_4_14_1
  doi: 10.1109/TIT.1975.1055330
– ident: e_1_3_4_9_1
  doi: 10.1080/17538947.2023.2198261
– ident: e_1_3_4_15_1
  doi: 10.1007/978-981-99-0479-2_301
– ident: e_1_3_4_38_1
  doi: 10.1111/phor.2018.33.issue-164
– ident: e_1_3_4_41_1
  doi: 10.3390/rs11111263
– ident: e_1_3_4_6_1
  doi: 10.3390/rs14122787
– ident: e_1_3_4_12_1
  doi: 10.1016/j.jag.2022.102684
– ident: e_1_3_4_3_1
  doi: 10.1016/j.rse.2019.01.010
– ident: e_1_3_4_23_1
  doi: 10.1016/j.rse.2021.112382
– ident: e_1_3_4_5_1
– ident: e_1_3_4_33_1
  doi: 10.3389/fpls.2022.914974
– ident: e_1_3_4_45_1
  doi: 10.3390/rs14153738
– ident: e_1_3_4_44_1
  doi: 10.3390/rs8060501
– ident: e_1_3_4_16_1
  doi: 10.3390/rs9020148
– ident: e_1_3_4_35_1
  doi: 10.1093/forestry/cpr051
– ident: e_1_3_4_43_1
  doi: 10.5194/isprs-archives-XLII-2-W13-657-2019
– ident: e_1_3_4_2_1
  doi: 10.1016/j.ifacol.2018.11.566
– ident: e_1_3_4_28_1
  doi: 10.1038/s41467-022-33136-9
– ident: e_1_3_4_40_1
– ident: e_1_3_4_10_1
  doi: 10.1016/j.isprsjprs.2019.08.008
– ident: e_1_3_4_31_1
– ident: e_1_3_4_29_1
  doi: 10.1016/j.isprsjprs.2012.12.002
– ident: e_1_3_4_37_1
  doi: 10.1111/phor.2018.33.issue-163
– ident: e_1_3_4_4_1
  doi: 10.3390/drones6110325
– ident: e_1_3_4_17_1
  doi: 10.1016/j.jag.2022.103028
– ident: e_1_3_4_11_1
  doi: 10.1111/mee3.2016.7.issue-10
– ident: e_1_3_4_19_1
  doi: 10.1016/j.rse.2023.113618
– ident: e_1_3_4_13_1
  doi: 10.3390/rs14122753
– ident: e_1_3_4_20_1
  doi: 10.14358/PERS.78.1.75
– ident: e_1_3_4_36_1
  doi: 10.1016/j.jag.2014.05.001
– ident: e_1_3_4_8_1
  doi: 10.1111/phor.v38.182
– ident: e_1_3_4_24_1
  doi: 10.3390/rs2030833
– ident: e_1_3_4_18_1
  doi: 10.1109/36.921414
– ident: e_1_3_4_7_1
  doi: 10.3390/f12020131
– ident: e_1_3_4_30_1
  doi: 10.3390/rs15061619
– ident: e_1_3_4_34_1
  doi: 10.3390/rs13204050
– ident: e_1_3_4_39_1
  doi: 10.5194/essd-14-2989-2022
SSID ssj0060443
Score 2.39176
Snippet Accurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar) from...
ABSTRACTAccurate Individual Tree Segmentation (ITS) is fundamental to fine-scale forest structure and management studies. Light detection and ranging (Lidar)...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Cluster analysis
cluster merging
Clustering
data collection
Datasets
Deep learning
Filtration
Forest management
forests
Hydrofluorocarbons
Individual tree segmentation (ITS)
intensity
landscapes
Leaves
Lidar
Machine learning
Outliers (statistics)
Parameter estimation
Performance evaluation
Plant species
point cloud
Robustness
Segmentation
Singular value decomposition
Species
Statistical analysis
Trees
unoccupied aerial systems (UAS)
Woodlands
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXLigtlCx9CFX4pqSjd_Htmq1RZQLrAQny8-qUslWm93_z0zibCkV6oFjYo-TeDzjmXjmG0I-crDpo0yiUpqxiicdKiPBkEtS5tqlnBqPycnXX-Vszj__EGM0YVfCKtGHzgNQRK-rUbid78aIuE8ILqkNV-DdNfykYVjgkb8krxpcrbCk65-zURnLmg8x9kBSIc2YxPOvYR5tTz2K_18Ypk90dr8RXW6TN8WCpKcDy3fIi9Tukr2Lh4Q1aCwS270l9mqTcUXxAJp26eZXyTdqKSaX0PnpN_rlNrolxXBRivtapNCIVbL7cwZgI823eKwO-xyFaaPhbt0Nl-_I_PLi-_msKkUVqsA1X1WKJxW8qp1nPithproONdNZA1O4y8pHFpzjKQovUmbO1SZJFYzoocWiZntkq1206T2hweTGeAM2R5Q8A1nWAew5H5zRnKU8IXycSxsK4jgWvriz0wJMOrLAIgtsYcGEnGzI7gfIjecIzpBRm86ImN3fWCxvbBFAKyJLAoFPowSPM2UTYawoHThsOcBXTIj5k8121f8wyUN1E8ueeYGDcU3YogKQROipkqDvJuR40wzCiycyrk2LNfYBA1Bg0Z0P__H4ffIaLwf4yQOytVqu0yGYSit_1AvDb2NgCDs
  priority: 102
  providerName: Taylor & Francis
Title Individual tree segmentation from UAS Lidar data based on hierarchical filtering and clustering
URI https://www.tandfonline.com/doi/abs/10.1080/17538947.2024.2356124
https://www.proquest.com/docview/3158176794
https://www.proquest.com/docview/3165859618
https://doaj.org/article/5d3e50056d6249ef9d175d6a487fc9b9
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagJy6IUioCpXKlXrd14vexRa0Cgl5KpHKy_ESVyrZqkv_PzNobChxy4bLS2h7J6_F4Pq893xByLADTJ5Vlpw3nncgmdlYBkMtKFeZzybOAwclfr9R8IT7fyJsnqb7wTlilB64DdyoTzxIJK5OCnUIuNoHDS8oD0C7RhiF0D3zeuJmqa7Biol6tBzDeGSv0GLtj2CmWYRHsDWfiZMYxPaT4wysN5P1_UZf-s1QP_ufyFXnZgCM9qx3eJc9y_5rsX_yOU4PKZqjLPeI-bQKtKJ4702X-8bOFGfUUY0ro4uyafrlN_pHiLVGK7ixRqMTk2MPxAmiPlls8TQf3Rn2faLxbL-vrG7K4vPj2cd61XApdFEasOi2yjkEzH3goWtqpYZFxUwzoQviiQ-LRe5GTDDIX7j2zWelo5cAolgzfJzv9fZ_fEhptmcHAA9RIShQQKyYCjAvRWyN4LhMixrF0sRGNY76LOzdtfKSjChyqwDUVTMjJRuyhMm1sEzhHRW0aI1H2UADTx7Xp47ZNnwmxT9XsVsN_klKTmji-pQMH45xwzfJRRJqpVrDMTcjRphpsFg9ifJ_v19gGcJ_EXDvv_sc3vCcvsFuVfvKA7Kwe1_kDQKVVOCTP2fc5PDm7Ohws5BfWYg0H
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagHOAC5VGR0lIjcd2wid_HglqlJc2FRurN8rOqWjYo2Vz665nZRyhFqIced-3Z9WM8nrFnviHkMwedPsokCqUZK3jSoTASFLkkZS5dymnsMTj5bCYnc356IS7uxMKgWyXa0LkFimhkNS5uPIzuXeK-ILqkNlyBeTfmwzHDDI_8KXkmjFSYxYCVs14ay5K3TvZAUiBNH8Xzv8_8tT81MP73QEz_EdrNTnT8ioS-D60DyvVwXfthuL0H7_i4Tm6Tl52iSg9bznpNnqTqDdk5-hMXB4WdYFi9JfZkE9hF8Z6brtLlzy6sqaIYw0Lnhz_o9Cq6JUWvVIrbZ6RQiMm4m-sM4Baar_D2HrZTCg2n4Wa9ah_fkfnx0fm3SdHlbigC17wuFE8qeFU6z3xWwox0GUqms4a55y4rH1lwjqcovEiZOVeaJFUwokEwi5rtkK1qUaX3hAaTx8YbUG2i5BnIsg6gNvrgjOYs5QHh_YzZ0AGbY36NGzvq8E_7obQ4lLYbygEZbsh-tcgeDxF8RXbYVEZg7ubFYnlpu3VuRWRJIL5qlGDYpmwifCtKB3ZhDtCLATF3mcnWzblMbpOoWPZAA_Z6zrOdpEESoUdKglgdkE-bYpARePHjqrRYYx3QMwXm9tl9xO8PyPPJ-dnUTk9m3z-QF1jUIl7uka16uU77oJ3V_mOz_H4DBvcrvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagSIgL74qUAkbiumETv48FGrVQIiSIxM3ys6oomyrZXPrrmdn1BihCPfS4tmfXj_F4Zj3zDSFvOOj0USZRKc1YxZMOlZGgyCUpc-1STlOPwcmf5_JowT9-F4M34bq4VaINnXugiE5W4-a-iHnwiHuL4JLacAXW3ZSPpwwTPPLb5I5E8HCM4qjngzCGot7HHkgqpBmCeP73mr-Opw7F_wqG6T8yuzuIZg-IH4bQ-5_8GG9aPw6XV9AdbzTGh-R-UVPpQc9Xj8it1Dwmu4e_o-KgsoiF9RNij7dhXRRvuek6nf4sQU0NxQgWujj4Sk_OoltR9EmleHhGCpWYiru7zABeofkM7-7hMKXQbxrON-v-8SlZzA6_vT-qSuaGKnDN20rxpIJXtfPMZyXMRNehZjprWHnusvKRBed4isKLlJlztUlSBSM6_LKo2S7ZaZZNekZoMHlqvAHFJkqegSzrAEqjD85ozlIeET4smA0F1hyza5zbSUE_HabS4lTaMpUjMt6SXfS4HtcRvENu2DZGWO6uYLk6tWWXWxFZEoiuGiWYtSmbCO-K0oFVmAOMYkTMn7xk2-6vTO5TqFh2TQf2B8azRc4gidATJUGojsjrbTVICLz2cU1abrANaJkCM_vs3eDzr8jdLx9m9uR4_uk5uYc1PdzlPtlpV5v0AlSz1r_sNt8vKc0qYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individual+tree+segmentation+from+UAS+Lidar+data+based+on+hierarchical+filtering+and+clustering&rft.jtitle=International+journal+of+digital+earth&rft.au=Zhang%2C+Cailian&rft.au=Song%2C+Chengwen&rft.au=Zaforemska%2C+Aleksandra&rft.au=Zhang%2C+Jiaxing&rft.date=2024-12-31&rft.issn=1753-8955&rft.volume=17&rft.issue=1+p.2356124-&rft_id=info:doi/10.1080%2F17538947.2024.2356124&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-8947&client=summon