Functional Characterization of Novel Allelic Variants of CYP2C9 Recently Discovered in Southeast Asians

CYP2C9 was recently resequenced in 150 Asian subjects from Singapore. Several new coding variants were reported, and these variants are now named CYP2C9*14 (R125H), CYP2C9*15 (S162X), CYP2C9*16 (T299A), CYP2C9*17 (P382S), CYP2C9*18 (D397A), and CYP2C9*19 (Q454H). The CYP2C9*18 variant also contained...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 315; no. 3; pp. 1085 - 1090
Main Authors DeLozier, Tracy C., Lee, Soo-Chin, Coulter, Sherry J., Goh, Boon Cher, Goldstein, Joyce A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2005
American Society for Pharmacology and Experimental Therapeutics
Subjects
Online AccessGet full text
ISSN0022-3565
1521-0103
DOI10.1124/jpet.105.091181

Cover

Abstract CYP2C9 was recently resequenced in 150 Asian subjects from Singapore. Several new coding variants were reported, and these variants are now named CYP2C9*14 (R125H), CYP2C9*15 (S162X), CYP2C9*16 (T299A), CYP2C9*17 (P382S), CYP2C9*18 (D397A), and CYP2C9*19 (Q454H). The CYP2C9*18 variant also contained an I359L change previously associated with the CYP2C9*3 allele. In this study, we assessed the functional consequences of the new coding changes. cDNAs containing each of the new coding changes were constructed by site-directed mutagenesis and expressed in a bacterial cDNA expression system, the allelic proteins were partially purified, and their ability to hydroxylate a prototype CYP2C9 substrate was assayed. Expression of cDNAs in Escherichia coli containing either the D397A change or the S162X (premature stop codon) could not be detected either spectrally or at the apoprotein level. CYP2C9.14 and CYP2C9.16 exhibited 80 to 90% lower catalytic activity toward tolbutamide at two substrate concentrations compared with wild-type CYP2C9.1. Kinetic analysis confirmed that CYP2C9.14 and CYP2C9.16 have a higher Km and a >90% lower intrinsic clearance of tolbutamide compared with wild-type CYP2C9.1. Both CYP2C9.17 and CYP2C9.19 proteins exhibited modest 30 to 40% decreases in catalytic activity toward tolbutamide. Thus, CYP2C9*15 and CYP2C9*18 may represent null alleles, whereas CYP2C9*14 and CYP2C9*16 allelic variants produce proteins that are clearly catalytically defective in vitro, indicating the existence of new defective putative alleles of CYP2C9 in Asians.
AbstractList CYP2C9 was recently resequenced in 150 Asian subjects from Singapore. Several new coding variants were reported, and these variants are now named CYP2C9*14 (R125H), CYP2C9*15 (S162X), CYP2C9*16 (T299A), CYP2C9*17 (P382S), CYP2C9*18 (D397A), and CYP2C9*19 (Q454H). The CYP2C9*18 variant also contained an I359L change previously associated with the CYP2C9*3 allele. In this study, we assessed the functional consequences of the new coding changes. cDNAs containing each of the new coding changes were constructed by site-directed mutagenesis and expressed in a bacterial cDNA expression system, the allelic proteins were partially purified, and their ability to hydroxylate a prototype CYP2C9 substrate was assayed. Expression of cDNAs in Escherichia coli containing either the D397A change or the S162X (premature stop codon) could not be detected either spectrally or at the apoprotein level. CYP2C9.14 and CYP2C9.16 exhibited 80 to 90% lower catalytic activity toward tolbutamide at two substrate concentrations compared with wild-type CYP2C9.1. Kinetic analysis confirmed that CYP2C9.14 and CYP2C9.16 have a higher Km and a >90% lower intrinsic clearance of tolbutamide compared with wild-type CYP2C9.1. Both CYP2C9.17 and CYP2C9.19 proteins exhibited modest 30 to 40% decreases in catalytic activity toward tolbutamide. Thus, CYP2C9*15 and CYP2C9*18 may represent null alleles, whereas CYP2C9*14 and CYP2C9*16 allelic variants produce proteins that are clearly catalytically defective in vitro, indicating the existence of new defective putative alleles of CYP2C9 in Asians.CYP2C9 was recently resequenced in 150 Asian subjects from Singapore. Several new coding variants were reported, and these variants are now named CYP2C9*14 (R125H), CYP2C9*15 (S162X), CYP2C9*16 (T299A), CYP2C9*17 (P382S), CYP2C9*18 (D397A), and CYP2C9*19 (Q454H). The CYP2C9*18 variant also contained an I359L change previously associated with the CYP2C9*3 allele. In this study, we assessed the functional consequences of the new coding changes. cDNAs containing each of the new coding changes were constructed by site-directed mutagenesis and expressed in a bacterial cDNA expression system, the allelic proteins were partially purified, and their ability to hydroxylate a prototype CYP2C9 substrate was assayed. Expression of cDNAs in Escherichia coli containing either the D397A change or the S162X (premature stop codon) could not be detected either spectrally or at the apoprotein level. CYP2C9.14 and CYP2C9.16 exhibited 80 to 90% lower catalytic activity toward tolbutamide at two substrate concentrations compared with wild-type CYP2C9.1. Kinetic analysis confirmed that CYP2C9.14 and CYP2C9.16 have a higher Km and a >90% lower intrinsic clearance of tolbutamide compared with wild-type CYP2C9.1. Both CYP2C9.17 and CYP2C9.19 proteins exhibited modest 30 to 40% decreases in catalytic activity toward tolbutamide. Thus, CYP2C9*15 and CYP2C9*18 may represent null alleles, whereas CYP2C9*14 and CYP2C9*16 allelic variants produce proteins that are clearly catalytically defective in vitro, indicating the existence of new defective putative alleles of CYP2C9 in Asians.
CYP2C9 was recently resequenced in 150 Asian subjects from Singapore. Several new coding variants were reported, and these variants are now named CYP2C9*14 (R125H), CYP2C9*15 (S162X), CYP2C9*16 (T299A), CYP2C9*17 (P382S), CYP2C9*18 (D397A), and CYP2C9*19 (Q454H). The CYP2C9*18 variant also contained an I359L change previously associated with the CYP2C9*3 allele. In this study, we assessed the functional consequences of the new coding changes. cDNAs containing each of the new coding changes were constructed by site-directed mutagenesis and expressed in a bacterial cDNA expression system, the allelic proteins were partially purified, and their ability to hydroxylate a prototype CYP2C9 substrate was assayed. Expression of cDNAs in Escherichia coli containing either the D397A change or the S162X (premature stop codon) could not be detected either spectrally or at the apoprotein level. CYP2C9.14 and CYP2C9.16 exhibited 80 to 90% lower catalytic activity toward tolbutamide at two substrate concentrations compared with wild-type CYP2C9.1. Kinetic analysis confirmed that CYP2C9.14 and CYP2C9.16 have a higher Km and a >90% lower intrinsic clearance of tolbutamide compared with wild-type CYP2C9.1. Both CYP2C9.17 and CYP2C9.19 proteins exhibited modest 30 to 40% decreases in catalytic activity toward tolbutamide. Thus, CYP2C9*15 and CYP2C9*18 may represent null alleles, whereas CYP2C9*14 and CYP2C9*16 allelic variants produce proteins that are clearly catalytically defective in vitro, indicating the existence of new defective putative alleles of CYP2C9 in Asians.
CYP2C9 was recently resequenced in 150 Asian subjects from Singapore. Several new coding variants were reported, and these variants are now named CYP2C9*14 (R125H), CYP2C9*15 (S162X), CYP2C9*16 (T299A), CYP2C9*17 (P382S), CYP2C9*18 (D397A), and CYP2C9*19 (Q454H). The CYP2C9*18 variant also contained an I359L change previously associated with the CYP2C9*3 allele. In this study, we assessed the functional consequences of the new coding changes. cDNAs containing each of the new coding changes were constructed by site-directed mutagenesis and expressed in a bacterial cDNA expression system, the allelic proteins were partially purified, and their ability to hydroxylate a prototype CYP2C9 substrate was assayed. Expression of cDNAs in Escherichia coli containing either the D397A change or the S162X (premature stop codon) could not be detected either spectrally or at the apoprotein level. CYP2C9.14 and CYP2C9.16 exhibited 80 to 90% lower catalytic activity toward tolbutamide at two substrate concentrations compared with wild-type CYP2C9.1. Kinetic analysis confirmed that CYP2C9.14 and CYP2C9.16 have a higher K m and a >90% lower intrinsic clearance of tolbutamide compared with wild-type CYP2C9.1. Both CYP2C9.17 and CYP2C9.19 proteins exhibited modest 30 to 40% decreases in catalytic activity toward tolbutamide. Thus, CYP2C9*15 and CYP2C9*18 may represent null alleles, whereas CYP2C9*14 and CYP2C9*16 allelic variants produce proteins that are clearly catalytically defective in vitro, indicating the existence of new defective putative alleles of CYP2C9 in Asians.
Author Lee, Soo-Chin
Coulter, Sherry J.
Goldstein, Joyce A.
DeLozier, Tracy C.
Goh, Boon Cher
Author_xml – sequence: 1
  givenname: Tracy C.
  surname: DeLozier
  fullname: DeLozier, Tracy C.
– sequence: 2
  givenname: Soo-Chin
  surname: Lee
  fullname: Lee, Soo-Chin
– sequence: 3
  givenname: Sherry J.
  surname: Coulter
  fullname: Coulter, Sherry J.
– sequence: 4
  givenname: Boon Cher
  surname: Goh
  fullname: Goh, Boon Cher
– sequence: 5
  givenname: Joyce A.
  surname: Goldstein
  fullname: Goldstein, Joyce A.
  email: goldste1@niehs.nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16099926$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAURi1URKeFNTvkFawy9SNxnOUo0IJUAeIlsbIc52bGlSee2k7R9NfjkCIkJFhZ1_cc2_fzGToZ_QgIPadkTSkrL24OkNaUVGvSUCrpI7SiFaMFoYSfoBUhjBW8EtUpOovxhhBaloI_QadUkKZpmFih7eU0mmT9qB1udzpokyDYez1vYT_g9_4OHN44B84a_E0Hq8cU5077_SNrG_wJDIzJHfFrG02GA_TYjvizn9IOdEx4E7MSn6LHg3YRnj2s5-jr5Zsv7dvi-sPVu3ZzXZhSlqmouQBW97wRgkJT8ppxXg1yKOtSa65FXfJe5ulYJ7rOSMm0FLLuDZvH76Th5-jlcu4h-NsJYlL7_C5wTo_gp6iEzHpViwy-eACnbg-9OgS71-GofkeTgYsFMMHHGGD4gxA1h6_m8HNRqSX8bFR_GcamX0mmoK37j_dq8XZ2u_thA6hD_om9Nt757VFxWimeeVllsllIyBHeWQgqGgujgT5bJqne23_e8hMViqj_
CitedBy_id crossref_primary_10_1038_clpt_2008_10
crossref_primary_10_1080_08927022_2018_1513646
crossref_primary_10_1002_chir_22289
crossref_primary_10_2217_pgs_2020_0051
crossref_primary_10_1038_clpt_2008_213
crossref_primary_10_1016_j_drudis_2016_09_015
crossref_primary_10_1016_j_arr_2010_06_001
crossref_primary_10_1016_j_gene_2020_144659
crossref_primary_10_1016_j_oooo_2020_06_021
crossref_primary_10_1016_j_jinorgbio_2024_112622
crossref_primary_10_1124_dmd_118_084269
crossref_primary_10_3390_genes9100514
crossref_primary_10_1053_j_gastro_2009_02_045
crossref_primary_10_1186_s40203_016_0016_7
crossref_primary_10_1111_bcpt_12159
crossref_primary_10_1038_sj_tpj_6500410
crossref_primary_10_1097_FPC_0b013e328344c340
crossref_primary_10_1111_j_1365_2125_2006_02679_x
crossref_primary_10_1002_bdd_2153
crossref_primary_10_1038_tpj_2013_2
crossref_primary_10_1291_hypres_31_1549
crossref_primary_10_1007_s11274_006_9158_9
crossref_primary_10_1097_CAD_0b013e3280109411
crossref_primary_10_1097_01_fpc_0000215069_14095_c6
crossref_primary_10_2217_pgs_14_47
crossref_primary_10_1007_s10928_009_9138_4
crossref_primary_10_1016_j_fct_2023_113926
crossref_primary_10_3390_jpm8010001
crossref_primary_10_1038_aps_2013_123
crossref_primary_10_2133_dmpk_DMPK_11_RV_090
crossref_primary_10_1038_tpj_2013_22
crossref_primary_10_1016_j_thromres_2006_10_021
crossref_primary_10_1517_17425255_2014_894020
crossref_primary_10_1016_j_jmoldx_2019_04_003
crossref_primary_10_1097_FPC_0b013e32831a9ae3
crossref_primary_10_1016_j_cbi_2016_04_040
crossref_primary_10_4062_biomolther_2019_112
crossref_primary_10_1517_17425250902970998
crossref_primary_10_1177_0091270008319329
crossref_primary_10_1515_dmdi_2020_0153
crossref_primary_10_1007_s13318_014_0245_2
crossref_primary_10_1016_j_pharep_2013_09_006
crossref_primary_10_3109_03639045_2014_950274
crossref_primary_10_1002_mgg3_283
crossref_primary_10_1016_j_blre_2007_11_004
crossref_primary_10_1016_j_cbi_2020_109168
crossref_primary_10_1016_j_gene_2013_03_128
crossref_primary_10_1515_dmpt_2020_0153
crossref_primary_10_1159_000381189
crossref_primary_10_3109_00498254_2013_820007
crossref_primary_10_1124_dmd_114_061200
crossref_primary_10_3389_fphar_2022_1007268
crossref_primary_10_1080_17425255_2024_2409255
crossref_primary_10_1021_acs_biochem_7b00795
crossref_primary_10_2147_DDDT_S268796
crossref_primary_10_1002_prp2_718
crossref_primary_10_1016_j_cbi_2022_109799
crossref_primary_10_1016_j_cca_2007_02_033
crossref_primary_10_1016_j_jmb_2013_07_010
crossref_primary_10_1007_s12272_011_1103_2
crossref_primary_10_1007_s00228_009_0707_7
crossref_primary_10_1124_dmd_114_060244
Cites_doi 10.1097/01.fpc.0000114759.08559.51
10.1016/j.clpt.2004.05.005
10.1517/14622416.5.7.895
10.1097/00008571-200112000-00008
10.1016/j.tibs.2004.11.004
10.1097/00008571-199608000-00007
10.1046/j.1365-2125.1998.00721.x
10.1074/jbc.271.21.12496
10.1006/abbi.1995.0013
10.1081/ERC-120016820
10.1038/nature02214
10.1016/S0169-409X(02)00076-5
10.1097/00007691-200006000-00001
10.1124/mol.60.2.382
10.1002/prot.20354
10.1097/01.fpc.0000114749.08559.e4
10.1097/00008571-200204000-00010
10.1038/nature01862
10.1124/jpet.103.058818
10.1182/blood-2003-07-2521
10.1074/jbc.273.27.17036
10.1067/mcp.2001.117444
10.1016/S0021-9258(20)82245-5
10.1093/hmg/ddi180
10.1016/S0009-8981(03)00319-X
10.1111/j.1472-8206.2004.00307.x
10.1021/bi00173a017
10.1146/annurev.pharmtox.41.1.815
10.1182/blood-2004-06-2111
10.1067/mcp.2001.117367
10.1097/00008571-200412000-00004
10.1097/00008571-199706000-00005
ContentType Journal Article
Copyright 2005 American Society for Pharmacology and Experimental Therapeutics
Copyright_xml – notice: 2005 American Society for Pharmacology and Experimental Therapeutics
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1124/jpet.105.091181
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1521-0103
EndPage 1090
ExternalDocumentID 16099926
10_1124_jpet_105_091181
315_3_1085
S002235652432350X
Genre Journal Article
Comparative Study
GeographicLocations China
Singapore
India
GeographicLocations_xml – name: Singapore
– name: China
– name: India
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
2WC
3O-
4.4
53G
5GY
5RE
5VS
8WZ
A6W
AAJMC
AALRI
AAXUO
AAYOK
ABCQX
ABIVO
ABJNI
ABOCM
ABSQV
ACGFO
ACGFS
ACNCT
ADBBV
ADCOW
ADIYS
AENEX
AERNN
AFFNX
AFHIN
AFOSN
AGFXO
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GX1
H13
HZ~
INIJC
KQ8
L7B
LSO
M41
MJL
MVM
O9-
OHT
OK1
P2P
PKN
R.V
R0Z
RHF
RHI
ROL
RPT
TR2
UQL
VH1
W2D
W8F
WH7
WOQ
X7M
YBU
YHG
YQT
ZGI
ZXP
-
08R
0R
55
8RP
AALRV
ABFLS
ABSGY
ABZEH
ACDCL
ADACO
ADBIT
ADKFC
AETEA
AIKQT
DL
FH7
GJ
HZ
O0-
X
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c484t-736e27d39661e94372335f8f474aa3a6743d80102b6bbc882a8687dc29118b8c3
ISSN 0022-3565
IngestDate Fri Sep 05 02:47:17 EDT 2025
Sat Mar 08 01:25:16 EST 2025
Tue Jul 01 05:41:09 EDT 2025
Thu Apr 24 22:55:10 EDT 2025
Tue Jan 05 21:16:50 EST 2021
Sat Feb 22 15:44:56 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-736e27d39661e94372335f8f474aa3a6743d80102b6bbc882a8687dc29118b8c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/27207
PMID 16099926
PQID 68801576
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_68801576
pubmed_primary_16099926
crossref_primary_10_1124_jpet_105_091181
crossref_citationtrail_10_1124_jpet_105_091181
highwire_pharmacology_315_3_1085
elsevier_sciencedirect_doi_10_1124_jpet_105_091181
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2005
20051201
2005-12-00
2005-Dec
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: December 2005
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of pharmacology and experimental therapeutics
PublicationTitleAlternate J Pharmacol Exp Ther
PublicationYear 2005
Publisher Elsevier Inc
American Society for Pharmacology and Experimental Therapeutics
Publisher_xml – name: Elsevier Inc
– name: American Society for Pharmacology and Experimental Therapeutics
References mephenytoin 4′-hydroxylase in humans.
17036–17049.
Loebstein R, Yonath H, Peleg D, Almog S, Rotenberg M, Lubetsky A, Roitelman J, Harats D, Halkin H, and Ezra D (2001) Interindividual variability in sensitivity to warfarin: nature or nurture?
Solus JF, Arietta BJ, Harris JR, Sexton DP, Steward JQ, McMunn C, Ihrie P, Mehall JM, Edwards TL, and Dawson EP (2004) Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population.
Richardson TH, Jung F, Griffin KJ, Wester M, Raucy JL, Kemper B, Bornheim LM, Hassett C, Omiecinski CJ, and Johnson EF (1995) A universal approach to the expression of human and rabbit cytochrome P450s of the 2C subfamily in
341–349.
D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, and Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin.
527–537.
Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, and Goldstein JA (2001) Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin.
596–609.
1257–1270.
Zainuddin Z, Teh LK, Suhaimi AW, Salleh MZ, and Ismail R (2003) A simple method for the detection of CYP2C9 polymorphisms: nested allele-specific multiplex polymerase chain reaction.
12496–12501.
2379–2385.
87–96.
1745–1751.
1510–1516.
Xie HG, Kim RB, Wood AJ, and Stein CM (2001) Molecular basis of ethnic differences in drug disposition and response.
815–850.
Shintani M, Ieiri I, Inoue K, Mamiya K, Ninomiya H, Tashiro N, Higuchi S, and Otsubo K (2001) Genetic polymorphisms and functional characterization of the 5′-flanking region of the human CYP2C9 gene: in vitro and in vivo studies.
Lee CR, Goldstein JA, and Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data.
D’Ambrosio RL, D’Andrea G, Cappucci F, Chetta M, Di Perna P, Brancaccio V, Grandone E, and Margaglione M (2004) Polymorphisms in factor II and factor VII genes modulate oral anticoagulation with warfarin.
101–105.
803–808.
Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, Lu MJ, Hung CR, Wei CY, Chen CH, et al. (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity.
.
Jose R, Chandrasekaran A, Sam SS, Gerard N, Chanolean S, Abraham BK, Satyanarayanamoorthy K, Peter A, and Rajagopal K (2005) CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population.
Ieiri I, Tainaka H, Morita T, Hadama A, Mamiya K, Hayashibara M, Ninomiya H, Ohmori S, Kitada M, Tashiro N, et al. (2000) Catalytic activity of three variants (Ile, Leu and Thr) at amino acid residue 359 in human CYP2C9 gene and simultaneous detection using single-strand conformation polymorphism analysis.
Zhao F, Loke C, Rankin SC, Guo JY, Lee HS, Wu TS, Tan T, Liu TC, Lu WL, Lim YT, et al. (2004) Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose.
Ibeanu GC, Ghanayem BI, Linko P, Li L, Pedersen LG, and Goldstein JA (1996) Identification of residues 99, 220 and 221 of human cytochrome P450 2C19 as key determinants of omeprazole hydroxylase activity.
Scott EE and Halpert JR (2005) Structures of cytochrome P450 3A4.
Si D, Guo Y, Zhang Y, Yang L, Zhou H, and Zhong D (2004) Identification of a novel variant CYP2C9 allele in Chinese.
Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, Miners JO, Birkett DJ, and Goldstein JA (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism.
203–210.
537–541.
3055–3057.
495–501.
237–244.
464–468.
Crespi CL and Miller VP (1997) The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase.
5–7.
465–469.
645–649.
Blaisdell J, Jorge-Nebert LF, Coulter S, Ferguson SS, Lee SJ, Chanas B, Xi T, Mohrenweiser H, Ghanayem B, and Goldstein JA (2004) Discovery of new potentially defective alleles of human CYP2C9.
175–182.
Takahashi H, Ieiri I, Wilkinson GR, Mayo G, Kashima T, Kimura S, Otsubo K, and Echizen H (2004) 5′-Flanking region polymorphisms of CYP2C9 and their relationship to S-warfarin metabolism in white and Japanese patients.
1743–1752.
Chen Y, Ferguson SS, Negishi M, and Goldstein JA (2004) Induction of human CYP2C9 by rifampicin, hyperforin and phenobarbital is mediated by the pregnane X receptor.
Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, et al. (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.
Xie HG, Prasad HC, Kim RB, and Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance.
382–387.
Dickmann LJ, Rettie AE, Kneller MB, Kim RB, Wood AJ, Stein CM, Wilkinson GR, and Schwarz UI (2001) Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans.
813–822.
97–102.
Goldstein JA, Faletto MB, Romkes-Sparks M, Sullivan T, Kitareewan S, Raucy JL, Lasker JM, and Ghanayem BI (1994) Evidence that CYP2C19 is the major
Mestres J (2004) Structure conservation in cytochromes P450.
159–164.
Omura T and Sato R (1964) The carbon monoxide-binding pigment of liver microsomes: II. Solubilization, purification and properties.
Johnson EF, Wester MR, and Stout CD (2002) The structure of microsomal cytochrome P450 2C5: a steroid and drug metabolizing enzyme.
Bridges A, Gruenke L, Chang YT, Vakser IA, Loew G, and Waskell L (1998) Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 and cytochrome P450 reductase.
251–263.
King BP, Khan TI, Aithal GP, Kamali F, and Daly AK (2004) Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism.
525–538.
Miners JO and Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism.
435–441.
895–931.
Williams PA, Cosme J, Ward A, Angove HC, Matak Vinkovic D, and Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin.
210–219.
10.1124/jpet.105.091181_bib29
10.1124/jpet.105.091181_bib26
10.1124/jpet.105.091181_bib25
10.1124/jpet.105.091181_bib28
10.1124/jpet.105.091181_bib27
10.1124/jpet.105.091181_bib22
10.1124/jpet.105.091181_bib21
10.1124/jpet.105.091181_bib24
10.1124/jpet.105.091181_bib23
10.1124/jpet.105.091181_bib9
10.1124/jpet.105.091181_bib20
10.1124/jpet.105.091181_bib2
10.1124/jpet.105.091181_bib1
10.1124/jpet.105.091181_bib4
10.1124/jpet.105.091181_bib3
10.1124/jpet.105.091181_bib6
10.1124/jpet.105.091181_bib5
10.1124/jpet.105.091181_bib8
10.1124/jpet.105.091181_bib7
10.1124/jpet.105.091181_bib19
10.1124/jpet.105.091181_bib18
10.1124/jpet.105.091181_bib15
10.1124/jpet.105.091181_bib14
10.1124/jpet.105.091181_bib17
10.1124/jpet.105.091181_bib16
10.1124/jpet.105.091181_bib11
10.1124/jpet.105.091181_bib33
10.1124/jpet.105.091181_bib10
10.1124/jpet.105.091181_bib32
10.1124/jpet.105.091181_bib13
10.1124/jpet.105.091181_bib12
10.1124/jpet.105.091181_bib31
10.1124/jpet.105.091181_bib30
References_xml – reference: 87–96.
– reference: 17036–17049.
– reference: Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, and Goldstein JA (2001) Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin.
– reference: Williams PA, Cosme J, Ward A, Angove HC, Matak Vinkovic D, and Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin.
– reference: 527–537.
– reference: 97–102.
– reference: Miners JO and Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism.
– reference: 2379–2385.
– reference: 5–7.
– reference: Bridges A, Gruenke L, Chang YT, Vakser IA, Loew G, and Waskell L (1998) Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 and cytochrome P450 reductase.
– reference: Crespi CL and Miller VP (1997) The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase.
– reference: Omura T and Sato R (1964) The carbon monoxide-binding pigment of liver microsomes: II. Solubilization, purification and properties.
– reference: Johnson EF, Wester MR, and Stout CD (2002) The structure of microsomal cytochrome P450 2C5: a steroid and drug metabolizing enzyme.
– reference: Xie HG, Prasad HC, Kim RB, and Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance.
– reference: 101–105.
– reference: Zhao F, Loke C, Rankin SC, Guo JY, Lee HS, Wu TS, Tan T, Liu TC, Lu WL, Lim YT, et al. (2004) Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose.
– reference: 803–808.
– reference: D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, and Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin.
– reference: 175–182.
– reference: Blaisdell J, Jorge-Nebert LF, Coulter S, Ferguson SS, Lee SJ, Chanas B, Xi T, Mohrenweiser H, Ghanayem B, and Goldstein JA (2004) Discovery of new potentially defective alleles of human CYP2C9.
– reference: 495–501.
– reference: 813–822.
– reference: 251–263.
– reference: 1745–1751.
– reference: Ieiri I, Tainaka H, Morita T, Hadama A, Mamiya K, Hayashibara M, Ninomiya H, Ohmori S, Kitada M, Tashiro N, et al. (2000) Catalytic activity of three variants (Ile, Leu and Thr) at amino acid residue 359 in human CYP2C9 gene and simultaneous detection using single-strand conformation polymorphism analysis.
– reference: Xie HG, Kim RB, Wood AJ, and Stein CM (2001) Molecular basis of ethnic differences in drug disposition and response.
– reference: 815–850.
– reference: D’Ambrosio RL, D’Andrea G, Cappucci F, Chetta M, Di Perna P, Brancaccio V, Grandone E, and Margaglione M (2004) Polymorphisms in factor II and factor VII genes modulate oral anticoagulation with warfarin.
– reference: 465–469.
– reference: 1257–1270.
– reference: .
– reference: Ibeanu GC, Ghanayem BI, Linko P, Li L, Pedersen LG, and Goldstein JA (1996) Identification of residues 99, 220 and 221 of human cytochrome P450 2C19 as key determinants of omeprazole hydroxylase activity.
– reference: 1510–1516.
– reference: 1743–1752.
– reference: 159–164.
– reference: 596–609.
– reference: Dickmann LJ, Rettie AE, Kneller MB, Kim RB, Wood AJ, Stein CM, Wilkinson GR, and Schwarz UI (2001) Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans.
– reference: 537–541.
– reference: Chen Y, Ferguson SS, Negishi M, and Goldstein JA (2004) Induction of human CYP2C9 by rifampicin, hyperforin and phenobarbital is mediated by the pregnane X receptor.
– reference: King BP, Khan TI, Aithal GP, Kamali F, and Daly AK (2004) Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism.
– reference: Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, et al. (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.
– reference: Takahashi H, Ieiri I, Wilkinson GR, Mayo G, Kashima T, Kimura S, Otsubo K, and Echizen H (2004) 5′-Flanking region polymorphisms of CYP2C9 and their relationship to S-warfarin metabolism in white and Japanese patients.
– reference: 237–244.
– reference: 3055–3057.
– reference: Solus JF, Arietta BJ, Harris JR, Sexton DP, Steward JQ, McMunn C, Ihrie P, Mehall JM, Edwards TL, and Dawson EP (2004) Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population.
– reference: Goldstein JA, Faletto MB, Romkes-Sparks M, Sullivan T, Kitareewan S, Raucy JL, Lasker JM, and Ghanayem BI (1994) Evidence that CYP2C19 is the major (
– reference: Si D, Guo Y, Zhang Y, Yang L, Zhou H, and Zhong D (2004) Identification of a novel variant CYP2C9 allele in Chinese.
– reference: 210–219.
– reference: 203–210.
– reference: Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, Miners JO, Birkett DJ, and Goldstein JA (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism.
– reference: Richardson TH, Jung F, Griffin KJ, Wester M, Raucy JL, Kemper B, Bornheim LM, Hassett C, Omiecinski CJ, and Johnson EF (1995) A universal approach to the expression of human and rabbit cytochrome P450s of the 2C subfamily in
– reference: Lee CR, Goldstein JA, and Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data.
– reference: Loebstein R, Yonath H, Peleg D, Almog S, Rotenberg M, Lubetsky A, Roitelman J, Harats D, Halkin H, and Ezra D (2001) Interindividual variability in sensitivity to warfarin: nature or nurture?
– reference: 382–387.
– reference: Scott EE and Halpert JR (2005) Structures of cytochrome P450 3A4.
– reference: Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, Lu MJ, Hung CR, Wei CY, Chen CH, et al. (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity.
– reference: 12496–12501.
– reference: Jose R, Chandrasekaran A, Sam SS, Gerard N, Chanolean S, Abraham BK, Satyanarayanamoorthy K, Peter A, and Rajagopal K (2005) CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population.
– reference: 645–649.
– reference: Zainuddin Z, Teh LK, Suhaimi AW, Salleh MZ, and Ismail R (2003) A simple method for the detection of CYP2C9 polymorphisms: nested allele-specific multiplex polymerase chain reaction.
– reference: )-mephenytoin 4′-hydroxylase in humans.
– reference: 435–441.
– reference: Mestres J (2004) Structure conservation in cytochromes P450.
– reference: 895–931.
– reference: Shintani M, Ieiri I, Inoue K, Mamiya K, Ninomiya H, Tashiro N, Higuchi S, and Otsubo K (2001) Genetic polymorphisms and functional characterization of the 5′-flanking region of the human CYP2C9 gene: in vitro and in vivo studies.
– reference: 341–349.
– reference: 464–468.
– reference: 525–538.
– ident: 10.1124/jpet.105.091181_bib1
  doi: 10.1097/01.fpc.0000114759.08559.51
– ident: 10.1124/jpet.105.091181_bib33
  doi: 10.1016/j.clpt.2004.05.005
– ident: 10.1124/jpet.105.091181_bib25
  doi: 10.1517/14622416.5.7.895
– ident: 10.1124/jpet.105.091181_bib13
  doi: 10.1097/00008571-200112000-00008
– ident: 10.1124/jpet.105.091181_bib22
  doi: 10.1016/j.tibs.2004.11.004
– ident: 10.1124/jpet.105.091181_bib26
  doi: 10.1097/00008571-199608000-00007
– ident: 10.1124/jpet.105.091181_bib18
  doi: 10.1046/j.1365-2125.1998.00721.x
– ident: 10.1124/jpet.105.091181_bib9
  doi: 10.1074/jbc.271.21.12496
– ident: 10.1124/jpet.105.091181_bib20
  doi: 10.1006/abbi.1995.0013
– ident: 10.1124/jpet.105.091181_bib11
  doi: 10.1081/ERC-120016820
– ident: 10.1124/jpet.105.091181_bib5
– ident: 10.1124/jpet.105.091181_bib21
  doi: 10.1038/nature02214
– ident: 10.1124/jpet.105.091181_bib30
  doi: 10.1016/S0169-409X(02)00076-5
– ident: 10.1124/jpet.105.091181_bib10
  doi: 10.1097/00007691-200006000-00001
– ident: 10.1124/jpet.105.091181_bib7
  doi: 10.1124/mol.60.2.382
– ident: 10.1124/jpet.105.091181_bib17
  doi: 10.1002/prot.20354
– ident: 10.1124/jpet.105.091181_bib24
  doi: 10.1097/01.fpc.0000114749.08559.e4
– ident: 10.1124/jpet.105.091181_bib15
  doi: 10.1097/00008571-200204000-00010
– ident: 10.1124/jpet.105.091181_bib28
  doi: 10.1038/nature01862
– ident: 10.1124/jpet.105.091181_bib3
  doi: 10.1124/jpet.103.058818
– ident: 10.1124/jpet.105.091181_bib27
  doi: 10.1182/blood-2003-07-2521
– ident: 10.1124/jpet.105.091181_bib2
  doi: 10.1074/jbc.273.27.17036
– ident: 10.1124/jpet.105.091181_bib16
  doi: 10.1067/mcp.2001.117444
– ident: 10.1124/jpet.105.091181_bib19
  doi: 10.1016/S0021-9258(20)82245-5
– ident: 10.1124/jpet.105.091181_bib31
  doi: 10.1093/hmg/ddi180
– ident: 10.1124/jpet.105.091181_bib32
  doi: 10.1016/S0009-8981(03)00319-X
– ident: 10.1124/jpet.105.091181_bib12
  doi: 10.1111/j.1472-8206.2004.00307.x
– ident: 10.1124/jpet.105.091181_bib8
  doi: 10.1021/bi00173a017
– ident: 10.1124/jpet.105.091181_bib29
  doi: 10.1146/annurev.pharmtox.41.1.815
– ident: 10.1124/jpet.105.091181_bib6
  doi: 10.1182/blood-2004-06-2111
– ident: 10.1124/jpet.105.091181_bib23
  doi: 10.1067/mcp.2001.117367
– ident: 10.1124/jpet.105.091181_bib14
  doi: 10.1097/00008571-200412000-00004
– ident: 10.1124/jpet.105.091181_bib4
  doi: 10.1097/00008571-199706000-00005
SSID ssj0014463
Score 2.1195211
Snippet CYP2C9 was recently resequenced in 150 Asian subjects from Singapore. Several new coding variants were reported, and these variants are now named CYP2C9*14...
CYP2C9 was recently resequenced in 150 Asian subjects from Singapore. Several new coding variants were reported, and these variants are now named CYP2C9*14...
SourceID proquest
pubmed
crossref
highwire
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1085
SubjectTerms Alleles
Aryl Hydrocarbon Hydroxylases - genetics
Aryl Hydrocarbon Hydroxylases - isolation & purification
Aryl Hydrocarbon Hydroxylases - metabolism
Catalysis
China - ethnology
Cytochrome P-450 CYP2C9
DNA, Complementary
Escherichia coli - genetics
Genetic Variation
Humans
Hydroxylation
India - ethnology
Kinetics
Mutagenesis, Site-Directed
Polymorphism, Single Nucleotide
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Singapore
Tolbutamide - metabolism
Tolbutamide - pharmacokinetics
Tolbutamide - pharmacology
Title Functional Characterization of Novel Allelic Variants of CYP2C9 Recently Discovered in Southeast Asians
URI https://dx.doi.org/10.1124/jpet.105.091181
http://jpet.aspetjournals.org/content/315/3/1085.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16099926
https://www.proquest.com/docview/68801576
Volume 315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFcacwwA9oQtpSWtu59BEitmlCUyU6VJ6s2HHGpCqZtnZS-3_4n5wTO05WrRLsJW3TOLfvi31OfM53CPmYGB0XeS6CTORhIAoeBkrFeSCyoci0hiHR1AGyp9HxmTiZhbNe708namm5UAO9vjOv5D6owjrAFbNk_wNZv1NYAd8BX1gCwrD8J4wPYVBy7_JSL7y89kbgaXVjAID53KCS9U_wipugl_TXhKVjtBlhzJmvUINTYyynQSWm_bqsHtb0AfCgyXXXgG1TyWoj9rJVvrZCTrcqBnSSu9r69eZ7tb5wRLnCYvPpYCMq6EdVBVjX28-PYO1rVyAMlSRX-ye-yVFVvxf6WsElp79dqHHzFiPciAjx6TW3oj9dqoEtJtF019ymfzpe8k7ni4kUnYEcQ07vHiSYwEECvBKscjwAi2lky8ZsKG_jRDbDwzPB4XM4e0AesjiuowGOZj6SCD1q7kXpYXOnIAWH-bxxkG3Gj9em3u7n1PbO9Al57DCmXyzrnpKeKZ-RvYnFe3VApx1sD-genXSY8Jyct9Skm9SkVUFralJHTdpQE_-x1KQNNWlLTXpRUk9Naqn5gpwdfpumx4Gr6RFokYhFEPPIsDjn4GWPzBgnjTkPi6QQscgynmFKTJ6gzqGKlNLg_mVJlMS5Znj_VKL5S7JTVqV5TajOVQZmw1hHIy1GQ6PGhQFrPEpgO8ZU3CeD5mZL7QTvse7KXNaOLxMS0YEfobTo9Mkn3-DSar1s35Q16ElnqloTVALJtjeiDc6y-3hKoLTkKNUb9smHBn8J_TxO3mWlqZbXEi4LLPc46pNXlhbtKUbo5bHozX3O6S151D6Ou2RncbU078DMXqj3Ncn_At3l1Qo
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Characterization+of+Novel+Allelic+Variants+of+CYP2C9+Recently+Discovered+in+Southeast+Asians&rft.jtitle=The+Journal+of+pharmacology+and+experimental+therapeutics&rft.au=DeLozier%2C+Tracy+C.&rft.au=Lee%2C+Soo-Chin&rft.au=Coulter%2C+Sherry+J.&rft.au=Goh%2C+Boon+Cher&rft.date=2005-12-01&rft.pub=Elsevier+Inc&rft.issn=0022-3565&rft.volume=315&rft.issue=3&rft.spage=1085&rft.epage=1090&rft_id=info:doi/10.1124%2Fjpet.105.091181&rft.externalDocID=S002235652432350X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3565&client=summon