Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation

A previous study of coralline hydroxyapatite as a bone-graft substitute was extended from 4 to 12 months to determine better the relationships between implantation time, bone ingrowth and mechanical properties. The model consisted of a 10 × 30 mm window defect in the shaft of the canine radius (a co...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 14; no. 5; pp. 341 - 348
Main Authors Martin, R.B., Chapman, M.W., Sharkey, N.A., Zissimos, S.L., Bay, B., Shors, E.G.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.04.1993
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A previous study of coralline hydroxyapatite as a bone-graft substitute was extended from 4 to 12 months to determine better the relationships between implantation time, bone ingrowth and mechanical properties. The model consisted of a 10 × 30 mm window defect in the shaft of the canine radius (a cortical site), and a 10 mm diameter cylindrical defect in the head of the humerus (a cancellous site). In the new study, these two defects were made bilaterally in eight dogs, and filled with block-form coralline hydroxyapatite. The radius defects were supported by a metal fixation plate which was removed after 9 months. After 12 months, the dogs were killed and the left-side implants were analysed histomorphometrically and mechanically. The right-side radius and humerus were reserved for structural analysis. The results were combined with those previously measured after 4, 8, 12 and 16 wk of implantation. In the cortical site, bone ingrowth increased from 52% at 16wk to 74% at 1 yr. In the cancellous site, bone ingrowth was 38% after 4wk, then fell monotonically, reaching 17% at 1 yr. Bending and compressive strength and stiffness of the radius implants increased throughout the post-implantation year, but compressive strength and stiffness of the humerus implants did not change after the first 2–4 months. Mechanical properties were strongly correlated to bone ingrowth in the cortical, but not the cancellous, site. The volume fraction of the coralline hydroxyapatite material diminished significantly with time in the cortical, but not the cancellous, site.
AbstractList A previous study of coralline hydroxyapatite as a bone-graft substitute was extended from 4 to 12 months to determine better the relationships between implantation time, bone ingrowth and mechanical properties. The model consisted of a 10 x 30 mm window defect in the shaft of the canine radius (a cortical site), and a 10 mm diameter cylindrical defect in the head of the humerus (a cancellous site). In the new study, these two defects were made bilaterally in eight dogs, and filled with block-form coralline hydroxyapatite. The radius defects were supported by a metal fixation plate which was removed after 9 months. After 12 months, the dogs were killed and the left-side implants were analyzed histomorphometrically and mechanically. The right-side radius and humerus were reserved for structural analysis. The results were combined with those previously measured after 4, 8, 12 and 16 wk of implantation. In the cortical site, bone ingrowth increased from 52% at 16 wk to 74% at 1 yr. In the cancellous site, bone ingrowth was 38% after 4 wk, then fell monotonically, reaching 17% at 1 yr. Bending and compressive strength and stiffness of the radius implants increased throughout the post-implantation year, but compressive strength and stiffness of the humerus implants did not change after the first 2-4 months. Mechanical properties were strongly correlated to bone ingrowth in the cortical, but not the cancellous, site. The volume fraction of the coralline hydroxyapatite material diminished significantly with time in the cortical, but not the cancellous, site.
A previous study of coralline hydroxyapatite as a bone-graft substitute was extended from 4 to 12 months to determine better the relationships between implantation time, bone ingrowth and mechanical properties. The model consisted of a 10 × 30 mm window defect in the shaft of the canine radius (a cortical site), and a 10 mm diameter cylindrical defect in the head of the humerus (a cancellous site). In the new study, these two defects were made bilaterally in eight dogs, and filled with block-form coralline hydroxyapatite. The radius defects were supported by a metal fixation plate which was removed after 9 months. After 12 months, the dogs were killed and the left-side implants were analysed histomorphometrically and mechanically. The right-side radius and humerus were reserved for structural analysis. The results were combined with those previously measured after 4, 8, 12 and 16 wk of implantation. In the cortical site, bone ingrowth increased from 52% at 16wk to 74% at 1 yr. In the cancellous site, bone ingrowth was 38% after 4wk, then fell monotonically, reaching 17% at 1 yr. Bending and compressive strength and stiffness of the radius implants increased throughout the post-implantation year, but compressive strength and stiffness of the humerus implants did not change after the first 2–4 months. Mechanical properties were strongly correlated to bone ingrowth in the cortical, but not the cancellous, site. The volume fraction of the coralline hydroxyapatite material diminished significantly with time in the cortical, but not the cancellous, site.
A previous study of coralline hydroxyapatite as a bone-graft substitute was extended from 4 to 12 months to determine better the relationships between implantation time, bone ingrowth and mechanical properties. The model consisted of a 10 x 30 mm window defect in the shaft of the canine radius (a cortical site), and a 10 mm diameter cylindrical defect in the head of the humerus (a cancellous site). In the new study, these two defects were made bilaterally in eight dogs, and filled with block-form coralline hydroxyapatite. The radius defects were supported by a metal fixation plate which was removed after 9 months. After 12 months, the dogs were killed and the left-side implants were analysed histomorphometrically and mechanically. The right-side radius and humerus were reserved for structural analysis. The results were combined with those previously measured after 4, 8, 12 and 16 wk of implantation. In the cortical site, bone ingrowth increased from 52% at 16 wk to 74% at 1 yr. In the cancellous site, bone ingrowth was 38% after 4 wk, then fell monotonically, reaching 17% at 1 yr. Bending and compressive strength and stiffness of the radius implants increased throughout the post-implantation year, but compressive strength and stiffness of the humerus implants did not change after the first 2-4 months. Mechanical properties were strongly correlated to bone ingrowth in the cortical, but not the cancellous, site. The volume fraction of the coralline hydroxyapatite material diminished significantly with time in the cortical, but not the cancellous, site.
Author Zissimos, S.L.
Martin, R.B.
Sharkey, N.A.
Bay, B.
Shors, E.G.
Chapman, M.W.
Author_xml – sequence: 1
  givenname: R.B.
  surname: Martin
  fullname: Martin, R.B.
  organization: University of California at Davis, Davis, CAUSA
– sequence: 2
  givenname: M.W.
  surname: Chapman
  fullname: Chapman, M.W.
  organization: University of California at Davis, Davis, CAUSA
– sequence: 3
  givenname: N.A.
  surname: Sharkey
  fullname: Sharkey, N.A.
  organization: University of California at Davis, Davis, CAUSA
– sequence: 4
  givenname: S.L.
  surname: Zissimos
  fullname: Zissimos, S.L.
  organization: University of California at Davis, Davis, CAUSA
– sequence: 5
  givenname: B.
  surname: Bay
  fullname: Bay, B.
  organization: University of California at Davis, Davis, CAUSA
– sequence: 6
  givenname: E.G.
  surname: Shors
  fullname: Shors, E.G.
  organization: University of California at Davis, Davis, CAUSA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4680411$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/8389612$$D View this record in MEDLINE/PubMed
BookMark eNp9kE2PFCEQhonZzTq7-g804WD8OLRCN9BwMdGN7pps4kVPHggNhYPphhZ6VuffSzuTOe6JUPVU1ZvnEp3FFAGhZ5S8pYSKd4SytlGCtq9V90YRwtuGPUIbKnvZcEX4GdqckMfospRfpP4Jay_QhezkWt6gHx_rUhziz5z-LFtsosMT2K2JwZoRzznNkJcABSePbcpmHEPlt3uX09-9mc0SFsAU7zM2foGMwzSPJi61nuITdO7NWODp8b1C3z9_-nZ929x9vfly_eGusUyypRGs4z3hwjrpHXeg-kEJPzDoGLVEUmcY9cYyY9RAe6WE4Nb4XslBSs6k667Qy8PeGvf3Dsqip1AsjDUIpF3RPe-lbIWs4KuHQcYF552ilWQH0uZUSgav5xwmk_eaEr3a16tavTrUqtP_7WtWx54fD-yGCdxp6Ki79l8c-6ZUvz6baEM5YUxIwuh6_f0Bg2rtPkDWxQaIFlzIYBftUng4xz9AlaK8
CitedBy_id crossref_primary_10_1016_j_matlet_2005_07_020
crossref_primary_10_1002_jor_24852
crossref_primary_10_1016_S0142_9612_02_00276_4
crossref_primary_10_1089_ten_teb_2009_0658
crossref_primary_10_1243_0954411981534204
crossref_primary_10_1097_00003086_199903000_00010
crossref_primary_10_3390_jfb1010022
crossref_primary_10_1002_jbm_1222
crossref_primary_10_1007_s00776_010_1479_8
crossref_primary_10_1053_j_sart_2006_09_003
crossref_primary_10_1016_j_jmbbm_2023_105996
crossref_primary_10_3390_coatings12101380
crossref_primary_10_1007_s40430_019_1564_7
crossref_primary_10_4028_www_scientific_net_AMR_791_793_435
crossref_primary_10_1557_JMR_1998_0015
crossref_primary_10_1007_s11845_014_1199_8
crossref_primary_10_1002_1097_4636_20010305_54_3_407__AID_JBM140_3_0_CO_2_C
crossref_primary_10_1007_BF00120357
crossref_primary_10_1016_S0736_0266_01_00124_3
crossref_primary_10_1111_j_1600_0501_2008_01520_x
crossref_primary_10_1007_s12034_017_1394_0
crossref_primary_10_1080_000164702317281378
crossref_primary_10_3171_spi_2002_97_2_0272a
crossref_primary_10_1002_jor_1100160613
crossref_primary_10_1016_j_spinee_2006_07_017
crossref_primary_10_1002_jbm_a_30644
crossref_primary_10_1002_mabi_200700030
crossref_primary_10_1097_00132585_200609000_00008
crossref_primary_10_1007_s10195_013_0261_z
crossref_primary_10_4028_www_scientific_net_KEM_330_332_35
crossref_primary_10_1016_j_actbio_2010_07_035
crossref_primary_10_1002_jbm_a_34324
crossref_primary_10_1097_00130911_200203000_00004
crossref_primary_10_1016_S1067_2516_97_80115_9
crossref_primary_10_1002_jbm_10157
crossref_primary_10_1002_jbm_b_30229
crossref_primary_10_1002_jbm_a_31424
crossref_primary_10_1243_09544119JEIM288
crossref_primary_10_1097_00007632_199902150_00003
crossref_primary_10_1016_S1067_2516_96_80058_5
crossref_primary_10_1016_S1083_7515_01_00003_1
crossref_primary_10_1002_jbm_a_30690
crossref_primary_10_1016_j_biomaterials_2009_11_050
crossref_primary_10_4236_scd_2014_43006
crossref_primary_10_1002__SICI_1097_4636_200002_49_2_176__AID_JBM4_3_0_CO_2_8
crossref_primary_10_1002_adfm_202205730
crossref_primary_10_1007_s10261_013_0048_z
crossref_primary_10_1016_j_ceramint_2015_08_004
crossref_primary_10_1089_ten_teb_2009_0224
crossref_primary_10_1007_s10351_013_0014_8
crossref_primary_10_1111_j_1744_7402_2005_02020_x
crossref_primary_10_1089_ten_1996_2_151
crossref_primary_10_1016_j_jhsa_2012_06_021
crossref_primary_10_1007_BF00119735
crossref_primary_10_4012_dmj_2011_089
crossref_primary_10_1016_j_actbio_2011_03_016
crossref_primary_10_1016_S0142_9612_02_00193_X
crossref_primary_10_1002__SICI_1097_4636_199910_47_1_71__AID_JBM10_3_0_CO_2_U
crossref_primary_10_1098_rsif_2008_0425_focus
crossref_primary_10_1002_jbm_a_31156
crossref_primary_10_1002_jbm_b_31260
crossref_primary_10_1111_j_1151_2916_1997_tb03197_x
crossref_primary_10_1016_j_msec_2013_11_020
crossref_primary_10_1007_s10856_007_3036_3
crossref_primary_10_1007_s11837_011_0063_9
crossref_primary_10_1016_j_cpm_2005_07_004
crossref_primary_10_1002__SICI_1097_4636_199910_47_1_54__AID_JBM7_3_0_CO_2_P
crossref_primary_10_1097_00007632_199910150_00012
crossref_primary_10_1007_s10047_005_0292_1
crossref_primary_10_1007_s10195_014_0323_x
crossref_primary_10_1590_0370_44672017710175
crossref_primary_10_1097_00007632_200103150_00027
crossref_primary_10_1016_0142_9612_95_00351_7
crossref_primary_10_1053_jhsu_1999_0816
crossref_primary_10_1016_S0891_8422_23_01170_9
crossref_primary_10_1080_15376490590928615
crossref_primary_10_1016_j_ijom_2004_06_005
crossref_primary_10_1016_S0030_5898_05_70113_9
crossref_primary_10_3390_ijms24021602
crossref_primary_10_3390_ma6093840
crossref_primary_10_1177_107110070602700104
crossref_primary_10_1016_j_bioactmat_2021_03_035
crossref_primary_10_1016_j_msec_2015_03_015
crossref_primary_10_1002__SICI_1097_4636_199908_46_2_193__AID_JBM8_3_0_CO_2_1
crossref_primary_10_1016_0278_2391_95_90281_3
crossref_primary_10_4236_scd_2015_52002
crossref_primary_10_1016_j_biomaterials_2006_05_039
crossref_primary_10_4236_ss_2015_69059
crossref_primary_10_1179_1433075X14Y_0000000215
crossref_primary_10_1016_j_jnoncrysol_2008_05_015
crossref_primary_10_1111_j_1551_2916_2006_01358_x
crossref_primary_10_1371_journal_pone_0148173
crossref_primary_10_4028_www_scientific_net_KEM_529_530_15
crossref_primary_10_4028_www_scientific_net_AMR_1112_555
crossref_primary_10_1016_j_ceramint_2013_12_151
crossref_primary_10_1002_jbm_a_10050
crossref_primary_10_1016_j_jconrel_2004_06_017
crossref_primary_10_1056_NEJM200105173442004
crossref_primary_10_1089_ten_tea_2013_0352
crossref_primary_10_5352_JLS_2010_20_8_1207
crossref_primary_10_4028_www_scientific_net_KEM_361_363_935
crossref_primary_10_1002_jbm_a_30658
crossref_primary_10_1016_S0278_2391_98_90614_0
crossref_primary_10_5435_00124635_200709000_00003
crossref_primary_10_1007_s10856_011_4469_2
crossref_primary_10_1111_j_1600_0757_2006_00176_x
crossref_primary_10_1097_00006534_200202000_00032
crossref_primary_10_1142_S0218957700000100
crossref_primary_10_1053_j_oto_2009_07_003
crossref_primary_10_1007_s10853_006_0071_2
crossref_primary_10_4012_dmj_2010_087
crossref_primary_10_1111_j_1744_7402_2005_02026_x
crossref_primary_10_1007_s10856_011_4241_7
crossref_primary_10_1108_13552540710736786
Cites_doi 10.1002/jor.1100050114
10.1016/S0901-5027(87)80059-0
10.1016/0021-9290(91)90006-9
10.1007/BF00349860
10.1097/00003086-198407000-00043
10.1016/0021-9290(89)90032-8
10.1002/art.1780130406
10.1097/00006534-197905000-00004
10.1016/S0301-0503(80)80104-4
10.1097/00006534-198805000-00003
10.2106/00004623-198668060-00013
10.1016/0278-2391(87)90010-3
10.1016/0021-9290(87)90264-8
10.1002/jbm.820090407
10.1016/S0011-8532(22)02094-8
10.1016/0142-9612(89)90090-2
10.1097/00003086-199010000-00037
10.1097/00003086-198409000-00036
10.1016/S1010-5182(88)80047-7
10.1126/science.176.4037.922
10.1002/jor.1100030306
10.1016/0142-9612(85)90020-1
ContentType Journal Article
Copyright 1993
1993 INIST-CNRS
Copyright_xml – notice: 1993
– notice: 1993 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
DOI 10.1016/0142-9612(93)90052-4
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 348
ExternalDocumentID 10_1016_0142_9612_93_90052_4
8389612
4680411
0142961293900524
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AEVXI
AEZYN
AFCTW
AFFNX
AFKWA
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJUYK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AAPBV
ABPIF
ABPTK
IQODW
AAHBH
AAXKI
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c484t-64357056cd8fd5de97b96fb4e341c081da41fac4aa9b1799665caf798b88548d3
ISSN 0142-9612
IngestDate Fri Aug 16 06:15:50 EDT 2024
Fri Aug 16 10:31:45 EDT 2024
Thu Sep 26 19:42:29 EDT 2024
Sat Sep 28 08:39:58 EDT 2024
Sun Oct 29 17:09:46 EDT 2023
Fri Feb 23 02:22:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Hydroxyapatite
bone ingrowth
mechanical properties
coralline
Fissipedia
Radius
Carnivora
Implant
Mechanical properties
Vertebrata
Mammalia
Orthopedic surgery
Treatment
Animal
Biomaterial
Bone
Dog
Biomedical engineering
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-64357056cd8fd5de97b96fb4e341c081da41fac4aa9b1799665caf798b88548d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 8389612
PQID 745655391
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_75788268
proquest_miscellaneous_745655391
crossref_primary_10_1016_0142_9612_93_90052_4
pubmed_primary_8389612
pascalfrancis_primary_4680411
elsevier_sciencedirect_doi_10_1016_0142_9612_93_90052_4
PublicationCentury 1900
PublicationDate 1993-04-01
PublicationDateYYYYMMDD 1993-04-01
PublicationDate_xml – month: 04
  year: 1993
  text: 1993-04-01
  day: 01
PublicationDecade 1990
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 1993
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Neil, Demos, Stone, Hayes (BIB16) 1983; 8
Holmes, Mooney, Bucholz, Tencer (BIB9) 1984; 188
Radin, Paul, Tolkoff (BIB28) 1970; 13
Chiroff, White, Weber, Roy (BIB1) 1975; 9
Vahey, Lewis, Vanderby (BIB19) 1987; 20
Radin, Martin (BIB27) 1984
Martin, Chapman, Holmes, Sartoris, Shors, Gordon, Heitter, Sharkey, Zissimos (BIB13) 1989; 10
Holmes, Hagler (BIB8) 1988; 81
Martin, Pramanik (BIB22) 1989
Holmes, Roser (BIB10) 1987; 16
Holmes, Hagler (BIB7) 1988; 16
Rohl, Larsen, Linde, Odgaard, Jorgensen (BIB18) 1991; 24
Holmes, Bucholz, Mooney (BIB5) 1987; 5
White, Shors (BIB14) 1986; 30
Yamada (BIB15) 1973
Hoogendoorn, Renooij, Akkermans, Usser, Wittebol (BIB11) 1984; 187
Bachus (BIB26) 1992; 17
Bloebaum, Reid, Bachus (BIB25) 1989; 14
Holmes (BIB3) 1979; 63
White, Weber, White (BIB12) 1972; 176
Norrdin, Histand, Sheahan, Carpenter (BIB20) 1990; 259
Kuhn, Goldstein, Ciarelli, Mathews (BIB17) 1989; 22
Finn, Bell, Brammer (BIB2) 1980; 8
Holmes, Hagler (BIB6) 1987; 45
Shimazaki, Mooney (BIB23) 1985; 3
Sartoris, Holmes, Tencer, Mooney, Resnick (BIB21) 1986; 15
Holmes, Bucholz, Mooney (BIB4) 1986; 68-A
van Blitterswijk, Kuypers, Blik-van Hoek, Daems (BIB24) 1985; 6
Norrdin (10.1016/0142-9612(93)90052-4_BIB20) 1990; 259
Kuhn (10.1016/0142-9612(93)90052-4_BIB17) 1989; 22
Vahey (10.1016/0142-9612(93)90052-4_BIB19) 1987; 20
Martin (10.1016/0142-9612(93)90052-4_BIB22) 1989
Hoogendoorn (10.1016/0142-9612(93)90052-4_BIB11) 1984; 187
Holmes (10.1016/0142-9612(93)90052-4_BIB8) 1988; 81
Holmes (10.1016/0142-9612(93)90052-4_BIB3) 1979; 63
Martin (10.1016/0142-9612(93)90052-4_BIB13) 1989; 10
Holmes (10.1016/0142-9612(93)90052-4_BIB9) 1984; 188
Holmes (10.1016/0142-9612(93)90052-4_BIB10) 1987; 16
Rohl (10.1016/0142-9612(93)90052-4_BIB18) 1991; 24
Sartoris (10.1016/0142-9612(93)90052-4_BIB21) 1986; 15
White (10.1016/0142-9612(93)90052-4_BIB12) 1972; 176
Neil (10.1016/0142-9612(93)90052-4_BIB16) 1983; 8
Holmes (10.1016/0142-9612(93)90052-4_BIB6) 1987; 45
Radin (10.1016/0142-9612(93)90052-4_BIB28) 1970; 13
Holmes (10.1016/0142-9612(93)90052-4_BIB4) 1986; 68-A
Holmes (10.1016/0142-9612(93)90052-4_BIB5) 1987; 5
van Blitterswijk (10.1016/0142-9612(93)90052-4_BIB24) 1985; 6
Finn (10.1016/0142-9612(93)90052-4_BIB2) 1980; 8
Shimazaki (10.1016/0142-9612(93)90052-4_BIB23) 1985; 3
Bloebaum (10.1016/0142-9612(93)90052-4_BIB25) 1989; 14
Radin (10.1016/0142-9612(93)90052-4_BIB27) 1984
Holmes (10.1016/0142-9612(93)90052-4_BIB7) 1988; 16
Bachus (10.1016/0142-9612(93)90052-4_BIB26) 1992; 17
Chiroff (10.1016/0142-9612(93)90052-4_BIB1) 1975; 9
Yamada (10.1016/0142-9612(93)90052-4_BIB15) 1973
White (10.1016/0142-9612(93)90052-4_BIB14) 1986; 30
References_xml – volume: 15
  start-page: 635
  year: 1986
  end-page: 641
  ident: BIB21
  article-title: Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: radiographic-biomechanical correlation
  publication-title: Skeletal Radiol.
  contributor:
    fullname: Resnick
– volume: 17
  start-page: 111
  year: 1992
  ident: BIB26
  article-title: Superimposition errors when measuring the mineral content of bone
  publication-title: Trans. Orthop. Res. Soc.
  contributor:
    fullname: Bachus
– volume: 5
  start-page: 114
  year: 1987
  end-page: 121
  ident: BIB5
  article-title: Porous HAP as a bone graft substitute in diaphyseal defects: a histometric study
  publication-title: J. Orthop. Res.
  contributor:
    fullname: Mooney
– year: 1973
  ident: BIB15
  article-title: Strength of Biological Materials
  contributor:
    fullname: Yamada
– volume: 9
  start-page: 29
  year: 1975
  end-page: 45
  ident: BIB1
  article-title: Tissue ingrowth of replamineform implants
  publication-title: J. Biomed. Mater. Res.
  contributor:
    fullname: Roy
– volume: 22
  start-page: 95
  year: 1989
  end-page: 107
  ident: BIB17
  article-title: The limitations of canine trabecular bone as a model for human, A biomechanical study
  publication-title: J. Biomech.
  contributor:
    fullname: Mathews
– volume: 24
  start-page: 1143
  year: 1991
  end-page: 1149
  ident: BIB18
  article-title: Tensile and compressive properties of cancellous bone
  publication-title: J. Biomech.
  contributor:
    fullname: Jorgensen
– volume: 20
  start-page: 29
  year: 1987
  end-page: 33
  ident: BIB19
  article-title: Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur
  publication-title: J. Biomech.
  contributor:
    fullname: Vanderby
– volume: 13
  start-page: 400
  year: 1970
  end-page: 405
  ident: BIB28
  article-title: Subchondral bone damage in patients with early degenerative joint disease
  publication-title: Arthritis Rheum.
  contributor:
    fullname: Tolkoff
– volume: 188
  start-page: 252
  year: 1984
  end-page: 262
  ident: BIB9
  article-title: A coralline hydroxyapatite bone graft substitute. Preliminary Report
  publication-title: Clin. Orthop. Rel. Res.
  contributor:
    fullname: Tencer
– volume: 68-A
  start-page: 904
  year: 1986
  end-page: 911
  ident: BIB4
  article-title: Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects
  publication-title: J. Bone Joint Surg.
  contributor:
    fullname: Mooney
– volume: 45
  start-page: 421
  year: 1987
  end-page: 429
  ident: BIB6
  article-title: Porous hydroxylapatite as a bone graft substitute in mandibular contour augmentation: a histometric study
  publication-title: J. Oral Maxillofac. Surg.
  contributor:
    fullname: Hagler
– volume: 3
  start-page: 301
  year: 1985
  end-page: 310
  ident: BIB23
  article-title: Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute
  publication-title: J. Orthop. Res.
  contributor:
    fullname: Mooney
– volume: 6
  start-page: 243
  year: 1985
  end-page: 251
  ident: BIB24
  article-title: Bioreactions at the tissue/ hydroxyapatite interface
  publication-title: Biomaterials
  contributor:
    fullname: Daems
– volume: 16
  start-page: 718
  year: 1987
  end-page: 728
  ident: BIB10
  article-title: Porous hydroxyapatite as a bone graft substitute in alveolar ridge augmentation: a histometric study
  publication-title: Int. J. Oral Maxillofac. Surg.
  contributor:
    fullname: Roser
– volume: 10
  start-page: 481
  year: 1989
  end-page: 488
  ident: BIB13
  article-title: Effects of bone ingrowth on the strength and non-invasive assessment of a coralline hydroxyapatite material
  publication-title: Biomaterials
  contributor:
    fullname: Zissimos
– volume: 81
  start-page: 662
  year: 1988
  end-page: 671
  ident: BIB8
  article-title: Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study
  publication-title: Plast. Reconstr. Surg.
  contributor:
    fullname: Hagler
– volume: 30
  start-page: 49
  year: 1986
  end-page: 67
  ident: BIB14
  article-title: Biomaterial aspects of Interpore-200 porous hydroxyapatite
  publication-title: Dent. Clin. North Am.
  contributor:
    fullname: Shors
– volume: 14
  start-page: 399
  year: 1989
  ident: BIB25
  article-title: Back-scattered electron imaging in the scanning electron microscope for bone-implant interface analysis
  publication-title: Trans. Orthop. Res. Soc.
  contributor:
    fullname: Bachus
– volume: 63
  start-page: 626
  year: 1979
  end-page: 633
  ident: BIB3
  article-title: Bone regeneration within a coralline hydroxyapatite implant
  publication-title: Plast. Reconstr. Surg.
  contributor:
    fullname: Holmes
– volume: 16
  start-page: 199
  year: 1988
  end-page: 205
  ident: BIB7
  article-title: Porous hydroxyapatite as a bone graft substitute in maxillary augmentation
  publication-title: J. Craniomaxillofac. Surg.
  contributor:
    fullname: Hagler
– volume: 187
  start-page: 281
  year: 1984
  end-page: 288
  ident: BIB11
  article-title: Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora
  publication-title: Clin. Orthop. Rel. Res.
  contributor:
    fullname: Wittebol
– volume: 8
  start-page: 344
  year: 1983
  ident: BIB16
  article-title: Tensile and compressive properties of vertebral trabecular bone
  publication-title: Trans. Orthop. Res. Soc.
  contributor:
    fullname: Hayes
– start-page: 22
  year: 1989
  end-page: 23
  ident: BIB22
  article-title: Effects of aspect ratio on the bending behavior of bone and wood
  publication-title: Proc. Am. Soc. Biomech.
  contributor:
    fullname: Pramanik
– volume: 8
  start-page: 217
  year: 1980
  ident: BIB2
  article-title: Interpositional “grafting” with autogenous bone and coralline hydroxy-apatite
  publication-title: J. Maxillofac. Surg.
  contributor:
    fullname: Brammer
– volume: 176
  start-page: 922
  year: 1972
  ident: BIB12
  article-title: Replamineform: a new process for preparing porous ceramic, metal and polymer prosthetic materials
  publication-title: Science
  contributor:
    fullname: White
– volume: 259
  start-page: 268
  year: 1990
  end-page: 276
  ident: BIB20
  article-title: Effects of corticosteroids on mechanical strength of intervertebral joints and vertebrae in dogs
  publication-title: Clin. Orthop. Rel. Res.
  contributor:
    fullname: Carpenter
– start-page: 127
  year: 1984
  end-page: 134
  ident: BIB27
  article-title: Biomechanics of joint deterioration and osteoarthritis
  publication-title: The Aging Musculo-skeletal System
  contributor:
    fullname: Martin
– volume: 5
  start-page: 114
  year: 1987
  ident: 10.1016/0142-9612(93)90052-4_BIB5
  article-title: Porous HAP as a bone graft substitute in diaphyseal defects: a histometric study
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100050114
  contributor:
    fullname: Holmes
– year: 1973
  ident: 10.1016/0142-9612(93)90052-4_BIB15
  contributor:
    fullname: Yamada
– volume: 16
  start-page: 718
  year: 1987
  ident: 10.1016/0142-9612(93)90052-4_BIB10
  article-title: Porous hydroxyapatite as a bone graft substitute in alveolar ridge augmentation: a histometric study
  publication-title: Int. J. Oral Maxillofac. Surg.
  doi: 10.1016/S0901-5027(87)80059-0
  contributor:
    fullname: Holmes
– volume: 24
  start-page: 1143
  year: 1991
  ident: 10.1016/0142-9612(93)90052-4_BIB18
  article-title: Tensile and compressive properties of cancellous bone
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(91)90006-9
  contributor:
    fullname: Rohl
– volume: 17
  start-page: 111
  year: 1992
  ident: 10.1016/0142-9612(93)90052-4_BIB26
  article-title: Superimposition errors when measuring the mineral content of bone
  publication-title: Trans. Orthop. Res. Soc.
  contributor:
    fullname: Bachus
– volume: 15
  start-page: 635
  year: 1986
  ident: 10.1016/0142-9612(93)90052-4_BIB21
  article-title: Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: radiographic-biomechanical correlation
  publication-title: Skeletal Radiol.
  doi: 10.1007/BF00349860
  contributor:
    fullname: Sartoris
– volume: 187
  start-page: 281
  year: 1984
  ident: 10.1016/0142-9612(93)90052-4_BIB11
  article-title: Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora
  publication-title: Clin. Orthop. Rel. Res.
  doi: 10.1097/00003086-198407000-00043
  contributor:
    fullname: Hoogendoorn
– start-page: 22
  year: 1989
  ident: 10.1016/0142-9612(93)90052-4_BIB22
  article-title: Effects of aspect ratio on the bending behavior of bone and wood
  contributor:
    fullname: Martin
– volume: 22
  start-page: 95
  year: 1989
  ident: 10.1016/0142-9612(93)90052-4_BIB17
  article-title: The limitations of canine trabecular bone as a model for human, A biomechanical study
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(89)90032-8
  contributor:
    fullname: Kuhn
– start-page: 127
  year: 1984
  ident: 10.1016/0142-9612(93)90052-4_BIB27
  article-title: Biomechanics of joint deterioration and osteoarthritis
  contributor:
    fullname: Radin
– volume: 8
  start-page: 344
  year: 1983
  ident: 10.1016/0142-9612(93)90052-4_BIB16
  article-title: Tensile and compressive properties of vertebral trabecular bone
  publication-title: Trans. Orthop. Res. Soc.
  contributor:
    fullname: Neil
– volume: 13
  start-page: 400
  year: 1970
  ident: 10.1016/0142-9612(93)90052-4_BIB28
  article-title: Subchondral bone damage in patients with early degenerative joint disease
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.1780130406
  contributor:
    fullname: Radin
– volume: 63
  start-page: 626
  year: 1979
  ident: 10.1016/0142-9612(93)90052-4_BIB3
  article-title: Bone regeneration within a coralline hydroxyapatite implant
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/00006534-197905000-00004
  contributor:
    fullname: Holmes
– volume: 8
  start-page: 217
  year: 1980
  ident: 10.1016/0142-9612(93)90052-4_BIB2
  article-title: Interpositional “grafting” with autogenous bone and coralline hydroxy-apatite
  publication-title: J. Maxillofac. Surg.
  doi: 10.1016/S0301-0503(80)80104-4
  contributor:
    fullname: Finn
– volume: 81
  start-page: 662
  year: 1988
  ident: 10.1016/0142-9612(93)90052-4_BIB8
  article-title: Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/00006534-198805000-00003
  contributor:
    fullname: Holmes
– volume: 14
  start-page: 399
  year: 1989
  ident: 10.1016/0142-9612(93)90052-4_BIB25
  article-title: Back-scattered electron imaging in the scanning electron microscope for bone-implant interface analysis
  publication-title: Trans. Orthop. Res. Soc.
  contributor:
    fullname: Bloebaum
– volume: 68-A
  start-page: 904
  year: 1986
  ident: 10.1016/0142-9612(93)90052-4_BIB4
  article-title: Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects
  publication-title: J. Bone Joint Surg.
  doi: 10.2106/00004623-198668060-00013
  contributor:
    fullname: Holmes
– volume: 45
  start-page: 421
  year: 1987
  ident: 10.1016/0142-9612(93)90052-4_BIB6
  article-title: Porous hydroxylapatite as a bone graft substitute in mandibular contour augmentation: a histometric study
  publication-title: J. Oral Maxillofac. Surg.
  doi: 10.1016/0278-2391(87)90010-3
  contributor:
    fullname: Holmes
– volume: 20
  start-page: 29
  year: 1987
  ident: 10.1016/0142-9612(93)90052-4_BIB19
  article-title: Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90264-8
  contributor:
    fullname: Vahey
– volume: 9
  start-page: 29
  year: 1975
  ident: 10.1016/0142-9612(93)90052-4_BIB1
  article-title: Tissue ingrowth of replamineform implants
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820090407
  contributor:
    fullname: Chiroff
– volume: 30
  start-page: 49
  year: 1986
  ident: 10.1016/0142-9612(93)90052-4_BIB14
  article-title: Biomaterial aspects of Interpore-200 porous hydroxyapatite
  publication-title: Dent. Clin. North Am.
  doi: 10.1016/S0011-8532(22)02094-8
  contributor:
    fullname: White
– volume: 10
  start-page: 481
  year: 1989
  ident: 10.1016/0142-9612(93)90052-4_BIB13
  article-title: Effects of bone ingrowth on the strength and non-invasive assessment of a coralline hydroxyapatite material
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(89)90090-2
  contributor:
    fullname: Martin
– volume: 259
  start-page: 268
  year: 1990
  ident: 10.1016/0142-9612(93)90052-4_BIB20
  article-title: Effects of corticosteroids on mechanical strength of intervertebral joints and vertebrae in dogs
  publication-title: Clin. Orthop. Rel. Res.
  doi: 10.1097/00003086-199010000-00037
  contributor:
    fullname: Norrdin
– volume: 188
  start-page: 252
  year: 1984
  ident: 10.1016/0142-9612(93)90052-4_BIB9
  article-title: A coralline hydroxyapatite bone graft substitute. Preliminary Report
  publication-title: Clin. Orthop. Rel. Res.
  doi: 10.1097/00003086-198409000-00036
  contributor:
    fullname: Holmes
– volume: 16
  start-page: 199
  year: 1988
  ident: 10.1016/0142-9612(93)90052-4_BIB7
  article-title: Porous hydroxyapatite as a bone graft substitute in maxillary augmentation
  publication-title: J. Craniomaxillofac. Surg.
  doi: 10.1016/S1010-5182(88)80047-7
  contributor:
    fullname: Holmes
– volume: 176
  start-page: 922
  year: 1972
  ident: 10.1016/0142-9612(93)90052-4_BIB12
  article-title: Replamineform: a new process for preparing porous ceramic, metal and polymer prosthetic materials
  publication-title: Science
  doi: 10.1126/science.176.4037.922
  contributor:
    fullname: White
– volume: 3
  start-page: 301
  year: 1985
  ident: 10.1016/0142-9612(93)90052-4_BIB23
  article-title: Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100030306
  contributor:
    fullname: Shimazaki
– volume: 6
  start-page: 243
  year: 1985
  ident: 10.1016/0142-9612(93)90052-4_BIB24
  article-title: Bioreactions at the tissue/ hydroxyapatite interface
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(85)90020-1
  contributor:
    fullname: van Blitterswijk
SSID ssj0014042
Score 1.8275421
Snippet A previous study of coralline hydroxyapatite as a bone-graft substitute was extended from 4 to 12 months to determine better the relationships between...
SourceID proquest
crossref
pubmed
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 341
SubjectTerms Animals
Biological and medical sciences
Biomechanical Phenomena
Bone and Bones - physiology
bone ingrowth
coralline
Dogs
Durapatite
Humans
Humerus
Hydroxyapatite
Hydroxyapatites
mechanical properties
Medical sciences
Orthopedic surgery
Osseointegration
Prostheses and Implants
Radius
Space life sciences
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Title Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation
URI https://dx.doi.org/10.1016/0142-9612(93)90052-4
https://www.ncbi.nlm.nih.gov/pubmed/8389612
https://search.proquest.com/docview/745655391
https://search.proquest.com/docview/75788268
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagkxATQjCYKDDwgQNoSqgTO4mPHQJNjHEYmzbBIXIcG6ZtbdVlh_LX8_wjTgoUGJeoshLH8ffVfs9-7zNCL5QUXOf2fBeiI1rTLBKci0gTmddyVOWJtmqfH7PdI_r-hJ10a7o2u6SpYvn9t3kl_4MqlAGuJkv2GsiGSqEAfgO-cAWE4fpPGO9MrebHV3ClfYbahTKZvLbjZ2aZfW70Ul3o-FycW5Py26I2oSvChFI3aptsL-b-pPDTi9m5mPT25tvN3tMp2LXug7oV7FZ-4CDeiXtBAm02w358HIqNKvSZP-Q6HofizwA6UMUy6VP8Ie5WIFy8XwhcaRclk4hnZHlUpT32sN4QmTqhKz_bpk5n85eB3K0phJrB2jaqVzB1jlji04KWtLN_mtNCpGEbxGZqKk1NJU9LW0tJb6K1JOeMDdDaeO_geC_sPtGRPXQpvL1NuSTZ61D2kqevfGtWmTR3ZuIS8NbuhJTVLow1ZQ7vobveB8FjR6j76IaabKD1njLlBrq172MuHqAvhmW4ZRkGluGOZbhjGZ5qHFiGl1mGCV7MsWUZ7rPsITp69_bwzW7kj-SIJC1oE4H9ynKwmWVd6JrViucVz3RFFaAqwbqsBSVaSCoEr4zWYJYxKXTOi6oowDeu0000mECrHyHMJNMky5UuRoIKXRSpJLU2IXxVopWohihqe7WcOeWV8k9oDlHedn3prUdnFZbAqb88ubWEVHgdzYw6Fxki3CJXwuBrdtTERE2vLsvc-EMs5XDL81W3wJQILnwxRJsO81B7Ab4CNOTxNb_zCbrd_QmfokEzv1JbYBg31TPP4x90kLIx
link.rule.ids 315,786,790,27955,27956
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+ingrowth+and+mechanical+properties+of+coralline+hydroxyapatite+1+yr+after+implantation&rft.jtitle=Biomaterials&rft.au=Martin%2C+R.B.&rft.au=Chapman%2C+M.W.&rft.au=Sharkey%2C+N.A.&rft.au=Zissimos%2C+S.L.&rft.date=1993-04-01&rft.issn=0142-9612&rft.volume=14&rft.issue=5&rft.spage=341&rft.epage=348&rft_id=info:doi/10.1016%2F0142-9612%2893%2990052-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_0142_9612_93_90052_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon