Revisiting the role of Wnt/β-catenin signaling in prostate cancer
The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer an...
Saved in:
Published in | Molecular and cellular endocrinology Vol. 462; no. Pt A; pp. 3 - 8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
15.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer and compel us to reexamine the interaction of the AR and Wnt/β-catenin signaling pathways. This review includes newer areas of interest such as non-canonical Wnt signaling and the role of Wnts in prostate cancer stem cells. The effort to develop Wnt modulating therapeutics, both biologics and small molecules, is also discussed.
•Description of interactions of the Wnt/β-catenin and AR signaling in prostate cancer.•The interaction may be synergistic or opposing depending on context.•Prostate cancer stem cells and non-canonical Wnt signaling in PCa also discussed.•The status of Wnt modulating therapeutics in relation to cancer is detailed. |
---|---|
AbstractList | The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer and compel us to reexamine the interaction of the AR and Wnt/β-catenin signaling pathways. This review includes newer areas of interest such as non-canonical Wnt signaling and the role of Wnts in prostate cancer stem cells. The effort to develop Wnt modulating therapeutics, both biologics and small molecules, is also discussed. The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer and compel us to reexamine the interaction of the AR and Wnt/β-catenin signaling pathways. This review includes newer areas of interest such as non-canonical Wnt signaling and the role of Wnts in prostate cancer stem cells. The effort to develop Wnt modulating therapeutics, both biologics and small molecules, is also discussed. •Description of interactions of the Wnt/β-catenin and AR signaling in prostate cancer.•The interaction may be synergistic or opposing depending on context.•Prostate cancer stem cells and non-canonical Wnt signaling in PCa also discussed.•The status of Wnt modulating therapeutics in relation to cancer is detailed. The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer and compel us to reexamine the interaction of the AR and Wnt/β-catenin signaling pathways. This review includes newer areas of interest such as non-canonical Wnt signaling and the role of Wnts in prostate cancer stem cells. The effort to develop Wnt modulating therapeutics, both biologics and small molecules, is also discussed.The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer and compel us to reexamine the interaction of the AR and Wnt/β-catenin signaling pathways. This review includes newer areas of interest such as non-canonical Wnt signaling and the role of Wnts in prostate cancer stem cells. The effort to develop Wnt modulating therapeutics, both biologics and small molecules, is also discussed. |
Author | Logan, Susan K. Schneider, Jeffrey A. |
Author_xml | – sequence: 1 givenname: Jeffrey A. surname: Schneider fullname: Schneider, Jeffrey A. organization: Departments of Urology, Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States – sequence: 2 givenname: Susan K. surname: Logan fullname: Logan, Susan K. email: susan.logan@nyumc.org organization: Departments of Urology, Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28189566$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1q3DAUhUVJaCZpH6Cb4mU3dq5k68cUCm1IfyAQKC1dClm-nmjwSFNJM9DXyoPkmaJhktJ2ka6EuOcc7j3fKTnywSMhryg0FKg4XzVriw0DKhtgDYB6RhZUSVYr4PKILKCFtpYM5Ak5TWkFAJIz9ZycMEVVz4VYkA9fceeSy84vq3yDVQwzVmGqfvh8fndbW5PRO18lt_Rm3ovKZxNDymVQWeMtxhfkeDJzwpcP7xn5_vHy28Xn-ur605eL91e17VSXazFOtLeTHfiATJhBDTBKDlaodpCDorbrrOmUNKOigL3syyWDQImjQi7aqT0j7w65m-2wxtGiz9HMehPd2sRfOhin_554d6OXYac559AKUQLePATE8HOLKeu1Sxbn2XgM26QZ8Fb1fce7_0qpErJXHHpWpK__XOv3Po8dF4E8CGzpLUWctHWlPhf2W7pZU9B7mnqlC029p6mB6UKzOOk_zsfwpzxvDx4sKHYOo07WYeE0uog26zG4J9z3pxW4pg |
CitedBy_id | crossref_primary_10_1016_j_diff_2019_08_004 crossref_primary_10_3390_cancers13174425 crossref_primary_10_3892_etm_2021_10597 crossref_primary_10_1080_14737159_2020_1702522 crossref_primary_10_1186_s13046_019_1342_5 crossref_primary_10_1002_cnr2_1153 crossref_primary_10_1038_s41420_020_00387_8 crossref_primary_10_1038_s41598_018_38179_x crossref_primary_10_1038_s41401_020_00575_3 crossref_primary_10_1007_s40203_022_00131_3 crossref_primary_10_1016_j_lfs_2020_118737 crossref_primary_10_1038_s43856_024_00613_9 crossref_primary_10_1016_j_adcanc_2021_100005 crossref_primary_10_1016_j_bbrc_2021_07_038 crossref_primary_10_3892_etm_2019_8120 crossref_primary_10_1007_s12094_021_02740_4 crossref_primary_10_3389_fphar_2022_971444 crossref_primary_10_2174_0118715206289246240110044931 crossref_primary_10_1002_cam4_2956 crossref_primary_10_1038_s41419_024_06621_w crossref_primary_10_2174_0122103155281770240104091620 crossref_primary_10_3390_ijms23063203 crossref_primary_10_1186_s12943_024_02137_1 crossref_primary_10_20517_cdr_2024_173 crossref_primary_10_1016_j_jsbmb_2025_106679 crossref_primary_10_1016_j_ijpx_2023_100225 crossref_primary_10_1134_S1990519X24700238 crossref_primary_10_3389_fonc_2019_01397 crossref_primary_10_1002_pdi3_94 crossref_primary_10_15252_embj_2020105450 crossref_primary_10_3390_ijms20092066 crossref_primary_10_3390_nu12030679 crossref_primary_10_1186_s12894_021_00810_x crossref_primary_10_3389_fgene_2020_598118 crossref_primary_10_3390_cancers12010244 crossref_primary_10_1021_acs_analchem_1c01026 crossref_primary_10_1080_21691401_2019_1633338 crossref_primary_10_1016_j_ipha_2024_07_001 crossref_primary_10_3389_fphar_2018_00005 crossref_primary_10_1186_s12967_019_1878_3 crossref_primary_10_1007_s10142_025_01526_z crossref_primary_10_3390_biom12020309 crossref_primary_10_1016_j_mce_2018_01_005 crossref_primary_10_3390_ijms24087482 crossref_primary_10_3233_THC_THC228039 crossref_primary_10_1002_jcb_26260 crossref_primary_10_1002_path_5029 crossref_primary_10_1016_j_prp_2024_155134 crossref_primary_10_1016_j_bbrc_2022_10_038 crossref_primary_10_1038_s41467_021_27077_y crossref_primary_10_1016_j_abb_2024_110216 crossref_primary_10_3390_cosmetics8010013 crossref_primary_10_1016_j_jddst_2024_105349 crossref_primary_10_3390_cancers16050902 crossref_primary_10_1002_pros_24251 crossref_primary_10_1136_jclinpath_2017_204718 crossref_primary_10_1042_BSR20191799 crossref_primary_10_1080_21655979_2021_1971028 crossref_primary_10_3390_ijms21124507 crossref_primary_10_3390_cancers17071069 crossref_primary_10_1158_1541_7786_MCR_24_0395 crossref_primary_10_3389_fendo_2020_00184 crossref_primary_10_2174_1874091X01913010023 crossref_primary_10_3390_ijms23031216 crossref_primary_10_1016_j_yexmp_2020_104451 crossref_primary_10_1038_s41388_018_0497_4 crossref_primary_10_1038_cgt_2017_32 crossref_primary_10_1007_s13402_022_00706_4 crossref_primary_10_1080_19396368_2023_2187268 crossref_primary_10_3390_ijms19051359 crossref_primary_10_1186_s40364_021_00323_7 crossref_primary_10_1007_s12672_021_00433_6 crossref_primary_10_1007_s00432_017_2484_5 crossref_primary_10_31857_S0041377124010067 crossref_primary_10_1158_0008_5472_CAN_22_3003 crossref_primary_10_3390_cancers14153744 crossref_primary_10_1002_pros_23837 crossref_primary_10_3390_cancers11081212 crossref_primary_10_1002_mc_23801 crossref_primary_10_1002_mc_23565 crossref_primary_10_1089_cmb_2019_0397 crossref_primary_10_1158_0008_5472_CAN_21_1807 |
Cites_doi | 10.1200/jco.2013.31.15_suppl.2501 10.1038/nrg1427 10.1074/jbc.M106399200 10.1016/j.stemcr.2015.04.003 10.1073/pnas.1120068109 10.1038/ncb0510-419 10.1038/sj.onc.1206049 10.1038/onc.2015.117 10.1074/jbc.M112.372029 10.1371/journal.pone.0010456 10.1210/me.2010-0513 10.1002/jcb.24850 10.1146/annurev.cellbio.14.1.59 10.1038/nature11125 10.1038/nature08356 10.1126/science.aab0917 10.1186/1471-2121-9-4 10.1073/pnas.1117036108 10.1038/nchembio.453 10.1371/journal.pone.0029290 10.1172/JCI78815 10.1056/NEJMoa1305224 10.1074/jbc.M111962200 10.1074/jbc.M109.009647 10.1186/bcr566 10.1038/ng.2279 10.1128/MCB.23.5.1674-1687.2003 10.1073/pnas.0404875101 10.1038/nrd4233 10.1016/j.juro.2013.02.360 10.1111/cas.12471 10.1074/jbc.M503850200 10.1074/jbc.M200135200 10.1002/pros.20877 10.1016/j.canlet.2005.06.004 10.1016/j.cell.2015.05.001 10.1111/j.1365-2133.2012.10856.x 10.1074/jbc.M313963200 10.1073/pnas.1017496108 10.1038/sj.onc.1209366 10.1677/erc.0.0100537 10.1002/pros.22674 10.1038/ng.2301 10.1038/sj.pcan.4500794 10.1210/er.2003-0034 10.1016/j.yexcr.2010.02.001 10.1074/jbc.M309560200 10.1158/0008-5472.CAN-08-1718 10.1074/jbc.M200545200 10.1101/gad.14.15.1837 10.1056/NEJMoa1209096 10.1038/onc.2009.496 10.1158/0008-5472.CAN-08-3380 10.1038/nchembio.137 10.1002/jcb.20983 10.1172/JCI32810 10.1038/nm.2890 10.1371/journal.pone.0075010 10.1038/sj.onc.1206802 10.1074/jbc.M301208200 10.1016/j.pharmthera.2014.08.005 10.1038/sj.onc.1208068 10.1126/science.1168175 10.1186/scrt13 10.1073/pnas.1014850108 10.1038/jid.2015.242 10.1371/journal.pgen.1003180 10.1074/jbc.M311374200 10.1158/0008-5472.CAN-07-6289 10.1016/S1535-6108(03)00334-9 10.1158/1538-7445.AM2015-4233 10.1016/j.cell.2014.08.016 10.1038/bjc.2014.23 10.1038/sj.onc.1210671 10.1371/journal.pbio.1000121 10.1038/sj.onc.1203245 10.1038/sj.onc.1210472 10.1038/cr.2009.43 10.1371/journal.pone.0141589 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.mce.2017.02.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-8057 |
EndPage | 8 |
ExternalDocumentID | PMC5550366 28189566 10_1016_j_mce_2017_02_008 S0303720717300886 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA112226 – fundername: NIGMS NIH HHS grantid: T32 GM007308 |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABFRF ABGSF ABJNI ABLVK ABMAC ABMZM ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LX3 LZ1 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SCU SDF SDG SDP SES SPCBC SSH SSU SSZ T5K WH7 ~G- .55 .GJ 29M 3O- 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACIEU ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HDZ HLW HMK HMO HVGLF HZ~ J5H MVM R2- SAE SBG SEW WUQ X7M ZGI ZXP CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c484t-6df19cfcb5be26ab8b0d750c683b7b81c44ca487ad810e979187b6e7ed8e563f3 |
IEDL.DBID | .~1 |
ISSN | 0303-7207 1872-8057 |
IngestDate | Thu Aug 21 18:08:42 EDT 2025 Fri Jul 11 15:07:03 EDT 2025 Sun Aug 24 04:00:00 EDT 2025 Mon Jul 21 05:53:19 EDT 2025 Tue Jul 01 03:48:40 EDT 2025 Thu Apr 24 22:58:25 EDT 2025 Fri Feb 23 02:20:40 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | β-catenin Wnt signaling Prostate cancer Androgen receptor |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-6df19cfcb5be26ab8b0d750c683b7b81c44ca487ad810e979187b6e7ed8e563f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5550366 |
PMID | 28189566 |
PQID | 1867985092 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5550366 proquest_miscellaneous_2053899454 proquest_miscellaneous_1867985092 pubmed_primary_28189566 crossref_citationtrail_10_1016_j_mce_2017_02_008 crossref_primary_10_1016_j_mce_2017_02_008 elsevier_sciencedirect_doi_10_1016_j_mce_2017_02_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-15 |
PublicationDateYYYYMMDD | 2018-02-15 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Molecular and cellular endocrinology |
PublicationTitleAlternate | Mol Cell Endocrinol |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mazor, Kawano, Zhu, Waxman, Kypta (bib43) 2004; 23 Pawlowski, Ertel, Allen, Xu, Butler, Wilson, Wierman (bib52) 2002; 277 Truica, Byers, Gelmann (bib68) 2000; 60 Gurney, A., Axelrod, F., Bond, C.J., Cain, J., Chartier, C., Donigan, L., Fischer, M., Chaudhari, A., Ji, M., Kapoun, A.M., et al. (2012). Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proceedings of the National Academy of Sciences of the United States of America 109, 11717–11722. Wu, Daniels, Shapiro, Xu, Huang, Li, Logan, Greco, Peng, Monaco (bib77) 2011; 25 Kretzschmar, Cottle, Schweiger, Watt (bib26) 2015; 135 Miyamoto, Zheng, Wittner, Lee, Zhu, Broderick, Desai, Fox, Brannigan, Trautwein (bib46) 2015; 349 Lee, Kang, Ha, Jung, Chung, Min, Kim, Moon, Chung, Lee (bib32) 2014; 110 Placencio, Sharif-Afshar, Li, Huang, Uwamariya, Neilson, Shen, Matusik, Hayward, Bhowmick (bib54) 2008; 68 Ryan, Smith, de Bono, Molina, Logothetis, de Souza, Fizazi, Mainwaring, Piulats, Ng (bib57) 2013; 368 Voeller, Truica, Gelmann (bib70) 1998; 58 Zhang, Hao (bib86) 2015; 5 Mulholland, Dedhar, Coetzee, Nelson (bib50) 2005; 26 Ma, Ye, He, Gerrin, Chen, Tanenbaum, Cai, Sowalsky, He, Wang (bib42) 2016; 126 Sun, Campisi, Higano, Beer, Porter, Coleman, True, Nelson (bib63) 2012; 18 Zhang, O'Young, Wikstrom, Davison, Yeung, Cattaruzza, Yen, Hoey, Lewicki, Rachmann (bib85) 2016; 76 Amir, Barua, McKnight, Cheng, Yuan, Balk (bib1) 2003; 278 Sasaki, Hwang, Nguyen, Kloner, Kahn (bib59) 2013; 8 Tran, Ouk, Clegg, Chen, Watson, Arora, Wongvipat, Smith-Jones, Yoo, Kwon (bib67) 2009; 324 Chandler, Lagasse (bib6) 2010; 1 Lenz, Kahn (bib35) 2014; 105 Wodarz, Nusse (bib76) 1998; 14 Bisson, Prowse (bib5) 2009; 19 Wang, Wang, Sadar (bib72) 2008; 68 Mulholland, Cheng, Reid, Rennie, Nelson (bib49) 2002; 277 Chesire, Isaacs (bib9) 2003; 10 Miller, Hocking, Brown, Moon (bib45) 1999; 18 Yang, Chen, Terry, Vacherot, Bemis, Capodice, Kitajewski, de la Taille, Benson, Guo (bib80) 2006; 25 Barbieri, Baca, Lawrence, Demichelis, Blattner, Theurillat, White, Stojanov, Van Allen, Stransky (bib3) 2012; 44 Yu, Wang, Jiang, Bierie, Roy-Burman, Shen, Taketo, Wills, Matusik (bib83) 2009; 69 Wang, Lin, Hu, Xie, Yang, Chang (bib73) 2004; 279 Hieronymus, Sawyers (bib21) 2012; 44 Gao, Vela, Sboner, Iaquinta, Karthaus, Gopalan, Dowling, Wanjala, Undvall, Arora (bib15) 2014; 159 Emami, K.H., Nguyen, C., Ma, H., Kim, D.H., Jeong, K.W., Eguchi, M., Moon, R.T., Teo, J.L., Kim, H.Y., Moon, S.H., et al. (2004). A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proceedings of the National Academy of Sciences of the United States of America 101, 12682–12687. Lawson, Witte (bib28) 2007; 117 Anastas, Moon (bib2) 2013; 13 Song, Herrell, Byers, Shah, Wilson, Gelmann (bib62) 2003; 23 Fischer, Yen, Zheng, Henner, Cattaruzza, Tang, Yeung, Biswas, Lewicki, Gurney (bib13) 2015; 75 Li, Wang, Zhang, Melamed, Liu, Reiter, Wei, Peng, Zou, Pellicer (bib38) 2009; 69 Chesire, Isaacs (bib8) 2002; 21 Huang, Mishina, Liu, Cheung, Stegmeier, Michaud, Charlat, Wiellette, Zhang, Wiessner (bib22) 2009; 461 Verras, Sun (bib69) 2006; 237 Gonsalves, F.C., Klein, K., Carson, B.B., Katz, S., Ekas, L.A., Evans, S., Nagourney, R., Cardozo, T., Brown, A.M., and DasGupta, R. (2011). An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 108, 5954–5963. Takahashi, S., Watanabe, T., Okada, M., Inoue, K., Ueda, T., Takada, I., Watabe, T., Yamamoto, Y., Fukuda, T., Nakamura, T., et al. (2011). Noncanonical Wnt signaling mediates androgen-dependent tumor growth in a mouse model of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America 108, 4938–4943. Leiros, Attorresi, Balana (bib34) 2012; 166 Lu, Lin, Roberts, Waud, Piazza, Li (bib41) 2011; 6 Yamamoto, Oue, Sato, Hasegawa, Yamamoto, Matsubara, Yasui, Kikuchi (bib78) 2010; 29 Wang, Wang, Long, Eastham-Anderson, Firestein, Junttila (bib71) 2015; 4 Li, Kim, Koh, Stallcup (bib37) 2004; 279 Liu, Vinall, Tepper, Shi, Xue, Ma, Wang, Fitzgerald, Wu, Gandour-Edwards (bib39) 2008; 27 Lee, Luong, Johnson, Cunha, Rivina, Gonzalgo, Sun (bib33) 2016; 35 Lee, E., Madar, A., David, G., Garabedian, M.J., Dasgupta, R., and Logan, S.K. (2013). Inhibition of androgen receptor and beta-catenin activity in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America 110, 15710–15715. Kypta, Waxman (bib27) 2012; 9 Yokoyama, Shao, Hoang, Mercola, Zi (bib82) 2014; 2 El-Khoueiry, Ning, Yang, Cole, Kahn, Zoghbi, Berg, Fujimori, Inada, Kouji (bib11) 2013; 31 Korkaya, Wicha (bib25) 2010; 12 Robinson, Van Allen, Wu, Schultz, Lonigro, Mosquera, Montgomery, Taplin, Pritchard, Attard (bib56) 2015; 161 Yumoto, F., Nguyen, P., Sablin, E.P., Baxter, J.D., Webb, P., and Fletterick, R.J. (2012). Structural basis of coactivation of liver receptor homolog-1 by beta-catenin. Proceedings of the National Academy of Sciences of the United States of America 109, 143–148. Grasso, Wu, Robinson, Cao, Dhanasekaran, Khan, Quist, Jing, Lonigro, Brenner (bib18) 2012; 487 Song, Gelmann (bib61) 2005; 280 Thorne, Hanson, Schneider, Tahinci, Orton, Cselenyi, Jernigan, Meyers, Hang, Waterson (bib66) 2010; 6 Mulholland, Read, Rennie, Cox, Nelson (bib51) 2003; 22 Schweizer, Rizzo, Spires, Platero, Wu, Lin, Gottardis, Attar (bib60) 2008; 9 Wang, Symes, Kane, Freeman, Nariculam, Munson, Thrasivoulou, Masters, Ahmed (bib74) 2010; 5 Korkaya, Paulson, Charafe-Jauffret, Ginestier, Brown, Dutcher, Clouthier, Wicha (bib24) 2009; 7 Salas, Kim, Vakar-Lopez, Sabichi, Troncoso, Jenster, Kikuchi, Chen, Shemshedini, Suraokar (bib58) 2004; 279 Petre, Wetherill, Danielsen, Knudsen (bib53) 2002; 277 Lepourcelet, Chen, France, Wang, Crews, Petersen, Bruseo, Wood, Shivdasani (bib36) 2004; 5 Yardy, Brewster (bib81) 2005; 8 Guerrero, Alfaro, Gomez, Protter, Bernales (bib19) 2013; 73 Kahn (bib23) 2014; 13 Terry, Yang, Chen, Vacherot, Buttyan (bib65) 2006; 99 Miyoshi, Hennighausen (bib47) 2003; 5 Le, McDermott, Jimeno (bib29) 2015; 146 Wang, Williamson, Bott, Brookman-Amissah, Freeman, Nariculam, Hubank, Ahmed, Masters (bib75) 2007; 26 Chen, Dodge, Tang, Lu, Ma, Fan, Wei, Hao, Kilgore, Williams (bib7) 2009; 5 Lee, Ha, Logan (bib30) 2015; 10 Francis, Thomsen, Taketo, Swain (bib14) 2013; 9 Beildeck, Gelmann, Byers (bib4) 2010; 316 Dodge, Moon, Tuladhar, Lu, Jacob, Zhang, Shi, Wang, Moro, Mongera (bib10) 2012; 287 Lu, Li (bib40) 2014; 115 Grandy, Shan, Zhang, Rao, Akunuru, Li, Zhang, Alpatov, Zhang, Lang (bib17) 2009; 284 Yang, Li, Sharma, Sasaki, Longo, Lim, Sun (bib79) 2002; 277 Moon, Kohn, De Ferrari, Kaykas (bib48) 2004; 5 Polakis (bib55) 2000; 14 McClung, Grauer, Boonen, Bolognese, Brown, Diez-Perez, Langdahl, Reginster, Zanchetta, Wasserman (bib44) 2014; 370 Kahn (10.1016/j.mce.2017.02.008_bib23) 2014; 13 Schweizer (10.1016/j.mce.2017.02.008_bib60) 2008; 9 Lu (10.1016/j.mce.2017.02.008_bib40) 2014; 115 Gao (10.1016/j.mce.2017.02.008_bib15) 2014; 159 Leiros (10.1016/j.mce.2017.02.008_bib34) 2012; 166 Wang (10.1016/j.mce.2017.02.008_bib72) 2008; 68 Kypta (10.1016/j.mce.2017.02.008_bib27) 2012; 9 Chesire (10.1016/j.mce.2017.02.008_bib9) 2003; 10 Ma (10.1016/j.mce.2017.02.008_bib42) 2016; 126 Amir (10.1016/j.mce.2017.02.008_bib1) 2003; 278 Korkaya (10.1016/j.mce.2017.02.008_bib25) 2010; 12 Bisson (10.1016/j.mce.2017.02.008_bib5) 2009; 19 10.1016/j.mce.2017.02.008_bib20 Petre (10.1016/j.mce.2017.02.008_bib53) 2002; 277 10.1016/j.mce.2017.02.008_bib64 Barbieri (10.1016/j.mce.2017.02.008_bib3) 2012; 44 Liu (10.1016/j.mce.2017.02.008_bib39) 2008; 27 Song (10.1016/j.mce.2017.02.008_bib61) 2005; 280 Wang (10.1016/j.mce.2017.02.008_bib73) 2004; 279 Grandy (10.1016/j.mce.2017.02.008_bib17) 2009; 284 Hieronymus (10.1016/j.mce.2017.02.008_bib21) 2012; 44 Yang (10.1016/j.mce.2017.02.008_bib80) 2006; 25 Wu (10.1016/j.mce.2017.02.008_bib77) 2011; 25 Miyoshi (10.1016/j.mce.2017.02.008_bib47) 2003; 5 Li (10.1016/j.mce.2017.02.008_bib37) 2004; 279 Lee (10.1016/j.mce.2017.02.008_bib30) 2015; 10 Chen (10.1016/j.mce.2017.02.008_bib7) 2009; 5 Lee (10.1016/j.mce.2017.02.008_bib32) 2014; 110 Mazor (10.1016/j.mce.2017.02.008_bib43) 2004; 23 Mulholland (10.1016/j.mce.2017.02.008_bib49) 2002; 277 Polakis (10.1016/j.mce.2017.02.008_bib55) 2000; 14 Lu (10.1016/j.mce.2017.02.008_bib41) 2011; 6 Grasso (10.1016/j.mce.2017.02.008_bib18) 2012; 487 10.1016/j.mce.2017.02.008_bib31 Li (10.1016/j.mce.2017.02.008_bib38) 2009; 69 Pawlowski (10.1016/j.mce.2017.02.008_bib52) 2002; 277 Yokoyama (10.1016/j.mce.2017.02.008_bib82) 2014; 2 Yang (10.1016/j.mce.2017.02.008_bib79) 2002; 277 Zhang (10.1016/j.mce.2017.02.008_bib85) 2016; 76 Korkaya (10.1016/j.mce.2017.02.008_bib24) 2009; 7 Sasaki (10.1016/j.mce.2017.02.008_bib59) 2013; 8 Wodarz (10.1016/j.mce.2017.02.008_bib76) 1998; 14 10.1016/j.mce.2017.02.008_bib84 Robinson (10.1016/j.mce.2017.02.008_bib56) 2015; 161 Sun (10.1016/j.mce.2017.02.008_bib63) 2012; 18 Lee (10.1016/j.mce.2017.02.008_bib33) 2016; 35 Truica (10.1016/j.mce.2017.02.008_bib68) 2000; 60 Yamamoto (10.1016/j.mce.2017.02.008_bib78) 2010; 29 Verras (10.1016/j.mce.2017.02.008_bib69) 2006; 237 Wang (10.1016/j.mce.2017.02.008_bib74) 2010; 5 Moon (10.1016/j.mce.2017.02.008_bib48) 2004; 5 Thorne (10.1016/j.mce.2017.02.008_bib66) 2010; 6 El-Khoueiry (10.1016/j.mce.2017.02.008_bib11) 2013; 31 Salas (10.1016/j.mce.2017.02.008_bib58) 2004; 279 Guerrero (10.1016/j.mce.2017.02.008_bib19) 2013; 73 Le (10.1016/j.mce.2017.02.008_bib29) 2015; 146 Mulholland (10.1016/j.mce.2017.02.008_bib51) 2003; 22 Dodge (10.1016/j.mce.2017.02.008_bib10) 2012; 287 Miyamoto (10.1016/j.mce.2017.02.008_bib46) 2015; 349 Placencio (10.1016/j.mce.2017.02.008_bib54) 2008; 68 Wang (10.1016/j.mce.2017.02.008_bib71) 2015; 4 Chandler (10.1016/j.mce.2017.02.008_bib6) 2010; 1 Kretzschmar (10.1016/j.mce.2017.02.008_bib26) 2015; 135 Huang (10.1016/j.mce.2017.02.008_bib22) 2009; 461 Lenz (10.1016/j.mce.2017.02.008_bib35) 2014; 105 Mulholland (10.1016/j.mce.2017.02.008_bib50) 2005; 26 Song (10.1016/j.mce.2017.02.008_bib62) 2003; 23 Wang (10.1016/j.mce.2017.02.008_bib75) 2007; 26 Francis (10.1016/j.mce.2017.02.008_bib14) 2013; 9 Voeller (10.1016/j.mce.2017.02.008_bib70) 1998; 58 Terry (10.1016/j.mce.2017.02.008_bib65) 2006; 99 Fischer (10.1016/j.mce.2017.02.008_bib13) 2015; 75 Yardy (10.1016/j.mce.2017.02.008_bib81) 2005; 8 Anastas (10.1016/j.mce.2017.02.008_bib2) 2013; 13 Lepourcelet (10.1016/j.mce.2017.02.008_bib36) 2004; 5 Yu (10.1016/j.mce.2017.02.008_bib83) 2009; 69 10.1016/j.mce.2017.02.008_bib16 McClung (10.1016/j.mce.2017.02.008_bib44) 2014; 370 Zhang (10.1016/j.mce.2017.02.008_bib86) 2015; 5 Lawson (10.1016/j.mce.2017.02.008_bib28) 2007; 117 Ryan (10.1016/j.mce.2017.02.008_bib57) 2013; 368 Beildeck (10.1016/j.mce.2017.02.008_bib4) 2010; 316 10.1016/j.mce.2017.02.008_bib12 Miller (10.1016/j.mce.2017.02.008_bib45) 1999; 18 Chesire (10.1016/j.mce.2017.02.008_bib8) 2002; 21 Tran (10.1016/j.mce.2017.02.008_bib67) 2009; 324 |
References_xml | – volume: 10 start-page: 537 year: 2003 end-page: 560 ident: bib9 article-title: Beta-catenin signaling in prostate cancer: an early perspective publication-title: Endocrine-related cancer – volume: 9 start-page: 4 year: 2008 ident: bib60 article-title: The androgen receptor can signal through Wnt/beta-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens publication-title: BMC Cell Biol. – volume: 14 start-page: 1837 year: 2000 end-page: 1851 ident: bib55 article-title: Wnt signaling and cancer publication-title: Genes Dev. – reference: Yumoto, F., Nguyen, P., Sablin, E.P., Baxter, J.D., Webb, P., and Fletterick, R.J. (2012). Structural basis of coactivation of liver receptor homolog-1 by beta-catenin. Proceedings of the National Academy of Sciences of the United States of America 109, 143–148. – volume: 31 year: 2013 ident: bib11 article-title: A phase I first-in-human study of PRI-724 in patients (pts) with advanced solid tumors publication-title: J. Clin. Oncol. – volume: 26 start-page: 6560 year: 2007 end-page: 6565 ident: bib75 article-title: Hypomethylation of WNT5A, CRIP1 and S100P in prostate cancer publication-title: Oncogene – volume: 13 start-page: 11 year: 2013 end-page: 26 ident: bib2 article-title: WNT signalling pathways as therapeutic targets in cancer. Nature reviews publication-title: Cancer – volume: 18 start-page: 1359 year: 2012 end-page: 1368 ident: bib63 article-title: Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B publication-title: Nat. Med. – volume: 8 start-page: 119 year: 2005 end-page: 126 ident: bib81 article-title: Wnt signalling and prostate cancer publication-title: Prostate cancer prostatic Dis. – volume: 19 start-page: 683 year: 2009 end-page: 697 ident: bib5 article-title: WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics publication-title: Cell Res. – volume: 159 start-page: 176 year: 2014 end-page: 187 ident: bib15 article-title: Organoid cultures derived from patients with advanced prostate cancer publication-title: Cell – volume: 5 start-page: 2344 year: 2015 ident: bib86 article-title: Development of anticancer agents targeting the Wnt/-catenin signaling publication-title: Am. J. cancer Res. – volume: 5 start-page: 691 year: 2004 end-page: 701 ident: bib48 article-title: WNT and beta-catenin signalling: diseases and therapies publication-title: Nat. Rev. Genet. – volume: 368 start-page: 138 year: 2013 end-page: 148 ident: bib57 article-title: Abiraterone in metastatic prostate cancer without previous chemotherapy publication-title: N. Engl. J. Med. – volume: 237 start-page: 22 year: 2006 end-page: 32 ident: bib69 article-title: Roles and regulation of Wnt signaling and beta-catenin in prostate cancer publication-title: Cancer Lett. – volume: 44 start-page: 685 year: 2012 end-page: 689 ident: bib3 article-title: Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer publication-title: Nat. Genet. – volume: 277 start-page: 20702 year: 2002 end-page: 20710 ident: bib52 article-title: Liganded androgen receptor interaction with beta-catenin: nuclear co-localization and modulation of transcriptional activity in neuronal cells publication-title: J. Biol. Chem. – volume: 277 start-page: 2207 year: 2002 end-page: 2215 ident: bib53 article-title: Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity publication-title: J. Biol. Chem. – volume: 76 year: 2016 ident: bib85 article-title: Abstract P3-07-57: development of a 6-gene qPCR RUO-validated assay as a predictive biomarker for response of vantictumab (OMP-18R5; anti-frizzled) in HER2- breast cancer patients publication-title: Cancer Res. – volume: 278 start-page: 30828 year: 2003 end-page: 30834 ident: bib1 article-title: A direct beta-catenin-independent interaction between androgen receptor and T cell factor 4 publication-title: J. Biol. Chem. – volume: 7 start-page: e1000121 year: 2009 ident: bib24 article-title: Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling publication-title: PLoS Biol. – reference: Lee, E., Madar, A., David, G., Garabedian, M.J., Dasgupta, R., and Logan, S.K. (2013). Inhibition of androgen receptor and beta-catenin activity in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America 110, 15710–15715. – volume: 75 year: 2015 ident: bib13 article-title: Abstract 4233: Wnt pathway antagonist ipafricept (FZD8-Fc, OMP-54F28) inhibits tumor growth and reduces tumor-initiating cell frequency in ovarian patient-derived xenograft models publication-title: Cancer Res. – volume: 115 start-page: 1799 year: 2014 end-page: 1807 ident: bib40 article-title: Salinomycin suppresses LRP6 expression and inhibits both Wnt/beta-catenin and mTORC1 signaling in breast and prostate cancer cells publication-title: J. Cell. Biochem. – volume: 12 start-page: 419 year: 2010 end-page: 421 ident: bib25 article-title: Cancer stem cells: nature versus nurture publication-title: Nat. Cell Biol. – volume: 135 start-page: 2753 year: 2015 end-page: 2763 ident: bib26 article-title: The androgen receptor antagonizes Wnt/beta-catenin signaling in epidermal stem cells publication-title: J. investigative Dermatol. – volume: 5 start-page: 91 year: 2004 end-page: 102 ident: bib36 article-title: Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex publication-title: Cancer Cell – volume: 161 start-page: 1215 year: 2015 end-page: 1228 ident: bib56 article-title: Integrative clinical genomics of advanced prostate cancer publication-title: Cell – volume: 2 start-page: 27 year: 2014 end-page: 44 ident: bib82 article-title: Wnt signaling in castration-resistant prostate cancer: implications for therapy publication-title: Am. J. Clin. Exp. urology – volume: 279 start-page: 19191 year: 2004 end-page: 19200 ident: bib58 article-title: Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity publication-title: J. Biol. Chem. – volume: 279 start-page: 32444 year: 2004 end-page: 32452 ident: bib73 article-title: Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells publication-title: J. Biol. Chem. – volume: 277 start-page: 17933 year: 2002 end-page: 17943 ident: bib49 article-title: The androgen receptor can promote beta-catenin nuclear translocation independently of adenomatous polyposis coli publication-title: J. Biol. Chem. – volume: 146 start-page: 1 year: 2015 end-page: 11 ident: bib29 article-title: Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28 publication-title: Pharmacol. Ther. – volume: 22 start-page: 5602 year: 2003 end-page: 5613 ident: bib51 article-title: Functional localization and competition between the androgen receptor and T-cell factor for nuclear beta-catenin: a means for inhibition of the Tcf signaling axis publication-title: Oncogene – volume: 69 start-page: 3332 year: 2009 end-page: 3338 ident: bib38 article-title: LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth, and invasion publication-title: Cancer Res. – volume: 73 start-page: 1291 year: 2013 end-page: 1305 ident: bib19 article-title: Enzalutamide, an androgen receptor signaling inhibitor, induces tumor regression in a mouse model of castration-resistant prostate cancer publication-title: Prostate – volume: 370 start-page: 412 year: 2014 end-page: 420 ident: bib44 article-title: Romosozumab in postmenopausal women with low bone mineral density publication-title: N. Engl. J. Med. – volume: 68 start-page: 9918 year: 2008 end-page: 9927 ident: bib72 article-title: Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer publication-title: Cancer Res. – volume: 21 start-page: 8453 year: 2002 end-page: 8469 ident: bib8 article-title: Ligand-dependent inhibition of beta-catenin/TCF signaling by androgen receptor publication-title: Oncogene – volume: 23 start-page: 1674 year: 2003 end-page: 1687 ident: bib62 article-title: Beta-catenin binds to the activation function 2 region of the androgen receptor and modulates the effects of the N-terminal domain and TIF2 on ligand-dependent transcription publication-title: Mol. Cell. Biol. – volume: 279 start-page: 4212 year: 2004 end-page: 4220 ident: bib37 article-title: Synergistic effects of coactivators GRIP1 and beta-catenin on gene activation: cross-talk between androgen receptor and Wnt signaling pathways publication-title: J. Biol. Chem. – volume: 26 start-page: 898 year: 2005 end-page: 915 ident: bib50 article-title: Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? publication-title: Endocr. Rev. – volume: 284 start-page: 16256 year: 2009 end-page: 16263 ident: bib17 article-title: Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled publication-title: J. Biol. Chem. – volume: 9 start-page: 418 year: 2012 end-page: 428 ident: bib27 article-title: Wnt/beta-catenin signalling in prostate cancer. Nature reviews publication-title: Urology – volume: 58 start-page: 2520 year: 1998 end-page: 2523 ident: bib70 article-title: Beta-catenin mutations in human prostate cancer publication-title: Cancer Res. – volume: 5 start-page: 63 year: 2003 end-page: 68 ident: bib47 article-title: Beta-catenin: a transforming actor on many stages publication-title: Breast Cancer Res. – volume: 8 year: 2013 ident: bib59 article-title: The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium publication-title: PloS one – reference: Takahashi, S., Watanabe, T., Okada, M., Inoue, K., Ueda, T., Takada, I., Watabe, T., Yamamoto, Y., Fukuda, T., Nakamura, T., et al. (2011). Noncanonical Wnt signaling mediates androgen-dependent tumor growth in a mouse model of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America 108, 4938–4943. – volume: 1 start-page: 13 year: 2010 ident: bib6 article-title: Cancerous stem cells: deviant stem cells with cancer-causing misbehavior publication-title: Stem Cell Res. Ther. – volume: 6 start-page: 829 year: 2010 end-page: 836 ident: bib66 article-title: Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha publication-title: Nat. Chem. Biol. – reference: Emami, K.H., Nguyen, C., Ma, H., Kim, D.H., Jeong, K.W., Eguchi, M., Moon, R.T., Teo, J.L., Kim, H.Y., Moon, S.H., et al. (2004). A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proceedings of the National Academy of Sciences of the United States of America 101, 12682–12687. – volume: 44 start-page: 613 year: 2012 end-page: 614 ident: bib21 article-title: Traversing the genomic landscape of prostate cancer from diagnosis to death publication-title: Nat. Genet. – volume: 487 start-page: 239 year: 2012 end-page: 243 ident: bib18 article-title: The mutational landscape of lethal castration-resistant prostate cancer publication-title: Nature – volume: 23 start-page: 7882 year: 2004 end-page: 7892 ident: bib43 article-title: Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth publication-title: Oncogene – volume: 35 start-page: 702 year: 2016 end-page: 714 ident: bib33 article-title: Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis publication-title: Oncogene – volume: 6 start-page: e29290 year: 2011 ident: bib41 article-title: Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway publication-title: PloS one – volume: 13 start-page: 513 year: 2014 end-page: 532 ident: bib23 article-title: Can we safely target the WNT pathway? Nature reviews publication-title: Drug Discov. – volume: 25 start-page: 1018 year: 2011 end-page: 1026 ident: bib77 article-title: LEF1 identifies androgen-independent epithelium in the developing prostate publication-title: Mol. Endocrinol. Baltim. Md.) – volume: 349 start-page: 1351 year: 2015 end-page: 1356 ident: bib46 article-title: RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance publication-title: Science – volume: 14 start-page: 59 year: 1998 end-page: 88 ident: bib76 article-title: Mechanisms of Wnt signaling in development publication-title: Annu. Rev. Cell Dev. Biol. – volume: 29 start-page: 2036 year: 2010 end-page: 2046 ident: bib78 article-title: Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase publication-title: Oncogene – volume: 9 start-page: e1003180 year: 2013 ident: bib14 article-title: beta-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma publication-title: PLoS Genet. – volume: 10 start-page: e0141589 year: 2015 ident: bib30 article-title: Divergent androgen receptor and beta-catenin signaling in prostate cancer cells publication-title: PloS one – volume: 324 start-page: 787 year: 2009 end-page: 790 ident: bib67 article-title: Development of a second-generation antiandrogen for treatment of advanced prostate cancer publication-title: Science – volume: 110 start-page: 1634 year: 2014 end-page: 1644 ident: bib32 article-title: Prostate cancer bone metastases acquire resistance to androgen deprivation via WNT5A-mediated BMP-6 induction publication-title: Br. J. cancer – volume: 461 start-page: 614 year: 2009 end-page: 620 ident: bib22 article-title: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling publication-title: Nature – volume: 316 start-page: 1763 year: 2010 end-page: 1772 ident: bib4 article-title: Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway publication-title: Exp. Cell Res. – volume: 99 start-page: 402 year: 2006 end-page: 410 ident: bib65 article-title: Multifaceted interaction between the androgen and Wnt signaling pathways and the implication for prostate cancer publication-title: J. Cell. Biochem. – volume: 25 start-page: 3436 year: 2006 end-page: 3444 ident: bib80 article-title: Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells publication-title: Oncogene – volume: 126 start-page: 1745 year: 2016 end-page: 1758 ident: bib42 article-title: SOX9 drives WNT pathway activation in prostate cancer publication-title: J. Clin. Investigation – volume: 69 start-page: 249 year: 2009 end-page: 262 ident: bib83 article-title: Activation of beta-Catenin in mouse prostate causes HGPIN and continuous prostate growth after castration publication-title: Prostate – volume: 117 start-page: 2044 year: 2007 end-page: 2050 ident: bib28 article-title: Stem cells in prostate cancer initiation and progression publication-title: J. Clin. Invest. – volume: 68 start-page: 4709 year: 2008 end-page: 4718 ident: bib54 article-title: Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity publication-title: Cancer Res. – volume: 5 start-page: e10456 year: 2010 ident: bib74 article-title: A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer publication-title: PloS one – reference: Gonsalves, F.C., Klein, K., Carson, B.B., Katz, S., Ekas, L.A., Evans, S., Nagourney, R., Cardozo, T., Brown, A.M., and DasGupta, R. (2011). An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 108, 5954–5963. – volume: 280 start-page: 37853 year: 2005 end-page: 37867 ident: bib61 article-title: Interaction of beta-catenin and TIF2/GRIP1 in transcriptional activation by the androgen receptor publication-title: J. Biol. Chem. – volume: 27 start-page: 499 year: 2008 end-page: 505 ident: bib39 article-title: Inappropriate activation of androgen receptor by relaxin via beta-catenin pathway publication-title: Oncogene – volume: 287 start-page: 23246 year: 2012 end-page: 23254 ident: bib10 article-title: Diverse chemical scaffolds support direct inhibition of the membrane-bound O-acyltransferase porcupine publication-title: J. Biol. Chem. – reference: Gurney, A., Axelrod, F., Bond, C.J., Cain, J., Chartier, C., Donigan, L., Fischer, M., Chaudhari, A., Ji, M., Kapoun, A.M., et al. (2012). Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proceedings of the National Academy of Sciences of the United States of America 109, 11717–11722. – volume: 105 start-page: 1087 year: 2014 end-page: 1092 ident: bib35 article-title: Safely targeting cancer stem cells via selective catenin coactivator antagonism publication-title: Cancer Sci. – volume: 60 start-page: 4709 year: 2000 end-page: 4713 ident: bib68 article-title: Beta-catenin affects androgen receptor transcriptional activity and ligand specificity publication-title: Cancer Res. – volume: 4 start-page: 768 year: 2015 end-page: 779 ident: bib71 article-title: Castration-resistant Lgr5+ cells are long-lived stem cells required for prostatic regeneration publication-title: Stem Cell Rep. – volume: 277 start-page: 11336 year: 2002 end-page: 11344 ident: bib79 article-title: Linking beta-catenin to androgen-signaling pathway publication-title: J. Biol. Chem. – volume: 166 start-page: 1035 year: 2012 end-page: 1042 ident: bib34 article-title: Hair follicle stem cell differentiation is inhibited through cross-talk between Wnt/beta-catenin and androgen signalling in dermal papilla cells from patients with androgenetic alopecia publication-title: Br. J. Dermatol. – volume: 5 start-page: 100 year: 2009 end-page: 107 ident: bib7 article-title: Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer publication-title: Nat. Chem. Biol. – volume: 18 start-page: 7860 year: 1999 end-page: 7872 ident: bib45 article-title: Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways publication-title: Oncogene – volume: 13 start-page: 11 year: 2013 ident: 10.1016/j.mce.2017.02.008_bib2 article-title: WNT signalling pathways as therapeutic targets in cancer. Nature reviews publication-title: Cancer – volume: 31 year: 2013 ident: 10.1016/j.mce.2017.02.008_bib11 article-title: A phase I first-in-human study of PRI-724 in patients (pts) with advanced solid tumors publication-title: J. Clin. Oncol. doi: 10.1200/jco.2013.31.15_suppl.2501 – volume: 5 start-page: 691 year: 2004 ident: 10.1016/j.mce.2017.02.008_bib48 article-title: WNT and beta-catenin signalling: diseases and therapies publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1427 – volume: 277 start-page: 2207 year: 2002 ident: 10.1016/j.mce.2017.02.008_bib53 article-title: Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M106399200 – volume: 4 start-page: 768 year: 2015 ident: 10.1016/j.mce.2017.02.008_bib71 article-title: Castration-resistant Lgr5+ cells are long-lived stem cells required for prostatic regeneration publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2015.04.003 – ident: 10.1016/j.mce.2017.02.008_bib20 doi: 10.1073/pnas.1120068109 – volume: 12 start-page: 419 year: 2010 ident: 10.1016/j.mce.2017.02.008_bib25 article-title: Cancer stem cells: nature versus nurture publication-title: Nat. Cell Biol. doi: 10.1038/ncb0510-419 – volume: 21 start-page: 8453 year: 2002 ident: 10.1016/j.mce.2017.02.008_bib8 article-title: Ligand-dependent inhibition of beta-catenin/TCF signaling by androgen receptor publication-title: Oncogene doi: 10.1038/sj.onc.1206049 – volume: 35 start-page: 702 year: 2016 ident: 10.1016/j.mce.2017.02.008_bib33 article-title: Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis publication-title: Oncogene doi: 10.1038/onc.2015.117 – volume: 287 start-page: 23246 year: 2012 ident: 10.1016/j.mce.2017.02.008_bib10 article-title: Diverse chemical scaffolds support direct inhibition of the membrane-bound O-acyltransferase porcupine publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.372029 – volume: 5 start-page: e10456 year: 2010 ident: 10.1016/j.mce.2017.02.008_bib74 article-title: A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer publication-title: PloS one doi: 10.1371/journal.pone.0010456 – volume: 25 start-page: 1018 year: 2011 ident: 10.1016/j.mce.2017.02.008_bib77 article-title: LEF1 identifies androgen-independent epithelium in the developing prostate publication-title: Mol. Endocrinol. Baltim. Md.) doi: 10.1210/me.2010-0513 – volume: 115 start-page: 1799 year: 2014 ident: 10.1016/j.mce.2017.02.008_bib40 article-title: Salinomycin suppresses LRP6 expression and inhibits both Wnt/beta-catenin and mTORC1 signaling in breast and prostate cancer cells publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24850 – volume: 14 start-page: 59 year: 1998 ident: 10.1016/j.mce.2017.02.008_bib76 article-title: Mechanisms of Wnt signaling in development publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.14.1.59 – volume: 487 start-page: 239 year: 2012 ident: 10.1016/j.mce.2017.02.008_bib18 article-title: The mutational landscape of lethal castration-resistant prostate cancer publication-title: Nature doi: 10.1038/nature11125 – volume: 461 start-page: 614 year: 2009 ident: 10.1016/j.mce.2017.02.008_bib22 article-title: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling publication-title: Nature doi: 10.1038/nature08356 – volume: 349 start-page: 1351 year: 2015 ident: 10.1016/j.mce.2017.02.008_bib46 article-title: RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance publication-title: Science doi: 10.1126/science.aab0917 – volume: 9 start-page: 4 year: 2008 ident: 10.1016/j.mce.2017.02.008_bib60 article-title: The androgen receptor can signal through Wnt/beta-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens publication-title: BMC Cell Biol. doi: 10.1186/1471-2121-9-4 – ident: 10.1016/j.mce.2017.02.008_bib84 doi: 10.1073/pnas.1117036108 – volume: 6 start-page: 829 year: 2010 ident: 10.1016/j.mce.2017.02.008_bib66 article-title: Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.453 – volume: 6 start-page: e29290 year: 2011 ident: 10.1016/j.mce.2017.02.008_bib41 article-title: Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway publication-title: PloS one doi: 10.1371/journal.pone.0029290 – volume: 126 start-page: 1745 year: 2016 ident: 10.1016/j.mce.2017.02.008_bib42 article-title: SOX9 drives WNT pathway activation in prostate cancer publication-title: J. Clin. Investigation doi: 10.1172/JCI78815 – volume: 370 start-page: 412 year: 2014 ident: 10.1016/j.mce.2017.02.008_bib44 article-title: Romosozumab in postmenopausal women with low bone mineral density publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1305224 – volume: 277 start-page: 11336 year: 2002 ident: 10.1016/j.mce.2017.02.008_bib79 article-title: Linking beta-catenin to androgen-signaling pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111962200 – volume: 284 start-page: 16256 year: 2009 ident: 10.1016/j.mce.2017.02.008_bib17 article-title: Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.009647 – volume: 5 start-page: 63 year: 2003 ident: 10.1016/j.mce.2017.02.008_bib47 article-title: Beta-catenin: a transforming actor on many stages publication-title: Breast Cancer Res. doi: 10.1186/bcr566 – volume: 44 start-page: 685 year: 2012 ident: 10.1016/j.mce.2017.02.008_bib3 article-title: Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer publication-title: Nat. Genet. doi: 10.1038/ng.2279 – volume: 23 start-page: 1674 year: 2003 ident: 10.1016/j.mce.2017.02.008_bib62 article-title: Beta-catenin binds to the activation function 2 region of the androgen receptor and modulates the effects of the N-terminal domain and TIF2 on ligand-dependent transcription publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.5.1674-1687.2003 – ident: 10.1016/j.mce.2017.02.008_bib12 doi: 10.1073/pnas.0404875101 – volume: 13 start-page: 513 year: 2014 ident: 10.1016/j.mce.2017.02.008_bib23 article-title: Can we safely target the WNT pathway? Nature reviews publication-title: Drug Discov. doi: 10.1038/nrd4233 – ident: 10.1016/j.mce.2017.02.008_bib31 doi: 10.1016/j.juro.2013.02.360 – volume: 105 start-page: 1087 year: 2014 ident: 10.1016/j.mce.2017.02.008_bib35 article-title: Safely targeting cancer stem cells via selective catenin coactivator antagonism publication-title: Cancer Sci. doi: 10.1111/cas.12471 – volume: 280 start-page: 37853 year: 2005 ident: 10.1016/j.mce.2017.02.008_bib61 article-title: Interaction of beta-catenin and TIF2/GRIP1 in transcriptional activation by the androgen receptor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M503850200 – volume: 277 start-page: 17933 year: 2002 ident: 10.1016/j.mce.2017.02.008_bib49 article-title: The androgen receptor can promote beta-catenin nuclear translocation independently of adenomatous polyposis coli publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200135200 – volume: 69 start-page: 249 year: 2009 ident: 10.1016/j.mce.2017.02.008_bib83 article-title: Activation of beta-Catenin in mouse prostate causes HGPIN and continuous prostate growth after castration publication-title: Prostate doi: 10.1002/pros.20877 – volume: 237 start-page: 22 year: 2006 ident: 10.1016/j.mce.2017.02.008_bib69 article-title: Roles and regulation of Wnt signaling and beta-catenin in prostate cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2005.06.004 – volume: 161 start-page: 1215 year: 2015 ident: 10.1016/j.mce.2017.02.008_bib56 article-title: Integrative clinical genomics of advanced prostate cancer publication-title: Cell doi: 10.1016/j.cell.2015.05.001 – volume: 166 start-page: 1035 year: 2012 ident: 10.1016/j.mce.2017.02.008_bib34 article-title: Hair follicle stem cell differentiation is inhibited through cross-talk between Wnt/beta-catenin and androgen signalling in dermal papilla cells from patients with androgenetic alopecia publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.2012.10856.x – volume: 279 start-page: 32444 year: 2004 ident: 10.1016/j.mce.2017.02.008_bib73 article-title: Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M313963200 – ident: 10.1016/j.mce.2017.02.008_bib16 doi: 10.1073/pnas.1017496108 – volume: 25 start-page: 3436 year: 2006 ident: 10.1016/j.mce.2017.02.008_bib80 article-title: Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells publication-title: Oncogene doi: 10.1038/sj.onc.1209366 – volume: 10 start-page: 537 year: 2003 ident: 10.1016/j.mce.2017.02.008_bib9 article-title: Beta-catenin signaling in prostate cancer: an early perspective publication-title: Endocrine-related cancer doi: 10.1677/erc.0.0100537 – volume: 73 start-page: 1291 year: 2013 ident: 10.1016/j.mce.2017.02.008_bib19 article-title: Enzalutamide, an androgen receptor signaling inhibitor, induces tumor regression in a mouse model of castration-resistant prostate cancer publication-title: Prostate doi: 10.1002/pros.22674 – volume: 44 start-page: 613 year: 2012 ident: 10.1016/j.mce.2017.02.008_bib21 article-title: Traversing the genomic landscape of prostate cancer from diagnosis to death publication-title: Nat. Genet. doi: 10.1038/ng.2301 – volume: 8 start-page: 119 year: 2005 ident: 10.1016/j.mce.2017.02.008_bib81 article-title: Wnt signalling and prostate cancer publication-title: Prostate cancer prostatic Dis. doi: 10.1038/sj.pcan.4500794 – volume: 26 start-page: 898 year: 2005 ident: 10.1016/j.mce.2017.02.008_bib50 article-title: Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? publication-title: Endocr. Rev. doi: 10.1210/er.2003-0034 – volume: 316 start-page: 1763 year: 2010 ident: 10.1016/j.mce.2017.02.008_bib4 article-title: Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2010.02.001 – volume: 279 start-page: 19191 year: 2004 ident: 10.1016/j.mce.2017.02.008_bib58 article-title: Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M309560200 – volume: 68 start-page: 9918 year: 2008 ident: 10.1016/j.mce.2017.02.008_bib72 article-title: Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-1718 – volume: 5 start-page: 2344 year: 2015 ident: 10.1016/j.mce.2017.02.008_bib86 article-title: Development of anticancer agents targeting the Wnt/-catenin signaling publication-title: Am. J. cancer Res. – volume: 277 start-page: 20702 year: 2002 ident: 10.1016/j.mce.2017.02.008_bib52 article-title: Liganded androgen receptor interaction with beta-catenin: nuclear co-localization and modulation of transcriptional activity in neuronal cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200545200 – volume: 14 start-page: 1837 year: 2000 ident: 10.1016/j.mce.2017.02.008_bib55 article-title: Wnt signaling and cancer publication-title: Genes Dev. doi: 10.1101/gad.14.15.1837 – volume: 368 start-page: 138 year: 2013 ident: 10.1016/j.mce.2017.02.008_bib57 article-title: Abiraterone in metastatic prostate cancer without previous chemotherapy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1209096 – volume: 60 start-page: 4709 year: 2000 ident: 10.1016/j.mce.2017.02.008_bib68 article-title: Beta-catenin affects androgen receptor transcriptional activity and ligand specificity publication-title: Cancer Res. – volume: 29 start-page: 2036 year: 2010 ident: 10.1016/j.mce.2017.02.008_bib78 article-title: Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase publication-title: Oncogene doi: 10.1038/onc.2009.496 – volume: 69 start-page: 3332 year: 2009 ident: 10.1016/j.mce.2017.02.008_bib38 article-title: LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth, and invasion publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-3380 – volume: 5 start-page: 100 year: 2009 ident: 10.1016/j.mce.2017.02.008_bib7 article-title: Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.137 – volume: 9 start-page: 418 year: 2012 ident: 10.1016/j.mce.2017.02.008_bib27 article-title: Wnt/beta-catenin signalling in prostate cancer. Nature reviews publication-title: Urology – volume: 99 start-page: 402 year: 2006 ident: 10.1016/j.mce.2017.02.008_bib65 article-title: Multifaceted interaction between the androgen and Wnt signaling pathways and the implication for prostate cancer publication-title: J. Cell. Biochem. doi: 10.1002/jcb.20983 – volume: 117 start-page: 2044 year: 2007 ident: 10.1016/j.mce.2017.02.008_bib28 article-title: Stem cells in prostate cancer initiation and progression publication-title: J. Clin. Invest. doi: 10.1172/JCI32810 – volume: 18 start-page: 1359 year: 2012 ident: 10.1016/j.mce.2017.02.008_bib63 article-title: Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B publication-title: Nat. Med. doi: 10.1038/nm.2890 – volume: 8 year: 2013 ident: 10.1016/j.mce.2017.02.008_bib59 article-title: The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium publication-title: PloS one doi: 10.1371/journal.pone.0075010 – volume: 58 start-page: 2520 year: 1998 ident: 10.1016/j.mce.2017.02.008_bib70 article-title: Beta-catenin mutations in human prostate cancer publication-title: Cancer Res. – volume: 22 start-page: 5602 year: 2003 ident: 10.1016/j.mce.2017.02.008_bib51 article-title: Functional localization and competition between the androgen receptor and T-cell factor for nuclear beta-catenin: a means for inhibition of the Tcf signaling axis publication-title: Oncogene doi: 10.1038/sj.onc.1206802 – volume: 278 start-page: 30828 year: 2003 ident: 10.1016/j.mce.2017.02.008_bib1 article-title: A direct beta-catenin-independent interaction between androgen receptor and T cell factor 4 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301208200 – volume: 2 start-page: 27 year: 2014 ident: 10.1016/j.mce.2017.02.008_bib82 article-title: Wnt signaling in castration-resistant prostate cancer: implications for therapy publication-title: Am. J. Clin. Exp. urology – volume: 146 start-page: 1 year: 2015 ident: 10.1016/j.mce.2017.02.008_bib29 article-title: Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28 publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2014.08.005 – volume: 23 start-page: 7882 year: 2004 ident: 10.1016/j.mce.2017.02.008_bib43 article-title: Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth publication-title: Oncogene doi: 10.1038/sj.onc.1208068 – volume: 76 year: 2016 ident: 10.1016/j.mce.2017.02.008_bib85 article-title: Abstract P3-07-57: development of a 6-gene qPCR RUO-validated assay as a predictive biomarker for response of vantictumab (OMP-18R5; anti-frizzled) in HER2- breast cancer patients publication-title: Cancer Res. – volume: 324 start-page: 787 year: 2009 ident: 10.1016/j.mce.2017.02.008_bib67 article-title: Development of a second-generation antiandrogen for treatment of advanced prostate cancer publication-title: Science doi: 10.1126/science.1168175 – volume: 1 start-page: 13 year: 2010 ident: 10.1016/j.mce.2017.02.008_bib6 article-title: Cancerous stem cells: deviant stem cells with cancer-causing misbehavior publication-title: Stem Cell Res. Ther. doi: 10.1186/scrt13 – ident: 10.1016/j.mce.2017.02.008_bib64 doi: 10.1073/pnas.1014850108 – volume: 135 start-page: 2753 year: 2015 ident: 10.1016/j.mce.2017.02.008_bib26 article-title: The androgen receptor antagonizes Wnt/beta-catenin signaling in epidermal stem cells publication-title: J. investigative Dermatol. doi: 10.1038/jid.2015.242 – volume: 9 start-page: e1003180 year: 2013 ident: 10.1016/j.mce.2017.02.008_bib14 article-title: beta-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003180 – volume: 279 start-page: 4212 year: 2004 ident: 10.1016/j.mce.2017.02.008_bib37 article-title: Synergistic effects of coactivators GRIP1 and beta-catenin on gene activation: cross-talk between androgen receptor and Wnt signaling pathways publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311374200 – volume: 68 start-page: 4709 year: 2008 ident: 10.1016/j.mce.2017.02.008_bib54 article-title: Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-6289 – volume: 5 start-page: 91 year: 2004 ident: 10.1016/j.mce.2017.02.008_bib36 article-title: Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00334-9 – volume: 75 year: 2015 ident: 10.1016/j.mce.2017.02.008_bib13 article-title: Abstract 4233: Wnt pathway antagonist ipafricept (FZD8-Fc, OMP-54F28) inhibits tumor growth and reduces tumor-initiating cell frequency in ovarian patient-derived xenograft models publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2015-4233 – volume: 159 start-page: 176 year: 2014 ident: 10.1016/j.mce.2017.02.008_bib15 article-title: Organoid cultures derived from patients with advanced prostate cancer publication-title: Cell doi: 10.1016/j.cell.2014.08.016 – volume: 110 start-page: 1634 year: 2014 ident: 10.1016/j.mce.2017.02.008_bib32 article-title: Prostate cancer bone metastases acquire resistance to androgen deprivation via WNT5A-mediated BMP-6 induction publication-title: Br. J. cancer doi: 10.1038/bjc.2014.23 – volume: 27 start-page: 499 year: 2008 ident: 10.1016/j.mce.2017.02.008_bib39 article-title: Inappropriate activation of androgen receptor by relaxin via beta-catenin pathway publication-title: Oncogene doi: 10.1038/sj.onc.1210671 – volume: 7 start-page: e1000121 year: 2009 ident: 10.1016/j.mce.2017.02.008_bib24 article-title: Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000121 – volume: 18 start-page: 7860 year: 1999 ident: 10.1016/j.mce.2017.02.008_bib45 article-title: Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways publication-title: Oncogene doi: 10.1038/sj.onc.1203245 – volume: 26 start-page: 6560 year: 2007 ident: 10.1016/j.mce.2017.02.008_bib75 article-title: Hypomethylation of WNT5A, CRIP1 and S100P in prostate cancer publication-title: Oncogene doi: 10.1038/sj.onc.1210472 – volume: 19 start-page: 683 year: 2009 ident: 10.1016/j.mce.2017.02.008_bib5 article-title: WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics publication-title: Cell Res. doi: 10.1038/cr.2009.43 – volume: 10 start-page: e0141589 year: 2015 ident: 10.1016/j.mce.2017.02.008_bib30 article-title: Divergent androgen receptor and beta-catenin signaling in prostate cancer cells publication-title: PloS one doi: 10.1371/journal.pone.0141589 |
SSID | ssj0007528 |
Score | 2.5129344 |
SecondaryResourceType | review_article |
Snippet | The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3 |
SubjectTerms | Androgen receptor androgen receptors Animals genome-wide association study Humans Male metastasis Molecular Targeted Therapy Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Prostate cancer prostatic neoplasms Prostatic Neoplasms - genetics Prostatic Neoplasms - metabolism Prostatic Neoplasms - therapy Receptors, Androgen - metabolism Signal Transduction stem cells therapeutics Wnt signaling Wnt Signaling Pathway β-catenin |
Title | Revisiting the role of Wnt/β-catenin signaling in prostate cancer |
URI | https://dx.doi.org/10.1016/j.mce.2017.02.008 https://www.ncbi.nlm.nih.gov/pubmed/28189566 https://www.proquest.com/docview/1867985092 https://www.proquest.com/docview/2053899454 https://pubmed.ncbi.nlm.nih.gov/PMC5550366 |
Volume | 462 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkJcEG15bAuVkRAHpLBx4udxqagWUHsAKnqz_IpY1HpXZXvohR_FD-E3MZPHwoLaA8fEY8kZjz3jzDefCXnuXTJlFKKoKyMLzpQrHPO68M5F54NpIsN65-MTOT3l787E2QY5HGphEFbZ7_3dnt7u1v2bca_N8WI2G38E88QrVjCNDI5MI-025wqt_NX33zAPJdr7VVG4QOkhs9livC4CMmUy1dF26pt807-x598Qyj980tF9cq8PJumkG-822Uh5h-xOMhykL67pC9rCO9v_5jvkznGfRd8lrz-0JeUIeKYQ_1FEGNJ5Qz_n5fjnjwIxUnmWKUI7HFarU3hYYHUINNCAZnL5gJwevfl0OC36uxSKwDVfFjI2zIQmeOFTJZ3XvowQLASpa6-8ZoFz5DdXLmpWJqMM08rLpFLUSci6qR-SzTzP6TGh4OS1jDGaJhjOqsYFb8oy1EZE4bRmI1IOWrShJxrH-y7O7YAo-2pB8RYVb8vKguJH5OWqy6Jj2bhNmA9TY9dMxYIXuK3bs2EaLSwhzIu4nOZX3yxy-hkNkVN1s0wFmxUcTbngI_Kom_rVSJFQC46ZckTUmlGsBJDCe70lz760VN4CDoi1lHv_90n75C48aQSRM_GEbC4vr9JTiJGW_qBdBAdka_L2_fTkFw5DEoI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQS9IGh5LE8jIQ5I0cZJ7NjHpaLa0u4eoBW9WX5FXUSzq3Z74G_xQ_hNzOSxYkHtgWPiseSMxzPj-JvPAG-djToNQiR5pmVS8NImljuVOGuDdV5XgVO983QmJ6fFpzNxtgX7fS0MwSo739_69MZbd29GnTZHy_l89AXNk65YoWNkDGRK3oFtYqcSA9geHx5NZmuHXIrmilWST6hDf7jZwLwuPJFl8rJl7lQ3had_08-_UZR_hKWDB3C_yyfZuB3yQ9iK9S7sjWvcS1_8YO9Yg_Bsfp3vwt1pd5C-Bx8-N1XlhHlmmAIyAhmyRcW-1qvRr58JwaTqec0I3WGpYJ3hw5IKRLCBebKUy0dwevDxZH-SdNcpJL5QxSqRoeLaV94JFzNpnXJpwHzBS5W70inui4IozksbFE-jLjVXpZOxjEFFIfMqfwyDelHHp8AwzisZQtCV1wXPKuudTlOfaxGEVYoPIe21aHzHNU5XXnw3Pajsm0HFG1K8STODih_C-3WXZUu0cZtw0U-N2bAWg4Hgtm5v-mk0uIroaMTWcXF9ZYjWTytMnrKbZTL0V7g7RRsbwpN26tcjJU4t3GnKIZQbRrEWIBbvzZZ6ft6weQvcI-ZSPvu_T3oN9yYn02NzfDg7eg472KIIU87FCxisLq_jS0yZVu5VtyR-A2bPFTM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+Role+of+Wnt%2F%CE%B2-catenin+Signaling+in+Prostate+Cancer&rft.jtitle=Molecular+and+cellular+endocrinology&rft.au=Schneider%2C+Jeffrey+A.&rft.au=Logan%2C+Susan+K.&rft.date=2018-02-15&rft.issn=0303-7207&rft.eissn=1872-8057&rft.volume=462&rft.issue=Pt+A&rft.spage=3&rft.epage=8&rft_id=info:doi/10.1016%2Fj.mce.2017.02.008&rft_id=info%3Apmid%2F28189566&rft.externalDocID=PMC5550366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-7207&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-7207&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-7207&client=summon |