Does Last Year’s Cost Predict the Present Cost? An Application of Machine Leaning for the Japanese Area-Basis Public Health Insurance Database

The increasing healthcare cost imposes a large economic burden for the Japanese government. Predicting the healthcare cost may be a useful tool for policy making. A database of the area-basis public health insurance of one city was analyzed to predict the medical healthcare cost by the dental health...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 18; no. 2; p. 565
Main Authors Nomura, Yoshiaki, Ishii, Yoshimasa, Chiba, Yota, Suzuki, Shunsuke, Suzuki, Akira, Suzuki, Senichi, Morita, Kenji, Tanabe, Joji, Yamakawa, Koji, Ishiwata, Yasuo, Ishikawa, Meu, Sogabe, Kaoru, Kakuta, Erika, Okada, Ayako, Otsuka, Ryoko, Hanada, Nobuhiro
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.01.2021
MDPI
Subjects
Online AccessGet full text
ISSN1660-4601
1661-7827
1660-4601
DOI10.3390/ijerph18020565

Cover

Loading…
Abstract The increasing healthcare cost imposes a large economic burden for the Japanese government. Predicting the healthcare cost may be a useful tool for policy making. A database of the area-basis public health insurance of one city was analyzed to predict the medical healthcare cost by the dental healthcare cost with a machine learning strategy. The 30,340 subjects who had continued registration of the area-basis public health insurance of Ebina city during April 2017 to September 2018 were analyzed. The sum of the healthcare cost was JPY 13,548,831,930. The per capita healthcare cost was JPY 446,567. The proportion of medical healthcare cost, medication cost, and dental healthcare cost was 78%, 15%, and 7%, respectively. By the results of the neural network model, the medical healthcare cost proportionally depended on the medical healthcare cost of the previous year. The dental healthcare cost of the previous year had a reducing effect on the medical healthcare cost. However, the effect was very small. Oral health may be a risk for chronic diseases. However, when evaluated by the healthcare cost, its effect was very small during the observation period.
AbstractList The increasing healthcare cost imposes a large economic burden for the Japanese government. Predicting the healthcare cost may be a useful tool for policy making. A database of the area-basis public health insurance of one city was analyzed to predict the medical healthcare cost by the dental healthcare cost with a machine learning strategy. The 30,340 subjects who had continued registration of the area-basis public health insurance of Ebina city during April 2017 to September 2018 were analyzed. The sum of the healthcare cost was JPY 13,548,831,930. The per capita healthcare cost was JPY 446,567. The proportion of medical healthcare cost, medication cost, and dental healthcare cost was 78%, 15%, and 7%, respectively. By the results of the neural network model, the medical healthcare cost proportionally depended on the medical healthcare cost of the previous year. The dental healthcare cost of the previous year had a reducing effect on the medical healthcare cost. However, the effect was very small. Oral health may be a risk for chronic diseases. However, when evaluated by the healthcare cost, its effect was very small during the observation period.
The increasing healthcare cost imposes a large economic burden for the Japanese government. Predicting the healthcare cost may be a useful tool for policy making. A database of the area-basis public health insurance of one city was analyzed to predict the medical healthcare cost by the dental healthcare cost with a machine learning strategy. The 30,340 subjects who had continued registration of the area-basis public health insurance of Ebina city during April 2017 to September 2018 were analyzed. The sum of the healthcare cost was JPY 13,548,831,930. The per capita healthcare cost was JPY 446,567. The proportion of medical healthcare cost, medication cost, and dental healthcare cost was 78%, 15%, and 7%, respectively. By the results of the neural network model, the medical healthcare cost proportionally depended on the medical healthcare cost of the previous year. The dental healthcare cost of the previous year had a reducing effect on the medical healthcare cost. However, the effect was very small. Oral health may be a risk for chronic diseases. However, when evaluated by the healthcare cost, its effect was very small during the observation period.The increasing healthcare cost imposes a large economic burden for the Japanese government. Predicting the healthcare cost may be a useful tool for policy making. A database of the area-basis public health insurance of one city was analyzed to predict the medical healthcare cost by the dental healthcare cost with a machine learning strategy. The 30,340 subjects who had continued registration of the area-basis public health insurance of Ebina city during April 2017 to September 2018 were analyzed. The sum of the healthcare cost was JPY 13,548,831,930. The per capita healthcare cost was JPY 446,567. The proportion of medical healthcare cost, medication cost, and dental healthcare cost was 78%, 15%, and 7%, respectively. By the results of the neural network model, the medical healthcare cost proportionally depended on the medical healthcare cost of the previous year. The dental healthcare cost of the previous year had a reducing effect on the medical healthcare cost. However, the effect was very small. Oral health may be a risk for chronic diseases. However, when evaluated by the healthcare cost, its effect was very small during the observation period.
Author Morita, Kenji
Yamakawa, Koji
Ishii, Yoshimasa
Tanabe, Joji
Otsuka, Ryoko
Kakuta, Erika
Ishiwata, Yasuo
Chiba, Yota
Hanada, Nobuhiro
Suzuki, Shunsuke
Sogabe, Kaoru
Okada, Ayako
Nomura, Yoshiaki
Suzuki, Senichi
Ishikawa, Meu
Suzuki, Akira
AuthorAffiliation 2 Ebina Dental Association, Kanagawa 243-0421, Japan; ishiiryo141@gmail.com (Y.I.); yota@db3.so-net.ne.jp (Y.C.); shun-s@wg8.so-net.ne.jp (S.S.); suzuki@bell-dental.com (A.S.); lion@kd5.so-net.ne.jp (S.S.); morita-d-c-2@t06.itscom.net (K.M.); tanabedental5@me.com (J.T.); cherry@cherry-dental.com (K.Y.); yasuo-i@rb3.so-net.ne.jp (Y.I.)
3 Department of Oral Microbiology, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan; kakuta-erika@tsurumi-u.ac.jp
4 Department of Operative Dentistry, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan; okada-a@tsurumi-u.ac.jp
1 Department of Translational Research, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan; ishikawa-me@tsurumi-u.ac.jp (M.I.); sogabe-k@tsurumi-u.ac.jp (K.S.); otsuka-ryoko@tsurumi-u.ac.jp (R.O.); hanada-n@tsurumi-u.ac.jp (N.H.)
AuthorAffiliation_xml – name: 3 Department of Oral Microbiology, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan; kakuta-erika@tsurumi-u.ac.jp
– name: 4 Department of Operative Dentistry, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan; okada-a@tsurumi-u.ac.jp
– name: 2 Ebina Dental Association, Kanagawa 243-0421, Japan; ishiiryo141@gmail.com (Y.I.); yota@db3.so-net.ne.jp (Y.C.); shun-s@wg8.so-net.ne.jp (S.S.); suzuki@bell-dental.com (A.S.); lion@kd5.so-net.ne.jp (S.S.); morita-d-c-2@t06.itscom.net (K.M.); tanabedental5@me.com (J.T.); cherry@cherry-dental.com (K.Y.); yasuo-i@rb3.so-net.ne.jp (Y.I.)
– name: 1 Department of Translational Research, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan; ishikawa-me@tsurumi-u.ac.jp (M.I.); sogabe-k@tsurumi-u.ac.jp (K.S.); otsuka-ryoko@tsurumi-u.ac.jp (R.O.); hanada-n@tsurumi-u.ac.jp (N.H.)
Author_xml – sequence: 1
  givenname: Yoshiaki
  orcidid: 0000-0002-0814-0572
  surname: Nomura
  fullname: Nomura, Yoshiaki
– sequence: 2
  givenname: Yoshimasa
  surname: Ishii
  fullname: Ishii, Yoshimasa
– sequence: 3
  givenname: Yota
  surname: Chiba
  fullname: Chiba, Yota
– sequence: 4
  givenname: Shunsuke
  surname: Suzuki
  fullname: Suzuki, Shunsuke
– sequence: 5
  givenname: Akira
  surname: Suzuki
  fullname: Suzuki, Akira
– sequence: 6
  givenname: Senichi
  surname: Suzuki
  fullname: Suzuki, Senichi
– sequence: 7
  givenname: Kenji
  surname: Morita
  fullname: Morita, Kenji
– sequence: 8
  givenname: Joji
  surname: Tanabe
  fullname: Tanabe, Joji
– sequence: 9
  givenname: Koji
  surname: Yamakawa
  fullname: Yamakawa, Koji
– sequence: 10
  givenname: Yasuo
  surname: Ishiwata
  fullname: Ishiwata, Yasuo
– sequence: 11
  givenname: Meu
  surname: Ishikawa
  fullname: Ishikawa, Meu
– sequence: 12
  givenname: Kaoru
  surname: Sogabe
  fullname: Sogabe, Kaoru
– sequence: 13
  givenname: Erika
  surname: Kakuta
  fullname: Kakuta, Erika
– sequence: 14
  givenname: Ayako
  surname: Okada
  fullname: Okada, Ayako
– sequence: 15
  givenname: Ryoko
  surname: Otsuka
  fullname: Otsuka, Ryoko
– sequence: 16
  givenname: Nobuhiro
  orcidid: 0000-0002-9130-7256
  surname: Hanada
  fullname: Hanada, Nobuhiro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33445431$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9u1DAQxi1URP_AlSOyxIVLih07TnwBLVugRYvoAQ6cookz6XqVtYPtIHHjEbjyejwJ7rZUbSVOHmt-36f5NHNI9px3SMhTzo6F0Oyl3WCY1rxhJatU9YAccKVYIRXje7fqfXIY44Yx0UilH5F9IaSspOAH5NeJx0hXEBP9ihD-_Pwd6dLn33nA3ppE0xov64gu7Rqv6cLRxTSN1kCy3lE_0I9g1tYhXSE46y7o4MNO9wEmcFlKFwGheAPRRno-d1lKTxHGtKZnLs4BnEF6Agk6iPiYPBxgjPjk-j0iX969_bw8LVaf3p8tF6vCyEamQnbIamCNYWVdSy4Y17weWAVSq76TpWi07upeVYYpLczQ806xQQPTpioHwcUReXXlO83dFnuT8wUY2ynYLYQfrQfb3u04u24v_Pe2bspaqiYbvLg2CP7bjDG1WxsNjmOO7OfYlrJuKl1yJTL6_B668XNwOd6OElI3NcvUs9sT3Yzyb1kZOL4CTPAxBhxuEM7ay2to715DFsh7AmPTbms5kR3_J_sLGAe6ng
CitedBy_id crossref_primary_10_1177_14604582241230384
crossref_primary_10_1155_2021_1162553
crossref_primary_10_3389_fpubh_2023_1145749
crossref_primary_10_1186_s12962_023_00492_2
Cites_doi 10.1080/00325481.2018.1396876
10.1111/jcpe.12775
10.3390/microorganisms7100424
10.1016/j.jbi.2019.103113
10.1177/0022034520952401
10.1111/jcpe.12808
10.1136/bmjopen-2017-019830
10.1186/s12913-020-05148-y
10.1111/idj.12040
10.3390/app10093140
10.1016/j.diabres.2020.108244
10.1111/prd.12326
10.1038/s41598-020-66312-2
10.1080/07359680903263599
10.1111/prd.12299
10.1155/2018/2478408
10.3389/fendo.2020.00336
10.1016/j.jds.2019.07.005
10.3390/nu12113315
10.1111/scd.12512
10.1016/j.cden.2014.06.005
10.1155/2020/7316796
10.1016/j.aucc.2016.07.002
10.1111/prd.12344
10.1093/ajh/hpt227
10.1186/s12903-020-01113-7
10.1016/j.jbi.2020.103565
10.1002/hec.3178
10.1111/jcpe.13189
10.1016/S0140-6736(19)31146-8
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ijerph18020565
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1660-4601
ExternalDocumentID PMC7827468
33445431
10_3390_ijerph18020565
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABGAM
ABUWG
ACGFO
ACGOD
ACIWK
ADBBV
AENEX
AFKRA
AFRAH
AFZYC
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
Q2X
RNS
RPM
SV3
TR2
UKHRP
XSB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c484t-4be07a08c027741301917f05a496db423899b7d65c0693cfd1b60f9a09c52f313
IEDL.DBID BENPR
ISSN 1660-4601
1661-7827
IngestDate Thu Aug 21 18:00:54 EDT 2025
Thu Sep 04 21:16:25 EDT 2025
Fri Jul 25 19:40:05 EDT 2025
Thu Apr 03 06:56:36 EDT 2025
Tue Jul 01 04:30:33 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords zero-inflated model
healthcare cost
medical healthcare cost
neural network
dental healthcare cost
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-4be07a08c027741301917f05a496db423899b7d65c0693cfd1b60f9a09c52f313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0814-0572
0000-0002-9130-7256
OpenAccessLink https://www.proquest.com/docview/2478349870?pq-origsite=%requestingapplication%
PMID 33445431
PQID 2478349870
PQPubID 54923
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7827468
proquest_miscellaneous_2478592163
proquest_journals_2478349870
pubmed_primary_33445431
crossref_primary_10_3390_ijerph18020565
crossref_citationtrail_10_3390_ijerph18020565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-12
PublicationDateYYYYMMDD 2021-01-12
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-12
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of environmental research and public health
PublicationTitleAlternate Int J Environ Res Public Health
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Orlandi (ref_4) 2020; 83
Otani (ref_24) 2009; 26
Schwendicke (ref_34) 2017; 44
ref_13
Sanz (ref_7) 2020; 47
ref_12
Wallace (ref_30) 2019; 46
ref_16
Cardoso (ref_11) 2018; 130
ref_15
Jones (ref_23) 2015; 24
Orueta (ref_22) 2018; 8
Morid (ref_20) 2020; 111
Nimma (ref_28) 2016; 10
ref_25
Nomura (ref_31) 2018; 2018
Otsuka (ref_18) 2020; 15
Sarmento (ref_29) 2020; 40
ref_21
Iwashima (ref_27) 2014; 27
ref_1
Sanz (ref_10) 2018; 45
Kakuta (ref_14) 2013; 63
ref_2
Jepsen (ref_5) 2020; 83
Scannapieco (ref_32) 2014; 58
Peres (ref_9) 2019; 394
Nomura (ref_17) 2020; 2020
Nguyen (ref_26) 2020; 165
ref_8
Haghighi (ref_35) 2017; 30
Genco (ref_6) 2020; 83
Gobin (ref_3) 2020; 11
Morid (ref_19) 2019; 91
Son (ref_33) 2020; 10
References_xml – volume: 130
  start-page: 98
  year: 2018
  ident: ref_11
  article-title: Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases
  publication-title: Postgrad. Med.
  doi: 10.1080/00325481.2018.1396876
– volume: 44
  start-page: 1236
  year: 2017
  ident: ref_34
  article-title: Professional oral health care for preventing nursing home-acquired pneumonia: A cost-effectiveness and value of information analysis
  publication-title: J. Clin. Periodontol.
  doi: 10.1111/jcpe.12775
– ident: ref_8
  doi: 10.3390/microorganisms7100424
– volume: 91
  start-page: 103113
  year: 2019
  ident: ref_19
  article-title: Healthcare cost prediction: Leveraging fine-grain temporal patterns
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103113
– ident: ref_2
  doi: 10.1177/0022034520952401
– volume: 45
  start-page: 138
  year: 2018
  ident: ref_10
  article-title: Scientific evidence on the links between periodontal diseases and diabetes: Consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology
  publication-title: J. Clin. Periodontol.
  doi: 10.1111/jcpe.12808
– volume: 8
  start-page: e019830
  year: 2018
  ident: ref_22
  article-title: FINGER (Forming and Identifying New Groups of Expected Risks): Developing and validating a new predictive model to identify patients with high healthcare cost and at risk of admission
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-019830
– ident: ref_16
– volume: 46
  start-page: 375
  year: 2019
  ident: ref_30
  article-title: The relationship between oral health and hemodialysis treatment among adults with chronic kidney disease: A systematic review
  publication-title: Nephrol. Nurs. J.
– ident: ref_21
  doi: 10.1186/s12913-020-05148-y
– volume: 63
  start-page: 249
  year: 2013
  ident: ref_14
  article-title: Correlation between health-care costs and salivary tests
  publication-title: Int. Dent. J.
  doi: 10.1111/idj.12040
– ident: ref_15
  doi: 10.3390/app10093140
– volume: 165
  start-page: 108244
  year: 2020
  ident: ref_26
  article-title: The association of periodontal disease with the complications of diabetes mellitus. A systematic review
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2020.108244
– volume: 83
  start-page: 125
  year: 2020
  ident: ref_5
  article-title: The association of periodontal diseases with metabolic syndrome and obesity
  publication-title: Periodontology 2000
  doi: 10.1111/prd.12326
– ident: ref_1
– volume: 10
  start-page: 9576
  year: 2020
  ident: ref_33
  article-title: Association between oral health and incidence of pneumonia: A population-based cohort study from Korea
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66312-2
– volume: 26
  start-page: 198
  year: 2009
  ident: ref_24
  article-title: Healthcare cost and predictive factors: High- and low-utilization model development
  publication-title: Health Mark. Q.
  doi: 10.1080/07359680903263599
– volume: 83
  start-page: 107
  year: 2020
  ident: ref_4
  article-title: Periodontal therapy and cardiovascular risk
  publication-title: Periodontology 2000
  doi: 10.1111/prd.12299
– volume: 2018
  start-page: 2478408
  year: 2018
  ident: ref_31
  article-title: Factors that affect oral care outcomes for institutionalized elderly
  publication-title: Int. J. Dent.
  doi: 10.1155/2018/2478408
– volume: 11
  start-page: 336
  year: 2020
  ident: ref_3
  article-title: Periodontal Diseases and the Risk of Metabolic Syndrome: An Updated Systematic Review and Meta-Analysis
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2020.00336
– volume: 15
  start-page: 14
  year: 2020
  ident: ref_18
  article-title: Properties of manual toothbrush that influence on plaque removal of interproximal surface in vitro
  publication-title: J. Dent. Sci.
  doi: 10.1016/j.jds.2019.07.005
– ident: ref_25
– ident: ref_12
  doi: 10.3390/nu12113315
– volume: 40
  start-page: 549
  year: 2020
  ident: ref_29
  article-title: Poor oral health status and short-term outcome of kidney transplantation
  publication-title: Spec. Care Dent.
  doi: 10.1111/scd.12512
– volume: 58
  start-page: 771
  year: 2014
  ident: ref_32
  article-title: Oral health disparities in older adults: Oral bacteria, inflammation, and aspiration pneumonia
  publication-title: Dent. Clin. North Am.
  doi: 10.1016/j.cden.2014.06.005
– volume: 2020
  start-page: 7316796
  year: 2020
  ident: ref_17
  article-title: Workforce and Contents of Home Dental Care in Japanese Insurance System
  publication-title: Int. J. Dent.
  doi: 10.1155/2020/7316796
– volume: 10
  start-page: ZC34
  year: 2016
  ident: ref_28
  article-title: Influence of Hypertension on pH of Saliva and Flow Rate in Elder Adults Correlating with Oral Health Status
  publication-title: J. Clin. Diagn. Res.
– volume: 30
  start-page: 69
  year: 2017
  ident: ref_35
  article-title: The impact of oral care on oral health status and prevention of ventilator-associated pneumonia in critically ill patients
  publication-title: Aust. Crit. Care
  doi: 10.1016/j.aucc.2016.07.002
– volume: 83
  start-page: 7
  year: 2020
  ident: ref_6
  article-title: Clinical and public health implications of periodontal and systemic diseases: An overview
  publication-title: Periodontology 2000
  doi: 10.1111/prd.12344
– volume: 27
  start-page: 710
  year: 2014
  ident: ref_27
  article-title: Additive interaction of oral health disorders on risk of hypertension in a Japanese urban population: The Suita Study
  publication-title: Am. J. Hypertens.
  doi: 10.1093/ajh/hpt227
– ident: ref_13
  doi: 10.1186/s12903-020-01113-7
– volume: 111
  start-page: 103565
  year: 2020
  ident: ref_20
  article-title: Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2020.103565
– volume: 24
  start-page: 1192
  year: 2015
  ident: ref_23
  article-title: Healthcare Cost Regressions: Going Beyond the Mean to Estimate the Full Distribution
  publication-title: Health Econ.
  doi: 10.1002/hec.3178
– volume: 47
  start-page: 268
  year: 2020
  ident: ref_7
  article-title: Periodontitis and cardiovascular diseases: Consensus report
  publication-title: J. Clin. Periodontol.
  doi: 10.1111/jcpe.13189
– volume: 394
  start-page: 249
  year: 2019
  ident: ref_9
  article-title: Oral diseases: A global public health challenge
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)31146-8
SSID ssj0038469
Score 2.3055282
Snippet The increasing healthcare cost imposes a large economic burden for the Japanese government. Predicting the healthcare cost may be a useful tool for policy...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 565
SubjectTerms Age
Cardiovascular disease
Cost of Illness
Databases, Factual
Generalized linear models
Health care
Health Care Costs
Health insurance
Hospital costs
Hospitalization
Humans
Insurance, Health
Japan
Mortality
Oral hygiene
Per capita
Peritoneal dialysis
Public health
Software
Support vector machines
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagXJAQ4p-UFhkJiZPBie0kPqBq21KVqos4sFI5RXYyURdVCd1kpfbGI3Dl9XgSZpLdlEDhlshj2fGM8814xjOMvfSpcaAtiFJaJ7RPvHAJpEKlCE6FMt4aujs8_RAfzvTRiTm5in9aLWBzrWlH9aRmi7PXF-eXO7jh35LFiSb7m_kXwDlRKjNEc3OT3UJUiknCp3rwKCjEWVKFQ8QjgaiY9Akcr-k_Bqi_tM4_gyd_Q6ODe-zuSo3kk57v99kNqB6wO_0ZHO-vFj1k3_draPixa1r-GQX657cfDd-r8e3jgtwzLUflj57p_lHXsMMnFZ9cubR5XfJpF20J_BgcHaFwVHK7fkeIslS9EucATuy6Zt7w0fj8fdUsqWwH8H3XOoLLR2x28O7T3qFYVWAQuU51i7wDmTiZ5uTpJbgj666UxmkbFx41MbTWfFLEJpexVXlZhD6WpXXS5iYqVages42qruAp4wlEBVjQEpTSKimdonzqtgDpnfQqCZhYL3uWr9KTU5WMswzNFGJTNmZTwF4N9F_7xBz_pNxaczFby1cWaaowYvFvFbAXQzNuLfKX4PLVy57G2Ag11oA96Zk-DIUfoSmNQMCSkTgMBJS2e9xSzU-79N0kfTpON_8_rWfsdkThMzIUYbTFNtrFErZR_2n9806wfwHpJgZT
  priority: 102
  providerName: Scholars Portal
Title Does Last Year’s Cost Predict the Present Cost? An Application of Machine Leaning for the Japanese Area-Basis Public Health Insurance Database
URI https://www.ncbi.nlm.nih.gov/pubmed/33445431
https://www.proquest.com/docview/2478349870
https://www.proquest.com/docview/2478592163
https://pubmed.ncbi.nlm.nih.gov/PMC7827468
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NatwwEBbN5lIopemv0zSoUOhJRLYkyzqFzSabNGRDKA1sT0ayZbKl2EnsvfcReu3r9Uk6Y3s3cUN7MRaSsewZ6ftGI80Q8sElynppPCu4sUw67ZjVPmEiAXDKhXJG4dnh2Xl8cilP52reL7jV_bbK1ZzYTtR5leEa-V4kMSUEWMh8__qGYdYo9K72KTQ2yCZMwYkakc2Do_OLz6u5WAC6IgEOAYUYYKHuwjYKMPT3Ft88fAkGQAMOoIaw9IBr_r1l8h4GTZ-Rpz15pONO2lvkkS-fkyfdyhvtDhS9ID8PK1_TM1s39Cuo8e8fv2o6qaB0cYtOmYYC5cN7PHXUVuzTcUnHd45sWhV01u6x9PTMW1w4oUBt2-dOAVsxZyX0wVt2YOtFTQfvp5_KeonJOjw9tI1FkHxJLqdHXyYnrM-7wDKZyAYk5rm2PMnQv4sghzZdwZWVJs4d8C-w0ZzOY5Xx2IisyEMX88JYbjIVFSIUr8iorEr_hlDto9wbL7kXQgpdWIFR1E3uubPcCR0QtvrtadYHJcfcGN9TME5QTOlQTAH5uG5_3YXj-GfLnZUU035Y1umdEgXk_boaBhR6SeD3VcuujTIR8NSAvO6Evn4VfITE4AEB0QN1WDfAYN3DmnJx1QbtRu2TcbL9_269JY8j3DTDQxZGO2TU3C79O2A9jdslG3qu4ZpMQrxOj3d7ZYfSTCZ_AJCXB7I
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAJIf4JFDASiJNVJ3Z-fEDV0mXZbXcrDq1UTqmdOGIRSkqTFeLGI3DlJXgonoSZZLNlQXDrLZEnieMZz3zjsWcAntkkNE5pxwuhDVc2ttzELuEyQeOUy9DqkM4Ozw6i8ZHaOw6PN-BHfxaGtlX2OrFV1HmV0Rr5dqCoJAR6yGLn9BOnqlEUXe1LaHRise--fEaXrX45GSJ_nwfB6PXh7pgvqwrwTCWqwf44ERuRZBS9JBVOHkshQqN0lFtEF-iB2DiPwkxEWmZF7ttIFNoInYVBIX2J770El5WUmnL1J6M3veaXaMsJbvto8zha3rhLEomEYnv-weG4Ubo1RBzhuhH8C9n-uUHzN4s3ugHXl1CVDTrZugkbrrwF17p1PtYdX7oN34aVq9nU1A17h6Pz8-v3mu1WePf2jEJADUOASdd0xqlt2GGDkg3Ow-asKtis3dHp2NQZWqZhCKTb5_bQklOFTOyDM_yVqec1W_s-m5T1gkqDODY0jSGTfAeOLoQfd2GzrEp3H1jsgtxpp4STUsm4MJJytuvcCWuElbEHvB_2NFumQKdKHB9TdIWITek6mzx4saI_7ZJ__JNyq-diulQCdXoush48XTXj9KWYDA5ftehoQh0gKvbgXsf01afwJxSlKvAgXhOHFQGlBl9vKefv2xThJH0qSh78v1tP4Mr4cDZNp5OD_YdwNaDtOsLnfrAFm83Zwj1CvNXYx62QMzi56Fn1C0oGPaI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJICJX_QAEjgThZcdbeHx9QlTaNmjaNIkSlclq8u14RhHZLdyPEjUfg2lfhcXgSZvYnZUFw6y2RnazXM_b3jWc8A_AiClxjlbY8FdpwFfkRN74NuAwQnBLpRtqlu8PHc-_gRB2euqcb8KO9C0Nhle2eWG3USR7TGfnAUVQSAi1kMUibsIjFeLJz9plTBSnytLblNGoVObJfv6D5VryejlHWLx1nsv9274A3FQZ4rAJV4tis8I0IYvJk0nZO1ksqXKO0l0TINNAaifzEc2PhaRmnyTDyRKqN0LHrpHIo8X-vwaaPqBj0YHN3f7540-KARGQn8j1EBOSIw36dMlJKLQbLjxZnkZKvIf9wu5D4F8_9M1zzN_ybbMGthriyUa1pt2HDZnfgZn3qx-rLTHfh-zi3BZuZomTvcH5-frso2F6O3xbn5BAqGdJN-kw3nqqGHTbK2OjSic7ylB1X8Z2WzayhQxuGtLr63SHiOtXLxDFYw3dNsSxY5_lsmhUrKhRi2diUhgD6HpxciUTuQy_LM_sQmG-dxGqrhJVSST81kjK468SKyIhI-n3g7bSHcZMQnepyfArRMCIxhV0x9eHVuv9ZnQrknz23WymGzZZQhJcK3Ifn62ZczOShwenLV3UfVzvIkfvwoBb6-lH4EooSF_TB76jDugMlCu-2ZMsPVcJw0j7lBY_-P6xncB1XVDibzo8eww2HYnfEkA-dbeiV5yv7BMlXGT1ttJzB-6teWL8AbddDPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+Last+Year%E2%80%99s+Cost+Predict+the+Present+Cost%3F+An+Application+of+Machine+Leaning+for+the+Japanese+Area-Basis+Public+Health+Insurance+Database&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.date=2021-01-12&rft.pub=MDPI+AG&rft.issn=1661-7827&rft.eissn=1660-4601&rft.volume=18&rft.issue=2&rft.spage=565&rft_id=info:doi/10.3390%2Fijerph18020565&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon