Locomotion in larval zebrafish: Influence of time of day, lighting and ethanol

The increasing use of zebrafish ( Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. We studied the locomotion of individual zebrafish larva (6 days post-fertilization) in 96-well microtiter plates. Movement was recorded using a video-tracking...

Full description

Saved in:
Bibliographic Details
Published inNeurotoxicology (Park Forest South) Vol. 30; no. 1; pp. 52 - 58
Main Authors MacPhail, R.C., Brooks, J., Hunter, D.L., Padnos, B., Irons, T.D., Padilla, S.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing use of zebrafish ( Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. We studied the locomotion of individual zebrafish larva (6 days post-fertilization) in 96-well microtiter plates. Movement was recorded using a video-tracking system. Time of day results indicated locomotion, tested in darkness (infrared), decreased gradually from early morning to a stable level between 13:00 and 15:30 h. All further studies were conducted in early-to-late afternoon and lasted approximately 1 h. Each study also began with a period of darkness to minimize any unintended stimulation caused by transferring the plates to the recording platform. Locomotion in darkness increased initially to a maximum at 4 min, then decreased steadily to a low level by 20 min. Locomotion during light was initially low and then gradually increased to a stable level after 20 min. When 10-min periods of light and dark were alternated, activity was low in light and high in dark; curiously, activity during alternating dark periods was markedly higher than originally obtained during either extended dark or light. Further experiments explored the variables influencing this alternating pattern of activity. Varying the duration of the initial dark period (10–20 min) did not affect subsequent activity in either light or dark. The activity increase on return to dark was, however, greater following 15 min than 5 min of light. Acute ethanol increased activity at 1 and 2% and severely decreased activity at 4%. One-percent ethanol retarded the transition in activity from dark to light, and the habituation of activity in dark, while 2% ethanol increased activity regardless of lighting condition. Collectively, these results show that locomotion in larval zebrafish can be reliably measured in a 96-well microtiter plate format, and is sensitive to time of day, lighting conditions, and ethanol.
AbstractList The increasing use of zebrafish (Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. We studied the locomotion of individual zebrafish larva (6 days post-fertilization) in 96-well microtiter plates. Movement was recorded using a video-tracking system. Time of day results indicated locomotion, tested in darkness (infrared), decreased gradually from early morning to a stable level between 13:00 and 15:30h. All further studies were conducted in early-to-late afternoon and lasted approximately 1h. Each study also began with a period of darkness to minimize any unintended stimulation caused by transferring the plates to the recording platform. Locomotion in darkness increased initially to a maximum at 4min, then decreased steadily to a low level by 20min. Locomotion during light was initially low and then gradually increased to a stable level after 20min. When 10-min periods of light and dark were alternated, activity was low in light and high in dark; curiously, activity during alternating dark periods was markedly higher than originally obtained during either extended dark or light. Further experiments explored the variables influencing this alternating pattern of activity. Varying the duration of the initial dark period (10-20min) did not affect subsequent activity in either light or dark. The activity increase on return to dark was, however, greater following 15min than 5min of light. Acute ethanol increased activity at 1 and 2% and severely decreased activity at 4%. One-percent ethanol retarded the transition in activity from dark to light, and the habituation of activity in dark, while 2% ethanol increased activity regardless of lighting condition. Collectively, these results show that locomotion in larval zebrafish can be reliably measured in a 96-well microtiter plate format, and is sensitive to time of day, lighting conditions, and ethanol.
The increasing use of zebrafish (Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. We studied the locomotion of individual zebrafish larva (6 days post-fertilization) in 96-well microtiter plates. Movement was recorded using a video-tracking system. Time of day results indicated locomotion, tested in darkness (infrared), decreased gradually from early morning to a stable level between 13:00 and 15:30 h. All further studies were conducted in early-to-late afternoon and lasted approximately 1 h. Each study also began with a period of darkness to minimize any unintended stimulation caused by transferring the plates to the recording platform. Locomotion in darkness increased initially to a maximum at 4 min, then decreased steadily to a low level by 20 min. Locomotion during light was initially low and then gradually increased to a stable level after 20 min. When 10-min periods of light and dark were alternated, activity was low in light and high in dark; curiously, activity during alternating dark periods was markedly higher than originally obtained during either extended dark or light. Further experiments explored the variables influencing this alternating pattern of activity. Varying the duration of the initial dark period (10-20 min) did not affect subsequent activity in either light or dark. The activity increase on return to dark was, however, greater following 15 min than 5 min of light. Acute ethanol increased activity at 1 and 2% and severely decreased activity at 4%. One-percent ethanol retarded the transition in activity from dark to light, and the habituation of activity in dark, while 2% ethanol increased activity regardless of lighting condition. Collectively, these results show that locomotion in larval zebrafish can be reliably measured in a 96-well microtiter plate format, and is sensitive to time of day, lighting conditions, and ethanol.
The increasing use of zebrafish ( Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. We studied the locomotion of individual zebrafish larva (6 days post-fertilization) in 96-well microtiter plates. Movement was recorded using a video-tracking system. Time of day results indicated locomotion, tested in darkness (infrared), decreased gradually from early morning to a stable level between 13:00 and 15:30 h. All further studies were conducted in early-to-late afternoon and lasted approximately 1 h. Each study also began with a period of darkness to minimize any unintended stimulation caused by transferring the plates to the recording platform. Locomotion in darkness increased initially to a maximum at 4 min, then decreased steadily to a low level by 20 min. Locomotion during light was initially low and then gradually increased to a stable level after 20 min. When 10-min periods of light and dark were alternated, activity was low in light and high in dark; curiously, activity during alternating dark periods was markedly higher than originally obtained during either extended dark or light. Further experiments explored the variables influencing this alternating pattern of activity. Varying the duration of the initial dark period (10–20 min) did not affect subsequent activity in either light or dark. The activity increase on return to dark was, however, greater following 15 min than 5 min of light. Acute ethanol increased activity at 1 and 2% and severely decreased activity at 4%. One-percent ethanol retarded the transition in activity from dark to light, and the habituation of activity in dark, while 2% ethanol increased activity regardless of lighting condition. Collectively, these results show that locomotion in larval zebrafish can be reliably measured in a 96-well microtiter plate format, and is sensitive to time of day, lighting conditions, and ethanol.
Author Padilla, S.
Padnos, B.
Hunter, D.L.
MacPhail, R.C.
Brooks, J.
Irons, T.D.
Author_xml – sequence: 1
  givenname: R.C.
  surname: MacPhail
  fullname: MacPhail, R.C.
  email: macphail.robert@epa.gov
  organization: Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
– sequence: 2
  givenname: J.
  surname: Brooks
  fullname: Brooks, J.
  organization: Division of Science and Mathematics, Brevard College, Brevard, NC, USA
– sequence: 3
  givenname: D.L.
  surname: Hunter
  fullname: Hunter, D.L.
  organization: Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
– sequence: 4
  givenname: B.
  surname: Padnos
  fullname: Padnos, B.
  organization: Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
– sequence: 5
  givenname: T.D.
  surname: Irons
  fullname: Irons, T.D.
  organization: Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
– sequence: 6
  givenname: S.
  surname: Padilla
  fullname: Padilla, S.
  organization: Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21107164$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18952124$$D View this record in MEDLINE/PubMed
BookMark eNp90DtPHDEQwHErIgoHySdAQm5Ild14vA_bSBQRygPpFApSpLO8fnA-eW2wd5HIp88edyJdqml-Mxr9T9BRTNEidAakBgL9520d7ZxTTQnhNRE1AXiDVsAZrQQDOEKrRUHFofl9jE5K2RICHevFO3QMXHQUaLtCP9dJpzFNPkXsIw4qP6mA_9ghK-fL5hLfRBdmG7XFyeHJjy_TqOdPOPj7zeTjPVbRYDttVEzhPXrrVCj2w2GeortvX39d_6jWt99vrr-sK93ydqp60ytCNNCOKA6ubVzfctbQ1nYDp4YzR2ljoDOmbbQQlg3UOcMGwfQwDM0p-ri_-pDT42zLJEdftA1BRZvmIimhPROdWGCzhzqnUrJ18iH7UeVnCUTuIsqtfIkodxElEXKJuGydH87Pw2jNv51DtQVcHIAqWgWXVdS-vDoKQBj0O3e1d3ZJ8eRtlkX7XUvjs9WTNMn_95G_9oCSpA
CitedBy_id crossref_primary_10_1016_j_ntt_2020_106928
crossref_primary_10_1016_j_chemosphere_2020_127753
crossref_primary_10_1021_acs_jnatprod_0c01297
crossref_primary_10_1016_j_aquatox_2016_01_013
crossref_primary_10_1371_journal_pone_0139521
crossref_primary_10_1039_C9EM00565J
crossref_primary_10_1002_etc_1958
crossref_primary_10_1007_s11356_014_3502_7
crossref_primary_10_3390_toxics10050256
crossref_primary_10_1016_j_horiz_2022_100027
crossref_primary_10_1038_s41419_020_03359_z
crossref_primary_10_1093_toxsci_kfy044
crossref_primary_10_1097_FBP_0000000000000470
crossref_primary_10_1016_j_chemosphere_2018_07_056
crossref_primary_10_1002_etc_5878
crossref_primary_10_19185_matters_201904000001
crossref_primary_10_3390_toxics7040050
crossref_primary_10_1016_j_chemosphere_2019_124587
crossref_primary_10_1016_j_ntt_2023_107183
crossref_primary_10_1038_srep37145
crossref_primary_10_1016_j_bbr_2022_114228
crossref_primary_10_1016_j_bbr_2011_12_016
crossref_primary_10_1007_s12035_023_03210_4
crossref_primary_10_1016_j_beproc_2020_104295
crossref_primary_10_1016_j_ntt_2011_08_005
crossref_primary_10_1016_j_jhazmat_2023_132524
crossref_primary_10_1016_j_chemosphere_2017_12_119
crossref_primary_10_1038_s41598_022_08195_z
crossref_primary_10_1016_j_scitotenv_2019_134490
crossref_primary_10_1021_acs_est_6b00223
crossref_primary_10_1002_tox_22087
crossref_primary_10_1002_tox_24024
crossref_primary_10_1007_s00213_021_05932_6
crossref_primary_10_1007_s00204_020_02661_1
crossref_primary_10_1016_j_ygcen_2017_07_009
crossref_primary_10_1016_j_aquatox_2020_105444
crossref_primary_10_1016_j_scitotenv_2021_149125
crossref_primary_10_3390_inventions3010011
crossref_primary_10_1016_j_ecoenv_2018_09_064
crossref_primary_10_1016_j_applanim_2013_12_001
crossref_primary_10_1073_pnas_1711088114
crossref_primary_10_3390_ijms23147550
crossref_primary_10_1016_j_reprotox_2013_06_067
crossref_primary_10_1016_j_lfs_2018_04_019
crossref_primary_10_1016_j_ntt_2015_08_010
crossref_primary_10_3390_biom10091224
crossref_primary_10_1016_j_etap_2015_07_003
crossref_primary_10_1016_j_ntt_2019_106809
crossref_primary_10_1093_toxsci_kfy266
crossref_primary_10_1016_j_marpolbul_2022_114279
crossref_primary_10_1111_cga_12079
crossref_primary_10_1002_etc_3477
crossref_primary_10_1515_rns_2011_008
crossref_primary_10_1016_j_jhazmat_2012_02_014
crossref_primary_10_1016_j_ntt_2023_107163
crossref_primary_10_1021_acsbiomaterials_8b01144
crossref_primary_10_1515_rns_2011_007
crossref_primary_10_1515_rns_2011_006
crossref_primary_10_1016_j_neuro_2019_05_008
crossref_primary_10_1007_s11356_014_2762_6
crossref_primary_10_1016_j_alcohol_2015_06_004
crossref_primary_10_1016_j_aquatox_2013_07_011
crossref_primary_10_1093_toxsci_kfac053
crossref_primary_10_1002_etc_5412
crossref_primary_10_1016_j_toxlet_2017_05_021
crossref_primary_10_1038_s41598_024_65610_3
crossref_primary_10_1016_j_chemosphere_2019_125573
crossref_primary_10_1016_j_aquatox_2018_04_014
crossref_primary_10_1016_j_chemosphere_2022_133863
crossref_primary_10_1016_j_scitotenv_2016_04_186
crossref_primary_10_1371_journal_pone_0020037
crossref_primary_10_1016_j_ntt_2009_04_066
crossref_primary_10_1002_etc_190
crossref_primary_10_1093_toxsci_kfr185
crossref_primary_10_3389_fnins_2023_1205653
crossref_primary_10_1016_j_ecoenv_2021_112917
crossref_primary_10_1016_j_ntt_2015_05_002
crossref_primary_10_1016_j_scitotenv_2020_144748
crossref_primary_10_1038_srep40905
crossref_primary_10_1002_glia_23641
crossref_primary_10_1016_j_aquatox_2018_04_003
crossref_primary_10_1016_j_scitotenv_2023_164843
crossref_primary_10_1089_zeb_2018_1562
crossref_primary_10_1016_j_envres_2020_109702
crossref_primary_10_1038_s41598_020_66378_y
crossref_primary_10_1016_j_ecoenv_2019_109815
crossref_primary_10_1523_ENEURO_0055_21_2021
crossref_primary_10_1021_acsomega_7b00227
crossref_primary_10_1016_j_pnpbp_2010_10_010
crossref_primary_10_1371_journal_pone_0295711
crossref_primary_10_1155_2020_8878143
crossref_primary_10_1159_000514778
crossref_primary_10_1080_01480545_2024_2311287
crossref_primary_10_1163_1568539X_00003020
crossref_primary_10_1016_j_chemosphere_2020_127437
crossref_primary_10_1016_j_neuro_2021_07_003
crossref_primary_10_1186_s12302_021_00479_x
crossref_primary_10_1016_j_ecoenv_2019_03_088
crossref_primary_10_1016_j_envint_2022_107642
crossref_primary_10_3390_ijms222111471
crossref_primary_10_1039_c0lc00443j
crossref_primary_10_1016_j_chemosphere_2023_139829
crossref_primary_10_1016_j_envpol_2021_117241
crossref_primary_10_1016_j_chemosphere_2013_09_010
crossref_primary_10_1007_s12035_017_0850_6
crossref_primary_10_1007_s00213_019_05193_4
crossref_primary_10_1016_j_etap_2023_104242
crossref_primary_10_3390_biom11020324
crossref_primary_10_1016_j_envpol_2023_122260
crossref_primary_10_1016_j_tiv_2019_104638
crossref_primary_10_1089_zeb_2023_0017
crossref_primary_10_1016_j_envpol_2020_115625
crossref_primary_10_1089_zeb_2016_1395
crossref_primary_10_1093_toxsci_kfv087
crossref_primary_10_1186_s12302_019_0270_5
crossref_primary_10_1016_j_aquatox_2015_09_011
crossref_primary_10_1016_j_neuro_2021_03_003
crossref_primary_10_1038_s41598_019_56590_w
crossref_primary_10_1002_bdrc_20206
crossref_primary_10_1016_j_taap_2021_115483
crossref_primary_10_1038_s41419_024_06622_9
crossref_primary_10_1016_j_jhazmat_2023_132175
crossref_primary_10_1080_15287394_2022_2102099
crossref_primary_10_1016_j_ntt_2011_02_002
crossref_primary_10_1007_s00213_016_4304_z
crossref_primary_10_1016_j_chemosphere_2023_137874
crossref_primary_10_1163_1568539X_00003016
crossref_primary_10_1096_fj_11_194464
crossref_primary_10_1016_j_neuro_2022_10_007
crossref_primary_10_1016_j_scitotenv_2024_170012
crossref_primary_10_1371_journal_pone_0113235
crossref_primary_10_1080_15627020_2019_1702098
crossref_primary_10_1139_facets_2017_0101
crossref_primary_10_1016_j_aquatox_2018_05_016
crossref_primary_10_1016_j_bbr_2010_05_031
crossref_primary_10_1016_j_ntt_2012_03_002
crossref_primary_10_1016_j_reprotox_2020_07_013
crossref_primary_10_3390_ijms25052991
crossref_primary_10_1111_jfb_12674
crossref_primary_10_1016_j_cbi_2018_06_008
crossref_primary_10_3390_toxics12050349
crossref_primary_10_3390_nano9010122
crossref_primary_10_1016_j_pbb_2012_12_010
crossref_primary_10_1016_j_scitotenv_2015_04_018
crossref_primary_10_1371_journal_pone_0115305
crossref_primary_10_1016_j_toxlet_2017_10_022
crossref_primary_10_1016_j_ntt_2011_06_007
crossref_primary_10_1016_j_envpol_2020_115090
crossref_primary_10_1016_j_bbr_2012_08_026
crossref_primary_10_1016_j_watres_2021_117826
crossref_primary_10_1007_s11051_013_1700_8
crossref_primary_10_1371_journal_pone_0074606
crossref_primary_10_1016_j_aquatox_2018_12_021
crossref_primary_10_1016_j_aquatox_2022_106237
crossref_primary_10_1038_s42003_019_0629_6
crossref_primary_10_1371_journal_pone_0229468
crossref_primary_10_1016_j_compbiomed_2015_11_012
crossref_primary_10_1016_j_anbehav_2017_04_007
crossref_primary_10_1016_j_neuro_2024_06_003
crossref_primary_10_1021_acs_jafc_0c02641
crossref_primary_10_1038_s41598_024_57707_6
crossref_primary_10_1016_j_aquatox_2019_105384
crossref_primary_10_1016_j_jocn_2012_09_010
crossref_primary_10_1038_s41598_018_34989_1
crossref_primary_10_1016_j_chemosphere_2017_03_030
crossref_primary_10_1002_etc_2403
crossref_primary_10_1016_j_chemosphere_2019_03_034
crossref_primary_10_7847_jfp_2012_25_1_047
crossref_primary_10_1016_j_marpolbul_2015_08_020
crossref_primary_10_1111_j_1741_4520_2012_00377_x
crossref_primary_10_1371_journal_pone_0207264
crossref_primary_10_1002_etc_570
crossref_primary_10_1016_j_ntt_2012_08_006
crossref_primary_10_1016_j_aquatox_2023_106765
crossref_primary_10_1016_j_neuro_2015_11_012
crossref_primary_10_1016_j_reprotox_2011_11_111
crossref_primary_10_3389_fnmol_2022_900213
crossref_primary_10_1111_gbb_12460
crossref_primary_10_1038_s41598_018_20288_2
crossref_primary_10_1901_jeab_2010_94_261
crossref_primary_10_1093_toxsci_kfv044
crossref_primary_10_1007_s00213_014_3656_5
crossref_primary_10_1016_j_aquatox_2021_105787
crossref_primary_10_1016_j_scitotenv_2024_174563
crossref_primary_10_1002_etc_4951
crossref_primary_10_1016_j_ecoenv_2023_114723
crossref_primary_10_3389_fphar_2016_00119
crossref_primary_10_1016_j_neuro_2012_01_019
crossref_primary_10_1002_etc_4275
crossref_primary_10_3389_fnbeh_2022_885775
crossref_primary_10_1093_toxsci_kfx217
crossref_primary_10_1289_ehp_1306638
crossref_primary_10_3390_cells10113142
crossref_primary_10_1016_j_envpol_2016_01_016
crossref_primary_10_1016_j_ntt_2019_03_001
crossref_primary_10_1007_s11356_014_2585_5
crossref_primary_10_1016_j_bbr_2011_03_025
crossref_primary_10_1016_j_ecolmodel_2016_12_017
crossref_primary_10_1371_journal_pone_0266491
crossref_primary_10_3390_toxins13040259
crossref_primary_10_1016_j_ntt_2015_11_008
crossref_primary_10_1016_j_alcohol_2015_08_003
crossref_primary_10_1016_j_pbb_2016_03_010
crossref_primary_10_1021_acs_est_9b03865
crossref_primary_10_1016_j_aquatox_2014_02_002
crossref_primary_10_3390_ph12040156
crossref_primary_10_1371_journal_pone_0195766
crossref_primary_10_1016_j_reprotox_2021_12_005
crossref_primary_10_1016_j_etap_2023_104221
crossref_primary_10_1523_JNEUROSCI_2178_19_2020
crossref_primary_10_1038_s41598_019_49614_y
crossref_primary_10_1016_j_bbr_2011_11_020
crossref_primary_10_1371_journal_pone_0094227
crossref_primary_10_1016_j_aquatox_2010_02_003
crossref_primary_10_1016_j_aquatox_2019_01_009
crossref_primary_10_35229_jaes_1197703
crossref_primary_10_1016_j_marpolbul_2021_113314
crossref_primary_10_1038_s41598_022_07448_1
crossref_primary_10_1016_j_scitotenv_2018_11_071
crossref_primary_10_3389_fcell_2022_943127
crossref_primary_10_1093_toxsci_kft081
crossref_primary_10_3390_biomedicines7010023
crossref_primary_10_1016_j_ntt_2021_107011
crossref_primary_10_1016_j_neuro_2023_05_013
crossref_primary_10_1016_j_ntt_2018_01_002
crossref_primary_10_1002_dneu_20910
crossref_primary_10_3390_ijms241612707
crossref_primary_10_1016_j_applanim_2017_01_002
crossref_primary_10_1016_j_scitotenv_2017_01_156
crossref_primary_10_1016_j_cbpc_2011_09_006
crossref_primary_10_1039_C7EN01239J
crossref_primary_10_1016_j_neubiorev_2019_02_009
crossref_primary_10_1016_j_ntt_2012_09_001
crossref_primary_10_1371_journal_pone_0175420
crossref_primary_10_1016_j_envpol_2024_124334
crossref_primary_10_1371_journal_pone_0021076
crossref_primary_10_1016_j_envadv_2021_100151
crossref_primary_10_1016_j_ntt_2013_07_001
crossref_primary_10_3390_ijms24087466
crossref_primary_10_1016_j_scitotenv_2023_167307
crossref_primary_10_1038_s41419_021_03716_6
crossref_primary_10_1016_j_dib_2019_104812
crossref_primary_10_1186_1471_2105_14_37
crossref_primary_10_1016_j_aquatox_2017_02_028
crossref_primary_10_1016_j_chemosphere_2018_05_009
crossref_primary_10_1007_s11356_018_1542_0
crossref_primary_10_1016_j_scitotenv_2020_143694
crossref_primary_10_1016_j_biopha_2022_113809
crossref_primary_10_3390_toxics7030042
crossref_primary_10_1111_eth_12630
crossref_primary_10_1111_are_14354
crossref_primary_10_1016_j_taap_2021_115643
crossref_primary_10_1038_s41467_023_36277_7
crossref_primary_10_3390_ijms18040864
crossref_primary_10_1016_j_marpolbul_2018_02_039
crossref_primary_10_3390_nano11092161
crossref_primary_10_1016_j_aquatox_2012_12_013
crossref_primary_10_1016_j_ecoenv_2016_07_033
crossref_primary_10_1016_j_nbd_2010_05_016
crossref_primary_10_1021_acs_est_7b04099
crossref_primary_10_1016_j_bbr_2017_09_028
crossref_primary_10_1186_s12302_019_0188_y
crossref_primary_10_1016_j_beproc_2010_06_019
crossref_primary_10_1093_toxsci_kfad026
crossref_primary_10_1007_s11356_017_9262_4
crossref_primary_10_1016_j_aquatox_2018_10_014
crossref_primary_10_1016_j_chemosphere_2017_10_032
crossref_primary_10_1016_j_ecoenv_2017_12_059
crossref_primary_10_1016_j_scitotenv_2020_137686
crossref_primary_10_3390_biomedicines10081820
crossref_primary_10_7717_peerj_12703
crossref_primary_10_1002_jat_3949
crossref_primary_10_1016_j_ntt_2016_10_006
crossref_primary_10_1172_JCI123959
crossref_primary_10_1016_j_chembiol_2020_08_005
crossref_primary_10_1089_zeb_2013_0871
crossref_primary_10_1016_j_ntt_2016_03_003
crossref_primary_10_1016_j_jes_2022_11_012
crossref_primary_10_1007_s11306_016_0964_2
crossref_primary_10_1089_zeb_2012_0785
crossref_primary_10_1021_acschemneuro_3c00131
crossref_primary_10_1039_C6GC02061E
crossref_primary_10_1002_tox_21843
crossref_primary_10_1016_j_pbb_2019_02_011
crossref_primary_10_1080_17460441_2023_2211802
crossref_primary_10_1002_jez_1802
crossref_primary_10_1016_j_ecoenv_2017_09_018
crossref_primary_10_1038_s42003_022_03410_z
crossref_primary_10_1002_etc_4242
crossref_primary_10_1016_j_chemosphere_2018_12_133
crossref_primary_10_1016_j_neuroscience_2022_12_016
crossref_primary_10_1016_j_chemosphere_2022_135449
crossref_primary_10_1016_j_reprotox_2009_05_004
crossref_primary_10_1038_s41598_017_02822_w
crossref_primary_10_3389_fnbeh_2014_00367
crossref_primary_10_1016_j_chemosphere_2012_04_012
crossref_primary_10_1016_j_aquatox_2013_04_016
crossref_primary_10_1016_j_chemosphere_2017_05_054
crossref_primary_10_1016_j_jhazmat_2019_05_047
crossref_primary_10_1016_j_aquatox_2018_03_016
crossref_primary_10_1016_j_jhazmat_2020_125016
crossref_primary_10_1016_j_aquatox_2013_10_021
crossref_primary_10_1089_zeb_2017_1541
crossref_primary_10_1016_j_envint_2023_107995
crossref_primary_10_1016_j_hal_2021_101996
crossref_primary_10_1016_j_jep_2024_118271
crossref_primary_10_3390_ijms25094999
crossref_primary_10_3390_toxics11090732
crossref_primary_10_1016_j_bbr_2009_12_023
crossref_primary_10_1016_j_taap_2017_05_033
crossref_primary_10_5487_TR_2009_25_1_009
crossref_primary_10_1039_D0EN00961J
crossref_primary_10_1007_s10142_024_01333_y
crossref_primary_10_1007_s11356_015_4157_8
crossref_primary_10_1371_journal_pone_0288904
Cites_doi 10.1038/nrg2091
10.1242/jeb.72.1.1
10.1016/S0091-679X(04)77003-X
10.1016/S0301-0082(02)00075-8
10.1002/cfg.87
10.1037/h0022681
10.1242/jeb.01534
10.1038/nrd1606
10.1007/BF01054982
10.1073/pnas.0709337104
10.1016/j.neuro.2008.04.006
10.1007/978-1-59745-257-1_5
10.1111/j.1095-8649.2006.01068.x
10.1006/dbio.1996.0335
10.1242/jeb.203.17.2565
10.1093/toxsci/kfi110
10.1016/j.ntt.2004.06.013
10.1167/iovs.05-0971
10.1016/j.tibtech.2005.11.004
10.1523/JNEUROSCI.4332-06.2006
10.1038/sj.npp.1301489
10.1517/17425255.2.3.345
10.1016/j.pbb.2004.01.003
10.1002/dev.420070109
10.1089/zeb.2006.3.227
10.1242/jeb.003939
10.1016/j.neuro.2006.02.009
10.1046/j.1601-183X.2003.00053.x
10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S
10.1002/aja.1002030302
10.1038/laban0506-33
ContentType Journal Article
Copyright 2008
2009 INIST-CNRS
Copyright_xml – notice: 2008
– notice: 2009 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7U7
C1K
F1W
H95
L.G
DOI 10.1016/j.neuro.2008.09.011
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Toxicology Abstracts
Neurosciences Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-9711
EndPage 58
ExternalDocumentID 10_1016_j_neuro_2008_09_011
18952124
21107164
S0161813X08001861
Genre Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACIUM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
C45
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSJ
SSN
SSP
SSZ
T5K
TEORI
TN5
UHS
UNMZH
XPP
ZGI
ZXP
~G-
~KM
08R
ABPIF
ABPTK
IQODW
AAXKI
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ACRPL
ADNMO
CITATION
7TK
7U7
C1K
F1W
H95
L.G
ID FETCH-LOGICAL-c484t-6d6a00c1250a81f43f6487324e5b82d87f223d15dd43c99e7b2ffd7b97cbbb3
IEDL.DBID .~1
ISSN 0161-813X
IngestDate Sun Sep 29 07:32:57 EDT 2024
Fri Dec 06 04:11:45 EST 2024
Sat Sep 28 07:47:58 EDT 2024
Sun Oct 22 16:07:18 EDT 2023
Fri Feb 23 02:32:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Larvae
Locomotion
Video tracking
Microtiter plate
Ethanol
Danio rerio
Zebrafish
Behavior
Lighting condition
Alcoholic beverage
Vertebrata
Brachydanio rerio
Larva
Pisces
Language English
License CC BY 4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-6d6a00c1250a81f43f6487324e5b82d87f223d15dd43c99e7b2ffd7b97cbbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18952124
PQID 20267959
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_20267959
crossref_primary_10_1016_j_neuro_2008_09_011
pubmed_primary_18952124
pascalfrancis_primary_21107164
elsevier_sciencedirect_doi_10_1016_j_neuro_2008_09_011
PublicationCentury 2000
PublicationDate 2009
2009-Jan
2009-1-00
20090101
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Neurotoxicology (Park Forest South)
PublicationTitleAlternate Neurotoxicology
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Budick, O’Malley (bib3) 2000; 203
Zeddies, Fay (bib36) 2005; 208
MacPhail (bib21) 1990
Sison, Cawker, Buske, Gerlai (bib31) 2006; 35
Thompson, Spencer (bib33) 1966; 73
Best, Berghmans, Hunt, Clarke, Fleming, Goldsmith (bib2) 2008; 33
Kimmel, Ballard, Kimmel, Ullmann, Schilling (bib15) 1995; 203
Kimmel, Patterson, Kimmel (bib16) 1974; 7
Cahill (bib5) 2007; 362
Staddon (bib32) 1983
Burgess, Granato (bib4) 2007; 210
Zon, Peterson (bib37) 2005; 4
Drapeau, Saint-Amant, Buss, Chong, McDearmid, Brustein (bib8) 2002; 68
Hill, Teraoka, Heideman, Peterson (bib13) 2005; 86
Lieschke, Currie (bib18) 2007; 8
Sherrington (bib30) 1906
Levin, Swain, Donerly, Linney (bib17) 2004; 26
Miklosi, Andrew (bib23) 2006; 3
Prober, Rihel, Onah, Sung, Schier (bib28) 2006; 26
Matsui, Egana, Sponboltz, Adolph, Dowling (bib22) 2006; 47
Jacobs (bib14) 2006; 2
Alestrom, Holter, Nourizadeh-Lillabadi (bib1) 2006; 24
D’Amico, Li, Seng, McGrath (bib6) 2008
Easter, Nicola (bib9) 1996; 180
Saint-Amant, Drapeau (bib29) 1998; 37
Peterson, Nass, Boyd, Freedman, Dong, Narahashi (bib27) 2008; 29
Weber (bib34) 2006; 69
Moorhouse, Fosbrooke, Kennedy (bib24) 1978; 72
Orger, Gahtan, Muto, Page-McCaw, Smear, Baier (bib25) 2004; 77
Guo (bib12) 2004; 3
Westerfield (bib35) 2000
Dowling (bib7) 2002; 146
Oxendine, Cowden, Hinton, Padilla (bib26) 2006; 27
Emran, Rihel, Adolph, Wong, Kraves, Dowling (bib10) 2007; 104
Lockwood, Bjerke, Kobayashi, Guo (bib20) 2004; 77
Little, Archeski, Flerov, Kozlovskaya (bib19) 1990; 19
Feldman (bib11) 2001; 2
Easter (10.1016/j.neuro.2008.09.011_bib9) 1996; 180
Feldman (10.1016/j.neuro.2008.09.011_bib11) 2001; 2
Zon (10.1016/j.neuro.2008.09.011_bib37) 2005; 4
Oxendine (10.1016/j.neuro.2008.09.011_bib26) 2006; 27
Sison (10.1016/j.neuro.2008.09.011_bib31) 2006; 35
Saint-Amant (10.1016/j.neuro.2008.09.011_bib29) 1998; 37
Prober (10.1016/j.neuro.2008.09.011_bib28) 2006; 26
Westerfield (10.1016/j.neuro.2008.09.011_bib35) 2000
Levin (10.1016/j.neuro.2008.09.011_bib17) 2004; 26
Drapeau (10.1016/j.neuro.2008.09.011_bib8) 2002; 68
Best (10.1016/j.neuro.2008.09.011_bib2) 2008; 33
Peterson (10.1016/j.neuro.2008.09.011_bib27) 2008; 29
Hill (10.1016/j.neuro.2008.09.011_bib13) 2005; 86
Jacobs (10.1016/j.neuro.2008.09.011_bib14) 2006; 2
Kimmel (10.1016/j.neuro.2008.09.011_bib16) 1974; 7
Weber (10.1016/j.neuro.2008.09.011_bib34) 2006; 69
Zeddies (10.1016/j.neuro.2008.09.011_bib36) 2005; 208
Sherrington (10.1016/j.neuro.2008.09.011_bib30) 1906
Staddon (10.1016/j.neuro.2008.09.011_bib32) 1983
Orger (10.1016/j.neuro.2008.09.011_bib25) 2004; 77
Budick (10.1016/j.neuro.2008.09.011_bib3) 2000; 203
Burgess (10.1016/j.neuro.2008.09.011_bib4) 2007; 210
Cahill (10.1016/j.neuro.2008.09.011_bib5) 2007; 362
Thompson (10.1016/j.neuro.2008.09.011_bib33) 1966; 73
Lockwood (10.1016/j.neuro.2008.09.011_bib20) 2004; 77
Matsui (10.1016/j.neuro.2008.09.011_bib22) 2006; 47
Lieschke (10.1016/j.neuro.2008.09.011_bib18) 2007; 8
Miklosi (10.1016/j.neuro.2008.09.011_bib23) 2006; 3
Dowling (10.1016/j.neuro.2008.09.011_bib7) 2002; 146
Guo (10.1016/j.neuro.2008.09.011_bib12) 2004; 3
Emran (10.1016/j.neuro.2008.09.011_bib10) 2007; 104
MacPhail (10.1016/j.neuro.2008.09.011_bib21) 1990
D’Amico (10.1016/j.neuro.2008.09.011_bib6) 2008
Kimmel (10.1016/j.neuro.2008.09.011_bib15) 1995; 203
Alestrom (10.1016/j.neuro.2008.09.011_bib1) 2006; 24
Little (10.1016/j.neuro.2008.09.011_bib19) 1990; 19
Moorhouse (10.1016/j.neuro.2008.09.011_bib24) 1978; 72
References_xml – volume: 73
  start-page: 16
  year: 1966
  end-page: 43
  ident: bib33
  article-title: Habituation: a model phenomenon for the study of neuronal substrates of behavior
  publication-title: Psychol Rev
  contributor:
    fullname: Spencer
– volume: 146
  start-page: 337
  year: 2002
  end-page: 347
  ident: bib7
  article-title: Fishing for novel genes
  publication-title: Proc Am Philos Soc
  contributor:
    fullname: Dowling
– volume: 24
  start-page: 15
  year: 2006
  end-page: 21
  ident: bib1
  article-title: Zebrafish in functional genomics and aquatic biomedicine
  publication-title: Trends Biotechnol
  contributor:
    fullname: Nourizadeh-Lillabadi
– volume: 26
  start-page: 13400
  year: 2006
  end-page: 13410
  ident: bib28
  article-title: Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish
  publication-title: J Neurosci
  contributor:
    fullname: Schier
– volume: 180
  start-page: 646
  year: 1996
  end-page: 663
  ident: bib9
  article-title: The development of vision in the zebrafish (
  publication-title: Dev Biol
  contributor:
    fullname: Nicola
– volume: 3
  start-page: 63
  year: 2004
  end-page: 74
  ident: bib12
  article-title: Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish?
  publication-title: Genes Brain Behav
  contributor:
    fullname: Guo
– volume: 77
  start-page: 647
  year: 2004
  end-page: 654
  ident: bib20
  article-title: Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening
  publication-title: Pharmacol Biochem Behav
  contributor:
    fullname: Guo
– volume: 3
  start-page: 227
  year: 2006
  end-page: 234
  ident: bib23
  article-title: The zebrafish as a model for behavioral studies
  publication-title: Zebrafish
  contributor:
    fullname: Andrew
– volume: 77
  start-page: 53
  year: 2004
  end-page: 68
  ident: bib25
  article-title: Behavioral screening assays in zebrafish
  publication-title: Methods Cell Biol
  contributor:
    fullname: Baier
– volume: 362
  start-page: 83
  year: 2007
  end-page: 94
  ident: bib5
  article-title: Automated video image analysis of larval zebrafish locomotor rhythms
  publication-title: Methods Mol Biol
  contributor:
    fullname: Cahill
– volume: 68
  start-page: 85
  year: 2002
  end-page: 111
  ident: bib8
  article-title: Development of the locomotor network in zebrafish
  publication-title: Prog Neurobiol
  contributor:
    fullname: Brustein
– start-page: 347
  year: 1990
  end-page: 358
  ident: bib21
  article-title: Environmental modulation of neurobehavioral toxicity
  publication-title: Behavioral measures of neurotoxicity
  contributor:
    fullname: MacPhail
– volume: 2
  start-page: 252
  year: 2001
  end-page: 256
  ident: bib11
  article-title: The second European conference on zebrafish genetics and development
  publication-title: Comp Funct Genomic
  contributor:
    fullname: Feldman
– volume: 208
  start-page: 1363
  year: 2005
  end-page: 1372
  ident: bib36
  article-title: Development of the acoustically evoked behavioral response in zebrafish to pure tones
  publication-title: J Exp Biol
  contributor:
    fullname: Fay
– volume: 19
  start-page: 380
  year: 1990
  end-page: 385
  ident: bib19
  article-title: Behavioral indicators of sublethal toxicity in rainbow trout
  publication-title: Arch Environ Contam Toxicol
  contributor:
    fullname: Kozlovskaya
– volume: 26
  start-page: 719
  year: 2004
  end-page: 723
  ident: bib17
  article-title: Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior
  publication-title: Neurotoxicol Teratol
  contributor:
    fullname: Linney
– volume: 33
  start-page: 1206
  year: 2008
  end-page: 1215
  ident: bib2
  article-title: Non-associative learning in larval zebrafish
  publication-title: Neuropsychopharmacology
  contributor:
    fullname: Goldsmith
– volume: 203
  start-page: 2565
  year: 2000
  end-page: 2579
  ident: bib3
  article-title: Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture
  publication-title: J Exp Biol
  contributor:
    fullname: O’Malley
– year: 2008
  ident: bib6
  article-title: Developmental neurotoxicity assessment in zebrafish: a survey of 200 environmental toxicants
  publication-title: Poster presentation at the 47th annual meeting of the Society of Toxicology
  contributor:
    fullname: McGrath
– volume: 7
  start-page: 47
  year: 1974
  end-page: 60
  ident: bib16
  article-title: The development and behavioral characteristics of the startle response in the zebra fish
  publication-title: Dev Psychobiol
  contributor:
    fullname: Kimmel
– volume: 203
  start-page: 253
  year: 1995
  end-page: 310
  ident: bib15
  article-title: Stages of embryonic development of the zebrafish
  publication-title: Dev Dyn
  contributor:
    fullname: Schilling
– volume: 8
  start-page: 353
  year: 2007
  end-page: 367
  ident: bib18
  article-title: Animal models of human disease: zebrafish swim into view
  publication-title: Nat Rev Genet
  contributor:
    fullname: Currie
– year: 1983
  ident: bib32
  article-title: Adaptive behavior and learning
  contributor:
    fullname: Staddon
– volume: 35
  start-page: 33
  year: 2006
  end-page: 39
  ident: bib31
  article-title: Fishing for genes influencing vertebrate behavior: zebrafish making headway
  publication-title: Lab Anim (NY)
  contributor:
    fullname: Gerlai
– volume: 86
  start-page: 6
  year: 2005
  end-page: 19
  ident: bib13
  article-title: Zebrafish as a model vertebrate for investigating chemical toxicity
  publication-title: Toxicol Sci
  contributor:
    fullname: Peterson
– year: 2000
  ident: bib35
  article-title: The zebrafish book. A guide for the laboratory use of zebrafish (
  contributor:
    fullname: Westerfield
– volume: 47
  start-page: 4589
  year: 2006
  end-page: 4597
  ident: bib22
  article-title: Effects of ethanol on photoreceptors and visual function in developing zebrafish
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Dowling
– volume: 29
  start-page: 546
  year: 2008
  end-page: 555
  ident: bib27
  article-title: Use of non-mammalian alternative models for neurotoxicological study
  publication-title: Neurotoxicology
  contributor:
    fullname: Narahashi
– volume: 27
  start-page: 840
  year: 2006
  end-page: 845
  ident: bib26
  article-title: Adapting the medaka embryo assay to a high-throughput approach for developmental toxicity testing
  publication-title: Neurotoxicology
  contributor:
    fullname: Padilla
– volume: 69
  start-page: 75
  year: 2006
  end-page: 94
  ident: bib34
  article-title: Dose-dependent effects of developmental mercury exposure on C-start escape responses of larval zebrafish
  publication-title: J Fish Biol
  contributor:
    fullname: Weber
– volume: 4
  start-page: 35
  year: 2005
  end-page: 44
  ident: bib37
  article-title:
  publication-title: Nat Rev Drug Discov
  contributor:
    fullname: Peterson
– year: 1906
  ident: bib30
  article-title: The integrative action of the nervous system
  contributor:
    fullname: Sherrington
– volume: 2
  start-page: 345
  year: 2006
  end-page: 349
  ident: bib14
  article-title: Use of nontraditional animals for evaluation of pharmaceutical products
  publication-title: Expert Opin Drug Metab Toxicol
  contributor:
    fullname: Jacobs
– volume: 72
  start-page: 1
  year: 1978
  end-page: 16
  ident: bib24
  article-title: Paradoxical driving’ of walking activity in locusts
  publication-title: J Exp Biol
  contributor:
    fullname: Kennedy
– volume: 210
  start-page: 2526
  year: 2007
  end-page: 2539
  ident: bib4
  article-title: Modulation of locomotor activity in larval zebrafiish during light adaptation
  publication-title: J Exp Biol
  contributor:
    fullname: Granato
– volume: 104
  start-page: 19126
  year: 2007
  end-page: 19131
  ident: bib10
  article-title: OFF ganglion cells cannot drive the optokinetic reflex in zebrafish
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Dowling
– volume: 37
  start-page: 622
  year: 1998
  end-page: 632
  ident: bib29
  article-title: Time course of the development of motor behaviors in the zebrafish embryo
  publication-title: J Neurobiol
  contributor:
    fullname: Drapeau
– year: 2008
  ident: 10.1016/j.neuro.2008.09.011_bib6
  article-title: Developmental neurotoxicity assessment in zebrafish: a survey of 200 environmental toxicants
  contributor:
    fullname: D’Amico
– volume: 8
  start-page: 353
  issue: 5
  year: 2007
  ident: 10.1016/j.neuro.2008.09.011_bib18
  article-title: Animal models of human disease: zebrafish swim into view
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2091
  contributor:
    fullname: Lieschke
– volume: 72
  start-page: 1
  year: 1978
  ident: 10.1016/j.neuro.2008.09.011_bib24
  article-title: Paradoxical driving’ of walking activity in locusts
  publication-title: J Exp Biol
  doi: 10.1242/jeb.72.1.1
  contributor:
    fullname: Moorhouse
– year: 2000
  ident: 10.1016/j.neuro.2008.09.011_bib35
  contributor:
    fullname: Westerfield
– volume: 77
  start-page: 53
  year: 2004
  ident: 10.1016/j.neuro.2008.09.011_bib25
  article-title: Behavioral screening assays in zebrafish
  publication-title: Methods Cell Biol
  doi: 10.1016/S0091-679X(04)77003-X
  contributor:
    fullname: Orger
– volume: 68
  start-page: 85
  year: 2002
  ident: 10.1016/j.neuro.2008.09.011_bib8
  article-title: Development of the locomotor network in zebrafish
  publication-title: Prog Neurobiol
  doi: 10.1016/S0301-0082(02)00075-8
  contributor:
    fullname: Drapeau
– start-page: 347
  year: 1990
  ident: 10.1016/j.neuro.2008.09.011_bib21
  article-title: Environmental modulation of neurobehavioral toxicity
  contributor:
    fullname: MacPhail
– volume: 146
  start-page: 337
  year: 2002
  ident: 10.1016/j.neuro.2008.09.011_bib7
  article-title: Fishing for novel genes
  publication-title: Proc Am Philos Soc
  contributor:
    fullname: Dowling
– volume: 2
  start-page: 252
  year: 2001
  ident: 10.1016/j.neuro.2008.09.011_bib11
  article-title: The second European conference on zebrafish genetics and development
  publication-title: Comp Funct Genomic
  doi: 10.1002/cfg.87
  contributor:
    fullname: Feldman
– volume: 73
  start-page: 16
  issue: 1
  year: 1966
  ident: 10.1016/j.neuro.2008.09.011_bib33
  article-title: Habituation: a model phenomenon for the study of neuronal substrates of behavior
  publication-title: Psychol Rev
  doi: 10.1037/h0022681
  contributor:
    fullname: Thompson
– volume: 208
  start-page: 1363
  year: 2005
  ident: 10.1016/j.neuro.2008.09.011_bib36
  article-title: Development of the acoustically evoked behavioral response in zebrafish to pure tones
  publication-title: J Exp Biol
  doi: 10.1242/jeb.01534
  contributor:
    fullname: Zeddies
– volume: 4
  start-page: 35
  issue: 1
  year: 2005
  ident: 10.1016/j.neuro.2008.09.011_bib37
  article-title: In vivo drug discovery in the zebrafish
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1606
  contributor:
    fullname: Zon
– volume: 19
  start-page: 380
  issue: 3
  year: 1990
  ident: 10.1016/j.neuro.2008.09.011_bib19
  article-title: Behavioral indicators of sublethal toxicity in rainbow trout
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/BF01054982
  contributor:
    fullname: Little
– volume: 104
  start-page: 19126
  issue: 48
  year: 2007
  ident: 10.1016/j.neuro.2008.09.011_bib10
  article-title: OFF ganglion cells cannot drive the optokinetic reflex in zebrafish
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0709337104
  contributor:
    fullname: Emran
– volume: 29
  start-page: 546
  year: 2008
  ident: 10.1016/j.neuro.2008.09.011_bib27
  article-title: Use of non-mammalian alternative models for neurotoxicological study
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2008.04.006
  contributor:
    fullname: Peterson
– year: 1906
  ident: 10.1016/j.neuro.2008.09.011_bib30
  contributor:
    fullname: Sherrington
– volume: 362
  start-page: 83
  year: 2007
  ident: 10.1016/j.neuro.2008.09.011_bib5
  article-title: Automated video image analysis of larval zebrafish locomotor rhythms
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-257-1_5
  contributor:
    fullname: Cahill
– volume: 69
  start-page: 75
  year: 2006
  ident: 10.1016/j.neuro.2008.09.011_bib34
  article-title: Dose-dependent effects of developmental mercury exposure on C-start escape responses of larval zebrafish Danio rerio
  publication-title: J Fish Biol
  doi: 10.1111/j.1095-8649.2006.01068.x
  contributor:
    fullname: Weber
– volume: 180
  start-page: 646
  issue: 2
  year: 1996
  ident: 10.1016/j.neuro.2008.09.011_bib9
  article-title: The development of vision in the zebrafish (Danio rerio)
  publication-title: Dev Biol
  doi: 10.1006/dbio.1996.0335
  contributor:
    fullname: Easter
– volume: 203
  start-page: 2565
  year: 2000
  ident: 10.1016/j.neuro.2008.09.011_bib3
  article-title: Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture
  publication-title: J Exp Biol
  doi: 10.1242/jeb.203.17.2565
  contributor:
    fullname: Budick
– volume: 86
  start-page: 6
  issue: 1
  year: 2005
  ident: 10.1016/j.neuro.2008.09.011_bib13
  article-title: Zebrafish as a model vertebrate for investigating chemical toxicity
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfi110
  contributor:
    fullname: Hill
– volume: 26
  start-page: 719
  issue: 6
  year: 2004
  ident: 10.1016/j.neuro.2008.09.011_bib17
  article-title: Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior
  publication-title: Neurotoxicol Teratol
  doi: 10.1016/j.ntt.2004.06.013
  contributor:
    fullname: Levin
– volume: 47
  start-page: 4589
  year: 2006
  ident: 10.1016/j.neuro.2008.09.011_bib22
  article-title: Effects of ethanol on photoreceptors and visual function in developing zebrafish
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.05-0971
  contributor:
    fullname: Matsui
– volume: 24
  start-page: 15
  issue: 1
  year: 2006
  ident: 10.1016/j.neuro.2008.09.011_bib1
  article-title: Zebrafish in functional genomics and aquatic biomedicine
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2005.11.004
  contributor:
    fullname: Alestrom
– volume: 26
  start-page: 13400
  issue: 51
  year: 2006
  ident: 10.1016/j.neuro.2008.09.011_bib28
  article-title: Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4332-06.2006
  contributor:
    fullname: Prober
– volume: 33
  start-page: 1206
  issue: 5
  year: 2008
  ident: 10.1016/j.neuro.2008.09.011_bib2
  article-title: Non-associative learning in larval zebrafish
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1301489
  contributor:
    fullname: Best
– volume: 2
  start-page: 345
  issue: 3
  year: 2006
  ident: 10.1016/j.neuro.2008.09.011_bib14
  article-title: Use of nontraditional animals for evaluation of pharmaceutical products
  publication-title: Expert Opin Drug Metab Toxicol
  doi: 10.1517/17425255.2.3.345
  contributor:
    fullname: Jacobs
– volume: 77
  start-page: 647
  issue: 3
  year: 2004
  ident: 10.1016/j.neuro.2008.09.011_bib20
  article-title: Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening
  publication-title: Pharmacol Biochem Behav
  doi: 10.1016/j.pbb.2004.01.003
  contributor:
    fullname: Lockwood
– volume: 7
  start-page: 47
  issue: 1
  year: 1974
  ident: 10.1016/j.neuro.2008.09.011_bib16
  article-title: The development and behavioral characteristics of the startle response in the zebra fish
  publication-title: Dev Psychobiol
  doi: 10.1002/dev.420070109
  contributor:
    fullname: Kimmel
– year: 1983
  ident: 10.1016/j.neuro.2008.09.011_bib32
  contributor:
    fullname: Staddon
– volume: 3
  start-page: 227
  issue: 2
  year: 2006
  ident: 10.1016/j.neuro.2008.09.011_bib23
  article-title: The zebrafish as a model for behavioral studies
  publication-title: Zebrafish
  doi: 10.1089/zeb.2006.3.227
  contributor:
    fullname: Miklosi
– volume: 210
  start-page: 2526
  year: 2007
  ident: 10.1016/j.neuro.2008.09.011_bib4
  article-title: Modulation of locomotor activity in larval zebrafiish during light adaptation
  publication-title: J Exp Biol
  doi: 10.1242/jeb.003939
  contributor:
    fullname: Burgess
– volume: 27
  start-page: 840
  year: 2006
  ident: 10.1016/j.neuro.2008.09.011_bib26
  article-title: Adapting the medaka embryo assay to a high-throughput approach for developmental toxicity testing
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2006.02.009
  contributor:
    fullname: Oxendine
– volume: 3
  start-page: 63
  issue: 2
  year: 2004
  ident: 10.1016/j.neuro.2008.09.011_bib12
  article-title: Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish?
  publication-title: Genes Brain Behav
  doi: 10.1046/j.1601-183X.2003.00053.x
  contributor:
    fullname: Guo
– volume: 37
  start-page: 622
  issue: 4
  year: 1998
  ident: 10.1016/j.neuro.2008.09.011_bib29
  article-title: Time course of the development of motor behaviors in the zebrafish embryo
  publication-title: J Neurobiol
  doi: 10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S
  contributor:
    fullname: Saint-Amant
– volume: 203
  start-page: 253
  issue: 3
  year: 1995
  ident: 10.1016/j.neuro.2008.09.011_bib15
  article-title: Stages of embryonic development of the zebrafish
  publication-title: Dev Dyn
  doi: 10.1002/aja.1002030302
  contributor:
    fullname: Kimmel
– volume: 35
  start-page: 33
  issue: 5
  year: 2006
  ident: 10.1016/j.neuro.2008.09.011_bib31
  article-title: Fishing for genes influencing vertebrate behavior: zebrafish making headway
  publication-title: Lab Anim (NY)
  doi: 10.1038/laban0506-33
  contributor:
    fullname: Sison
SSID ssj0015769
Score 2.4664373
Snippet The increasing use of zebrafish ( Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. We studied the...
The increasing use of zebrafish (Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. We studied the...
SourceID proquest
crossref
pubmed
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 52
SubjectTerms Alcoholism and acute alcohol poisoning
Animals
Behavior
Biological and medical sciences
Danio rerio
Ethanol
Ethanol - pharmacology
Female
Freshwater
Larva - physiology
Larvae
Lighting condition
Locomotion
Locomotion - drug effects
Locomotion - physiology
Male
Medical sciences
Microtiter plate
Photoperiod
Toxicology
Video tracking
Zebrafish
Zebrafish - physiology
Title Locomotion in larval zebrafish: Influence of time of day, lighting and ethanol
URI https://dx.doi.org/10.1016/j.neuro.2008.09.011
https://www.ncbi.nlm.nih.gov/pubmed/18952124
https://search.proquest.com/docview/20267959
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EQQQRv50fMw8-Wtdsadr4NoZjfg1xCnsrSdPgZLTDbQ_64N_uJW0VH-aDT4HSpuGuvftd7nI_gLNQU61EGnpaUe2xkAWeQjOIMQ_6Sj9JKJeuyrfPe8_sZhgMl6BTnYWxZZWl7S9surPW5ZVGKc3GZDRqDFyvd9oaWsxDIxcCscC3LAYXn99lHhTxtCj6e1PP3l11HnI1Xq5nZFlQKS58Shd5p_WJnKLMTEF2sRiNOq_U3YSNEk6SdrHiLVhKs21YvS8T5jvQv8uTvGDqIaOMjC0T0Jh82GyxGU1fLsl1RVJCckMs0bwdtXw_J2MbtqNjIzLTJLU77Pl4Fwbdq6dOzyspFLyERWzmcc2l7yeIYnwZUcNahmOEgiAqDVTU1FFoEB5oGmjNWolAnammMTpUIkyUUq09WM7yLD0AIhQVUiueJmETZ_CF9FWojFRRIAw3rAbnleDiSdEnI64KyF5jJ-eS8VLEKOca8Eq48S91x2jJ_36w_ksV3y9zgSzGfjU4rXQT459i0x8yS_P5FGdpcsusXoP9QmU_C42EPcLMDv-7qiNYK7JMdmvmGJZnb_P0BMHKTNXd11iHlXbn8e7Bjte3vf4XS8PqQA
link.rule.ids 314,780,784,4024,4502,24116,27923,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQSICEEG_GMweOlDVbmjTcEGLaYOwCSLtVSdOIoamd2HaAX4_TpkMc4MCpUqWkkZ3an2PHH8CFMNRomYnAaGoCJlgUaDSDGPOgrwzTlHJVVvkOePeF3Q-j4RLc1ndhXFmlt_2VTS-ttX_T9NJsTkaj5lPZ6522hw7z0NiFQCuIBgRu7ZWb3kN3sEgmIKSWVYtvGrgBdfOhssyrbBvpayrlVUjpbw5qY6KmKDZb8V38DkhLx9TZgk2PKMlNtehtWMryHVh99DnzXRj0i7SoyHrIKCdjRwY0Jp8uYWxH09dr0qt5SkhhieOad0-jPi7J2EXu6NuIyg3J3CF7Md6Dp87d82038CwKQcpiNgu44SoMUwQyoYqpZW3LMUhBHJVFOm6ZWFhECIZGxrB2KlFtumWtEVqKVGvd3oflvMizQyBSU6mM5lkqWjhDKFWohbZKx5G03LIGXNaCSyZVq4ykriF7S0o5e9JLmaCcG8Br4SY_NJ6gMf974NkPVSw-VsayGP414LzWTYI_i8uAqDwr5lOcpcUduXoDDiqVfS80lu4WMzv676rOYa37_NhP-r3BwzGsV0knd1JzAsuz93l2ithlps_83vwCKmDrbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locomotion+in+larval+zebrafish%3A+Influence+of+time+of+day%2C+lighting+and+ethanol&rft.jtitle=Neurotoxicology+%28Park+Forest+South%29&rft.au=MacPhail%2C+R.C.&rft.au=Brooks%2C+J.&rft.au=Hunter%2C+D.L.&rft.au=Padnos%2C+B.&rft.date=2009&rft.pub=Elsevier+B.V&rft.issn=0161-813X&rft.eissn=1872-9711&rft.volume=30&rft.issue=1&rft.spage=52&rft.epage=58&rft_id=info:doi/10.1016%2Fj.neuro.2008.09.011&rft.externalDocID=S0161813X08001861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-813X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-813X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-813X&client=summon