Assessment of Grouped Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk
Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a mor...
Saved in:
Published in | International journal of environmental research and public health Vol. 18; no. 2; p. 504 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
09.01.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a more comprehensive assessment of cancer risk factors than was done in earlier studies that focused on only a few chemicals. Empirical evidence from epidemiologic studies shows that chemicals from different chemical classes have different magnitudes and directions of association with cancers. Given increasing data availability, there is a need for the development and assessment of statistical methods to model environmental cancer risk that considers a large number of diverse chemicals with different effects for different chemical classes. The method of grouped weighted quantile sum (GWQS) regression allows for multiple groups of chemicals to be considered in the model such that different magnitudes and directions of associations are possible for each group of chemicals. In this paper, we assessed the ability of GWQS regression to estimate exposure effects for multiple chemical groups and correctly identify important chemicals in each group using a simulation study. We compared the performance of GWQS regression with WQS regression, the least absolute shrinkage and selection operator (lasso), and the group lasso in estimating exposure effects and identifying important chemicals. The simulation study results demonstrate that GWQS is an effective method for modeling exposure to multiple groups of chemicals and compares favorably with other methods used in mixture analysis. As an application, we used GWQS regression in the California Childhood Leukemia Study (CCLS), a population-based case-control study of childhood leukemia in California to estimate exposure effects for many chemical classes while also adjusting for demographic factors. The CCLS analysis found evidence of a positive association between exposure to the herbicide dacthal and an increased risk of childhood leukemia. |
---|---|
AbstractList | Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a more comprehensive assessment of cancer risk factors than was done in earlier studies that focused on only a few chemicals. Empirical evidence from epidemiologic studies shows that chemicals from different chemical classes have different magnitudes and directions of association with cancers. Given increasing data availability, there is a need for the development and assessment of statistical methods to model environmental cancer risk that considers a large number of diverse chemicals with different effects for different chemical classes. The method of grouped weighted quantile sum (GWQS) regression allows for multiple groups of chemicals to be considered in the model such that different magnitudes and directions of associations are possible for each group of chemicals. In this paper, we assessed the ability of GWQS regression to estimate exposure effects for multiple chemical groups and correctly identify important chemicals in each group using a simulation study. We compared the performance of GWQS regression with WQS regression, the least absolute shrinkage and selection operator (lasso), and the group lasso in estimating exposure effects and identifying important chemicals. The simulation study results demonstrate that GWQS is an effective method for modeling exposure to multiple groups of chemicals and compares favorably with other methods used in mixture analysis. As an application, we used GWQS regression in the California Childhood Leukemia Study (CCLS), a population-based case-control study of childhood leukemia in California to estimate exposure effects for many chemical classes while also adjusting for demographic factors. The CCLS analysis found evidence of a positive association between exposure to the herbicide dacthal and an increased risk of childhood leukemia. Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a more comprehensive assessment of cancer risk factors than was done in earlier studies that focused on only a few chemicals. Empirical evidence from epidemiologic studies shows that chemicals from different chemical classes have different magnitudes and directions of association with cancers. Given increasing data availability, there is a need for the development and assessment of statistical methods to model environmental cancer risk that considers a large number of diverse chemicals with different effects for different chemical classes. The method of grouped weighted quantile sum (GWQS) regression allows for multiple groups of chemicals to be considered in the model such that different magnitudes and directions of associations are possible for each group of chemicals. In this paper, we assessed the ability of GWQS regression to estimate exposure effects for multiple chemical groups and correctly identify important chemicals in each group using a simulation study. We compared the performance of GWQS regression with WQS regression, the least absolute shrinkage and selection operator (lasso), and the group lasso in estimating exposure effects and identifying important chemicals. The simulation study results demonstrate that GWQS is an effective method for modeling exposure to multiple groups of chemicals and compares favorably with other methods used in mixture analysis. As an application, we used GWQS regression in the California Childhood Leukemia Study (CCLS), a population-based case-control study of childhood leukemia in California to estimate exposure effects for many chemical classes while also adjusting for demographic factors. The CCLS analysis found evidence of a positive association between exposure to the herbicide dacthal and an increased risk of childhood leukemia.Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a more comprehensive assessment of cancer risk factors than was done in earlier studies that focused on only a few chemicals. Empirical evidence from epidemiologic studies shows that chemicals from different chemical classes have different magnitudes and directions of association with cancers. Given increasing data availability, there is a need for the development and assessment of statistical methods to model environmental cancer risk that considers a large number of diverse chemicals with different effects for different chemical classes. The method of grouped weighted quantile sum (GWQS) regression allows for multiple groups of chemicals to be considered in the model such that different magnitudes and directions of associations are possible for each group of chemicals. In this paper, we assessed the ability of GWQS regression to estimate exposure effects for multiple chemical groups and correctly identify important chemicals in each group using a simulation study. We compared the performance of GWQS regression with WQS regression, the least absolute shrinkage and selection operator (lasso), and the group lasso in estimating exposure effects and identifying important chemicals. The simulation study results demonstrate that GWQS is an effective method for modeling exposure to multiple groups of chemicals and compares favorably with other methods used in mixture analysis. As an application, we used GWQS regression in the California Childhood Leukemia Study (CCLS), a population-based case-control study of childhood leukemia in California to estimate exposure effects for many chemical classes while also adjusting for demographic factors. The CCLS analysis found evidence of a positive association between exposure to the herbicide dacthal and an increased risk of childhood leukemia. |
Author | Ward, Mary H. Whitehead, Todd P. Rustom, Salem Metayer, Catherine Wheeler, David C. Carli, Matthew |
AuthorAffiliation | 3 Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; wardm@mail.nih.gov 2 Division of Epidemiology/Biostatistics, University of California, Berkeley School of Public Health, Berkeley, CA 94704-7394, USA; ToddPWhitehead@Berkeley.edu (T.P.W.); cmetayer@berkeley.edu (C.M.) 1 Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0032, USA; rustoms@mymail.vcu.edu (S.R.); carlimm@mymail.vcu.edu (M.C.) |
AuthorAffiliation_xml | – name: 1 Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0032, USA; rustoms@mymail.vcu.edu (S.R.); carlimm@mymail.vcu.edu (M.C.) – name: 2 Division of Epidemiology/Biostatistics, University of California, Berkeley School of Public Health, Berkeley, CA 94704-7394, USA; ToddPWhitehead@Berkeley.edu (T.P.W.); cmetayer@berkeley.edu (C.M.) – name: 3 Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; wardm@mail.nih.gov |
Author_xml | – sequence: 1 givenname: David C. surname: Wheeler fullname: Wheeler, David C. – sequence: 2 givenname: Salem surname: Rustom fullname: Rustom, Salem – sequence: 3 givenname: Matthew orcidid: 0000-0001-7387-1016 surname: Carli fullname: Carli, Matthew – sequence: 4 givenname: Todd P. surname: Whitehead fullname: Whitehead, Todd P. – sequence: 5 givenname: Mary H. surname: Ward fullname: Ward, Mary H. – sequence: 6 givenname: Catherine surname: Metayer fullname: Metayer, Catherine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33435473$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtrGzEUhUVIaB7tNssi6CYbO3rNSLMpBNM8ICHEaelSyJo7ttwZyZVmQvLvI-dhkkBW98L9zuEezj7a9sEDQoeUjDmvyLFbQlwtqCKMFERsoT1almQkSkK33-y7aD-lJSFcibL6gnY5F7wQku8hOEkJUurA9zg0-CyGYQU1_gtuvujzcjMY37sW8O3Q4SnMY4Zd8LgJEV-FGlrn53iygM5Z0-Ird98PGcHG13hivIWIpy79-4p2GtMm-PYyD9Cf01-_J-ejy-uzi8nJ5cgKJfpRIVVTGmDEWNYUCiS3ypKqEKqoDa0ry7iyhRAzURcVUEWFAi6s5GoGFZOUH6Cfz76rYdZBbXOqaFq9iq4z8UEH4_T7i3cLPQ93WiomOWPZ4OjFIIb_A6Redy5ZaFvjIQxJMyGlqJSqyoz--IAuwxB9jvdESaLKck19f_vR5pXXBjIwfgZsDClFaDYIJXpdsX5fcRaIDwLretPnUnIi134mewTegKwN |
CitedBy_id | crossref_primary_10_1021_acs_est_2c07807 crossref_primary_10_1016_j_envint_2024_108651 crossref_primary_10_1159_000541875 crossref_primary_10_1007_s12561_023_09415_4 crossref_primary_10_1007_s11356_022_23093_7 crossref_primary_10_1093_jncics_pkae122 crossref_primary_10_1016_j_envint_2022_107567 crossref_primary_10_1265_jjh_22009 crossref_primary_10_1016_j_envres_2022_113609 crossref_primary_10_59717_j_xinn_med_2023_100042 crossref_primary_10_1016_j_envpol_2024_123516 crossref_primary_10_1016_j_ecoenv_2025_118077 crossref_primary_10_1016_j_envres_2023_115506 crossref_primary_10_3390_ijerph19031369 crossref_primary_10_1186_s12940_022_00855_x crossref_primary_10_1136_oemed_2023_109112 crossref_primary_10_3390_ijerph19137819 crossref_primary_10_1093_exposome_osae005 crossref_primary_10_1039_D3FO02920D crossref_primary_10_1053_j_gastro_2024_10_041 crossref_primary_10_1007_s13253_023_00528_3 crossref_primary_10_1186_s12877_024_05001_5 crossref_primary_10_1017_S0007114523001435 crossref_primary_10_1289_EHP14418 crossref_primary_10_1080_19338244_2025_2480113 crossref_primary_10_1007_s11356_022_22353_w crossref_primary_10_1016_j_chemosphere_2024_142363 crossref_primary_10_3390_ijerph22030326 crossref_primary_10_1186_s12889_025_22274_6 crossref_primary_10_3390_ijerph18073486 crossref_primary_10_3390_nu15122677 crossref_primary_10_3389_fpubh_2024_1377685 crossref_primary_10_1016_j_envpol_2025_125709 crossref_primary_10_3390_toxics12120866 crossref_primary_10_1016_j_envres_2025_121171 crossref_primary_10_1089_chi_2024_0215 crossref_primary_10_1016_j_ecoenv_2024_117152 crossref_primary_10_1038_s41598_024_53038_8 |
Cites_doi | 10.1158/1055-9965.EPI-05-0456 10.1158/1055-9965.EPI-05-0556 10.1007/s11095-008-9661-9 10.1289/ehp.1408630 10.1111/j.2517-6161.1996.tb02080.x 10.1158/0008-5472.CAN-05-1755 10.1016/S1470-2045(13)70104-9 10.1097/01.ede.0000164811.25760.f1 10.1038/jes.2012.115 10.1093/ije/dys003 10.1371/journal.pmed.1000058 10.1002/ijc.22836 10.1371/journal.pone.0010746 10.1038/bjc.2011.489 10.2105/AJPH.2013.301835 10.1016/j.envres.2008.05.006 10.4310/SII.2009.v2.n3.a10 10.1016/j.envres.2014.04.033 10.1289/isee.2016.4698 10.1016/j.envres.2021.111501 10.1126/scitranslmed.3000247 10.1111/j.1467-9868.2005.00532.x 10.1007/s13253-014-0180-3 10.1016/S0140-6736(05)67725-2 10.1289/ehp.0900583 10.1002/ijc.22258 10.1126/science.1192603 10.1186/1476-069X-7-6 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ijerph18020504 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1660-4601 |
ExternalDocumentID | PMC7827322 33435473 10_3390_ijerph18020504 |
Genre | Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
GeographicLocations | United States--US California |
GeographicLocations_xml | – name: United States--US – name: California |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: N02CP11015 – fundername: NCI NIH HHS grantid: R21 CA238370 – fundername: NIH HHS grantid: R21CA238370 – fundername: NIEHS NIH HHS grantid: R01 ES009137 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 A8Z AADQD AAFWJ AAHBH AAYXX ABGAM ABUWG ACGFO ACGOD ACIWK ADBBV AENEX AFKRA AFRAH AFZYC AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN F5P FYUFA GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO Q2X RNS RPM SV3 TR2 UKHRP XSB 2XV 3V. ABJCF ATCPS AZQEC BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ IAO IEP M2P M7S M~E NPM PATMY PYCSY 7XB 8FK DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c484t-578f6ae20ac2f58e73c8c095485da1d9c238c544b4d59e18148e34c738be92713 |
IEDL.DBID | M48 |
ISSN | 1660-4601 1661-7827 |
IngestDate | Thu Aug 21 18:42:03 EDT 2025 Fri Jul 11 15:27:11 EDT 2025 Fri Jul 25 19:58:24 EDT 2025 Wed Feb 19 02:04:12 EST 2025 Tue Jul 01 04:30:33 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | environment cancer chemicals mixtures |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-578f6ae20ac2f58e73c8c095485da1d9c238c544b4d59e18148e34c738be92713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7387-1016 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph18020504 |
PMID | 33435473 |
PQID | 2477708666 |
PQPubID | 54923 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7827322 proquest_miscellaneous_2477498896 proquest_journals_2477708666 pubmed_primary_33435473 crossref_primary_10_3390_ijerph18020504 crossref_citationtrail_10_3390_ijerph18020504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-09 |
PublicationDateYYYYMMDD | 2021-01-09 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of environmental research and public health |
PublicationTitleAlternate | Int J Environ Res Public Health |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Whitehead (ref_17) 2014; 104 Tibshirani (ref_29) 1996; 58 ref_36 Cox (ref_34) 1991; 11 Danaei (ref_3) 2005; 366 Purdue (ref_13) 2006; 120 Mahajan (ref_39) 2007; 121 Hartge (ref_9) 2005; 65 Parkin (ref_2) 2011; 105 Carrico (ref_24) 2015; 20 Everett (ref_14) 2008; 108 Patel (ref_16) 2012; 41 ref_38 ref_15 Anand (ref_1) 2008; 25 Czarnota (ref_18) 2015; 123 Breheny (ref_31) 2009; 2 Colt (ref_32) 2008; 7 Rappaport (ref_22) 2010; 330 Colt (ref_7) 2005; 16 Brown (ref_10) 1990; 50 DeZiel (ref_35) 2014; 133 ref_25 Czarnota (ref_23) 2015; 14 Ioannidis (ref_19) 2009; 1 Loomis (ref_37) 2013; 14 Yuan (ref_30) 2006; 68 Zahm (ref_12) 1998; 106 Czarnota (ref_20) 2015; 14 Ward (ref_11) 2009; 117 Colt (ref_8) 2006; 15 Wild (ref_21) 2005; 14 ref_28 ref_27 ref_26 Metayer (ref_33) 2013; 23 ref_5 ref_4 ref_6 |
References_xml | – ident: ref_28 – volume: 14 start-page: 1847 year: 2005 ident: ref_21 article-title: Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology publication-title: Cancer Epidemiol. Biomark. Prev. doi: 10.1158/1055-9965.EPI-05-0456 – volume: 15 start-page: 251 year: 2006 ident: ref_8 article-title: Residential Insecticide Use and Risk of Non-Hodgkin’s Lymphoma publication-title: Cancer Epidemiol. Biomark. Prev. doi: 10.1158/1055-9965.EPI-05-0556 – volume: 25 start-page: 2097 year: 2008 ident: ref_1 article-title: Cancer is a preventable disease that requires major lifestyle changes publication-title: Pharm. Res. doi: 10.1007/s11095-008-9661-9 – volume: 123 start-page: 965 year: 2015 ident: ref_18 article-title: Analysis of Environmental Chemical Mixtures and Non-Hodgkin Lymphoma Risk in the NCI-SEER NHL Study publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1408630 – ident: ref_5 – volume: 58 start-page: 267 year: 1996 ident: ref_29 article-title: Regression Shrinkage and Selection Via the Lasso publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref_26 – volume: 65 start-page: 11214 year: 2005 ident: ref_9 article-title: Persistent Organochlorine Chemicals in Plasma and Risk of Non-Hodgkin’s Lymphoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-1755 – volume: 14 start-page: 287 year: 2013 ident: ref_37 article-title: Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(13)70104-9 – volume: 16 start-page: 516 year: 2005 ident: ref_7 article-title: Organochlorines in Carpet Dust and Non-Hodgkin Lymphoma publication-title: Epidemiology doi: 10.1097/01.ede.0000164811.25760.f1 – volume: 23 start-page: 363 year: 2013 ident: ref_33 article-title: Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia publication-title: J. Expo. Sci. Environ. Epidemiol. doi: 10.1038/jes.2012.115 – volume: 106 start-page: 893 year: 1998 ident: ref_12 article-title: Pesticides and childhood cancer publication-title: Environ. Health Perspect. – ident: ref_6 – volume: 41 start-page: 828 year: 2012 ident: ref_16 article-title: Systematic evaluation of environmental factors: Persistent pollutants and nutrients correlated with serum lipid levels publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dys003 – ident: ref_4 doi: 10.1371/journal.pmed.1000058 – volume: 121 start-page: 1799 year: 2007 ident: ref_39 article-title: Carbaryl exposure and incident cancer in the Agricultural Health Study publication-title: Int. J. Cancer doi: 10.1002/ijc.22836 – ident: ref_27 – ident: ref_15 doi: 10.1371/journal.pone.0010746 – volume: 105 start-page: S77 year: 2011 ident: ref_2 article-title: The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010 publication-title: Br. J. Cancer doi: 10.1038/bjc.2011.489 – volume: 104 start-page: 1320 year: 2014 ident: ref_17 article-title: Persistent Organic Pollutants in Dust From Older Homes: Learning From Lead publication-title: Am. J. Public Health doi: 10.2105/AJPH.2013.301835 – volume: 108 start-page: 94 year: 2008 ident: ref_14 article-title: Association of polychlorinated biphenyls with hypertension in the 1999–2002 National Health andNutrition Examination Survey publication-title: Environ. Res. doi: 10.1016/j.envres.2008.05.006 – volume: 2 start-page: 369 year: 2009 ident: ref_31 article-title: Penalized methods for bi-level variable selection publication-title: Stat. Interface doi: 10.4310/SII.2009.v2.n3.a10 – volume: 133 start-page: 388 year: 2014 ident: ref_35 article-title: Polycyclic aromatic hydrocarbons in residential dust and risk of childhood acute lymphoblastic leukemia publication-title: Environ. Res. doi: 10.1016/j.envres.2014.04.033 – ident: ref_25 doi: 10.1289/isee.2016.4698 – ident: ref_38 doi: 10.1016/j.envres.2021.111501 – volume: 1 start-page: 7ps8 year: 2009 ident: ref_19 article-title: Researching Genetic Versus Nongenetic Determinants of Disease: A Comparison and Proposed Unification publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3000247 – volume: 68 start-page: 49 year: 2006 ident: ref_30 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.1467-9868.2005.00532.x – volume: 11 start-page: 17 year: 1991 ident: ref_34 article-title: DCPA (Dacthal) publication-title: J. Pestic. Reform – volume: 14 start-page: 117 year: 2015 ident: ref_20 article-title: Evaluating Geographically Weighted Regression Models for Environmental Chemical Risk Analysis publication-title: Cancer Inform. – volume: 20 start-page: 100 year: 2015 ident: ref_24 article-title: Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1007/s13253-014-0180-3 – ident: ref_36 – volume: 366 start-page: 1784 year: 2005 ident: ref_3 article-title: Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors publication-title: Lancet doi: 10.1016/S0140-6736(05)67725-2 – volume: 117 start-page: 1007 year: 2009 ident: ref_11 article-title: Residential Exposure to Polychlorinated Biphenyls and Organochlorine Pesticides and Risk of Childhood Leukemia publication-title: Environ. Health Perspect. doi: 10.1289/ehp.0900583 – volume: 120 start-page: 642 year: 2006 ident: ref_13 article-title: Occupational exposure to organochlorine insecticides and cancer incidence in the Agricultural Health Study publication-title: Int. J. Cancer doi: 10.1002/ijc.22258 – volume: 330 start-page: 460 year: 2010 ident: ref_22 article-title: Environment and Disease Risks publication-title: Science doi: 10.1126/science.1192603 – volume: 50 start-page: 6585 year: 1990 ident: ref_10 article-title: Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota publication-title: Cancer Res. – volume: 14 start-page: 159 year: 2015 ident: ref_23 article-title: Assessment of Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk publication-title: Cancer Inform. – volume: 7 start-page: 1 year: 2008 ident: ref_32 article-title: Household vacuum cleaners vs. the high-volume surface sampler for collection of carpet dust samples in epidemiologic studies of children publication-title: Environ. Health doi: 10.1186/1476-069X-7-6 |
SSID | ssj0038469 |
Score | 2.476586 |
Snippet | Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 504 |
SubjectTerms | Cancer Case-Control Studies Chemicals Child Computer Simulation Environmental Exposure - analysis Generalized linear models Humans Lagrange multiplier Leukemia Neoplasms - chemically induced Neoplasms - epidemiology PCB Polychlorinated biphenyls Regularization methods Research Design Risk Assessment Risk Factors |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9-vAgifludEkHwqbg1aZM8iQynCApOh76VNMm0fnTTbeCf712_dIq-FXLQ9u5yd7m7_I6QA4MQ45o53wiTYOqGgx20zGfM9JXkgZV5KebyKjrv8Yv78L5MuI3KtsrKJuaG2g4M5siPAi6EgPg7io6Hbz5OjcLqajlCY5bMt8DTYEuX7JxVlpiBb8XwtwU-yAdPKArQRgbH_KP0ycF_IPxZMyyHtNVO6Vek-bNh8psH6iyTpTJ0pCeFrFfIjMtWyWKRd6PFdaI14k5qqE066NM8teQsvcszoPBwPQFWgiWgN5NX2nUPRRtsRiF2pTgXDW-n0wpFgF6mH1hhGFGdWdpGBXmn3XT0vE56ndPb9rlfjlLwDZd87MO-7EfaBU1tgn4onWBGmiaCvYVWt6wy4LlNyHnCbagceH0uHeNGMJk4FcBBdoPMZYPMbREqIh3m4-bx_oKzLelUYrQWiRHWREp4xK94GZsSZxzHXbzEcN5A3sfTvPfIYU0_LBA2_qRsVKKJy502ir_0wiP79TLsESx86MwNJgUNV1IqoNksJFm_ijEIGLlgHhFTMq4JEH97eiVLH3McblQpsIfb_3_WDlkIsA8G0zaqQebG7xO3C4HMONnLtfUTjo3zVw priority: 102 providerName: ProQuest |
Title | Assessment of Grouped Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33435473 https://www.proquest.com/docview/2477708666 https://www.proquest.com/docview/2477498896 https://pubmed.ncbi.nlm.nih.gov/PMC7827322 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8NkBASQtvYoIxVnjSJp2xt7MT2wzSxioImFW1lFX2LHNtlHSWFfkjw33OXNNk64IUXK1LOSuQ7-z79O4CPliDGDfeBlTal0I3Ac9DxgHM70EqETuWpmM5pfNIT3_tR_2_902IBp4-6dtRPqjcZfbq9ufuKG_4LeZzosn8e_vH4TwRl1ogIGnQNtZKkbgYdUWUUOOpZMoWbqI8C1IqyAHB8ZP4GrHOORoSQfFlXPTBA_6-j_EcxtV_C1sKiZIeFCLyCFz57DZtFOI4Vt4y2wR9WCJxsPGB5xMk7dp4HRvHh5xxXGA8Idja_Yl1_UVTHZgxNWkbt0ujSOivBBVhneEuJhykzmWMtkpsJ6w6nl2-g1z761ToJFh0WAiuUmAW4XQex8WHD2HAQKS-5VbZBGHCRM02nLSp0GwmRChdpj8aAUJ4LK7lKvQ7Rv30Lq9k487vAZGyivAs9XWvwrqm8Tq0xMrXS2VjLGgTlWiZ2AT9OXTBGCbohxIZkmQ01OKjorwvgjScp90vWJKX8JKGQUqK7Fsc1-FC9xq1D-RCT-fG8oBFaKY00OwUnq0-VIlADucTjioBguZffZMPfOTw3SRcek3vPnvkONkKqnKFAj96H1dlk7t-j6TNL67Ai-xJH1WrS2D6uw9q3o9Mf3Xou7ffJOwhK |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGeAAJTWx8HWwjSCCeqt01aZM8oGkaHLePm8TYxN66NMmx20Zv291p8E_xN85u2sKB4G1vlWK1le3Yjh3_DPDaEsS44T6y0uaUuhFoBx2POLcDrUTsVFmK6e-lvUOxfZQczcHPuheGrlXWNrE01G5kKUe-FgspJcbfabp-cRnR1CiqrtYjNIJa7Pgf13hkG7_beo_yfRPH3Q8Hm72omioQWaHEJEIVHaTGx21j40GivORW2TbhniXOdJy26MRsIkQuXKI9OkChPBdWcpV7HeOZDt97B-4Kjp6cOtO7H2vLz9GXU7jdQZ8XoeeVASQSCdtrw1OPfCO4tXZSDYVrnOBfke2fFzR_83jdh7BQhapsI-jWIsz5YgkehDwfC-1Lj8BvNNCebDRgZSrLO_alzLjiw6cpig4tD_s8_cb2_ddw7bZgGCszmsNG3fCsRi1g_eF3qmiMmSkc2ySFvGL7w_HZYzi8FSY_gfliVPhnwGRqknK8PfVLeNdRXufWGJlb6WyqZQuimpeZrXDNabzGeYbnG-J9Nsv7Frxt6C8Cosc_KZdr0WTVzh5nv_SwBa-aZdyTVGgxhR9NA43QSmmkeRok2XyKcwxQheQtkDMybggI73t2pRielLjfpFJof5___7dewr3eQX83293a23kB92O6g0MpI70M85OrqV_BIGqSr5aay-D4trfKDdFULyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJsbEGMGvE8Q10fjU3F132919IIYcXkCEKErkrW53t3p-9IC7C_Cv8dcx022rp5E33prspG3me2dnfwPwwhLEuOE-stLmVLoR6Acdjzi3hVYidqo6itndS7cOxNvD5HABLpq7MNRW2fjEylG7saUaeTcWUkrMv9O0W9RtEe83h6-PjiOaIEUnrc04jaAiO_78FLdvk_XtTZT1yzgevvk02IrqCQORFUpMI1TXIjU-7hkbF4nykltle4SBljjTd9piQLOJELlwifYYDIXyXFjJVe51jPs7fO8NuCm5VGRjatC2l3CM65R69zH-RRiFZQCM5Fz3uqPvHnlI0Gu9pB4Q1wbEf7Lcv5s1_4h-w3twt05b2UbQsyVY8OUy3Ak1PxauMt0Hv9HCfLJxwaqylnfsc1V9xYcPMxQjeiH2cfaL7fuvoQW3ZJg3M5rJRjfjWYNgwHZHZ3S6MWGmdGxAynnC9keTHw_g4FqY_BAWy3HpHwOTqUmqUfd0d8K7vvI6t8bI3EpnUy07EDW8zGyNcU6jNn5muNch3mfzvO_Aq5b-KKB7_JdytRFNVlv5JPutkx143i6jfdKhiyn9eBZohFZKI82jIMn2U5xjsiok74Cck3FLQNjf8yvl6FuFAU4qhb74ydW_9QxuoZFk77b3dlbgdkztOFQ90quwOD2Z-aeYT03ztUpxGXy5bku5BGaiMy0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+Grouped+Weighted+Quantile+Sum+Regression+for+Modeling+Chemical+Mixtures+and+Cancer+Risk&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Wheeler%2C+David+C.&rft.au=Rustom%2C+Salem&rft.au=Carli%2C+Matthew&rft.au=Whitehead%2C+Todd+P.&rft.date=2021-01-09&rft.pub=MDPI&rft.issn=1661-7827&rft.eissn=1660-4601&rft.volume=18&rft.issue=2&rft_id=info:doi/10.3390%2Fijerph18020504&rft_id=info%3Apmid%2F33435473&rft.externalDocID=PMC7827322 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon |