Toward accurate evaluation of bulk hardness from nanoindentation testing at low indent depths

[Display omitted] •Nix-Gao model combined with pileup corrections are critical to improve the accuracy of bulk equivalent hardness from nanoindentation testing.•Evaluating bulk hardness by hardness ratio or changes at a reference depth will cause quantitative errors as large as 60%.•Constant strain...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 213; p. 110317
Main Authors Zhu, Pengcheng, Zhao, Yajie, Agarwal, Shradha, Henry, Jean, Zinkle, Steven J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Elsevier
Subjects
Online AccessGet full text
ISSN0264-1275
1873-4197
DOI10.1016/j.matdes.2021.110317

Cover

Abstract [Display omitted] •Nix-Gao model combined with pileup corrections are critical to improve the accuracy of bulk equivalent hardness from nanoindentation testing.•Evaluating bulk hardness by hardness ratio or changes at a reference depth will cause quantitative errors as large as 60%.•Constant strain rate and constant loading rate tests result in comparable hardness for materials with a weak strain rate sensitivity.•The curvature in Nix-Gao fitting is not simply caused by nanoindentation testing procedures.•Size dependent dislocation obstacle strengths are essential for accurate microstructure- and nanoindentation-predicted strength change. Estimations of bulk hardness from nanoindentation are frequently subject to considerable uncertainties due to indentation size effects (ISE), pileup effects, and potential influence of surface quality or test methods. This study examined materials science principles of nanoindentation test methods to enable accurate prediction of bulk hardness for a series of high purity Fe and Fe-(3–25 wt%) Cr alloys. These materials were tested in as-annealed and thermally aged (100–900 h at 475 ℃ to produce Cr-rich α’ precipitates) conditions. Nanoindentation with a Berkovich indenter at constant strain rate (0.05–0.5 /s) and constant loading rate conditions provided comparable bulk equivalent hardness (H0) extracted by Nix-Gao model, indicating a weak strain rate sensitivity at room temperature. Results from electropolished and fine mechanically polished samples gave comparable measured hardness. Pileup corrections produced a 5–14% correction to H0 which agreed with the experimental bulk Vickers hardness within ∼10% for most tested materials. The microstructural model-predicted and measured strength values agreed for aged samples. A derived analytic expression demonstrates that an ISE error, associated with inappropriate methods such as hardness ratios or changes at a reference depth, would be as large as 60% in estimated bulk hardness for the investigated Fe-Cr alloys.
AbstractList [Display omitted] •Nix-Gao model combined with pileup corrections are critical to improve the accuracy of bulk equivalent hardness from nanoindentation testing.•Evaluating bulk hardness by hardness ratio or changes at a reference depth will cause quantitative errors as large as 60%.•Constant strain rate and constant loading rate tests result in comparable hardness for materials with a weak strain rate sensitivity.•The curvature in Nix-Gao fitting is not simply caused by nanoindentation testing procedures.•Size dependent dislocation obstacle strengths are essential for accurate microstructure- and nanoindentation-predicted strength change. Estimations of bulk hardness from nanoindentation are frequently subject to considerable uncertainties due to indentation size effects (ISE), pileup effects, and potential influence of surface quality or test methods. This study examined materials science principles of nanoindentation test methods to enable accurate prediction of bulk hardness for a series of high purity Fe and Fe-(3–25 wt%) Cr alloys. These materials were tested in as-annealed and thermally aged (100–900 h at 475 ℃ to produce Cr-rich α’ precipitates) conditions. Nanoindentation with a Berkovich indenter at constant strain rate (0.05–0.5 /s) and constant loading rate conditions provided comparable bulk equivalent hardness (H0) extracted by Nix-Gao model, indicating a weak strain rate sensitivity at room temperature. Results from electropolished and fine mechanically polished samples gave comparable measured hardness. Pileup corrections produced a 5–14% correction to H0 which agreed with the experimental bulk Vickers hardness within ∼10% for most tested materials. The microstructural model-predicted and measured strength values agreed for aged samples. A derived analytic expression demonstrates that an ISE error, associated with inappropriate methods such as hardness ratios or changes at a reference depth, would be as large as 60% in estimated bulk hardness for the investigated Fe-Cr alloys.
Estimations of bulk hardness from nanoindentation are frequently subject to considerable uncertainties due to indentation size effects (ISE), pileup effects, and potential influence of surface quality or test methods. This study examined materials science principles of nanoindentation test methods to enable accurate prediction of bulk hardness for a series of high purity Fe and Fe-(3–25 wt%) Cr alloys. These materials were tested in as-annealed and thermally aged (100–900 h at 475 ℃ to produce Cr-rich α’ precipitates) conditions. Nanoindentation with a Berkovich indenter at constant strain rate (0.05–0.5 /s) and constant loading rate conditions provided comparable bulk equivalent hardness (H0) extracted by Nix-Gao model, indicating a weak strain rate sensitivity at room temperature. Results from electropolished and fine mechanically polished samples gave comparable measured hardness. Pileup corrections produced a 5–14% correction to H0 which agreed with the experimental bulk Vickers hardness within ∼10% for most tested materials. The microstructural model-predicted and measured strength values agreed for aged samples. A derived analytic expression demonstrates that an ISE error, associated with inappropriate methods such as hardness ratios or changes at a reference depth, would be as large as 60% in estimated bulk hardness for the investigated Fe-Cr alloys.
ArticleNumber 110317
Author Zhao, Yajie
Henry, Jean
Zinkle, Steven J.
Zhu, Pengcheng
Agarwal, Shradha
Author_xml – sequence: 1
  givenname: Pengcheng
  surname: Zhu
  fullname: Zhu, Pengcheng
  email: pzhu2@vols.utk.edu
  organization: Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA
– sequence: 2
  givenname: Yajie
  surname: Zhao
  fullname: Zhao, Yajie
  organization: Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
– sequence: 3
  givenname: Shradha
  surname: Agarwal
  fullname: Agarwal, Shradha
  organization: Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA
– sequence: 4
  givenname: Jean
  surname: Henry
  fullname: Henry, Jean
  organization: CEA, DEN, Service de Recherches Métallurgiques Appliquées, Laboratoire d’Analyse Microstructurale des Matériaux, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
– sequence: 5
  givenname: Steven J.
  surname: Zinkle
  fullname: Zinkle, Steven J.
  organization: Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA
BookMark eNqFkMFOHDEMhqMKpC4Lb8AhLzDbODPZmXBAQogCElIve60ib-JAtrMJSrIg3p6BaS89tCdLtv_fv78TdhRTJMbOQaxAwPrbbrXH6qispJCwAhAt9F_YAoa-bTrQ_RFbCLnuGpC9-spOStkJIWXfdgv2c5NeMTuO1h4yVuL0guMBa0iRJ8-3h_EXf5oWIpXCfU57HjGmEB3FOm9VKjXER46Vj-mVzyPu6Lk-lVN27HEsdPa7Ltnm-83m-q55-HF7f3310Nhu6GrTkQStptBWDb6X5JVwBK4nBRrdVio_aFBbL3TrW0ItwJFW1gnl7FqqdsnuZ1uXcGeec9hjfjMJg_lspPxoMNdgRzLC99Ci9MOg1910Q5MTHpQUChGHCdiSXcxeNqdSMnljw_xpzRhGA8J8MDc7MzM3H8zNzHwSd3-J_4T5j-xyltHE6CVQNsUGipZcyGTr9EX4t8E7k_ag0A
CitedBy_id crossref_primary_10_1016_j_nimb_2023_165215
crossref_primary_10_1016_j_jnucmat_2023_154672
crossref_primary_10_1016_j_jnucmat_2024_155385
crossref_primary_10_1016_j_ijplas_2023_103804
crossref_primary_10_1016_j_jmrt_2022_08_016
crossref_primary_10_1016_j_jnucmat_2025_155606
crossref_primary_10_3390_ma16031117
crossref_primary_10_1039_D4TA03596H
crossref_primary_10_1016_j_polymer_2024_127597
crossref_primary_10_3390_met14030257
crossref_primary_10_1007_s10853_025_10655_6
crossref_primary_10_1007_s10853_022_07461_9
crossref_primary_10_1063_5_0098807
crossref_primary_10_22349_1994_6716_2024_117_1_210_226
crossref_primary_10_3390_lubricants12030099
crossref_primary_10_3390_ma16124341
crossref_primary_10_1088_1361_6463_ac9535
crossref_primary_10_1016_j_matdes_2025_113708
crossref_primary_10_1016_j_addma_2023_103825
crossref_primary_10_1016_j_jnucmat_2024_155211
crossref_primary_10_1016_j_ntm_2024_100057
crossref_primary_10_4028_p_o77XmJ
crossref_primary_10_1007_s11661_022_06776_1
crossref_primary_10_1016_j_addma_2022_103228
crossref_primary_10_1016_j_matchar_2022_112320
crossref_primary_10_1016_j_jnucmat_2024_155271
crossref_primary_10_1021_acs_macromol_4c02127
crossref_primary_10_1016_j_jnucmat_2024_155539
crossref_primary_10_1016_j_jnucmat_2023_154823
crossref_primary_10_1093_pnasnexus_pgae148
crossref_primary_10_3390_ma15061985
crossref_primary_10_1126_sciadv_adq6828
crossref_primary_10_3390_ma15134477
crossref_primary_10_1038_s41598_022_10490_8
crossref_primary_10_1063_5_0092138
crossref_primary_10_1016_j_jallcom_2023_171974
crossref_primary_10_1016_j_jmapro_2024_10_005
crossref_primary_10_1016_j_pnucene_2024_105518
crossref_primary_10_1063_5_0206224
crossref_primary_10_1016_j_jnucmat_2024_155093
crossref_primary_10_1016_j_jnucmat_2025_155608
crossref_primary_10_1016_j_matdes_2025_113643
crossref_primary_10_3390_ma17133286
crossref_primary_10_1039_D4RA03919J
crossref_primary_10_1016_j_jmrt_2024_09_075
Cites_doi 10.1016/S0022-5096(97)00086-0
10.1016/0025-5416(77)90212-9
10.1063/1.1707696
10.1016/j.scriptamat.2006.06.030
10.1016/0001-6160(63)90213-X
10.1016/j.scriptamat.2005.02.009
10.1143/JJAP.20.449
10.1557/JMR.2004.0441
10.1016/j.jnucmat.2020.152543
10.1016/j.actamat.2007.08.001
10.1080/10420159808229676
10.1080/14786436608244762
10.1002/pssb.19700410221
10.1007/BF02643211
10.1016/j.scriptamat.2004.05.034
10.1016/j.jnucmat.2018.09.007
10.1016/j.jnucmat.2014.01.024
10.1016/j.scriptamat.2013.10.001
10.1016/j.jnucmat.2018.02.047
10.1557/JMR.1998.0146
10.1016/j.jnucmat.2019.02.037
10.6028/NIST.TN.1879
10.1016/j.matdes.2018.02.064
10.1007/s11661-014-2328-8
10.1016/j.actamat.2020.10.015
10.1080/14786435.2018.1425007
10.1016/j.jnucmat.2016.05.038
10.1016/j.jnucmat.2012.12.033
10.1016/j.jnucmat.2015.06.023
10.1557/jmr.2004.19.1.3
10.1016/j.actamat.2020.05.020
10.1016/j.actamat.2019.08.029
10.1016/0022-5088(76)90009-6
10.1016/j.ijplas.2016.08.006
10.1016/j.msea.2015.12.080
10.1080/09500830410001726969
10.1016/j.jnucmat.2021.152987
10.1557/jmr.2009.0137
10.1016/j.jnucmat.2015.07.023
10.1016/j.actamat.2021.116702
10.1016/j.jnucmat.2004.04.298
10.1016/j.scriptamat.2018.07.035
10.1016/j.jnucmat.2004.09.024
10.1080/14786435708243823
10.1016/j.jnucmat.2013.09.026
10.1016/j.jmps.2006.02.002
10.1016/j.jnucmat.2020.152016
10.1016/j.jnucmat.2014.11.066
10.1016/j.jnucmat.2013.12.009
10.1016/j.mser.2004.05.001
10.1016/S0022-5096(01)00103-X
10.1016/0001-6160(88)90319-7
10.1007/BF02913433
10.1016/j.actamat.2020.06.019
10.1016/j.jmps.2006.07.004
10.1007/s11665-008-9225-5
10.1557/JMR.1992.1564
10.1063/1.1707363
10.1007/BF00693254
10.1146/annurev-matsci-070909-104456
10.1016/j.jnucmat.2017.10.025
10.1557/jmr.2019.292
10.1039/df9643800049
10.1016/0022-5096(57)90056-X
10.1007/BF02644484
10.1007/s11661-999-0051-7
10.1016/j.jnucmat.2015.07.009
10.1016/j.msea.2005.06.006
10.1557/jmr.2009.0096
10.1557/jmr.2011.156
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2021.110317
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_0f713a2f88964e1d9ed0f15205aaa887
10_1016_j_matdes_2021_110317
S0264127521008728
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
NCXOZ
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c484t-4e2195317c58f72ef50de1d7e519adb25f8915bf093f3ea901de95cd05dc6253
IEDL.DBID DOA
ISSN 0264-1275
IngestDate Wed Aug 27 01:30:07 EDT 2025
Tue Jul 01 02:24:05 EDT 2025
Thu Apr 24 22:58:08 EDT 2025
Fri Feb 23 02:40:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pileup
Iron alloys
Indentation size effects
Strain gradient plasticity
Precipitation hardening
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-4e2195317c58f72ef50de1d7e519adb25f8915bf093f3ea901de95cd05dc6253
OpenAccessLink https://doaj.org/article/0f713a2f88964e1d9ed0f15205aaa887
ParticipantIDs doaj_primary_oai_doaj_org_article_0f713a2f88964e1d9ed0f15205aaa887
crossref_citationtrail_10_1016_j_matdes_2021_110317
crossref_primary_10_1016_j_matdes_2021_110317
elsevier_sciencedirect_doi_10_1016_j_matdes_2021_110317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zinkle, Matsukawa (b0355) 2004; 329-333
Cheng, Cheng (b0150) 2004; 44
Speich, Schwoeble, Leslie (b0220) 1972; 3
Bachhav, Robert Odette, Marquis (b0120) 2014; 74
Lucas, Oliver (b0135) 1999; 30
Hiratani, Bulatov (b0380) 2004; 84
Fleischer (b0325) 1963; 11
Samuels, Mulhearn (b0285) 1957; 5
Pharr, Herbert, Gao (b0035) 2010; 40
Elam, Carpenter (b0070) 1938; 165
Qu, Huang, Nix, Jiang, Zhang, Hwang (b0265) 2004; 19
Odette, Lucas (b0375) 1998; 144
Bolshakov, Pharr (b0145) 1998; 13
Phani, Oliver, Pharr (b0205) 2020; 194
Labusch (b0335) 1970; 41
Heintze, Hilger, Bergner, Weissgärber, Kieback (b0175) 2019; 518
Oliver, Pharr (b0005) 1992; 7
Tan, Busby (b0385) 2015; 465
Kocks, Argon, Ashby (b0320) 1975; 19
Yang, Kano, Shen, McGrady, Li, Chen, Murakami, Abe (b0155) 2020; 531
Wu, Yang, Wang, Zhang, Shi, Chen, Sun (b0235) 2016; 655
Kroupa, Hirsch (b0365) 1964; 38
Field, Hu, Littrell, Yamamoto, Snead (b0305) 2015; 465
Stephens, Witzke (b0345) 1976; 48
Balint, Deshpande, Needleman, Van der Giessen (b0270) 2006; 54
Chen, Miyahara, Nomoto, Nishida (b0025) 2019; 179
Seeger, Diehl, Mader, Rebstock (b0360) 1957; 2
Zener, Hollomon (b0075) 1944; 15
Rester, Motz, Pippan (b0090) 2007; 55
Villuendas, Jorba, Roca (b0240) 2014; 45
Mattucci, Cherubin, Changizian, Skippon, Daymond (b0275) 2021; 207
Foreman, Makin (b0310) 1966; 14
Huang, Zhang, Hwang, Nix, Pharr, Feng (b0055) 2006; 54
Pavlina, Van Tyne (b0300) 2008; 17
Phani, Oliver, Pharr (b0210) 2020; 194
Heintze, Bergner, Akhmadaliev, Altstadt (b0060) 2016; 472
Röder, Heintze, Pecko, Akhmadaliev, Bergner, Ulbricht, Altstadt (b0165) 2018; 98
Oliver, Pharr (b0260) 2004; 19
Xiao, Yu (b0185) 2018; 503
Cahoon, Broughton, Kutzak (b0290) 1971; 2
Durst, Backes, Göken (b0255) 2005; 52
Saleh, Zaidi, Ionescu, Hurt, Short, Daniels, Munroe, Edwards, Bhattacharyya (b0280) 2016; 86
Haušild (b0030) 2021; 551
Kasada, Takayama, Yabuuchi, Kimura (b0115) 2011; 86
Kelley, Stoloff (b0350) 1976; 7
E. Lucon, K. Abiko, M. Lambrecht, B. Rehmer, Tensile Properties of Commercially Pure, High-Purity and Ultra-High-Purity Iron: Results of an International Round-Robin, (2015). https://doi.org/10.6028/NIST.TN.1879.
Zener, Hollomon (b0080) 1946; 17
Busby, Hash, Was (b0295) 2005; 336
Kocks (b0315) 1977; 27
Mayo, Nix (b0125) 1988; 36
Song, Das, Reza, Phillips, Xu, Yu, Mizohata, Armstrong, Hofmann (b0225) 2020; 201
Feng, Nix (b0250) 2004; 51
Suzuki (b0330) 1981; 20
Song, Gao, Yabuuchi, Kimura (b0085) 2018; 511
Li, Wang, Dai, Liu, Li, Wang (b0180) 2016; 478
Bonny, Khvan, Bakaeva, Yin, Dubinko, Cabet, Loyer-Prost, Castin, Bakaev, Terentyev (b0195) 2021; 543
Takayama, Kasada, Sakamoto, Yabuuchi, Kimura, Ando, Hamaguchi, Tanigawa (b0045) 2013; 442
Chen, He, Cullison, Hay, Burns, Wu, Tan (b0170) 2020; 195
Merle, Higgins, Pharr (b0215) 2019; 34
Bergner, Pareige, Hernández-Mayoral, Malerba, Heintze (b0390) 2014; 448
Jin, Xia, Crespillo, Xue, Zhang, Gao, Bei (b0095) 2018; 157
Hardie, Roberts, Bushby (b0110) 2015; 462
Ruiz-Moreno, Hähner (b0065) 2018; 145
J. Friedel, On the Elastic Limit of Crystals, in: Electron Microscopy and Strength of Crystals, Interscience, New York, 1963: pp. 605–648
Kese, Li (b0105) 2006; 55
Drapkin, Fokin (b0230) 1980; 22
Kese, Li, Bergman (b0100) 2005; 404
Pathak, Stojakovic, Doherty, Kalidindi (b0140) 2009; 24
Swadener, George, Pharr (b0050) 2002; 50
Yang, Zhang, Ding, Su, Yan, Song, Cheng (b0015) 2018; 498
Maier, Durst, Mueller, Backes, Höppel, Göken (b0200) 2011; 26
Yabuuchi, Kuribayashi, Nogami, Kasada, Hasegawa (b0020) 2014; 446
Nix, Gao (b0040) 1998; 46
Shang, Ding, Fan, Chen, Li, Zhang, Wang, Wang, Zhang (b0160) 2020; 196
Pharr, Strader, Oliver (b0130) 2009; 24
Liu, Wang, Ren, Jiang, Xu, Huang, Qian, Wu, Zhang (b0190) 2014; 444
Horne, Roy, Paxton (b0340) 1963; 201
Tabor (b0010) 1951; 79
Jin (10.1016/j.matdes.2021.110317_b0095) 2018; 157
Bergner (10.1016/j.matdes.2021.110317_b0390) 2014; 448
Villuendas (10.1016/j.matdes.2021.110317_b0240) 2014; 45
Phani (10.1016/j.matdes.2021.110317_b0205) 2020; 194
Rester (10.1016/j.matdes.2021.110317_b0090) 2007; 55
Hardie (10.1016/j.matdes.2021.110317_b0110) 2015; 462
Pharr (10.1016/j.matdes.2021.110317_b0035) 2010; 40
Pavlina (10.1016/j.matdes.2021.110317_b0300) 2008; 17
Fleischer (10.1016/j.matdes.2021.110317_b0325) 1963; 11
Samuels (10.1016/j.matdes.2021.110317_b0285) 1957; 5
Qu (10.1016/j.matdes.2021.110317_b0265) 2004; 19
Tabor (10.1016/j.matdes.2021.110317_b0010) 1951; 79
Kese (10.1016/j.matdes.2021.110317_b0105) 2006; 55
Chen (10.1016/j.matdes.2021.110317_b0170) 2020; 195
Merle (10.1016/j.matdes.2021.110317_b0215) 2019; 34
Yang (10.1016/j.matdes.2021.110317_b0015) 2018; 498
Suzuki (10.1016/j.matdes.2021.110317_b0330) 1981; 20
Oliver (10.1016/j.matdes.2021.110317_b0260) 2004; 19
Busby (10.1016/j.matdes.2021.110317_b0295) 2005; 336
Röder (10.1016/j.matdes.2021.110317_b0165) 2018; 98
Pharr (10.1016/j.matdes.2021.110317_b0130) 2009; 24
Lucas (10.1016/j.matdes.2021.110317_b0135) 1999; 30
Zener (10.1016/j.matdes.2021.110317_b0080) 1946; 17
Mayo (10.1016/j.matdes.2021.110317_b0125) 1988; 36
Bonny (10.1016/j.matdes.2021.110317_b0195) 2021; 543
Song (10.1016/j.matdes.2021.110317_b0225) 2020; 201
Phani (10.1016/j.matdes.2021.110317_b0210) 2020; 194
Elam (10.1016/j.matdes.2021.110317_b0070) 1938; 165
Durst (10.1016/j.matdes.2021.110317_b0255) 2005; 52
Chen (10.1016/j.matdes.2021.110317_b0025) 2019; 179
Field (10.1016/j.matdes.2021.110317_b0305) 2015; 465
Kelley (10.1016/j.matdes.2021.110317_b0350) 1976; 7
Yabuuchi (10.1016/j.matdes.2021.110317_b0020) 2014; 446
Yang (10.1016/j.matdes.2021.110317_b0155) 2020; 531
Xiao (10.1016/j.matdes.2021.110317_b0185) 2018; 503
Bachhav (10.1016/j.matdes.2021.110317_b0120) 2014; 74
Tan (10.1016/j.matdes.2021.110317_b0385) 2015; 465
Haušild (10.1016/j.matdes.2021.110317_b0030) 2021; 551
Song (10.1016/j.matdes.2021.110317_b0085) 2018; 511
Maier (10.1016/j.matdes.2021.110317_b0200) 2011; 26
Kasada (10.1016/j.matdes.2021.110317_b0115) 2011; 86
10.1016/j.matdes.2021.110317_b0245
Mattucci (10.1016/j.matdes.2021.110317_b0275) 2021; 207
Swadener (10.1016/j.matdes.2021.110317_b0050) 2002; 50
Seeger (10.1016/j.matdes.2021.110317_b0360) 1957; 2
Odette (10.1016/j.matdes.2021.110317_b0375) 1998; 144
Cahoon (10.1016/j.matdes.2021.110317_b0290) 1971; 2
Kroupa (10.1016/j.matdes.2021.110317_b0365) 1964; 38
Liu (10.1016/j.matdes.2021.110317_b0190) 2014; 444
10.1016/j.matdes.2021.110317_b0370
Zinkle (10.1016/j.matdes.2021.110317_b0355) 2004; 329-333
Shang (10.1016/j.matdes.2021.110317_b0160) 2020; 196
Heintze (10.1016/j.matdes.2021.110317_b0060) 2016; 472
Wu (10.1016/j.matdes.2021.110317_b0235) 2016; 655
Pathak (10.1016/j.matdes.2021.110317_b0140) 2009; 24
Zener (10.1016/j.matdes.2021.110317_b0075) 1944; 15
Stephens (10.1016/j.matdes.2021.110317_b0345) 1976; 48
Takayama (10.1016/j.matdes.2021.110317_b0045) 2013; 442
Bolshakov (10.1016/j.matdes.2021.110317_b0145) 1998; 13
Feng (10.1016/j.matdes.2021.110317_b0250) 2004; 51
Foreman (10.1016/j.matdes.2021.110317_b0310) 1966; 14
Hiratani (10.1016/j.matdes.2021.110317_b0380) 2004; 84
Labusch (10.1016/j.matdes.2021.110317_b0335) 1970; 41
Kese (10.1016/j.matdes.2021.110317_b0100) 2005; 404
Kocks (10.1016/j.matdes.2021.110317_b0320) 1975; 19
Balint (10.1016/j.matdes.2021.110317_b0270) 2006; 54
Oliver (10.1016/j.matdes.2021.110317_b0005) 1992; 7
Huang (10.1016/j.matdes.2021.110317_b0055) 2006; 54
Heintze (10.1016/j.matdes.2021.110317_b0175) 2019; 518
Kocks (10.1016/j.matdes.2021.110317_b0315) 1977; 27
Horne (10.1016/j.matdes.2021.110317_b0340) 1963; 201
Nix (10.1016/j.matdes.2021.110317_b0040) 1998; 46
Li (10.1016/j.matdes.2021.110317_b0180) 2016; 478
Ruiz-Moreno (10.1016/j.matdes.2021.110317_b0065) 2018; 145
Cheng (10.1016/j.matdes.2021.110317_b0150) 2004; 44
Drapkin (10.1016/j.matdes.2021.110317_b0230) 1980; 22
Saleh (10.1016/j.matdes.2021.110317_b0280) 2016; 86
Speich (10.1016/j.matdes.2021.110317_b0220) 1972; 3
References_xml – volume: 26
  start-page: 1421
  year: 2011
  end-page: 1430
  ident: b0200
  article-title: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al
  publication-title: J. Mater. Res.
– volume: 17
  start-page: 888
  year: 2008
  end-page: 893
  ident: b0300
  article-title: Correlation of yield strength and tensile strength with hardness for steels
  publication-title: J. Mater. Eng. Perform.
– volume: 145
  start-page: 168
  year: 2018
  end-page: 180
  ident: b0065
  article-title: Indentation size effects of ferritic/martensitic steels: A comparative experimental and modelling study
  publication-title: Mater. Des.
– volume: 195
  start-page: 433
  year: 2020
  end-page: 445
  ident: b0170
  article-title: The correlation between microstructure and nanoindentation property of neutron-irradiated austenitic alloy D9
  publication-title: Acta. Mater.
– volume: 38
  start-page: 49
  year: 1964
  ident: b0365
  article-title: Elastic interaction between prismatic dislocation loops and straight dislocations
  publication-title: Discuss. Faraday Soc.
– volume: 194
  year: 2020
  ident: b0210
  article-title: Understanding and modeling plasticity error during nanoindentation with continuous stiffness measurement
  publication-title: Mater. Des.
– volume: 41
  start-page: 659
  year: 1970
  end-page: 669
  ident: b0335
  article-title: A statistical theory of solid solution hardening
  publication-title: Phys. Stat. Sol. (b)
– volume: 17
  start-page: 69
  year: 1946
  end-page: 82
  ident: b0080
  article-title: Problems in Non-Elastic Deformation of Metals
  publication-title: J. Appl. Phys.
– volume: 157
  start-page: 49
  year: 2018
  end-page: 53
  ident: b0095
  article-title: Quantifying early stage irradiation damage from nanoindentation pop-in tests
  publication-title: Scr. Mater.
– volume: 86
  start-page: 2658
  year: 2011
  end-page: 2661
  ident: b0115
  article-title: A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques, Fusion
  publication-title: Eng. Des.
– volume: 79
  start-page: 1
  year: 1951
  end-page: 18
  ident: b0010
  article-title: The hardness and strength of metals
  publication-title: J. Inst. Metals.
– volume: 74
  start-page: 48
  year: 2014
  end-page: 51
  ident: b0120
  article-title: α′ precipitation in neutron-irradiated Fe–Cr alloys
  publication-title: Scr. Mater.
– volume: 19
  start-page: 3423
  year: 2004
  end-page: 3434
  ident: b0265
  article-title: Indenter tip radius effect on the Nix-Gao relation in micro- and nanoindentation hardness experiments
  publication-title: J. Mater. Res.
– volume: 45
  start-page: 3857
  year: 2014
  end-page: 3865
  ident: b0240
  article-title: The Role of Precipitates in the Behavior of Young’s Modulus in Aluminum Alloys
  publication-title: Metall. Mater. Trans. A.
– volume: 465
  start-page: 746
  year: 2015
  end-page: 755
  ident: b0305
  article-title: Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys
  publication-title: J. Nucl. Mater.
– volume: 7
  start-page: 1564
  year: 1992
  end-page: 1583
  ident: b0005
  article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res.
– volume: 51
  start-page: 599
  year: 2004
  end-page: 603
  ident: b0250
  article-title: Indentation size effect in MgO
  publication-title: Scr. Mater.
– volume: 465
  start-page: 724
  year: 2015
  end-page: 730
  ident: b0385
  article-title: Formulating the strength factor α for improved predictability of radiation hardening
  publication-title: J. Nucl. Mater.
– volume: 336
  start-page: 267
  year: 2005
  end-page: 278
  ident: b0295
  article-title: The relationship between hardness and yield stress in irradiated austenitic and ferritic steels
  publication-title: J. Nucl. Mater.
– volume: 446
  start-page: 142
  year: 2014
  end-page: 147
  ident: b0020
  article-title: Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation
  publication-title: J. Nucl. Mater.
– volume: 84
  start-page: 461
  year: 2004
  end-page: 470
  ident: b0380
  article-title: Solid-solution hardening by point-like obstacles of different kinds
  publication-title: Philos. Mag. Lett.
– volume: 329-333
  start-page: 88
  year: 2004
  end-page: 96
  ident: b0355
  article-title: Observation and analysis of defect cluster production and interactions with dislocations
  publication-title: J. Nucl. Mater.
– volume: 462
  start-page: 391
  year: 2015
  end-page: 401
  ident: b0110
  article-title: Understanding the effects of ion irradiation using nanoindentation techniques
  publication-title: J. Nucl. Mater.
– volume: 655
  start-page: 183
  year: 2016
  end-page: 192
  ident: b0235
  article-title: Effect of thermal aging on corrosion fatigue of Z3CN20.09M duplex stainless steel in high temperature water
  publication-title: Mater. Sci. Eng. A.
– volume: 442
  start-page: S23
  year: 2013
  end-page: S27
  ident: b0045
  article-title: Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single- and dual-ion beam irradiation
  publication-title: J. Nucl. Mater.
– volume: 34
  start-page: 3495
  year: 2019
  end-page: 3503
  ident: b0215
  article-title: Critical issues in conducting constant strain rate nanoindentation tests at higher strain rates
  publication-title: J. Mater. Res.
– volume: 13
  start-page: 1049
  year: 1998
  end-page: 1058
  ident: b0145
  article-title: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques
  publication-title: J. Mater. Res.
– volume: 518
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0175
  article-title: Nanoindentation of single- (Fe) and dual-beam (Fe and He) ion-irradiated ODS Fe-14Cr-based alloys: Effect of the initial microstructure on irradiation-induced hardening
  publication-title: J. Nucl. Mater.
– volume: 472
  start-page: 196
  year: 2016
  end-page: 205
  ident: b0060
  article-title: Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening
  publication-title: J. Nucl. Mater.
– volume: 511
  start-page: 200
  year: 2018
  end-page: 211
  ident: b0085
  article-title: Ion-irradiation hardening accompanied by irradiation-induced dissolution of oxides in FeCr(Y, Ti)-ODS ferritic steel
  publication-title: J. Nucl. Mater.
– volume: 503
  start-page: 110
  year: 2018
  end-page: 115
  ident: b0185
  article-title: Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials
  publication-title: J. Nucl. Mater.
– volume: 44
  start-page: 91
  year: 2004
  end-page: 149
  ident: b0150
  article-title: Scaling, dimensional analysis, and indentation measurements
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 14
  start-page: 911
  year: 1966
  end-page: 924
  ident: b0310
  article-title: Dislocation movement through random arrays of obstacles
  publication-title: Philos. Mag.
– volume: 551
  year: 2021
  ident: b0030
  article-title: Methodological comment on the nanoindentation of ion-irradiation hardened materials
  publication-title: J. Nucl. Mater.
– volume: 20
  start-page: 449
  year: 1981
  end-page: 462
  ident: b0330
  article-title: On the Studies of Solid Solution Hardening
  publication-title: Jpn. J. Appl. Phys.
– volume: 448
  start-page: 96
  year: 2014
  end-page: 102
  ident: b0390
  article-title: Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe–Cr model alloys
  publication-title: J. Nucl. Mater.
– volume: 498
  start-page: 129
  year: 2018
  end-page: 136
  ident: b0015
  article-title: A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions
  publication-title: J. Nucl. Mater.
– volume: 55
  start-page: 6427
  year: 2007
  end-page: 6435
  ident: b0090
  article-title: Microstructural investigation of the volume beneath nanoindentations in copper
  publication-title: Acta. Mater.
– volume: 46
  start-page: 411
  year: 1998
  end-page: 425
  ident: b0040
  article-title: Indentation size effects in crystalline materials: a law for strain gradient plasticity
  publication-title: J. Mech. Phys. Solids.
– volume: 30
  start-page: 601
  year: 1999
  end-page: 610
  ident: b0135
  article-title: Indentation power-law creep of high-purity indium
  publication-title: Metall. Mater. Trans. A.
– volume: 144
  start-page: 189
  year: 1998
  end-page: 231
  ident: b0375
  article-title: Recent progress in understanding reactor pressure vessel steel embrittlement
  publication-title: Radiat. Eff. Defects Solids.
– volume: 22
  start-page: 325
  year: 1980
  end-page: 329
  ident: b0230
  article-title: Young’s modulus and internal friction of FeCr alloys in relation to heat treatment
  publication-title: Met. Sci. Heat. Treat.
– volume: 40
  start-page: 271
  year: 2010
  end-page: 292
  ident: b0035
  article-title: The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations
  publication-title: Annu. Rev. Mater. Res.
– volume: 201
  start-page: 161
  year: 1963
  ident: b0340
  article-title: Tensile properties of single crystals of iron-chromium alloys
  publication-title: J. Iron. Steel. Inst.
– volume: 531
  year: 2020
  ident: b0155
  article-title: Investigation of anisotropic hardening response in a 12Cr-ODS ferritic steel subjected to 2.8 MeV Fe2+ irradiation
  publication-title: J. Nucl. Mater.
– volume: 11
  start-page: 203
  year: 1963
  end-page: 209
  ident: b0325
  article-title: Substitutional solution hardening
  publication-title: Acta. Matell.
– volume: 194
  year: 2020
  ident: b0205
  article-title: An experimental assessment of methods for mitigating plasticity error during nanoindentation with continuous stiffness measurement
  publication-title: Mater. Des.
– volume: 52
  start-page: 1093
  year: 2005
  end-page: 1097
  ident: b0255
  article-title: Indentation size effect in metallic materials: Correcting for the size of the plastic zone
  publication-title: Scr. Mater.
– volume: 24
  start-page: 1142
  year: 2009
  end-page: 1155
  ident: b0140
  article-title: Importance of surface preparation on the nano-indentation stress-strain curves measured in metals
  publication-title: J. Mater. Res.
– reference: E. Lucon, K. Abiko, M. Lambrecht, B. Rehmer, Tensile Properties of Commercially Pure, High-Purity and Ultra-High-Purity Iron: Results of an International Round-Robin, (2015). https://doi.org/10.6028/NIST.TN.1879.
– volume: 55
  start-page: 699
  year: 2006
  end-page: 702
  ident: b0105
  article-title: Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter
  publication-title: Scr. Mater.
– volume: 54
  start-page: 1668
  year: 2006
  end-page: 1686
  ident: b0055
  article-title: A model of size effects in nano-indentation
  publication-title: J. Mech. Phys. Solids.
– volume: 404
  start-page: 1
  year: 2005
  end-page: 8
  ident: b0100
  article-title: Method to account for true contact area in soda-lime glass during nanoindentation with the Berkovich tip
  publication-title: Mater. Sci. Eng. A.
– volume: 48
  start-page: 285
  year: 1976
  end-page: 308
  ident: b0345
  article-title: Alloy softening in binary iron solid solutions
  publication-title: J. Less. Common. Met.
– volume: 86
  start-page: 151
  year: 2016
  end-page: 169
  ident: b0280
  article-title: Relationship between damage and hardness profiles in ion irradiated SS316 using nanoindentation – Experiments and modelling
  publication-title: Int. J. Plast.
– volume: 19
  start-page: 18
  year: 2004
  ident: b0260
  article-title: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology
  publication-title: J. Mater. Res.
– volume: 201
  start-page: 535
  year: 2020
  end-page: 546
  ident: b0225
  article-title: Characterising Ion-Irradiated FeCr: Hardness, Thermal Diffusivity and Lattice Strain
  publication-title: Acta. Mater.
– volume: 7
  start-page: 331
  year: 1976
  end-page: 333
  ident: b0350
  article-title: Effect of chromium on low-temperature deformation of high-purity iron
  publication-title: MTA.
– volume: 444
  start-page: 1
  year: 2014
  end-page: 6
  ident: b0190
  article-title: Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation
  publication-title: J. Nucl. Mater.
– volume: 19
  start-page: 1
  year: 1975
  ident: b0320
  article-title: Thermodynamics and kinetics of slip
  publication-title: Prog. Mater. Sci.
– volume: 27
  start-page: 291
  year: 1977
  end-page: 298
  ident: b0315
  article-title: The theory of an obstacle-controlled yield strength—Report after an international workshop
  publication-title: Mater. Sci. Eng.
– volume: 478
  start-page: 50
  year: 2016
  end-page: 55
  ident: b0180
  article-title: Evaluation of hardening behaviors in ion-irradiated Fe–9Cr and Fe–20Cr alloys by nanoindentation technique
  publication-title: J. Nucl. Mater.
– volume: 2
  start-page: 323
  year: 1957
  end-page: 350
  ident: b0360
  article-title: Work-hardening and work-softening of face-centred cubic metal crystals
  publication-title: Philos. Mag.
– volume: 24
  start-page: 653
  year: 2009
  end-page: 666
  ident: b0130
  article-title: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement
  publication-title: J. Mater. Res.
– volume: 196
  start-page: 175
  year: 2020
  end-page: 190
  ident: b0160
  article-title: He ion irradiation response of a gradient T91 steel
  publication-title: Acta. Mater.
– volume: 2
  start-page: 1979
  year: 1971
  end-page: 1983
  ident: b0290
  article-title: The determination of yield strength from hardness measurements
  publication-title: Metallurgical Trans.
– volume: 179
  start-page: 61
  year: 2019
  end-page: 69
  ident: b0025
  article-title: Effects of thermal aging and low-fluence neutron irradiation on the mechanical property and microstructure of ferrite in cast austenitic stainless steels
  publication-title: Acta. Mater.
– volume: 50
  start-page: 681
  year: 2002
  end-page: 694
  ident: b0050
  article-title: The correlation of the indentation size effect measured with indenters of various shapes
  publication-title: J. Mech. Phys. Solids.
– volume: 3
  start-page: 2031
  year: 1972
  end-page: 2037
  ident: b0220
  article-title: Elastic constants of binary iron-base alloys
  publication-title: Metall. Trans.
– volume: 5
  start-page: 125
  year: 1957
  end-page: 134
  ident: b0285
  article-title: An experimental investigation of the deformed zone associated with indentation hardness impressions
  publication-title: J. Mech. Phys. Solids.
– volume: 54
  start-page: 2281
  year: 2006
  end-page: 2303
  ident: b0270
  article-title: Discrete dislocation plasticity analysis of the wedge indentation of films
  publication-title: J. Mech. Phys. Solids.
– volume: 98
  start-page: 911
  year: 2018
  end-page: 933
  ident: b0165
  article-title: Nanoindentation of ion-irradiated reactor pressure vessel steels – model-based interpretation and comparison with neutron irradiation
  publication-title: Philos. Mag.
– volume: 207
  year: 2021
  ident: b0275
  article-title: Indentation size effect, geometrically necessary dislocations and pile-up effects in hardness testing of irradiated nickel
  publication-title: Acta. Mater.
– volume: 36
  start-page: 2183
  year: 1988
  end-page: 2192
  ident: b0125
  article-title: A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb
  publication-title: Acta. Mater.
– volume: 15
  start-page: 22
  year: 1944
  end-page: 32
  ident: b0075
  article-title: Effect of Strain Rate Upon Plastic Flow of Steel
  publication-title: J. Appl. Phys.
– reference: J. Friedel, On the Elastic Limit of Crystals, in: Electron Microscopy and Strength of Crystals, Interscience, New York, 1963: pp. 605–648
– volume: 165
  start-page: 568
  year: 1938
  end-page: 592
  ident: b0070
  article-title: The influence of rate of deformation on the tensile test with special reference to the yield point in iron and steel
  publication-title: Proc. R. Soc. A.
– volume: 543
  year: 2021
  ident: b0195
  article-title: Effect of statistically stored dislocations in tungsten on the irradiation induced nano-hardening analyzed by different methods
  publication-title: J. Nucl. Mater.
– volume: 46
  start-page: 411
  issue: 3
  year: 1998
  ident: 10.1016/j.matdes.2021.110317_b0040
  article-title: Indentation size effects in crystalline materials: a law for strain gradient plasticity
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/S0022-5096(97)00086-0
– volume: 27
  start-page: 291
  issue: 3
  year: 1977
  ident: 10.1016/j.matdes.2021.110317_b0315
  article-title: The theory of an obstacle-controlled yield strength—Report after an international workshop
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(77)90212-9
– volume: 79
  start-page: 1
  year: 1951
  ident: 10.1016/j.matdes.2021.110317_b0010
  article-title: The hardness and strength of metals
  publication-title: J. Inst. Metals.
– volume: 17
  start-page: 69
  issue: 2
  year: 1946
  ident: 10.1016/j.matdes.2021.110317_b0080
  article-title: Problems in Non-Elastic Deformation of Metals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1707696
– volume: 55
  start-page: 699
  issue: 8
  year: 2006
  ident: 10.1016/j.matdes.2021.110317_b0105
  article-title: Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2006.06.030
– volume: 11
  start-page: 203
  issue: 3
  year: 1963
  ident: 10.1016/j.matdes.2021.110317_b0325
  article-title: Substitutional solution hardening
  publication-title: Acta. Matell.
  doi: 10.1016/0001-6160(63)90213-X
– volume: 52
  start-page: 1093
  year: 2005
  ident: 10.1016/j.matdes.2021.110317_b0255
  article-title: Indentation size effect in metallic materials: Correcting for the size of the plastic zone
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2005.02.009
– volume: 20
  start-page: 449
  issue: 3
  year: 1981
  ident: 10.1016/j.matdes.2021.110317_b0330
  article-title: On the Studies of Solid Solution Hardening
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.20.449
– volume: 19
  start-page: 3423
  issue: 11
  year: 2004
  ident: 10.1016/j.matdes.2021.110317_b0265
  article-title: Indenter tip radius effect on the Nix-Gao relation in micro- and nanoindentation hardness experiments
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2004.0441
– volume: 543
  year: 2021
  ident: 10.1016/j.matdes.2021.110317_b0195
  article-title: Effect of statistically stored dislocations in tungsten on the irradiation induced nano-hardening analyzed by different methods
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2020.152543
– volume: 55
  start-page: 6427
  issue: 19
  year: 2007
  ident: 10.1016/j.matdes.2021.110317_b0090
  article-title: Microstructural investigation of the volume beneath nanoindentations in copper
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2007.08.001
– volume: 144
  start-page: 189
  issue: 1-4
  year: 1998
  ident: 10.1016/j.matdes.2021.110317_b0375
  article-title: Recent progress in understanding reactor pressure vessel steel embrittlement
  publication-title: Radiat. Eff. Defects Solids.
  doi: 10.1080/10420159808229676
– volume: 14
  start-page: 911
  issue: 131
  year: 1966
  ident: 10.1016/j.matdes.2021.110317_b0310
  article-title: Dislocation movement through random arrays of obstacles
  publication-title: Philos. Mag.
  doi: 10.1080/14786436608244762
– volume: 41
  start-page: 659
  issue: 2
  year: 1970
  ident: 10.1016/j.matdes.2021.110317_b0335
  article-title: A statistical theory of solid solution hardening
  publication-title: Phys. Stat. Sol. (b)
  doi: 10.1002/pssb.19700410221
– volume: 3
  start-page: 2031
  issue: 8
  year: 1972
  ident: 10.1016/j.matdes.2021.110317_b0220
  article-title: Elastic constants of binary iron-base alloys
  publication-title: Metall. Trans.
  doi: 10.1007/BF02643211
– volume: 51
  start-page: 599
  issue: 6
  year: 2004
  ident: 10.1016/j.matdes.2021.110317_b0250
  article-title: Indentation size effect in MgO
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2004.05.034
– ident: 10.1016/j.matdes.2021.110317_b0370
– volume: 511
  start-page: 200
  year: 2018
  ident: 10.1016/j.matdes.2021.110317_b0085
  article-title: Ion-irradiation hardening accompanied by irradiation-induced dissolution of oxides in FeCr(Y, Ti)-ODS ferritic steel
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.09.007
– volume: 448
  start-page: 96
  issue: 1-3
  year: 2014
  ident: 10.1016/j.matdes.2021.110317_b0390
  article-title: Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe–Cr model alloys
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2014.01.024
– volume: 74
  start-page: 48
  year: 2014
  ident: 10.1016/j.matdes.2021.110317_b0120
  article-title: α′ precipitation in neutron-irradiated Fe–Cr alloys
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2013.10.001
– volume: 503
  start-page: 110
  year: 2018
  ident: 10.1016/j.matdes.2021.110317_b0185
  article-title: Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.02.047
– volume: 13
  start-page: 1049
  issue: 4
  year: 1998
  ident: 10.1016/j.matdes.2021.110317_b0145
  article-title: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1998.0146
– volume: 518
  start-page: 1
  year: 2019
  ident: 10.1016/j.matdes.2021.110317_b0175
  article-title: Nanoindentation of single- (Fe) and dual-beam (Fe and He) ion-irradiated ODS Fe-14Cr-based alloys: Effect of the initial microstructure on irradiation-induced hardening
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2019.02.037
– ident: 10.1016/j.matdes.2021.110317_b0245
  doi: 10.6028/NIST.TN.1879
– volume: 145
  start-page: 168
  year: 2018
  ident: 10.1016/j.matdes.2021.110317_b0065
  article-title: Indentation size effects of ferritic/martensitic steels: A comparative experimental and modelling study
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.02.064
– volume: 45
  start-page: 3857
  issue: 9
  year: 2014
  ident: 10.1016/j.matdes.2021.110317_b0240
  article-title: The Role of Precipitates in the Behavior of Young’s Modulus in Aluminum Alloys
  publication-title: Metall. Mater. Trans. A.
  doi: 10.1007/s11661-014-2328-8
– volume: 201
  start-page: 535
  year: 2020
  ident: 10.1016/j.matdes.2021.110317_b0225
  article-title: Characterising Ion-Irradiated FeCr: Hardness, Thermal Diffusivity and Lattice Strain
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2020.10.015
– volume: 98
  start-page: 911
  issue: 11
  year: 2018
  ident: 10.1016/j.matdes.2021.110317_b0165
  article-title: Nanoindentation of ion-irradiated reactor pressure vessel steels – model-based interpretation and comparison with neutron irradiation
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2018.1425007
– volume: 194
  year: 2020
  ident: 10.1016/j.matdes.2021.110317_b0205
  article-title: An experimental assessment of methods for mitigating plasticity error during nanoindentation with continuous stiffness measurement
  publication-title: Mater. Des.
– volume: 478
  start-page: 50
  year: 2016
  ident: 10.1016/j.matdes.2021.110317_b0180
  article-title: Evaluation of hardening behaviors in ion-irradiated Fe–9Cr and Fe–20Cr alloys by nanoindentation technique
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2016.05.038
– volume: 442
  start-page: S23
  issue: 1-3
  year: 2013
  ident: 10.1016/j.matdes.2021.110317_b0045
  article-title: Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single- and dual-ion beam irradiation
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2012.12.033
– volume: 465
  start-page: 746
  year: 2015
  ident: 10.1016/j.matdes.2021.110317_b0305
  article-title: Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.06.023
– volume: 19
  start-page: 18
  year: 2004
  ident: 10.1016/j.matdes.2021.110317_b0260
  article-title: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2004.19.1.3
– volume: 165
  start-page: 568
  year: 1938
  ident: 10.1016/j.matdes.2021.110317_b0070
  article-title: The influence of rate of deformation on the tensile test with special reference to the yield point in iron and steel
  publication-title: Proc. R. Soc. A.
– volume: 195
  start-page: 433
  year: 2020
  ident: 10.1016/j.matdes.2021.110317_b0170
  article-title: The correlation between microstructure and nanoindentation property of neutron-irradiated austenitic alloy D9
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2020.05.020
– volume: 179
  start-page: 61
  year: 2019
  ident: 10.1016/j.matdes.2021.110317_b0025
  article-title: Effects of thermal aging and low-fluence neutron irradiation on the mechanical property and microstructure of ferrite in cast austenitic stainless steels
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2019.08.029
– volume: 48
  start-page: 285
  issue: 2
  year: 1976
  ident: 10.1016/j.matdes.2021.110317_b0345
  article-title: Alloy softening in binary iron solid solutions
  publication-title: J. Less. Common. Met.
  doi: 10.1016/0022-5088(76)90009-6
– volume: 86
  start-page: 151
  year: 2016
  ident: 10.1016/j.matdes.2021.110317_b0280
  article-title: Relationship between damage and hardness profiles in ion irradiated SS316 using nanoindentation – Experiments and modelling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.08.006
– volume: 655
  start-page: 183
  year: 2016
  ident: 10.1016/j.matdes.2021.110317_b0235
  article-title: Effect of thermal aging on corrosion fatigue of Z3CN20.09M duplex stainless steel in high temperature water
  publication-title: Mater. Sci. Eng. A.
  doi: 10.1016/j.msea.2015.12.080
– volume: 84
  start-page: 461
  issue: 7
  year: 2004
  ident: 10.1016/j.matdes.2021.110317_b0380
  article-title: Solid-solution hardening by point-like obstacles of different kinds
  publication-title: Philos. Mag. Lett.
  doi: 10.1080/09500830410001726969
– volume: 551
  year: 2021
  ident: 10.1016/j.matdes.2021.110317_b0030
  article-title: Methodological comment on the nanoindentation of ion-irradiation hardened materials
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2021.152987
– volume: 86
  start-page: 2658
  issue: 9-11
  year: 2011
  ident: 10.1016/j.matdes.2021.110317_b0115
  article-title: A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques, Fusion
  publication-title: Eng. Des.
– volume: 24
  start-page: 1142
  issue: 3
  year: 2009
  ident: 10.1016/j.matdes.2021.110317_b0140
  article-title: Importance of surface preparation on the nano-indentation stress-strain curves measured in metals
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2009.0137
– volume: 194
  year: 2020
  ident: 10.1016/j.matdes.2021.110317_b0210
  article-title: Understanding and modeling plasticity error during nanoindentation with continuous stiffness measurement
  publication-title: Mater. Des.
– volume: 472
  start-page: 196
  year: 2016
  ident: 10.1016/j.matdes.2021.110317_b0060
  article-title: Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.07.023
– volume: 207
  year: 2021
  ident: 10.1016/j.matdes.2021.110317_b0275
  article-title: Indentation size effect, geometrically necessary dislocations and pile-up effects in hardness testing of irradiated nickel
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2021.116702
– volume: 329-333
  start-page: 88
  year: 2004
  ident: 10.1016/j.matdes.2021.110317_b0355
  article-title: Observation and analysis of defect cluster production and interactions with dislocations
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2004.04.298
– volume: 157
  start-page: 49
  year: 2018
  ident: 10.1016/j.matdes.2021.110317_b0095
  article-title: Quantifying early stage irradiation damage from nanoindentation pop-in tests
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.07.035
– volume: 336
  start-page: 267
  issue: 2-3
  year: 2005
  ident: 10.1016/j.matdes.2021.110317_b0295
  article-title: The relationship between hardness and yield stress in irradiated austenitic and ferritic steels
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2004.09.024
– volume: 2
  start-page: 323
  issue: 15
  year: 1957
  ident: 10.1016/j.matdes.2021.110317_b0360
  article-title: Work-hardening and work-softening of face-centred cubic metal crystals
  publication-title: Philos. Mag.
  doi: 10.1080/14786435708243823
– volume: 444
  start-page: 1
  issue: 1-3
  year: 2014
  ident: 10.1016/j.matdes.2021.110317_b0190
  article-title: Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2013.09.026
– volume: 54
  start-page: 1668
  issue: 8
  year: 2006
  ident: 10.1016/j.matdes.2021.110317_b0055
  article-title: A model of size effects in nano-indentation
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2006.02.002
– volume: 531
  year: 2020
  ident: 10.1016/j.matdes.2021.110317_b0155
  article-title: Investigation of anisotropic hardening response in a 12Cr-ODS ferritic steel subjected to 2.8 MeV Fe2+ irradiation
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2020.152016
– volume: 462
  start-page: 391
  year: 2015
  ident: 10.1016/j.matdes.2021.110317_b0110
  article-title: Understanding the effects of ion irradiation using nanoindentation techniques
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2014.11.066
– volume: 446
  start-page: 142
  issue: 1-3
  year: 2014
  ident: 10.1016/j.matdes.2021.110317_b0020
  article-title: Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2013.12.009
– volume: 44
  start-page: 91
  issue: 4-5
  year: 2004
  ident: 10.1016/j.matdes.2021.110317_b0150
  article-title: Scaling, dimensional analysis, and indentation measurements
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2004.05.001
– volume: 50
  start-page: 681
  issue: 4
  year: 2002
  ident: 10.1016/j.matdes.2021.110317_b0050
  article-title: The correlation of the indentation size effect measured with indenters of various shapes
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/S0022-5096(01)00103-X
– volume: 36
  start-page: 2183
  issue: 8
  year: 1988
  ident: 10.1016/j.matdes.2021.110317_b0125
  article-title: A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb
  publication-title: Acta. Mater.
  doi: 10.1016/0001-6160(88)90319-7
– volume: 2
  start-page: 1979
  year: 1971
  ident: 10.1016/j.matdes.2021.110317_b0290
  article-title: The determination of yield strength from hardness measurements
  publication-title: Metallurgical Trans.
  doi: 10.1007/BF02913433
– volume: 196
  start-page: 175
  year: 2020
  ident: 10.1016/j.matdes.2021.110317_b0160
  article-title: He ion irradiation response of a gradient T91 steel
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2020.06.019
– volume: 54
  start-page: 2281
  issue: 11
  year: 2006
  ident: 10.1016/j.matdes.2021.110317_b0270
  article-title: Discrete dislocation plasticity analysis of the wedge indentation of films
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2006.07.004
– volume: 17
  start-page: 888
  issue: 6
  year: 2008
  ident: 10.1016/j.matdes.2021.110317_b0300
  article-title: Correlation of yield strength and tensile strength with hardness for steels
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-008-9225-5
– volume: 7
  start-page: 1564
  issue: 6
  year: 1992
  ident: 10.1016/j.matdes.2021.110317_b0005
  article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.1564
– volume: 15
  start-page: 22
  issue: 1
  year: 1944
  ident: 10.1016/j.matdes.2021.110317_b0075
  article-title: Effect of Strain Rate Upon Plastic Flow of Steel
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1707363
– volume: 22
  start-page: 325
  issue: 5
  year: 1980
  ident: 10.1016/j.matdes.2021.110317_b0230
  article-title: Young’s modulus and internal friction of FeCr alloys in relation to heat treatment
  publication-title: Met. Sci. Heat. Treat.
  doi: 10.1007/BF00693254
– volume: 40
  start-page: 271
  year: 2010
  ident: 10.1016/j.matdes.2021.110317_b0035
  article-title: The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070909-104456
– volume: 201
  start-page: 161
  year: 1963
  ident: 10.1016/j.matdes.2021.110317_b0340
  article-title: Tensile properties of single crystals of iron-chromium alloys
  publication-title: J. Iron. Steel. Inst.
– volume: 498
  start-page: 129
  year: 2018
  ident: 10.1016/j.matdes.2021.110317_b0015
  article-title: A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2017.10.025
– volume: 19
  start-page: 1
  year: 1975
  ident: 10.1016/j.matdes.2021.110317_b0320
  article-title: Thermodynamics and kinetics of slip
  publication-title: Prog. Mater. Sci.
– volume: 34
  start-page: 3495
  issue: 20
  year: 2019
  ident: 10.1016/j.matdes.2021.110317_b0215
  article-title: Critical issues in conducting constant strain rate nanoindentation tests at higher strain rates
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2019.292
– volume: 38
  start-page: 49
  year: 1964
  ident: 10.1016/j.matdes.2021.110317_b0365
  article-title: Elastic interaction between prismatic dislocation loops and straight dislocations
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9643800049
– volume: 5
  start-page: 125
  issue: 2
  year: 1957
  ident: 10.1016/j.matdes.2021.110317_b0285
  article-title: An experimental investigation of the deformed zone associated with indentation hardness impressions
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/0022-5096(57)90056-X
– volume: 7
  start-page: 331
  issue: 2
  year: 1976
  ident: 10.1016/j.matdes.2021.110317_b0350
  article-title: Effect of chromium on low-temperature deformation of high-purity iron
  publication-title: MTA.
  doi: 10.1007/BF02644484
– volume: 30
  start-page: 601
  issue: 3
  year: 1999
  ident: 10.1016/j.matdes.2021.110317_b0135
  article-title: Indentation power-law creep of high-purity indium
  publication-title: Metall. Mater. Trans. A.
  doi: 10.1007/s11661-999-0051-7
– volume: 465
  start-page: 724
  year: 2015
  ident: 10.1016/j.matdes.2021.110317_b0385
  article-title: Formulating the strength factor α for improved predictability of radiation hardening
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.07.009
– volume: 404
  start-page: 1
  issue: 1-2
  year: 2005
  ident: 10.1016/j.matdes.2021.110317_b0100
  article-title: Method to account for true contact area in soda-lime glass during nanoindentation with the Berkovich tip
  publication-title: Mater. Sci. Eng. A.
  doi: 10.1016/j.msea.2005.06.006
– volume: 24
  start-page: 653
  issue: 3
  year: 2009
  ident: 10.1016/j.matdes.2021.110317_b0130
  article-title: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2009.0096
– volume: 26
  start-page: 1421
  issue: 11
  year: 2011
  ident: 10.1016/j.matdes.2021.110317_b0200
  article-title: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2011.156
SSID ssj0022734
Score 2.543649
Snippet [Display omitted] •Nix-Gao model combined with pileup corrections are critical to improve the accuracy of bulk equivalent hardness from nanoindentation...
Estimations of bulk hardness from nanoindentation are frequently subject to considerable uncertainties due to indentation size effects (ISE), pileup effects,...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 110317
SubjectTerms Indentation size effects
Iron alloys
Pileup
Precipitation hardening
Strain gradient plasticity
SummonAdditionalLinks – databaseName: Science Direct
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEIBHsFzggCgFdVuofOg12sSx184RVl0tVOXSReJSRRM_YNtVsqJZ8ffx5LEslyJxdeI8xs54xpn5BuBbkqROjUUWtF_4moRDjFA5HnnURhZKp9hULfl5M57dius7ebcDkz4XhsIqO93f6vRGW3cto06ao9ViMfoVvAdBeHJOfBrF9S7s8TQbywHsXVz9mN1s_C4iuLRbLYToU7LPoGvCvIJdaB1xu3lCIfFpU7nsZYVqQP5bC9XW4jM9gsPOamQX7YN9gB1XHsPBFkvwI_yeNwGwDI1ZE_6BvXC8WeVZsV7-ZZRhRaqNUVIJK7GsCJbYJh-VrCbgRnnPsGbL6om1h5h1q_rh3wnMp9_nk1nU1U6IjNCiDlLn9IMsUUZqr7jzMrYuscoFiw1twaXXWSILH2epTx0Gq8C6TBobS2uCS5SewqCsSvcJmBChRUkpjQhutFKF1-hUxj2q2GNhhpD24spNxxWn8hbLvA8g-5O3Qs5JyHkr5CFEm16rlqvxxvmXNBKbc4mK3TRUj_d5Ny3y2AeXG7nXOhuL8LaZs7EPBkosETFo0yGofhzzV5MsXGrx39t_fnfPL7DPKWOi2bU5g0H9uHbnwY6pi6_dPH0GkBDxWg
  priority: 102
  providerName: Elsevier
Title Toward accurate evaluation of bulk hardness from nanoindentation testing at low indent depths
URI https://dx.doi.org/10.1016/j.matdes.2021.110317
https://doaj.org/article/0f713a2f88964e1d9ed0f15205aaa887
Volume 213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWWBAPEV5VB5YI5zErpOxIKoColORuqDo4gevKq0gFX8fX5y0mejC6jhx9Pnsu7PvviPkKgxjI_s8dbufW03cAAQgTRRYSJTIZRJDVbXkadwfPfOHqZi2Sn1hTJinB_bAXTPr3CiIbJKkfW5CnRrNrFM6TACAWyG4-7KUNc5U7WohaYs_XUFWPimapLkqssuZgtogVXcUYhR8XBUrWyuliru_pZta-ma4T_ZqQ5EO_A8ekC1THJLdFn3gEXmZVDGvFJRaIuMDXVN307ml-XL2STGpCnczinkktIBijvyIPt-ooCVybBSvFEo6m_9Q_4hqsyjfvo_JZHg3uR0FdbmEQPGElw7oCO_EQqlEYmVkrGDaASaNM9JA55GwSRqK3LI0trEBZwhokwqlmdDKeUHxCekU88KcEsq5a5FCCMWd5yxlbhMwMo0sSGYhV10SN3BlqqYSx4oWs6yJGfvIPMgZgpx5kLskWL218FQaG_rf4Eys-iIRdtXgxCOrxSPbJB5dIpt5zGqbwtsK7lPvfw5_9h_Dn5OdCPMlqjObC9Ipv5bm0lkxZd4j24P7x9G4VwnuL5Bf8FM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9swDICJNj2sOwx7FUv30mFXI7YsRfKxK1aka5vLMqCXQZD16NIFdtA56N8f6UeaXVZgV9nyg5IpUiY_AnzKsjyoqShQ--HXJIK1iVWBJ9FqJ0ulc9tWLbmaT2ffxddreb0Hp0MuDIVV9rq_0-mttu5bJr00J-vlcvINvQdBeHJOfBrF9T4cCIne3ggOTs4vZvOt30UEl26rhRB9Sg4ZdG2YF9qFPhC3m2cUEp-3lcseVqgW5L-zUO0sPmfP4VlvNbKT7sFewF6oXsLTHZbgK_ixaANgmXVuQ_gH9sDxZnVk5Wb1i1GGFak2RkklrLJVTbDELvmoYg0BN6obZhu2qu9Zd4j5sG5-_n4Ni7Mvi9NZ0tdOSJzQokGpc_pBlikndVQ8RJn6kHkV0GKzvuQy6iKTZUyLPObBolXgQyGdT6V36BLlRzCq6iq8ASYEtigppRPoRitVRm2DKni0Ko22dGPIB3EZ13PFqbzFygwBZLemE7IhIZtOyGNItr3WHVfjkfM_00hszyUqdttQ392YflqYNKLLbXnUupgKfNsi-DSigZJKay1q0zGoYRzNX5MML7X85-2P_7vnR3gyW1xdmsvz-cVbOOSUPdHu4LyDUXO3Ce_RpmnKD_2c_QMJcfRH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+accurate+evaluation+of+bulk+hardness+from+nanoindentation+testing+at+low+indent+depths&rft.jtitle=Materials+%26+design&rft.au=Zhu%2C+Pengcheng&rft.au=Zhao%2C+Yajie&rft.au=Agarwal%2C+Shradha&rft.au=Henry%2C+Jean&rft.date=2022-01-01&rft.issn=0264-1275&rft.volume=213&rft.spage=110317&rft_id=info:doi/10.1016%2Fj.matdes.2021.110317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2021_110317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon