Toward accurate evaluation of bulk hardness from nanoindentation testing at low indent depths
[Display omitted] •Nix-Gao model combined with pileup corrections are critical to improve the accuracy of bulk equivalent hardness from nanoindentation testing.•Evaluating bulk hardness by hardness ratio or changes at a reference depth will cause quantitative errors as large as 60%.•Constant strain...
Saved in:
Published in | Materials & design Vol. 213; p. 110317 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0264-1275 1873-4197 |
DOI | 10.1016/j.matdes.2021.110317 |
Cover
Abstract | [Display omitted]
•Nix-Gao model combined with pileup corrections are critical to improve the accuracy of bulk equivalent hardness from nanoindentation testing.•Evaluating bulk hardness by hardness ratio or changes at a reference depth will cause quantitative errors as large as 60%.•Constant strain rate and constant loading rate tests result in comparable hardness for materials with a weak strain rate sensitivity.•The curvature in Nix-Gao fitting is not simply caused by nanoindentation testing procedures.•Size dependent dislocation obstacle strengths are essential for accurate microstructure- and nanoindentation-predicted strength change.
Estimations of bulk hardness from nanoindentation are frequently subject to considerable uncertainties due to indentation size effects (ISE), pileup effects, and potential influence of surface quality or test methods. This study examined materials science principles of nanoindentation test methods to enable accurate prediction of bulk hardness for a series of high purity Fe and Fe-(3–25 wt%) Cr alloys. These materials were tested in as-annealed and thermally aged (100–900 h at 475 ℃ to produce Cr-rich α’ precipitates) conditions. Nanoindentation with a Berkovich indenter at constant strain rate (0.05–0.5 /s) and constant loading rate conditions provided comparable bulk equivalent hardness (H0) extracted by Nix-Gao model, indicating a weak strain rate sensitivity at room temperature. Results from electropolished and fine mechanically polished samples gave comparable measured hardness. Pileup corrections produced a 5–14% correction to H0 which agreed with the experimental bulk Vickers hardness within ∼10% for most tested materials. The microstructural model-predicted and measured strength values agreed for aged samples. A derived analytic expression demonstrates that an ISE error, associated with inappropriate methods such as hardness ratios or changes at a reference depth, would be as large as 60% in estimated bulk hardness for the investigated Fe-Cr alloys. |
---|---|
AbstractList | [Display omitted]
•Nix-Gao model combined with pileup corrections are critical to improve the accuracy of bulk equivalent hardness from nanoindentation testing.•Evaluating bulk hardness by hardness ratio or changes at a reference depth will cause quantitative errors as large as 60%.•Constant strain rate and constant loading rate tests result in comparable hardness for materials with a weak strain rate sensitivity.•The curvature in Nix-Gao fitting is not simply caused by nanoindentation testing procedures.•Size dependent dislocation obstacle strengths are essential for accurate microstructure- and nanoindentation-predicted strength change.
Estimations of bulk hardness from nanoindentation are frequently subject to considerable uncertainties due to indentation size effects (ISE), pileup effects, and potential influence of surface quality or test methods. This study examined materials science principles of nanoindentation test methods to enable accurate prediction of bulk hardness for a series of high purity Fe and Fe-(3–25 wt%) Cr alloys. These materials were tested in as-annealed and thermally aged (100–900 h at 475 ℃ to produce Cr-rich α’ precipitates) conditions. Nanoindentation with a Berkovich indenter at constant strain rate (0.05–0.5 /s) and constant loading rate conditions provided comparable bulk equivalent hardness (H0) extracted by Nix-Gao model, indicating a weak strain rate sensitivity at room temperature. Results from electropolished and fine mechanically polished samples gave comparable measured hardness. Pileup corrections produced a 5–14% correction to H0 which agreed with the experimental bulk Vickers hardness within ∼10% for most tested materials. The microstructural model-predicted and measured strength values agreed for aged samples. A derived analytic expression demonstrates that an ISE error, associated with inappropriate methods such as hardness ratios or changes at a reference depth, would be as large as 60% in estimated bulk hardness for the investigated Fe-Cr alloys. Estimations of bulk hardness from nanoindentation are frequently subject to considerable uncertainties due to indentation size effects (ISE), pileup effects, and potential influence of surface quality or test methods. This study examined materials science principles of nanoindentation test methods to enable accurate prediction of bulk hardness for a series of high purity Fe and Fe-(3–25 wt%) Cr alloys. These materials were tested in as-annealed and thermally aged (100–900 h at 475 ℃ to produce Cr-rich α’ precipitates) conditions. Nanoindentation with a Berkovich indenter at constant strain rate (0.05–0.5 /s) and constant loading rate conditions provided comparable bulk equivalent hardness (H0) extracted by Nix-Gao model, indicating a weak strain rate sensitivity at room temperature. Results from electropolished and fine mechanically polished samples gave comparable measured hardness. Pileup corrections produced a 5–14% correction to H0 which agreed with the experimental bulk Vickers hardness within ∼10% for most tested materials. The microstructural model-predicted and measured strength values agreed for aged samples. A derived analytic expression demonstrates that an ISE error, associated with inappropriate methods such as hardness ratios or changes at a reference depth, would be as large as 60% in estimated bulk hardness for the investigated Fe-Cr alloys. |
ArticleNumber | 110317 |
Author | Zhao, Yajie Henry, Jean Zinkle, Steven J. Zhu, Pengcheng Agarwal, Shradha |
Author_xml | – sequence: 1 givenname: Pengcheng surname: Zhu fullname: Zhu, Pengcheng email: pzhu2@vols.utk.edu organization: Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA – sequence: 2 givenname: Yajie surname: Zhao fullname: Zhao, Yajie organization: Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA – sequence: 3 givenname: Shradha surname: Agarwal fullname: Agarwal, Shradha organization: Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA – sequence: 4 givenname: Jean surname: Henry fullname: Henry, Jean organization: CEA, DEN, Service de Recherches Métallurgiques Appliquées, Laboratoire d’Analyse Microstructurale des Matériaux, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France – sequence: 5 givenname: Steven J. surname: Zinkle fullname: Zinkle, Steven J. organization: Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA |
BookMark | eNqFkMFOHDEMhqMKpC4Lb8AhLzDbODPZmXBAQogCElIve60ib-JAtrMJSrIg3p6BaS89tCdLtv_fv78TdhRTJMbOQaxAwPrbbrXH6qispJCwAhAt9F_YAoa-bTrQ_RFbCLnuGpC9-spOStkJIWXfdgv2c5NeMTuO1h4yVuL0guMBa0iRJ8-3h_EXf5oWIpXCfU57HjGmEB3FOm9VKjXER46Vj-mVzyPu6Lk-lVN27HEsdPa7Ltnm-83m-q55-HF7f3310Nhu6GrTkQStptBWDb6X5JVwBK4nBRrdVio_aFBbL3TrW0ItwJFW1gnl7FqqdsnuZ1uXcGeec9hjfjMJg_lspPxoMNdgRzLC99Ci9MOg1910Q5MTHpQUChGHCdiSXcxeNqdSMnljw_xpzRhGA8J8MDc7MzM3H8zNzHwSd3-J_4T5j-xyltHE6CVQNsUGipZcyGTr9EX4t8E7k_ag0A |
CitedBy_id | crossref_primary_10_1016_j_nimb_2023_165215 crossref_primary_10_1016_j_jnucmat_2023_154672 crossref_primary_10_1016_j_jnucmat_2024_155385 crossref_primary_10_1016_j_ijplas_2023_103804 crossref_primary_10_1016_j_jmrt_2022_08_016 crossref_primary_10_1016_j_jnucmat_2025_155606 crossref_primary_10_3390_ma16031117 crossref_primary_10_1039_D4TA03596H crossref_primary_10_1016_j_polymer_2024_127597 crossref_primary_10_3390_met14030257 crossref_primary_10_1007_s10853_025_10655_6 crossref_primary_10_1007_s10853_022_07461_9 crossref_primary_10_1063_5_0098807 crossref_primary_10_22349_1994_6716_2024_117_1_210_226 crossref_primary_10_3390_lubricants12030099 crossref_primary_10_3390_ma16124341 crossref_primary_10_1088_1361_6463_ac9535 crossref_primary_10_1016_j_matdes_2025_113708 crossref_primary_10_1016_j_addma_2023_103825 crossref_primary_10_1016_j_jnucmat_2024_155211 crossref_primary_10_1016_j_ntm_2024_100057 crossref_primary_10_4028_p_o77XmJ crossref_primary_10_1007_s11661_022_06776_1 crossref_primary_10_1016_j_addma_2022_103228 crossref_primary_10_1016_j_matchar_2022_112320 crossref_primary_10_1016_j_jnucmat_2024_155271 crossref_primary_10_1021_acs_macromol_4c02127 crossref_primary_10_1016_j_jnucmat_2024_155539 crossref_primary_10_1016_j_jnucmat_2023_154823 crossref_primary_10_1093_pnasnexus_pgae148 crossref_primary_10_3390_ma15061985 crossref_primary_10_1126_sciadv_adq6828 crossref_primary_10_3390_ma15134477 crossref_primary_10_1038_s41598_022_10490_8 crossref_primary_10_1063_5_0092138 crossref_primary_10_1016_j_jallcom_2023_171974 crossref_primary_10_1016_j_jmapro_2024_10_005 crossref_primary_10_1016_j_pnucene_2024_105518 crossref_primary_10_1063_5_0206224 crossref_primary_10_1016_j_jnucmat_2024_155093 crossref_primary_10_1016_j_jnucmat_2025_155608 crossref_primary_10_1016_j_matdes_2025_113643 crossref_primary_10_3390_ma17133286 crossref_primary_10_1039_D4RA03919J crossref_primary_10_1016_j_jmrt_2024_09_075 |
Cites_doi | 10.1016/S0022-5096(97)00086-0 10.1016/0025-5416(77)90212-9 10.1063/1.1707696 10.1016/j.scriptamat.2006.06.030 10.1016/0001-6160(63)90213-X 10.1016/j.scriptamat.2005.02.009 10.1143/JJAP.20.449 10.1557/JMR.2004.0441 10.1016/j.jnucmat.2020.152543 10.1016/j.actamat.2007.08.001 10.1080/10420159808229676 10.1080/14786436608244762 10.1002/pssb.19700410221 10.1007/BF02643211 10.1016/j.scriptamat.2004.05.034 10.1016/j.jnucmat.2018.09.007 10.1016/j.jnucmat.2014.01.024 10.1016/j.scriptamat.2013.10.001 10.1016/j.jnucmat.2018.02.047 10.1557/JMR.1998.0146 10.1016/j.jnucmat.2019.02.037 10.6028/NIST.TN.1879 10.1016/j.matdes.2018.02.064 10.1007/s11661-014-2328-8 10.1016/j.actamat.2020.10.015 10.1080/14786435.2018.1425007 10.1016/j.jnucmat.2016.05.038 10.1016/j.jnucmat.2012.12.033 10.1016/j.jnucmat.2015.06.023 10.1557/jmr.2004.19.1.3 10.1016/j.actamat.2020.05.020 10.1016/j.actamat.2019.08.029 10.1016/0022-5088(76)90009-6 10.1016/j.ijplas.2016.08.006 10.1016/j.msea.2015.12.080 10.1080/09500830410001726969 10.1016/j.jnucmat.2021.152987 10.1557/jmr.2009.0137 10.1016/j.jnucmat.2015.07.023 10.1016/j.actamat.2021.116702 10.1016/j.jnucmat.2004.04.298 10.1016/j.scriptamat.2018.07.035 10.1016/j.jnucmat.2004.09.024 10.1080/14786435708243823 10.1016/j.jnucmat.2013.09.026 10.1016/j.jmps.2006.02.002 10.1016/j.jnucmat.2020.152016 10.1016/j.jnucmat.2014.11.066 10.1016/j.jnucmat.2013.12.009 10.1016/j.mser.2004.05.001 10.1016/S0022-5096(01)00103-X 10.1016/0001-6160(88)90319-7 10.1007/BF02913433 10.1016/j.actamat.2020.06.019 10.1016/j.jmps.2006.07.004 10.1007/s11665-008-9225-5 10.1557/JMR.1992.1564 10.1063/1.1707363 10.1007/BF00693254 10.1146/annurev-matsci-070909-104456 10.1016/j.jnucmat.2017.10.025 10.1557/jmr.2019.292 10.1039/df9643800049 10.1016/0022-5096(57)90056-X 10.1007/BF02644484 10.1007/s11661-999-0051-7 10.1016/j.jnucmat.2015.07.009 10.1016/j.msea.2005.06.006 10.1557/jmr.2009.0096 10.1557/jmr.2011.156 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2021.110317 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_0f713a2f88964e1d9ed0f15205aaa887 10_1016_j_matdes_2021_110317 S0264127521008728 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 NCXOZ O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c484t-4e2195317c58f72ef50de1d7e519adb25f8915bf093f3ea901de95cd05dc6253 |
IEDL.DBID | DOA |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:30:07 EDT 2025 Tue Jul 01 02:24:05 EDT 2025 Thu Apr 24 22:58:08 EDT 2025 Fri Feb 23 02:40:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pileup Iron alloys Indentation size effects Strain gradient plasticity Precipitation hardening |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-4e2195317c58f72ef50de1d7e519adb25f8915bf093f3ea901de95cd05dc6253 |
OpenAccessLink | https://doaj.org/article/0f713a2f88964e1d9ed0f15205aaa887 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f713a2f88964e1d9ed0f15205aaa887 crossref_citationtrail_10_1016_j_matdes_2021_110317 crossref_primary_10_1016_j_matdes_2021_110317 elsevier_sciencedirect_doi_10_1016_j_matdes_2021_110317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zinkle, Matsukawa (b0355) 2004; 329-333 Cheng, Cheng (b0150) 2004; 44 Speich, Schwoeble, Leslie (b0220) 1972; 3 Bachhav, Robert Odette, Marquis (b0120) 2014; 74 Lucas, Oliver (b0135) 1999; 30 Hiratani, Bulatov (b0380) 2004; 84 Fleischer (b0325) 1963; 11 Samuels, Mulhearn (b0285) 1957; 5 Pharr, Herbert, Gao (b0035) 2010; 40 Elam, Carpenter (b0070) 1938; 165 Qu, Huang, Nix, Jiang, Zhang, Hwang (b0265) 2004; 19 Odette, Lucas (b0375) 1998; 144 Bolshakov, Pharr (b0145) 1998; 13 Phani, Oliver, Pharr (b0205) 2020; 194 Labusch (b0335) 1970; 41 Heintze, Hilger, Bergner, Weissgärber, Kieback (b0175) 2019; 518 Oliver, Pharr (b0005) 1992; 7 Tan, Busby (b0385) 2015; 465 Kocks, Argon, Ashby (b0320) 1975; 19 Yang, Kano, Shen, McGrady, Li, Chen, Murakami, Abe (b0155) 2020; 531 Wu, Yang, Wang, Zhang, Shi, Chen, Sun (b0235) 2016; 655 Kroupa, Hirsch (b0365) 1964; 38 Field, Hu, Littrell, Yamamoto, Snead (b0305) 2015; 465 Stephens, Witzke (b0345) 1976; 48 Balint, Deshpande, Needleman, Van der Giessen (b0270) 2006; 54 Chen, Miyahara, Nomoto, Nishida (b0025) 2019; 179 Seeger, Diehl, Mader, Rebstock (b0360) 1957; 2 Zener, Hollomon (b0075) 1944; 15 Rester, Motz, Pippan (b0090) 2007; 55 Villuendas, Jorba, Roca (b0240) 2014; 45 Mattucci, Cherubin, Changizian, Skippon, Daymond (b0275) 2021; 207 Foreman, Makin (b0310) 1966; 14 Huang, Zhang, Hwang, Nix, Pharr, Feng (b0055) 2006; 54 Pavlina, Van Tyne (b0300) 2008; 17 Phani, Oliver, Pharr (b0210) 2020; 194 Heintze, Bergner, Akhmadaliev, Altstadt (b0060) 2016; 472 Röder, Heintze, Pecko, Akhmadaliev, Bergner, Ulbricht, Altstadt (b0165) 2018; 98 Oliver, Pharr (b0260) 2004; 19 Xiao, Yu (b0185) 2018; 503 Cahoon, Broughton, Kutzak (b0290) 1971; 2 Durst, Backes, Göken (b0255) 2005; 52 Saleh, Zaidi, Ionescu, Hurt, Short, Daniels, Munroe, Edwards, Bhattacharyya (b0280) 2016; 86 Haušild (b0030) 2021; 551 Kasada, Takayama, Yabuuchi, Kimura (b0115) 2011; 86 Kelley, Stoloff (b0350) 1976; 7 E. Lucon, K. Abiko, M. Lambrecht, B. Rehmer, Tensile Properties of Commercially Pure, High-Purity and Ultra-High-Purity Iron: Results of an International Round-Robin, (2015). https://doi.org/10.6028/NIST.TN.1879. Zener, Hollomon (b0080) 1946; 17 Busby, Hash, Was (b0295) 2005; 336 Kocks (b0315) 1977; 27 Mayo, Nix (b0125) 1988; 36 Song, Das, Reza, Phillips, Xu, Yu, Mizohata, Armstrong, Hofmann (b0225) 2020; 201 Feng, Nix (b0250) 2004; 51 Suzuki (b0330) 1981; 20 Song, Gao, Yabuuchi, Kimura (b0085) 2018; 511 Li, Wang, Dai, Liu, Li, Wang (b0180) 2016; 478 Bonny, Khvan, Bakaeva, Yin, Dubinko, Cabet, Loyer-Prost, Castin, Bakaev, Terentyev (b0195) 2021; 543 Takayama, Kasada, Sakamoto, Yabuuchi, Kimura, Ando, Hamaguchi, Tanigawa (b0045) 2013; 442 Chen, He, Cullison, Hay, Burns, Wu, Tan (b0170) 2020; 195 Merle, Higgins, Pharr (b0215) 2019; 34 Bergner, Pareige, Hernández-Mayoral, Malerba, Heintze (b0390) 2014; 448 Jin, Xia, Crespillo, Xue, Zhang, Gao, Bei (b0095) 2018; 157 Hardie, Roberts, Bushby (b0110) 2015; 462 Ruiz-Moreno, Hähner (b0065) 2018; 145 J. Friedel, On the Elastic Limit of Crystals, in: Electron Microscopy and Strength of Crystals, Interscience, New York, 1963: pp. 605–648 Kese, Li (b0105) 2006; 55 Drapkin, Fokin (b0230) 1980; 22 Kese, Li, Bergman (b0100) 2005; 404 Pathak, Stojakovic, Doherty, Kalidindi (b0140) 2009; 24 Swadener, George, Pharr (b0050) 2002; 50 Yang, Zhang, Ding, Su, Yan, Song, Cheng (b0015) 2018; 498 Maier, Durst, Mueller, Backes, Höppel, Göken (b0200) 2011; 26 Yabuuchi, Kuribayashi, Nogami, Kasada, Hasegawa (b0020) 2014; 446 Nix, Gao (b0040) 1998; 46 Shang, Ding, Fan, Chen, Li, Zhang, Wang, Wang, Zhang (b0160) 2020; 196 Pharr, Strader, Oliver (b0130) 2009; 24 Liu, Wang, Ren, Jiang, Xu, Huang, Qian, Wu, Zhang (b0190) 2014; 444 Horne, Roy, Paxton (b0340) 1963; 201 Tabor (b0010) 1951; 79 Jin (10.1016/j.matdes.2021.110317_b0095) 2018; 157 Bergner (10.1016/j.matdes.2021.110317_b0390) 2014; 448 Villuendas (10.1016/j.matdes.2021.110317_b0240) 2014; 45 Phani (10.1016/j.matdes.2021.110317_b0205) 2020; 194 Rester (10.1016/j.matdes.2021.110317_b0090) 2007; 55 Hardie (10.1016/j.matdes.2021.110317_b0110) 2015; 462 Pharr (10.1016/j.matdes.2021.110317_b0035) 2010; 40 Pavlina (10.1016/j.matdes.2021.110317_b0300) 2008; 17 Fleischer (10.1016/j.matdes.2021.110317_b0325) 1963; 11 Samuels (10.1016/j.matdes.2021.110317_b0285) 1957; 5 Qu (10.1016/j.matdes.2021.110317_b0265) 2004; 19 Tabor (10.1016/j.matdes.2021.110317_b0010) 1951; 79 Kese (10.1016/j.matdes.2021.110317_b0105) 2006; 55 Chen (10.1016/j.matdes.2021.110317_b0170) 2020; 195 Merle (10.1016/j.matdes.2021.110317_b0215) 2019; 34 Yang (10.1016/j.matdes.2021.110317_b0015) 2018; 498 Suzuki (10.1016/j.matdes.2021.110317_b0330) 1981; 20 Oliver (10.1016/j.matdes.2021.110317_b0260) 2004; 19 Busby (10.1016/j.matdes.2021.110317_b0295) 2005; 336 Röder (10.1016/j.matdes.2021.110317_b0165) 2018; 98 Pharr (10.1016/j.matdes.2021.110317_b0130) 2009; 24 Lucas (10.1016/j.matdes.2021.110317_b0135) 1999; 30 Zener (10.1016/j.matdes.2021.110317_b0080) 1946; 17 Mayo (10.1016/j.matdes.2021.110317_b0125) 1988; 36 Bonny (10.1016/j.matdes.2021.110317_b0195) 2021; 543 Song (10.1016/j.matdes.2021.110317_b0225) 2020; 201 Phani (10.1016/j.matdes.2021.110317_b0210) 2020; 194 Elam (10.1016/j.matdes.2021.110317_b0070) 1938; 165 Durst (10.1016/j.matdes.2021.110317_b0255) 2005; 52 Chen (10.1016/j.matdes.2021.110317_b0025) 2019; 179 Field (10.1016/j.matdes.2021.110317_b0305) 2015; 465 Kelley (10.1016/j.matdes.2021.110317_b0350) 1976; 7 Yabuuchi (10.1016/j.matdes.2021.110317_b0020) 2014; 446 Yang (10.1016/j.matdes.2021.110317_b0155) 2020; 531 Xiao (10.1016/j.matdes.2021.110317_b0185) 2018; 503 Bachhav (10.1016/j.matdes.2021.110317_b0120) 2014; 74 Tan (10.1016/j.matdes.2021.110317_b0385) 2015; 465 Haušild (10.1016/j.matdes.2021.110317_b0030) 2021; 551 Song (10.1016/j.matdes.2021.110317_b0085) 2018; 511 Maier (10.1016/j.matdes.2021.110317_b0200) 2011; 26 Kasada (10.1016/j.matdes.2021.110317_b0115) 2011; 86 10.1016/j.matdes.2021.110317_b0245 Mattucci (10.1016/j.matdes.2021.110317_b0275) 2021; 207 Swadener (10.1016/j.matdes.2021.110317_b0050) 2002; 50 Seeger (10.1016/j.matdes.2021.110317_b0360) 1957; 2 Odette (10.1016/j.matdes.2021.110317_b0375) 1998; 144 Cahoon (10.1016/j.matdes.2021.110317_b0290) 1971; 2 Kroupa (10.1016/j.matdes.2021.110317_b0365) 1964; 38 Liu (10.1016/j.matdes.2021.110317_b0190) 2014; 444 10.1016/j.matdes.2021.110317_b0370 Zinkle (10.1016/j.matdes.2021.110317_b0355) 2004; 329-333 Shang (10.1016/j.matdes.2021.110317_b0160) 2020; 196 Heintze (10.1016/j.matdes.2021.110317_b0060) 2016; 472 Wu (10.1016/j.matdes.2021.110317_b0235) 2016; 655 Pathak (10.1016/j.matdes.2021.110317_b0140) 2009; 24 Zener (10.1016/j.matdes.2021.110317_b0075) 1944; 15 Stephens (10.1016/j.matdes.2021.110317_b0345) 1976; 48 Takayama (10.1016/j.matdes.2021.110317_b0045) 2013; 442 Bolshakov (10.1016/j.matdes.2021.110317_b0145) 1998; 13 Feng (10.1016/j.matdes.2021.110317_b0250) 2004; 51 Foreman (10.1016/j.matdes.2021.110317_b0310) 1966; 14 Hiratani (10.1016/j.matdes.2021.110317_b0380) 2004; 84 Labusch (10.1016/j.matdes.2021.110317_b0335) 1970; 41 Kese (10.1016/j.matdes.2021.110317_b0100) 2005; 404 Kocks (10.1016/j.matdes.2021.110317_b0320) 1975; 19 Balint (10.1016/j.matdes.2021.110317_b0270) 2006; 54 Oliver (10.1016/j.matdes.2021.110317_b0005) 1992; 7 Huang (10.1016/j.matdes.2021.110317_b0055) 2006; 54 Heintze (10.1016/j.matdes.2021.110317_b0175) 2019; 518 Kocks (10.1016/j.matdes.2021.110317_b0315) 1977; 27 Horne (10.1016/j.matdes.2021.110317_b0340) 1963; 201 Nix (10.1016/j.matdes.2021.110317_b0040) 1998; 46 Li (10.1016/j.matdes.2021.110317_b0180) 2016; 478 Ruiz-Moreno (10.1016/j.matdes.2021.110317_b0065) 2018; 145 Cheng (10.1016/j.matdes.2021.110317_b0150) 2004; 44 Drapkin (10.1016/j.matdes.2021.110317_b0230) 1980; 22 Saleh (10.1016/j.matdes.2021.110317_b0280) 2016; 86 Speich (10.1016/j.matdes.2021.110317_b0220) 1972; 3 |
References_xml | – volume: 26 start-page: 1421 year: 2011 end-page: 1430 ident: b0200 article-title: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al publication-title: J. Mater. Res. – volume: 17 start-page: 888 year: 2008 end-page: 893 ident: b0300 article-title: Correlation of yield strength and tensile strength with hardness for steels publication-title: J. Mater. Eng. Perform. – volume: 145 start-page: 168 year: 2018 end-page: 180 ident: b0065 article-title: Indentation size effects of ferritic/martensitic steels: A comparative experimental and modelling study publication-title: Mater. Des. – volume: 195 start-page: 433 year: 2020 end-page: 445 ident: b0170 article-title: The correlation between microstructure and nanoindentation property of neutron-irradiated austenitic alloy D9 publication-title: Acta. Mater. – volume: 38 start-page: 49 year: 1964 ident: b0365 article-title: Elastic interaction between prismatic dislocation loops and straight dislocations publication-title: Discuss. Faraday Soc. – volume: 194 year: 2020 ident: b0210 article-title: Understanding and modeling plasticity error during nanoindentation with continuous stiffness measurement publication-title: Mater. Des. – volume: 41 start-page: 659 year: 1970 end-page: 669 ident: b0335 article-title: A statistical theory of solid solution hardening publication-title: Phys. Stat. Sol. (b) – volume: 17 start-page: 69 year: 1946 end-page: 82 ident: b0080 article-title: Problems in Non-Elastic Deformation of Metals publication-title: J. Appl. Phys. – volume: 157 start-page: 49 year: 2018 end-page: 53 ident: b0095 article-title: Quantifying early stage irradiation damage from nanoindentation pop-in tests publication-title: Scr. Mater. – volume: 86 start-page: 2658 year: 2011 end-page: 2661 ident: b0115 article-title: A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques, Fusion publication-title: Eng. Des. – volume: 79 start-page: 1 year: 1951 end-page: 18 ident: b0010 article-title: The hardness and strength of metals publication-title: J. Inst. Metals. – volume: 74 start-page: 48 year: 2014 end-page: 51 ident: b0120 article-title: α′ precipitation in neutron-irradiated Fe–Cr alloys publication-title: Scr. Mater. – volume: 19 start-page: 3423 year: 2004 end-page: 3434 ident: b0265 article-title: Indenter tip radius effect on the Nix-Gao relation in micro- and nanoindentation hardness experiments publication-title: J. Mater. Res. – volume: 45 start-page: 3857 year: 2014 end-page: 3865 ident: b0240 article-title: The Role of Precipitates in the Behavior of Young’s Modulus in Aluminum Alloys publication-title: Metall. Mater. Trans. A. – volume: 465 start-page: 746 year: 2015 end-page: 755 ident: b0305 article-title: Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys publication-title: J. Nucl. Mater. – volume: 7 start-page: 1564 year: 1992 end-page: 1583 ident: b0005 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. – volume: 51 start-page: 599 year: 2004 end-page: 603 ident: b0250 article-title: Indentation size effect in MgO publication-title: Scr. Mater. – volume: 465 start-page: 724 year: 2015 end-page: 730 ident: b0385 article-title: Formulating the strength factor α for improved predictability of radiation hardening publication-title: J. Nucl. Mater. – volume: 336 start-page: 267 year: 2005 end-page: 278 ident: b0295 article-title: The relationship between hardness and yield stress in irradiated austenitic and ferritic steels publication-title: J. Nucl. Mater. – volume: 446 start-page: 142 year: 2014 end-page: 147 ident: b0020 article-title: Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation publication-title: J. Nucl. Mater. – volume: 84 start-page: 461 year: 2004 end-page: 470 ident: b0380 article-title: Solid-solution hardening by point-like obstacles of different kinds publication-title: Philos. Mag. Lett. – volume: 329-333 start-page: 88 year: 2004 end-page: 96 ident: b0355 article-title: Observation and analysis of defect cluster production and interactions with dislocations publication-title: J. Nucl. Mater. – volume: 462 start-page: 391 year: 2015 end-page: 401 ident: b0110 article-title: Understanding the effects of ion irradiation using nanoindentation techniques publication-title: J. Nucl. Mater. – volume: 655 start-page: 183 year: 2016 end-page: 192 ident: b0235 article-title: Effect of thermal aging on corrosion fatigue of Z3CN20.09M duplex stainless steel in high temperature water publication-title: Mater. Sci. Eng. A. – volume: 442 start-page: S23 year: 2013 end-page: S27 ident: b0045 article-title: Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single- and dual-ion beam irradiation publication-title: J. Nucl. Mater. – volume: 34 start-page: 3495 year: 2019 end-page: 3503 ident: b0215 article-title: Critical issues in conducting constant strain rate nanoindentation tests at higher strain rates publication-title: J. Mater. Res. – volume: 13 start-page: 1049 year: 1998 end-page: 1058 ident: b0145 article-title: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques publication-title: J. Mater. Res. – volume: 518 start-page: 1 year: 2019 end-page: 10 ident: b0175 article-title: Nanoindentation of single- (Fe) and dual-beam (Fe and He) ion-irradiated ODS Fe-14Cr-based alloys: Effect of the initial microstructure on irradiation-induced hardening publication-title: J. Nucl. Mater. – volume: 472 start-page: 196 year: 2016 end-page: 205 ident: b0060 article-title: Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening publication-title: J. Nucl. Mater. – volume: 511 start-page: 200 year: 2018 end-page: 211 ident: b0085 article-title: Ion-irradiation hardening accompanied by irradiation-induced dissolution of oxides in FeCr(Y, Ti)-ODS ferritic steel publication-title: J. Nucl. Mater. – volume: 503 start-page: 110 year: 2018 end-page: 115 ident: b0185 article-title: Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials publication-title: J. Nucl. Mater. – volume: 44 start-page: 91 year: 2004 end-page: 149 ident: b0150 article-title: Scaling, dimensional analysis, and indentation measurements publication-title: Mater. Sci. Eng. R Rep. – volume: 14 start-page: 911 year: 1966 end-page: 924 ident: b0310 article-title: Dislocation movement through random arrays of obstacles publication-title: Philos. Mag. – volume: 551 year: 2021 ident: b0030 article-title: Methodological comment on the nanoindentation of ion-irradiation hardened materials publication-title: J. Nucl. Mater. – volume: 20 start-page: 449 year: 1981 end-page: 462 ident: b0330 article-title: On the Studies of Solid Solution Hardening publication-title: Jpn. J. Appl. Phys. – volume: 448 start-page: 96 year: 2014 end-page: 102 ident: b0390 article-title: Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe–Cr model alloys publication-title: J. Nucl. Mater. – volume: 498 start-page: 129 year: 2018 end-page: 136 ident: b0015 article-title: A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions publication-title: J. Nucl. Mater. – volume: 55 start-page: 6427 year: 2007 end-page: 6435 ident: b0090 article-title: Microstructural investigation of the volume beneath nanoindentations in copper publication-title: Acta. Mater. – volume: 46 start-page: 411 year: 1998 end-page: 425 ident: b0040 article-title: Indentation size effects in crystalline materials: a law for strain gradient plasticity publication-title: J. Mech. Phys. Solids. – volume: 30 start-page: 601 year: 1999 end-page: 610 ident: b0135 article-title: Indentation power-law creep of high-purity indium publication-title: Metall. Mater. Trans. A. – volume: 144 start-page: 189 year: 1998 end-page: 231 ident: b0375 article-title: Recent progress in understanding reactor pressure vessel steel embrittlement publication-title: Radiat. Eff. Defects Solids. – volume: 22 start-page: 325 year: 1980 end-page: 329 ident: b0230 article-title: Young’s modulus and internal friction of FeCr alloys in relation to heat treatment publication-title: Met. Sci. Heat. Treat. – volume: 40 start-page: 271 year: 2010 end-page: 292 ident: b0035 article-title: The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations publication-title: Annu. Rev. Mater. Res. – volume: 201 start-page: 161 year: 1963 ident: b0340 article-title: Tensile properties of single crystals of iron-chromium alloys publication-title: J. Iron. Steel. Inst. – volume: 531 year: 2020 ident: b0155 article-title: Investigation of anisotropic hardening response in a 12Cr-ODS ferritic steel subjected to 2.8 MeV Fe2+ irradiation publication-title: J. Nucl. Mater. – volume: 11 start-page: 203 year: 1963 end-page: 209 ident: b0325 article-title: Substitutional solution hardening publication-title: Acta. Matell. – volume: 194 year: 2020 ident: b0205 article-title: An experimental assessment of methods for mitigating plasticity error during nanoindentation with continuous stiffness measurement publication-title: Mater. Des. – volume: 52 start-page: 1093 year: 2005 end-page: 1097 ident: b0255 article-title: Indentation size effect in metallic materials: Correcting for the size of the plastic zone publication-title: Scr. Mater. – volume: 24 start-page: 1142 year: 2009 end-page: 1155 ident: b0140 article-title: Importance of surface preparation on the nano-indentation stress-strain curves measured in metals publication-title: J. Mater. Res. – reference: E. Lucon, K. Abiko, M. Lambrecht, B. Rehmer, Tensile Properties of Commercially Pure, High-Purity and Ultra-High-Purity Iron: Results of an International Round-Robin, (2015). https://doi.org/10.6028/NIST.TN.1879. – volume: 55 start-page: 699 year: 2006 end-page: 702 ident: b0105 article-title: Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter publication-title: Scr. Mater. – volume: 54 start-page: 1668 year: 2006 end-page: 1686 ident: b0055 article-title: A model of size effects in nano-indentation publication-title: J. Mech. Phys. Solids. – volume: 404 start-page: 1 year: 2005 end-page: 8 ident: b0100 article-title: Method to account for true contact area in soda-lime glass during nanoindentation with the Berkovich tip publication-title: Mater. Sci. Eng. A. – volume: 48 start-page: 285 year: 1976 end-page: 308 ident: b0345 article-title: Alloy softening in binary iron solid solutions publication-title: J. Less. Common. Met. – volume: 86 start-page: 151 year: 2016 end-page: 169 ident: b0280 article-title: Relationship between damage and hardness profiles in ion irradiated SS316 using nanoindentation – Experiments and modelling publication-title: Int. J. Plast. – volume: 19 start-page: 18 year: 2004 ident: b0260 article-title: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology publication-title: J. Mater. Res. – volume: 201 start-page: 535 year: 2020 end-page: 546 ident: b0225 article-title: Characterising Ion-Irradiated FeCr: Hardness, Thermal Diffusivity and Lattice Strain publication-title: Acta. Mater. – volume: 7 start-page: 331 year: 1976 end-page: 333 ident: b0350 article-title: Effect of chromium on low-temperature deformation of high-purity iron publication-title: MTA. – volume: 444 start-page: 1 year: 2014 end-page: 6 ident: b0190 article-title: Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation publication-title: J. Nucl. Mater. – volume: 19 start-page: 1 year: 1975 ident: b0320 article-title: Thermodynamics and kinetics of slip publication-title: Prog. Mater. Sci. – volume: 27 start-page: 291 year: 1977 end-page: 298 ident: b0315 article-title: The theory of an obstacle-controlled yield strength—Report after an international workshop publication-title: Mater. Sci. Eng. – volume: 478 start-page: 50 year: 2016 end-page: 55 ident: b0180 article-title: Evaluation of hardening behaviors in ion-irradiated Fe–9Cr and Fe–20Cr alloys by nanoindentation technique publication-title: J. Nucl. Mater. – volume: 2 start-page: 323 year: 1957 end-page: 350 ident: b0360 article-title: Work-hardening and work-softening of face-centred cubic metal crystals publication-title: Philos. Mag. – volume: 24 start-page: 653 year: 2009 end-page: 666 ident: b0130 article-title: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement publication-title: J. Mater. Res. – volume: 196 start-page: 175 year: 2020 end-page: 190 ident: b0160 article-title: He ion irradiation response of a gradient T91 steel publication-title: Acta. Mater. – volume: 2 start-page: 1979 year: 1971 end-page: 1983 ident: b0290 article-title: The determination of yield strength from hardness measurements publication-title: Metallurgical Trans. – volume: 179 start-page: 61 year: 2019 end-page: 69 ident: b0025 article-title: Effects of thermal aging and low-fluence neutron irradiation on the mechanical property and microstructure of ferrite in cast austenitic stainless steels publication-title: Acta. Mater. – volume: 50 start-page: 681 year: 2002 end-page: 694 ident: b0050 article-title: The correlation of the indentation size effect measured with indenters of various shapes publication-title: J. Mech. Phys. Solids. – volume: 3 start-page: 2031 year: 1972 end-page: 2037 ident: b0220 article-title: Elastic constants of binary iron-base alloys publication-title: Metall. Trans. – volume: 5 start-page: 125 year: 1957 end-page: 134 ident: b0285 article-title: An experimental investigation of the deformed zone associated with indentation hardness impressions publication-title: J. Mech. Phys. Solids. – volume: 54 start-page: 2281 year: 2006 end-page: 2303 ident: b0270 article-title: Discrete dislocation plasticity analysis of the wedge indentation of films publication-title: J. Mech. Phys. Solids. – volume: 98 start-page: 911 year: 2018 end-page: 933 ident: b0165 article-title: Nanoindentation of ion-irradiated reactor pressure vessel steels – model-based interpretation and comparison with neutron irradiation publication-title: Philos. Mag. – volume: 207 year: 2021 ident: b0275 article-title: Indentation size effect, geometrically necessary dislocations and pile-up effects in hardness testing of irradiated nickel publication-title: Acta. Mater. – volume: 36 start-page: 2183 year: 1988 end-page: 2192 ident: b0125 article-title: A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb publication-title: Acta. Mater. – volume: 15 start-page: 22 year: 1944 end-page: 32 ident: b0075 article-title: Effect of Strain Rate Upon Plastic Flow of Steel publication-title: J. Appl. Phys. – reference: J. Friedel, On the Elastic Limit of Crystals, in: Electron Microscopy and Strength of Crystals, Interscience, New York, 1963: pp. 605–648 – volume: 165 start-page: 568 year: 1938 end-page: 592 ident: b0070 article-title: The influence of rate of deformation on the tensile test with special reference to the yield point in iron and steel publication-title: Proc. R. Soc. A. – volume: 543 year: 2021 ident: b0195 article-title: Effect of statistically stored dislocations in tungsten on the irradiation induced nano-hardening analyzed by different methods publication-title: J. Nucl. Mater. – volume: 46 start-page: 411 issue: 3 year: 1998 ident: 10.1016/j.matdes.2021.110317_b0040 article-title: Indentation size effects in crystalline materials: a law for strain gradient plasticity publication-title: J. Mech. Phys. Solids. doi: 10.1016/S0022-5096(97)00086-0 – volume: 27 start-page: 291 issue: 3 year: 1977 ident: 10.1016/j.matdes.2021.110317_b0315 article-title: The theory of an obstacle-controlled yield strength—Report after an international workshop publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(77)90212-9 – volume: 79 start-page: 1 year: 1951 ident: 10.1016/j.matdes.2021.110317_b0010 article-title: The hardness and strength of metals publication-title: J. Inst. Metals. – volume: 17 start-page: 69 issue: 2 year: 1946 ident: 10.1016/j.matdes.2021.110317_b0080 article-title: Problems in Non-Elastic Deformation of Metals publication-title: J. Appl. Phys. doi: 10.1063/1.1707696 – volume: 55 start-page: 699 issue: 8 year: 2006 ident: 10.1016/j.matdes.2021.110317_b0105 article-title: Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2006.06.030 – volume: 11 start-page: 203 issue: 3 year: 1963 ident: 10.1016/j.matdes.2021.110317_b0325 article-title: Substitutional solution hardening publication-title: Acta. Matell. doi: 10.1016/0001-6160(63)90213-X – volume: 52 start-page: 1093 year: 2005 ident: 10.1016/j.matdes.2021.110317_b0255 article-title: Indentation size effect in metallic materials: Correcting for the size of the plastic zone publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2005.02.009 – volume: 20 start-page: 449 issue: 3 year: 1981 ident: 10.1016/j.matdes.2021.110317_b0330 article-title: On the Studies of Solid Solution Hardening publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.20.449 – volume: 19 start-page: 3423 issue: 11 year: 2004 ident: 10.1016/j.matdes.2021.110317_b0265 article-title: Indenter tip radius effect on the Nix-Gao relation in micro- and nanoindentation hardness experiments publication-title: J. Mater. Res. doi: 10.1557/JMR.2004.0441 – volume: 543 year: 2021 ident: 10.1016/j.matdes.2021.110317_b0195 article-title: Effect of statistically stored dislocations in tungsten on the irradiation induced nano-hardening analyzed by different methods publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2020.152543 – volume: 55 start-page: 6427 issue: 19 year: 2007 ident: 10.1016/j.matdes.2021.110317_b0090 article-title: Microstructural investigation of the volume beneath nanoindentations in copper publication-title: Acta. Mater. doi: 10.1016/j.actamat.2007.08.001 – volume: 144 start-page: 189 issue: 1-4 year: 1998 ident: 10.1016/j.matdes.2021.110317_b0375 article-title: Recent progress in understanding reactor pressure vessel steel embrittlement publication-title: Radiat. Eff. Defects Solids. doi: 10.1080/10420159808229676 – volume: 14 start-page: 911 issue: 131 year: 1966 ident: 10.1016/j.matdes.2021.110317_b0310 article-title: Dislocation movement through random arrays of obstacles publication-title: Philos. Mag. doi: 10.1080/14786436608244762 – volume: 41 start-page: 659 issue: 2 year: 1970 ident: 10.1016/j.matdes.2021.110317_b0335 article-title: A statistical theory of solid solution hardening publication-title: Phys. Stat. Sol. (b) doi: 10.1002/pssb.19700410221 – volume: 3 start-page: 2031 issue: 8 year: 1972 ident: 10.1016/j.matdes.2021.110317_b0220 article-title: Elastic constants of binary iron-base alloys publication-title: Metall. Trans. doi: 10.1007/BF02643211 – volume: 51 start-page: 599 issue: 6 year: 2004 ident: 10.1016/j.matdes.2021.110317_b0250 article-title: Indentation size effect in MgO publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2004.05.034 – ident: 10.1016/j.matdes.2021.110317_b0370 – volume: 511 start-page: 200 year: 2018 ident: 10.1016/j.matdes.2021.110317_b0085 article-title: Ion-irradiation hardening accompanied by irradiation-induced dissolution of oxides in FeCr(Y, Ti)-ODS ferritic steel publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.09.007 – volume: 448 start-page: 96 issue: 1-3 year: 2014 ident: 10.1016/j.matdes.2021.110317_b0390 article-title: Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe–Cr model alloys publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.01.024 – volume: 74 start-page: 48 year: 2014 ident: 10.1016/j.matdes.2021.110317_b0120 article-title: α′ precipitation in neutron-irradiated Fe–Cr alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2013.10.001 – volume: 503 start-page: 110 year: 2018 ident: 10.1016/j.matdes.2021.110317_b0185 article-title: Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.02.047 – volume: 13 start-page: 1049 issue: 4 year: 1998 ident: 10.1016/j.matdes.2021.110317_b0145 article-title: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques publication-title: J. Mater. Res. doi: 10.1557/JMR.1998.0146 – volume: 518 start-page: 1 year: 2019 ident: 10.1016/j.matdes.2021.110317_b0175 article-title: Nanoindentation of single- (Fe) and dual-beam (Fe and He) ion-irradiated ODS Fe-14Cr-based alloys: Effect of the initial microstructure on irradiation-induced hardening publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2019.02.037 – ident: 10.1016/j.matdes.2021.110317_b0245 doi: 10.6028/NIST.TN.1879 – volume: 145 start-page: 168 year: 2018 ident: 10.1016/j.matdes.2021.110317_b0065 article-title: Indentation size effects of ferritic/martensitic steels: A comparative experimental and modelling study publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.02.064 – volume: 45 start-page: 3857 issue: 9 year: 2014 ident: 10.1016/j.matdes.2021.110317_b0240 article-title: The Role of Precipitates in the Behavior of Young’s Modulus in Aluminum Alloys publication-title: Metall. Mater. Trans. A. doi: 10.1007/s11661-014-2328-8 – volume: 201 start-page: 535 year: 2020 ident: 10.1016/j.matdes.2021.110317_b0225 article-title: Characterising Ion-Irradiated FeCr: Hardness, Thermal Diffusivity and Lattice Strain publication-title: Acta. Mater. doi: 10.1016/j.actamat.2020.10.015 – volume: 98 start-page: 911 issue: 11 year: 2018 ident: 10.1016/j.matdes.2021.110317_b0165 article-title: Nanoindentation of ion-irradiated reactor pressure vessel steels – model-based interpretation and comparison with neutron irradiation publication-title: Philos. Mag. doi: 10.1080/14786435.2018.1425007 – volume: 194 year: 2020 ident: 10.1016/j.matdes.2021.110317_b0205 article-title: An experimental assessment of methods for mitigating plasticity error during nanoindentation with continuous stiffness measurement publication-title: Mater. Des. – volume: 478 start-page: 50 year: 2016 ident: 10.1016/j.matdes.2021.110317_b0180 article-title: Evaluation of hardening behaviors in ion-irradiated Fe–9Cr and Fe–20Cr alloys by nanoindentation technique publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2016.05.038 – volume: 442 start-page: S23 issue: 1-3 year: 2013 ident: 10.1016/j.matdes.2021.110317_b0045 article-title: Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single- and dual-ion beam irradiation publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2012.12.033 – volume: 465 start-page: 746 year: 2015 ident: 10.1016/j.matdes.2021.110317_b0305 article-title: Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.06.023 – volume: 19 start-page: 18 year: 2004 ident: 10.1016/j.matdes.2021.110317_b0260 article-title: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology publication-title: J. Mater. Res. doi: 10.1557/jmr.2004.19.1.3 – volume: 165 start-page: 568 year: 1938 ident: 10.1016/j.matdes.2021.110317_b0070 article-title: The influence of rate of deformation on the tensile test with special reference to the yield point in iron and steel publication-title: Proc. R. Soc. A. – volume: 195 start-page: 433 year: 2020 ident: 10.1016/j.matdes.2021.110317_b0170 article-title: The correlation between microstructure and nanoindentation property of neutron-irradiated austenitic alloy D9 publication-title: Acta. Mater. doi: 10.1016/j.actamat.2020.05.020 – volume: 179 start-page: 61 year: 2019 ident: 10.1016/j.matdes.2021.110317_b0025 article-title: Effects of thermal aging and low-fluence neutron irradiation on the mechanical property and microstructure of ferrite in cast austenitic stainless steels publication-title: Acta. Mater. doi: 10.1016/j.actamat.2019.08.029 – volume: 48 start-page: 285 issue: 2 year: 1976 ident: 10.1016/j.matdes.2021.110317_b0345 article-title: Alloy softening in binary iron solid solutions publication-title: J. Less. Common. Met. doi: 10.1016/0022-5088(76)90009-6 – volume: 86 start-page: 151 year: 2016 ident: 10.1016/j.matdes.2021.110317_b0280 article-title: Relationship between damage and hardness profiles in ion irradiated SS316 using nanoindentation – Experiments and modelling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.08.006 – volume: 655 start-page: 183 year: 2016 ident: 10.1016/j.matdes.2021.110317_b0235 article-title: Effect of thermal aging on corrosion fatigue of Z3CN20.09M duplex stainless steel in high temperature water publication-title: Mater. Sci. Eng. A. doi: 10.1016/j.msea.2015.12.080 – volume: 84 start-page: 461 issue: 7 year: 2004 ident: 10.1016/j.matdes.2021.110317_b0380 article-title: Solid-solution hardening by point-like obstacles of different kinds publication-title: Philos. Mag. Lett. doi: 10.1080/09500830410001726969 – volume: 551 year: 2021 ident: 10.1016/j.matdes.2021.110317_b0030 article-title: Methodological comment on the nanoindentation of ion-irradiation hardened materials publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2021.152987 – volume: 86 start-page: 2658 issue: 9-11 year: 2011 ident: 10.1016/j.matdes.2021.110317_b0115 article-title: A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques, Fusion publication-title: Eng. Des. – volume: 24 start-page: 1142 issue: 3 year: 2009 ident: 10.1016/j.matdes.2021.110317_b0140 article-title: Importance of surface preparation on the nano-indentation stress-strain curves measured in metals publication-title: J. Mater. Res. doi: 10.1557/jmr.2009.0137 – volume: 194 year: 2020 ident: 10.1016/j.matdes.2021.110317_b0210 article-title: Understanding and modeling plasticity error during nanoindentation with continuous stiffness measurement publication-title: Mater. Des. – volume: 472 start-page: 196 year: 2016 ident: 10.1016/j.matdes.2021.110317_b0060 article-title: Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.07.023 – volume: 207 year: 2021 ident: 10.1016/j.matdes.2021.110317_b0275 article-title: Indentation size effect, geometrically necessary dislocations and pile-up effects in hardness testing of irradiated nickel publication-title: Acta. Mater. doi: 10.1016/j.actamat.2021.116702 – volume: 329-333 start-page: 88 year: 2004 ident: 10.1016/j.matdes.2021.110317_b0355 article-title: Observation and analysis of defect cluster production and interactions with dislocations publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2004.04.298 – volume: 157 start-page: 49 year: 2018 ident: 10.1016/j.matdes.2021.110317_b0095 article-title: Quantifying early stage irradiation damage from nanoindentation pop-in tests publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.07.035 – volume: 336 start-page: 267 issue: 2-3 year: 2005 ident: 10.1016/j.matdes.2021.110317_b0295 article-title: The relationship between hardness and yield stress in irradiated austenitic and ferritic steels publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2004.09.024 – volume: 2 start-page: 323 issue: 15 year: 1957 ident: 10.1016/j.matdes.2021.110317_b0360 article-title: Work-hardening and work-softening of face-centred cubic metal crystals publication-title: Philos. Mag. doi: 10.1080/14786435708243823 – volume: 444 start-page: 1 issue: 1-3 year: 2014 ident: 10.1016/j.matdes.2021.110317_b0190 article-title: Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2013.09.026 – volume: 54 start-page: 1668 issue: 8 year: 2006 ident: 10.1016/j.matdes.2021.110317_b0055 article-title: A model of size effects in nano-indentation publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2006.02.002 – volume: 531 year: 2020 ident: 10.1016/j.matdes.2021.110317_b0155 article-title: Investigation of anisotropic hardening response in a 12Cr-ODS ferritic steel subjected to 2.8 MeV Fe2+ irradiation publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2020.152016 – volume: 462 start-page: 391 year: 2015 ident: 10.1016/j.matdes.2021.110317_b0110 article-title: Understanding the effects of ion irradiation using nanoindentation techniques publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.11.066 – volume: 446 start-page: 142 issue: 1-3 year: 2014 ident: 10.1016/j.matdes.2021.110317_b0020 article-title: Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2013.12.009 – volume: 44 start-page: 91 issue: 4-5 year: 2004 ident: 10.1016/j.matdes.2021.110317_b0150 article-title: Scaling, dimensional analysis, and indentation measurements publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2004.05.001 – volume: 50 start-page: 681 issue: 4 year: 2002 ident: 10.1016/j.matdes.2021.110317_b0050 article-title: The correlation of the indentation size effect measured with indenters of various shapes publication-title: J. Mech. Phys. Solids. doi: 10.1016/S0022-5096(01)00103-X – volume: 36 start-page: 2183 issue: 8 year: 1988 ident: 10.1016/j.matdes.2021.110317_b0125 article-title: A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb publication-title: Acta. Mater. doi: 10.1016/0001-6160(88)90319-7 – volume: 2 start-page: 1979 year: 1971 ident: 10.1016/j.matdes.2021.110317_b0290 article-title: The determination of yield strength from hardness measurements publication-title: Metallurgical Trans. doi: 10.1007/BF02913433 – volume: 196 start-page: 175 year: 2020 ident: 10.1016/j.matdes.2021.110317_b0160 article-title: He ion irradiation response of a gradient T91 steel publication-title: Acta. Mater. doi: 10.1016/j.actamat.2020.06.019 – volume: 54 start-page: 2281 issue: 11 year: 2006 ident: 10.1016/j.matdes.2021.110317_b0270 article-title: Discrete dislocation plasticity analysis of the wedge indentation of films publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2006.07.004 – volume: 17 start-page: 888 issue: 6 year: 2008 ident: 10.1016/j.matdes.2021.110317_b0300 article-title: Correlation of yield strength and tensile strength with hardness for steels publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-008-9225-5 – volume: 7 start-page: 1564 issue: 6 year: 1992 ident: 10.1016/j.matdes.2021.110317_b0005 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 15 start-page: 22 issue: 1 year: 1944 ident: 10.1016/j.matdes.2021.110317_b0075 article-title: Effect of Strain Rate Upon Plastic Flow of Steel publication-title: J. Appl. Phys. doi: 10.1063/1.1707363 – volume: 22 start-page: 325 issue: 5 year: 1980 ident: 10.1016/j.matdes.2021.110317_b0230 article-title: Young’s modulus and internal friction of FeCr alloys in relation to heat treatment publication-title: Met. Sci. Heat. Treat. doi: 10.1007/BF00693254 – volume: 40 start-page: 271 year: 2010 ident: 10.1016/j.matdes.2021.110317_b0035 article-title: The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070909-104456 – volume: 201 start-page: 161 year: 1963 ident: 10.1016/j.matdes.2021.110317_b0340 article-title: Tensile properties of single crystals of iron-chromium alloys publication-title: J. Iron. Steel. Inst. – volume: 498 start-page: 129 year: 2018 ident: 10.1016/j.matdes.2021.110317_b0015 article-title: A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2017.10.025 – volume: 19 start-page: 1 year: 1975 ident: 10.1016/j.matdes.2021.110317_b0320 article-title: Thermodynamics and kinetics of slip publication-title: Prog. Mater. Sci. – volume: 34 start-page: 3495 issue: 20 year: 2019 ident: 10.1016/j.matdes.2021.110317_b0215 article-title: Critical issues in conducting constant strain rate nanoindentation tests at higher strain rates publication-title: J. Mater. Res. doi: 10.1557/jmr.2019.292 – volume: 38 start-page: 49 year: 1964 ident: 10.1016/j.matdes.2021.110317_b0365 article-title: Elastic interaction between prismatic dislocation loops and straight dislocations publication-title: Discuss. Faraday Soc. doi: 10.1039/df9643800049 – volume: 5 start-page: 125 issue: 2 year: 1957 ident: 10.1016/j.matdes.2021.110317_b0285 article-title: An experimental investigation of the deformed zone associated with indentation hardness impressions publication-title: J. Mech. Phys. Solids. doi: 10.1016/0022-5096(57)90056-X – volume: 7 start-page: 331 issue: 2 year: 1976 ident: 10.1016/j.matdes.2021.110317_b0350 article-title: Effect of chromium on low-temperature deformation of high-purity iron publication-title: MTA. doi: 10.1007/BF02644484 – volume: 30 start-page: 601 issue: 3 year: 1999 ident: 10.1016/j.matdes.2021.110317_b0135 article-title: Indentation power-law creep of high-purity indium publication-title: Metall. Mater. Trans. A. doi: 10.1007/s11661-999-0051-7 – volume: 465 start-page: 724 year: 2015 ident: 10.1016/j.matdes.2021.110317_b0385 article-title: Formulating the strength factor α for improved predictability of radiation hardening publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.07.009 – volume: 404 start-page: 1 issue: 1-2 year: 2005 ident: 10.1016/j.matdes.2021.110317_b0100 article-title: Method to account for true contact area in soda-lime glass during nanoindentation with the Berkovich tip publication-title: Mater. Sci. Eng. A. doi: 10.1016/j.msea.2005.06.006 – volume: 24 start-page: 653 issue: 3 year: 2009 ident: 10.1016/j.matdes.2021.110317_b0130 article-title: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement publication-title: J. Mater. Res. doi: 10.1557/jmr.2009.0096 – volume: 26 start-page: 1421 issue: 11 year: 2011 ident: 10.1016/j.matdes.2021.110317_b0200 article-title: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al publication-title: J. Mater. Res. doi: 10.1557/jmr.2011.156 |
SSID | ssj0022734 |
Score | 2.543649 |
Snippet | [Display omitted]
•Nix-Gao model combined with pileup corrections are critical to improve the accuracy of bulk equivalent hardness from nanoindentation... Estimations of bulk hardness from nanoindentation are frequently subject to considerable uncertainties due to indentation size effects (ISE), pileup effects,... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 110317 |
SubjectTerms | Indentation size effects Iron alloys Pileup Precipitation hardening Strain gradient plasticity |
SummonAdditionalLinks | – databaseName: Science Direct dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEIBHsFzggCgFdVuofOg12sSx184RVl0tVOXSReJSRRM_YNtVsqJZ8ffx5LEslyJxdeI8xs54xpn5BuBbkqROjUUWtF_4moRDjFA5HnnURhZKp9hULfl5M57dius7ebcDkz4XhsIqO93f6vRGW3cto06ao9ViMfoVvAdBeHJOfBrF9S7s8TQbywHsXVz9mN1s_C4iuLRbLYToU7LPoGvCvIJdaB1xu3lCIfFpU7nsZYVqQP5bC9XW4jM9gsPOamQX7YN9gB1XHsPBFkvwI_yeNwGwDI1ZE_6BvXC8WeVZsV7-ZZRhRaqNUVIJK7GsCJbYJh-VrCbgRnnPsGbL6om1h5h1q_rh3wnMp9_nk1nU1U6IjNCiDlLn9IMsUUZqr7jzMrYuscoFiw1twaXXWSILH2epTx0Gq8C6TBobS2uCS5SewqCsSvcJmBChRUkpjQhutFKF1-hUxj2q2GNhhpD24spNxxWn8hbLvA8g-5O3Qs5JyHkr5CFEm16rlqvxxvmXNBKbc4mK3TRUj_d5Ny3y2AeXG7nXOhuL8LaZs7EPBkosETFo0yGofhzzV5MsXGrx39t_fnfPL7DPKWOi2bU5g0H9uHbnwY6pi6_dPH0GkBDxWg priority: 102 providerName: Elsevier |
Title | Toward accurate evaluation of bulk hardness from nanoindentation testing at low indent depths |
URI | https://dx.doi.org/10.1016/j.matdes.2021.110317 https://doaj.org/article/0f713a2f88964e1d9ed0f15205aaa887 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWWBAPEV5VB5YI5zErpOxIKoColORuqDo4gevKq0gFX8fX5y0mejC6jhx9Pnsu7PvviPkKgxjI_s8dbufW03cAAQgTRRYSJTIZRJDVbXkadwfPfOHqZi2Sn1hTJinB_bAXTPr3CiIbJKkfW5CnRrNrFM6TACAWyG4-7KUNc5U7WohaYs_XUFWPimapLkqssuZgtogVXcUYhR8XBUrWyuliru_pZta-ma4T_ZqQ5EO_A8ekC1THJLdFn3gEXmZVDGvFJRaIuMDXVN307ml-XL2STGpCnczinkktIBijvyIPt-ooCVybBSvFEo6m_9Q_4hqsyjfvo_JZHg3uR0FdbmEQPGElw7oCO_EQqlEYmVkrGDaASaNM9JA55GwSRqK3LI0trEBZwhokwqlmdDKeUHxCekU88KcEsq5a5FCCMWd5yxlbhMwMo0sSGYhV10SN3BlqqYSx4oWs6yJGfvIPMgZgpx5kLskWL218FQaG_rf4Eys-iIRdtXgxCOrxSPbJB5dIpt5zGqbwtsK7lPvfw5_9h_Dn5OdCPMlqjObC9Ipv5bm0lkxZd4j24P7x9G4VwnuL5Bf8FM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9swDICJNj2sOwx7FUv30mFXI7YsRfKxK1aka5vLMqCXQZD16NIFdtA56N8f6UeaXVZgV9nyg5IpUiY_AnzKsjyoqShQ--HXJIK1iVWBJ9FqJ0ulc9tWLbmaT2ffxddreb0Hp0MuDIVV9rq_0-mttu5bJr00J-vlcvINvQdBeHJOfBrF9T4cCIne3ggOTs4vZvOt30UEl26rhRB9Sg4ZdG2YF9qFPhC3m2cUEp-3lcseVqgW5L-zUO0sPmfP4VlvNbKT7sFewF6oXsLTHZbgK_ixaANgmXVuQ_gH9sDxZnVk5Wb1i1GGFak2RkklrLJVTbDELvmoYg0BN6obZhu2qu9Zd4j5sG5-_n4Ni7Mvi9NZ0tdOSJzQokGpc_pBlikndVQ8RJn6kHkV0GKzvuQy6iKTZUyLPObBolXgQyGdT6V36BLlRzCq6iq8ASYEtigppRPoRitVRm2DKni0Ko22dGPIB3EZ13PFqbzFygwBZLemE7IhIZtOyGNItr3WHVfjkfM_00hszyUqdttQ392YflqYNKLLbXnUupgKfNsi-DSigZJKay1q0zGoYRzNX5MML7X85-2P_7vnR3gyW1xdmsvz-cVbOOSUPdHu4LyDUXO3Ce_RpmnKD_2c_QMJcfRH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+accurate+evaluation+of+bulk+hardness+from+nanoindentation+testing+at+low+indent+depths&rft.jtitle=Materials+%26+design&rft.au=Zhu%2C+Pengcheng&rft.au=Zhao%2C+Yajie&rft.au=Agarwal%2C+Shradha&rft.au=Henry%2C+Jean&rft.date=2022-01-01&rft.issn=0264-1275&rft.volume=213&rft.spage=110317&rft_id=info:doi/10.1016%2Fj.matdes.2021.110317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2021_110317 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |