Assessment of Grouped Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk

Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a mor...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 18; no. 2; p. 504
Main Authors Wheeler, David C., Rustom, Salem, Carli, Matthew, Whitehead, Todd P., Ward, Mary H., Metayer, Catherine
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 09.01.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a more comprehensive assessment of cancer risk factors than was done in earlier studies that focused on only a few chemicals. Empirical evidence from epidemiologic studies shows that chemicals from different chemical classes have different magnitudes and directions of association with cancers. Given increasing data availability, there is a need for the development and assessment of statistical methods to model environmental cancer risk that considers a large number of diverse chemicals with different effects for different chemical classes. The method of grouped weighted quantile sum (GWQS) regression allows for multiple groups of chemicals to be considered in the model such that different magnitudes and directions of associations are possible for each group of chemicals. In this paper, we assessed the ability of GWQS regression to estimate exposure effects for multiple chemical groups and correctly identify important chemicals in each group using a simulation study. We compared the performance of GWQS regression with WQS regression, the least absolute shrinkage and selection operator (lasso), and the group lasso in estimating exposure effects and identifying important chemicals. The simulation study results demonstrate that GWQS is an effective method for modeling exposure to multiple groups of chemicals and compares favorably with other methods used in mixture analysis. As an application, we used GWQS regression in the California Childhood Leukemia Study (CCLS), a population-based case-control study of childhood leukemia in California to estimate exposure effects for many chemical classes while also adjusting for demographic factors. The CCLS analysis found evidence of a positive association between exposure to the herbicide dacthal and an increased risk of childhood leukemia.
AbstractList Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a more comprehensive assessment of cancer risk factors than was done in earlier studies that focused on only a few chemicals. Empirical evidence from epidemiologic studies shows that chemicals from different chemical classes have different magnitudes and directions of association with cancers. Given increasing data availability, there is a need for the development and assessment of statistical methods to model environmental cancer risk that considers a large number of diverse chemicals with different effects for different chemical classes. The method of grouped weighted quantile sum (GWQS) regression allows for multiple groups of chemicals to be considered in the model such that different magnitudes and directions of associations are possible for each group of chemicals. In this paper, we assessed the ability of GWQS regression to estimate exposure effects for multiple chemical groups and correctly identify important chemicals in each group using a simulation study. We compared the performance of GWQS regression with WQS regression, the least absolute shrinkage and selection operator (lasso), and the group lasso in estimating exposure effects and identifying important chemicals. The simulation study results demonstrate that GWQS is an effective method for modeling exposure to multiple groups of chemicals and compares favorably with other methods used in mixture analysis. As an application, we used GWQS regression in the California Childhood Leukemia Study (CCLS), a population-based case-control study of childhood leukemia in California to estimate exposure effects for many chemical classes while also adjusting for demographic factors. The CCLS analysis found evidence of a positive association between exposure to the herbicide dacthal and an increased risk of childhood leukemia.
Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a more comprehensive assessment of cancer risk factors than was done in earlier studies that focused on only a few chemicals. Empirical evidence from epidemiologic studies shows that chemicals from different chemical classes have different magnitudes and directions of association with cancers. Given increasing data availability, there is a need for the development and assessment of statistical methods to model environmental cancer risk that considers a large number of diverse chemicals with different effects for different chemical classes. The method of grouped weighted quantile sum (GWQS) regression allows for multiple groups of chemicals to be considered in the model such that different magnitudes and directions of associations are possible for each group of chemicals. In this paper, we assessed the ability of GWQS regression to estimate exposure effects for multiple chemical groups and correctly identify important chemicals in each group using a simulation study. We compared the performance of GWQS regression with WQS regression, the least absolute shrinkage and selection operator (lasso), and the group lasso in estimating exposure effects and identifying important chemicals. The simulation study results demonstrate that GWQS is an effective method for modeling exposure to multiple groups of chemicals and compares favorably with other methods used in mixture analysis. As an application, we used GWQS regression in the California Childhood Leukemia Study (CCLS), a population-based case-control study of childhood leukemia in California to estimate exposure effects for many chemical classes while also adjusting for demographic factors. The CCLS analysis found evidence of a positive association between exposure to the herbicide dacthal and an increased risk of childhood leukemia.Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a more comprehensive assessment of cancer risk factors than was done in earlier studies that focused on only a few chemicals. Empirical evidence from epidemiologic studies shows that chemicals from different chemical classes have different magnitudes and directions of association with cancers. Given increasing data availability, there is a need for the development and assessment of statistical methods to model environmental cancer risk that considers a large number of diverse chemicals with different effects for different chemical classes. The method of grouped weighted quantile sum (GWQS) regression allows for multiple groups of chemicals to be considered in the model such that different magnitudes and directions of associations are possible for each group of chemicals. In this paper, we assessed the ability of GWQS regression to estimate exposure effects for multiple chemical groups and correctly identify important chemicals in each group using a simulation study. We compared the performance of GWQS regression with WQS regression, the least absolute shrinkage and selection operator (lasso), and the group lasso in estimating exposure effects and identifying important chemicals. The simulation study results demonstrate that GWQS is an effective method for modeling exposure to multiple groups of chemicals and compares favorably with other methods used in mixture analysis. As an application, we used GWQS regression in the California Childhood Leukemia Study (CCLS), a population-based case-control study of childhood leukemia in California to estimate exposure effects for many chemical classes while also adjusting for demographic factors. The CCLS analysis found evidence of a positive association between exposure to the herbicide dacthal and an increased risk of childhood leukemia.
Author Ward, Mary H.
Whitehead, Todd P.
Rustom, Salem
Metayer, Catherine
Wheeler, David C.
Carli, Matthew
AuthorAffiliation 3 Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; wardm@mail.nih.gov
2 Division of Epidemiology/Biostatistics, University of California, Berkeley School of Public Health, Berkeley, CA 94704-7394, USA; ToddPWhitehead@Berkeley.edu (T.P.W.); cmetayer@berkeley.edu (C.M.)
1 Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0032, USA; rustoms@mymail.vcu.edu (S.R.); carlimm@mymail.vcu.edu (M.C.)
AuthorAffiliation_xml – name: 1 Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0032, USA; rustoms@mymail.vcu.edu (S.R.); carlimm@mymail.vcu.edu (M.C.)
– name: 2 Division of Epidemiology/Biostatistics, University of California, Berkeley School of Public Health, Berkeley, CA 94704-7394, USA; ToddPWhitehead@Berkeley.edu (T.P.W.); cmetayer@berkeley.edu (C.M.)
– name: 3 Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; wardm@mail.nih.gov
Author_xml – sequence: 1
  givenname: David C.
  surname: Wheeler
  fullname: Wheeler, David C.
– sequence: 2
  givenname: Salem
  surname: Rustom
  fullname: Rustom, Salem
– sequence: 3
  givenname: Matthew
  orcidid: 0000-0001-7387-1016
  surname: Carli
  fullname: Carli, Matthew
– sequence: 4
  givenname: Todd P.
  surname: Whitehead
  fullname: Whitehead, Todd P.
– sequence: 5
  givenname: Mary H.
  surname: Ward
  fullname: Ward, Mary H.
– sequence: 6
  givenname: Catherine
  surname: Metayer
  fullname: Metayer, Catherine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33435473$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtrGzEUhUVIaB7tNssi6CYbO3rNSLMpBNM8ICHEaelSyJo7ttwZyZVmQvLvI-dhkkBW98L9zuEezj7a9sEDQoeUjDmvyLFbQlwtqCKMFERsoT1almQkSkK33-y7aD-lJSFcibL6gnY5F7wQku8hOEkJUurA9zg0-CyGYQU1_gtuvujzcjMY37sW8O3Q4SnMY4Zd8LgJEV-FGlrn53iygM5Z0-Ird98PGcHG13hivIWIpy79-4p2GtMm-PYyD9Cf01-_J-ejy-uzi8nJ5cgKJfpRIVVTGmDEWNYUCiS3ypKqEKqoDa0ry7iyhRAzURcVUEWFAi6s5GoGFZOUH6Cfz76rYdZBbXOqaFq9iq4z8UEH4_T7i3cLPQ93WiomOWPZ4OjFIIb_A6Redy5ZaFvjIQxJMyGlqJSqyoz--IAuwxB9jvdESaLKck19f_vR5pXXBjIwfgZsDClFaDYIJXpdsX5fcRaIDwLretPnUnIi134mewTegKwN
CitedBy_id crossref_primary_10_1021_acs_est_2c07807
crossref_primary_10_1016_j_envint_2024_108651
crossref_primary_10_1159_000541875
crossref_primary_10_1007_s12561_023_09415_4
crossref_primary_10_1007_s11356_022_23093_7
crossref_primary_10_1093_jncics_pkae122
crossref_primary_10_1016_j_envint_2022_107567
crossref_primary_10_1265_jjh_22009
crossref_primary_10_1016_j_envres_2022_113609
crossref_primary_10_59717_j_xinn_med_2023_100042
crossref_primary_10_1016_j_envpol_2024_123516
crossref_primary_10_1016_j_ecoenv_2025_118077
crossref_primary_10_1016_j_envres_2023_115506
crossref_primary_10_3390_ijerph19031369
crossref_primary_10_1186_s12940_022_00855_x
crossref_primary_10_1136_oemed_2023_109112
crossref_primary_10_3390_ijerph19137819
crossref_primary_10_1093_exposome_osae005
crossref_primary_10_1039_D3FO02920D
crossref_primary_10_1053_j_gastro_2024_10_041
crossref_primary_10_1007_s13253_023_00528_3
crossref_primary_10_1186_s12877_024_05001_5
crossref_primary_10_1017_S0007114523001435
crossref_primary_10_1289_EHP14418
crossref_primary_10_1080_19338244_2025_2480113
crossref_primary_10_1007_s11356_022_22353_w
crossref_primary_10_1016_j_chemosphere_2024_142363
crossref_primary_10_3390_ijerph22030326
crossref_primary_10_1186_s12889_025_22274_6
crossref_primary_10_3390_ijerph18073486
crossref_primary_10_3390_nu15122677
crossref_primary_10_3389_fpubh_2024_1377685
crossref_primary_10_1016_j_envpol_2025_125709
crossref_primary_10_3390_toxics12120866
crossref_primary_10_1016_j_envres_2025_121171
crossref_primary_10_1089_chi_2024_0215
crossref_primary_10_1016_j_ecoenv_2024_117152
crossref_primary_10_1038_s41598_024_53038_8
Cites_doi 10.1158/1055-9965.EPI-05-0456
10.1158/1055-9965.EPI-05-0556
10.1007/s11095-008-9661-9
10.1289/ehp.1408630
10.1111/j.2517-6161.1996.tb02080.x
10.1158/0008-5472.CAN-05-1755
10.1016/S1470-2045(13)70104-9
10.1097/01.ede.0000164811.25760.f1
10.1038/jes.2012.115
10.1093/ije/dys003
10.1371/journal.pmed.1000058
10.1002/ijc.22836
10.1371/journal.pone.0010746
10.1038/bjc.2011.489
10.2105/AJPH.2013.301835
10.1016/j.envres.2008.05.006
10.4310/SII.2009.v2.n3.a10
10.1016/j.envres.2014.04.033
10.1289/isee.2016.4698
10.1016/j.envres.2021.111501
10.1126/scitranslmed.3000247
10.1111/j.1467-9868.2005.00532.x
10.1007/s13253-014-0180-3
10.1016/S0140-6736(05)67725-2
10.1289/ehp.0900583
10.1002/ijc.22258
10.1126/science.1192603
10.1186/1476-069X-7-6
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ijerph18020504
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1660-4601
ExternalDocumentID PMC7827322
33435473
10_3390_ijerph18020504
Genre Journal Article
Research Support, N.I.H., Intramural
Research Support, N.I.H., Extramural
GeographicLocations United States--US
California
GeographicLocations_xml – name: United States--US
– name: California
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: N02CP11015
– fundername: NCI NIH HHS
  grantid: R21 CA238370
– fundername: NIH HHS
  grantid: R21CA238370
– fundername: NIEHS NIH HHS
  grantid: R01 ES009137
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABGAM
ABUWG
ACGFO
ACGOD
ACIWK
ADBBV
AENEX
AFKRA
AFRAH
AFZYC
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
Q2X
RNS
RPM
SV3
TR2
UKHRP
XSB
2XV
3V.
ABJCF
ATCPS
AZQEC
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
IAO
IEP
M2P
M7S
M~E
NPM
PATMY
PYCSY
7XB
8FK
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c484t-578f6ae20ac2f58e73c8c095485da1d9c238c544b4d59e18148e34c738be92713
IEDL.DBID M48
ISSN 1660-4601
1661-7827
IngestDate Thu Aug 21 18:42:03 EDT 2025
Fri Jul 11 15:27:11 EDT 2025
Fri Jul 25 19:58:24 EDT 2025
Wed Feb 19 02:04:12 EST 2025
Tue Jul 01 04:30:33 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords environment
cancer
chemicals
mixtures
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-578f6ae20ac2f58e73c8c095485da1d9c238c544b4d59e18148e34c738be92713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7387-1016
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph18020504
PMID 33435473
PQID 2477708666
PQPubID 54923
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7827322
proquest_miscellaneous_2477498896
proquest_journals_2477708666
pubmed_primary_33435473
crossref_primary_10_3390_ijerph18020504
crossref_citationtrail_10_3390_ijerph18020504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-09
PublicationDateYYYYMMDD 2021-01-09
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of environmental research and public health
PublicationTitleAlternate Int J Environ Res Public Health
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Whitehead (ref_17) 2014; 104
Tibshirani (ref_29) 1996; 58
ref_36
Cox (ref_34) 1991; 11
Danaei (ref_3) 2005; 366
Purdue (ref_13) 2006; 120
Mahajan (ref_39) 2007; 121
Hartge (ref_9) 2005; 65
Parkin (ref_2) 2011; 105
Carrico (ref_24) 2015; 20
Everett (ref_14) 2008; 108
Patel (ref_16) 2012; 41
ref_38
ref_15
Anand (ref_1) 2008; 25
Czarnota (ref_18) 2015; 123
Breheny (ref_31) 2009; 2
Colt (ref_32) 2008; 7
Rappaport (ref_22) 2010; 330
Colt (ref_7) 2005; 16
Brown (ref_10) 1990; 50
DeZiel (ref_35) 2014; 133
ref_25
Czarnota (ref_23) 2015; 14
Ioannidis (ref_19) 2009; 1
Loomis (ref_37) 2013; 14
Yuan (ref_30) 2006; 68
Zahm (ref_12) 1998; 106
Czarnota (ref_20) 2015; 14
Ward (ref_11) 2009; 117
Colt (ref_8) 2006; 15
Wild (ref_21) 2005; 14
ref_28
ref_27
ref_26
Metayer (ref_33) 2013; 23
ref_5
ref_4
ref_6
References_xml – ident: ref_28
– volume: 14
  start-page: 1847
  year: 2005
  ident: ref_21
  article-title: Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology
  publication-title: Cancer Epidemiol. Biomark. Prev.
  doi: 10.1158/1055-9965.EPI-05-0456
– volume: 15
  start-page: 251
  year: 2006
  ident: ref_8
  article-title: Residential Insecticide Use and Risk of Non-Hodgkin’s Lymphoma
  publication-title: Cancer Epidemiol. Biomark. Prev.
  doi: 10.1158/1055-9965.EPI-05-0556
– volume: 25
  start-page: 2097
  year: 2008
  ident: ref_1
  article-title: Cancer is a preventable disease that requires major lifestyle changes
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-008-9661-9
– volume: 123
  start-page: 965
  year: 2015
  ident: ref_18
  article-title: Analysis of Environmental Chemical Mixtures and Non-Hodgkin Lymphoma Risk in the NCI-SEER NHL Study
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1408630
– ident: ref_5
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_29
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref_26
– volume: 65
  start-page: 11214
  year: 2005
  ident: ref_9
  article-title: Persistent Organochlorine Chemicals in Plasma and Risk of Non-Hodgkin’s Lymphoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-1755
– volume: 14
  start-page: 287
  year: 2013
  ident: ref_37
  article-title: Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(13)70104-9
– volume: 16
  start-page: 516
  year: 2005
  ident: ref_7
  article-title: Organochlorines in Carpet Dust and Non-Hodgkin Lymphoma
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000164811.25760.f1
– volume: 23
  start-page: 363
  year: 2013
  ident: ref_33
  article-title: Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/jes.2012.115
– volume: 106
  start-page: 893
  year: 1998
  ident: ref_12
  article-title: Pesticides and childhood cancer
  publication-title: Environ. Health Perspect.
– ident: ref_6
– volume: 41
  start-page: 828
  year: 2012
  ident: ref_16
  article-title: Systematic evaluation of environmental factors: Persistent pollutants and nutrients correlated with serum lipid levels
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dys003
– ident: ref_4
  doi: 10.1371/journal.pmed.1000058
– volume: 121
  start-page: 1799
  year: 2007
  ident: ref_39
  article-title: Carbaryl exposure and incident cancer in the Agricultural Health Study
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.22836
– ident: ref_27
– ident: ref_15
  doi: 10.1371/journal.pone.0010746
– volume: 105
  start-page: S77
  year: 2011
  ident: ref_2
  article-title: The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2011.489
– volume: 104
  start-page: 1320
  year: 2014
  ident: ref_17
  article-title: Persistent Organic Pollutants in Dust From Older Homes: Learning From Lead
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2013.301835
– volume: 108
  start-page: 94
  year: 2008
  ident: ref_14
  article-title: Association of polychlorinated biphenyls with hypertension in the 1999–2002 National Health andNutrition Examination Survey
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2008.05.006
– volume: 2
  start-page: 369
  year: 2009
  ident: ref_31
  article-title: Penalized methods for bi-level variable selection
  publication-title: Stat. Interface
  doi: 10.4310/SII.2009.v2.n3.a10
– volume: 133
  start-page: 388
  year: 2014
  ident: ref_35
  article-title: Polycyclic aromatic hydrocarbons in residential dust and risk of childhood acute lymphoblastic leukemia
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2014.04.033
– ident: ref_25
  doi: 10.1289/isee.2016.4698
– ident: ref_38
  doi: 10.1016/j.envres.2021.111501
– volume: 1
  start-page: 7ps8
  year: 2009
  ident: ref_19
  article-title: Researching Genetic Versus Nongenetic Determinants of Disease: A Comparison and Proposed Unification
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3000247
– volume: 68
  start-page: 49
  year: 2006
  ident: ref_30
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 11
  start-page: 17
  year: 1991
  ident: ref_34
  article-title: DCPA (Dacthal)
  publication-title: J. Pestic. Reform
– volume: 14
  start-page: 117
  year: 2015
  ident: ref_20
  article-title: Evaluating Geographically Weighted Regression Models for Environmental Chemical Risk Analysis
  publication-title: Cancer Inform.
– volume: 20
  start-page: 100
  year: 2015
  ident: ref_24
  article-title: Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1007/s13253-014-0180-3
– ident: ref_36
– volume: 366
  start-page: 1784
  year: 2005
  ident: ref_3
  article-title: Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67725-2
– volume: 117
  start-page: 1007
  year: 2009
  ident: ref_11
  article-title: Residential Exposure to Polychlorinated Biphenyls and Organochlorine Pesticides and Risk of Childhood Leukemia
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0900583
– volume: 120
  start-page: 642
  year: 2006
  ident: ref_13
  article-title: Occupational exposure to organochlorine insecticides and cancer incidence in the Agricultural Health Study
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.22258
– volume: 330
  start-page: 460
  year: 2010
  ident: ref_22
  article-title: Environment and Disease Risks
  publication-title: Science
  doi: 10.1126/science.1192603
– volume: 50
  start-page: 6585
  year: 1990
  ident: ref_10
  article-title: Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota
  publication-title: Cancer Res.
– volume: 14
  start-page: 159
  year: 2015
  ident: ref_23
  article-title: Assessment of Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk
  publication-title: Cancer Inform.
– volume: 7
  start-page: 1
  year: 2008
  ident: ref_32
  article-title: Household vacuum cleaners vs. the high-volume surface sampler for collection of carpet dust samples in epidemiologic studies of children
  publication-title: Environ. Health
  doi: 10.1186/1476-069X-7-6
SSID ssj0038469
Score 2.476586
Snippet Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 504
SubjectTerms Cancer
Case-Control Studies
Chemicals
Child
Computer Simulation
Environmental Exposure - analysis
Generalized linear models
Humans
Lagrange multiplier
Leukemia
Neoplasms - chemically induced
Neoplasms - epidemiology
PCB
Polychlorinated biphenyls
Regularization methods
Research Design
Risk Assessment
Risk Factors
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9-vAgifludEkHwqbg1aZM8iQynCApOh76VNMm0fnTTbeCf712_dIq-FXLQ9u5yd7m7_I6QA4MQ45o53wiTYOqGgx20zGfM9JXkgZV5KebyKjrv8Yv78L5MuI3KtsrKJuaG2g4M5siPAi6EgPg7io6Hbz5OjcLqajlCY5bMt8DTYEuX7JxVlpiBb8XwtwU-yAdPKArQRgbH_KP0ycF_IPxZMyyHtNVO6Vek-bNh8psH6iyTpTJ0pCeFrFfIjMtWyWKRd6PFdaI14k5qqE066NM8teQsvcszoPBwPQFWgiWgN5NX2nUPRRtsRiF2pTgXDW-n0wpFgF6mH1hhGFGdWdpGBXmn3XT0vE56ndPb9rlfjlLwDZd87MO-7EfaBU1tgn4onWBGmiaCvYVWt6wy4LlNyHnCbagceH0uHeNGMJk4FcBBdoPMZYPMbREqIh3m4-bx_oKzLelUYrQWiRHWREp4xK94GZsSZxzHXbzEcN5A3sfTvPfIYU0_LBA2_qRsVKKJy502ir_0wiP79TLsESx86MwNJgUNV1IqoNksJFm_ijEIGLlgHhFTMq4JEH97eiVLH3McblQpsIfb_3_WDlkIsA8G0zaqQebG7xO3C4HMONnLtfUTjo3zVw
  priority: 102
  providerName: ProQuest
Title Assessment of Grouped Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk
URI https://www.ncbi.nlm.nih.gov/pubmed/33435473
https://www.proquest.com/docview/2477708666
https://www.proquest.com/docview/2477498896
https://pubmed.ncbi.nlm.nih.gov/PMC7827322
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8NkBASQtvYoIxVnjSJp2xt7MT2wzSxioImFW1lFX2LHNtlHSWFfkjw33OXNNk64IUXK1LOSuQ7-z79O4CPliDGDfeBlTal0I3Ac9DxgHM70EqETuWpmM5pfNIT3_tR_2_902IBp4-6dtRPqjcZfbq9ufuKG_4LeZzosn8e_vH4TwRl1ogIGnQNtZKkbgYdUWUUOOpZMoWbqI8C1IqyAHB8ZP4GrHOORoSQfFlXPTBA_6-j_EcxtV_C1sKiZIeFCLyCFz57DZtFOI4Vt4y2wR9WCJxsPGB5xMk7dp4HRvHh5xxXGA8Idja_Yl1_UVTHZgxNWkbt0ujSOivBBVhneEuJhykzmWMtkpsJ6w6nl2-g1z761ToJFh0WAiuUmAW4XQex8WHD2HAQKS-5VbZBGHCRM02nLSp0GwmRChdpj8aAUJ4LK7lKvQ7Rv30Lq9k487vAZGyivAs9XWvwrqm8Tq0xMrXS2VjLGgTlWiZ2AT9OXTBGCbohxIZkmQ01OKjorwvgjScp90vWJKX8JKGQUqK7Fsc1-FC9xq1D-RCT-fG8oBFaKY00OwUnq0-VIlADucTjioBguZffZMPfOTw3SRcek3vPnvkONkKqnKFAj96H1dlk7t-j6TNL67Ai-xJH1WrS2D6uw9q3o9Mf3Xou7ffJOwhK
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGeAAJTWx8HWwjSCCeqt01aZM8oGkaHLePm8TYxN66NMmx20Zv291p8E_xN85u2sKB4G1vlWK1le3Yjh3_DPDaEsS44T6y0uaUuhFoBx2POLcDrUTsVFmK6e-lvUOxfZQczcHPuheGrlXWNrE01G5kKUe-FgspJcbfabp-cRnR1CiqrtYjNIJa7Pgf13hkG7_beo_yfRPH3Q8Hm72omioQWaHEJEIVHaTGx21j40GivORW2TbhniXOdJy26MRsIkQuXKI9OkChPBdWcpV7HeOZDt97B-4Kjp6cOtO7H2vLz9GXU7jdQZ8XoeeVASQSCdtrw1OPfCO4tXZSDYVrnOBfke2fFzR_83jdh7BQhapsI-jWIsz5YgkehDwfC-1Lj8BvNNCebDRgZSrLO_alzLjiw6cpig4tD_s8_cb2_ddw7bZgGCszmsNG3fCsRi1g_eF3qmiMmSkc2ySFvGL7w_HZYzi8FSY_gfliVPhnwGRqknK8PfVLeNdRXufWGJlb6WyqZQuimpeZrXDNabzGeYbnG-J9Nsv7Frxt6C8Cosc_KZdr0WTVzh5nv_SwBa-aZdyTVGgxhR9NA43QSmmkeRok2XyKcwxQheQtkDMybggI73t2pRielLjfpFJof5___7dewr3eQX83293a23kB92O6g0MpI70M85OrqV_BIGqSr5aay-D4trfKDdFULyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJsbEGMGvE8Q10fjU3F132919IIYcXkCEKErkrW53t3p-9IC7C_Cv8dcx022rp5E33prspG3me2dnfwPwwhLEuOE-stLmVLoR6Acdjzi3hVYidqo6itndS7cOxNvD5HABLpq7MNRW2fjEylG7saUaeTcWUkrMv9O0W9RtEe83h6-PjiOaIEUnrc04jaAiO_78FLdvk_XtTZT1yzgevvk02IrqCQORFUpMI1TXIjU-7hkbF4nykltle4SBljjTd9piQLOJELlwifYYDIXyXFjJVe51jPs7fO8NuCm5VGRjatC2l3CM65R69zH-RRiFZQCM5Fz3uqPvHnlI0Gu9pB4Q1wbEf7Lcv5s1_4h-w3twt05b2UbQsyVY8OUy3Ak1PxauMt0Hv9HCfLJxwaqylnfsc1V9xYcPMxQjeiH2cfaL7fuvoQW3ZJg3M5rJRjfjWYNgwHZHZ3S6MWGmdGxAynnC9keTHw_g4FqY_BAWy3HpHwOTqUmqUfd0d8K7vvI6t8bI3EpnUy07EDW8zGyNcU6jNn5muNch3mfzvO_Aq5b-KKB7_JdytRFNVlv5JPutkx143i6jfdKhiyn9eBZohFZKI82jIMn2U5xjsiok74Cck3FLQNjf8yvl6FuFAU4qhb74ydW_9QxuoZFk77b3dlbgdkztOFQ90quwOD2Z-aeYT03ztUpxGXy5bku5BGaiMy0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+Grouped+Weighted+Quantile+Sum+Regression+for+Modeling+Chemical+Mixtures+and+Cancer+Risk&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Wheeler%2C+David+C.&rft.au=Rustom%2C+Salem&rft.au=Carli%2C+Matthew&rft.au=Whitehead%2C+Todd+P.&rft.date=2021-01-09&rft.pub=MDPI&rft.issn=1661-7827&rft.eissn=1660-4601&rft.volume=18&rft.issue=2&rft_id=info:doi/10.3390%2Fijerph18020504&rft_id=info%3Apmid%2F33435473&rft.externalDocID=PMC7827322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon