Global well-posedness for the dynamical Q-tensor model of liquid crystals
We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is...
Saved in:
Published in | Science China. Mathematics Vol. 58; no. 6; pp. 1349 - 1366 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-7283 1869-1862 |
DOI | 10.1007/s11425-015-4990-8 |
Cover
Abstract | We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions. |
---|---|
AbstractList | We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic
Q
-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions. We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions. |
Author | HUANG JinRui DING ShiJin |
AuthorAffiliation | School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China |
Author_xml | – sequence: 1 givenname: JinRui surname: Huang fullname: Huang, JinRui organization: School of Mathematics and Computational Science, Wuyi University – sequence: 2 givenname: ShiJin surname: Ding fullname: Ding, ShiJin email: dingsj@scnu.edu.cn organization: School of Mathematical Sciences, South China Normal University |
BookMark | eNp9kE1LAzEQhoNUsGp_gLfFk5doJpvdJEcpfhQEEfQc0uxsu2WbtMkW6b83peLBQ3PIhPA-M8NzSUY-eCTkBtg9MCYfEoDgFWVQUaE1o-qMjEHVmuaLj_K7loJKrsoLMklpxfIpNROyHJPZSx_mti--se_pJiRsPKZUtCEWwxKLZu_tunM58EEH9Cl_r0ODfRHaou-2u64pXNynwfbpmpy3ueDkt16Rr-enz-krfXt_mU0f36gTSgxUgFRCsLZG1swBlNMcGpwjcNTAtZA1ty2zFXdCViXqFrFqFFaAjjtoXXlF7o59NzFsd5gGs-6Sy-tbj2GXDEimZSkVyByFY9TFkFLE1mxit7Zxb4CZgzlzNGeyOXMwZ1Rm5D_GdYMduuCHaLv-JMmPZMpT_AKjWYVd9NnFSej2d9wy-MU2c3871rWoea0Ayh-Om493 |
CitedBy_id | crossref_primary_10_1016_j_aml_2017_08_019 crossref_primary_10_1016_j_jde_2020_11_029 crossref_primary_10_1016_j_nonrwa_2022_103805 crossref_primary_10_1007_s10473_024_0413_7 crossref_primary_10_1186_s13661_021_01498_6 crossref_primary_10_1137_15M1048550 crossref_primary_10_1098_rsta_2020_0432 crossref_primary_10_3390_math9080912 crossref_primary_10_1007_s00205_020_01554_y crossref_primary_10_1016_j_physd_2025_134596 crossref_primary_10_3934_era_2021063 crossref_primary_10_1016_j_jde_2021_08_021 crossref_primary_10_1137_19M129200X crossref_primary_10_3934_era_2022113 crossref_primary_10_1016_j_jde_2016_10_011 crossref_primary_10_1007_s00526_022_02272_x crossref_primary_10_1002_mma_6387 crossref_primary_10_1016_j_jde_2023_01_006 crossref_primary_10_1016_j_jnnfm_2018_05_003 crossref_primary_10_3390_math7100972 crossref_primary_10_1016_j_jde_2019_07_010 crossref_primary_10_1137_23M161149X crossref_primary_10_1007_s00021_022_00677_4 crossref_primary_10_1007_s00205_024_01983_z crossref_primary_10_1017_S0962492921000088 |
Cites_doi | 10.1007/s11425-013-4620-2 10.1007/s00205-009-0249-2 10.3934/dcds.2009.23.455 10.1007/s00205-012-0530-7 10.1007/s00205-012-0588-2 10.1137/13095015X 10.1002/mana.200610776 10.1007/s00205-011-0443-x 10.1093/oso/9780195076943.001.0001 10.1007/s11425-013-4761-3 10.1016/j.na.2014.09.011 10.1103/PhysRevE.58.7475 10.1007/s00526-011-0460-5 10.1016/j.jde.2014.11.008 10.1137/10079224X 10.4310/CMS.2015.v13.n1.a3 10.1007/s00220-014-2079-9 10.1007/s11425-013-4746-2 10.1137/130945405 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2015 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1007/s11425-015-4990-8 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Global well-posedness for the dynamical Q-tensor model of liquid crystals |
EISSN | 1869-1862 |
EndPage | 1366 |
ExternalDocumentID | 10_1007_s11425_015_4990_8 664626811 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BAPOH BDATZ BGNMA CAG CCEZO CCVFK CHBEP COF CQIGP CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9R PF0 PT4 QOS R89 RIG ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 ~WA -SA -S~ 0R~ 5XA 5XB AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AGQEE AGRTI AIGIU BSONS CAJEA CJPJV H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ACMFV AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION 7TB 8FD ABRTQ FR3 KR7 |
ID | FETCH-LOGICAL-c484t-4178440f6e0db118c921debe12e91294762af0a52c4753e9fee5d8e51ec2c1fc3 |
IEDL.DBID | AGYKE |
ISSN | 1674-7283 |
IngestDate | Fri Sep 05 03:32:44 EDT 2025 Tue Jul 01 03:54:52 EDT 2025 Thu Apr 24 22:53:23 EDT 2025 Fri Feb 21 02:33:41 EST 2025 Wed Feb 14 10:30:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | nematic liquid crystals global solutions uniqueness 35R35 35Q30 tensor 76N10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-4178440f6e0db118c921debe12e91294762af0a52c4753e9fee5d8e51ec2c1fc3 |
Notes | dynamical tensor Stokes parabolic nematic viscosity Navier estimates uniqueness proof We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions. 11-1787/N ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1709737817 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1709737817 crossref_primary_10_1007_s11425_015_4990_8 crossref_citationtrail_10_1007_s11425_015_4990_8 springer_journals_10_1007_s11425_015_4990_8 chongqing_primary_664626811 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Science China. Mathematics |
PublicationTitleAbbrev | Sci. China Math |
PublicationTitleAlternate | SCIENCE CHINA Mathematics |
PublicationYear | 2015 |
Publisher | Science China Press |
Publisher_xml | – name: Science China Press |
References | Guillén-GonzálezFRodríguez-BlellidoM AWeak solutions for a initial-boundary Q-tensor problem related to liquid crystalsNonlinear Anal TMA20151128410410.1016/j.na.2014.09.0111304.35547 ChenHZhangP WA tensor model for liquid crystals on a spherical surfaceSci China Math2013562549255910.1007/s11425-013-4746-2 DingS JHuangJ RLinJ YGlobal existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensionsSci China Math2013562233225010.1007/s11425-013-4620-2062721143123568 XuJZhangP WFrom microscopic theory to macroscopic theory-symmetries and order parameters of rigid moleculesSci China Math20145744346810.1007/s11425-013-4761-31299.820163166230 HuangJ RDingS JCompressible hydrodynamic flow of nematic liquid crystals with vacuumJ Differential Equations20152581653168410.1016/j.jde.2014.11.008063971213295596 BaumanPParkJPhillipsDAnalysis of nematic liquid crystals with disclination linesArch Rational Mech Anal201220579582610.1007/s00205-012-0530-71281.760202960033 QianTShengPGeneralized hydrodynamic equations for nematic liquid crystlasPhysical Review E1998587475748510.1103/PhysRevE.58.7475 HuangJ RLinF HWangC YRegularity and existence of global solutions to the Ericksen-Leslie system in R2Comm Math Phys201433180585010.1007/s00220-014-2079-91298.351473238531 WangD HXuXYuCGlobal weak solution for a coupled compressible Navier-Stokes and Q-tensor systemCommum Math Sci201513498210.4310/CMS.2015.v13.n1.a3064082933238138 Guillén-GonzálezFRodríguez-BlellidoM ARojas-MedarM ASufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal modelMa Math Nachr200928284686710.1002/mana.2006107761173.35033 De GennesP GThe Physics of Liquid Crystals1974OxfordClarendon Press PaicuMZarnescuAGlobal existence and regularity for the full coupled Navier-Stokes and Q-tensor systemSIAM J Math Anal2011432009204910.1137/10079224X1233.351602837493 PaicuMZarnescuAEnergy dissipation and regularity for a coupled Navier-Stokes and Q-tensor systemArch Ration Mech Anal2012203456710.1007/s00205-011-0443-x061019802864407 WuHXuXLiuCAsymptotic behavior for a nematic liquid crystal model with different kinematic transport propertiesCalc Var Partial Differ Equ20124531934510.1007/s00526-011-0460-51259.350402984135 FeireislERoccaESchimpernaGNonisothermal nematic liquid crystal flows with the Ball-Majumdar free energyAnn Mat Pura Appl, in press2015 AbelsHDolzmannGLiuY NWell-posedness of a fully-coupled Navier-Stokes/Q-tensor system with inhomogeneous boundary dataSIAM J Math Anal2014463050307710.1137/130945405063658253252809 HanJ QLuoYWangWFrom microscopic theory to macroscopic theory: a systematic study on static modeling for liquid crystalsArch Rational Mech Anal2014 Mottram N J, Newton C. Introduction to Q-tensor theory. University of Strathclyde, Department of Mathematics, Research Report, 10, 2004 Guillén-GonzálezFRodríguez-BlellidoM AWeak time regularity and uniqueness for a Q-tensor modelSIAM J Math Anal2014463540356710.1137/13095015X064057153272623 WuHXuXLiuCOn the General Ericksen-Leslie System: Parodis Relation, Well-Posedness and StabilityArch Ration Mech Anal20132085910710.1007/s00205-012-0588-2061490093021544 SunHLiuCOn energetic variational approaches in modelling the nematic liquid crystal flowsDiscrete Contin Dyn Syst20092345547510.3934/dcds.2009.23.4551156.760072449088 MajumdarAZarnescuALandau-De Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyondArch Rational Mech Anal201019622728010.1007/s00205-009-0249-21304.760072601074 BerisA NEdwardsB JThermodynamics of Flowing Systems with Internal Microstructure1994New YorkOxford University Press WangWZhangP WZhangZ FFrom microscopic theory to macroscopic theory: dynamics of the rod-like liquid crystal molecules2013 AbelsHDolzmannGLiuY NStrong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions2013 WangWZhangP WZhangZ FThe small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equationComm Pure Appl Math2015 WangWZhangP WZhangZ FRigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theorySIAM J Math Anal2015 J Q Han (4990_CR12) 2014 H Wu (4990_CR25) 2012; 45 D H Wang (4990_CR21) 2015; 13 J R Huang (4990_CR14) 2015; 258 M Paicu (4990_CR18) 2012; 203 H Abels (4990_CR1) 2013 H Abels (4990_CR2) 2014; 46 P Bauman (4990_CR3) 2012; 205 W Wang (4990_CR22) 2013 W Wang (4990_CR24) 2015 F Guillén-González (4990_CR9) 2009; 282 4990_CR16 H Chen (4990_CR5) 2013; 56 S J Ding (4990_CR7) 2013; 56 M Paicu (4990_CR17) 2011; 43 T Qian (4990_CR19) 1998; 58 H Sun (4990_CR20) 2009; 23 E Feireisl (4990_CR8) 2015 P G Gennes De (4990_CR6) 1974 J R Huang (4990_CR13) 2014; 331 F Guillén-González (4990_CR10) 2014; 46 A N Beris (4990_CR4) 1994 F Guillén-González (4990_CR11) 2015; 112 W Wang (4990_CR23) 2015 A Majumdar (4990_CR15) 2010; 196 H Wu (4990_CR26) 2013; 208 J Xu (4990_CR27) 2014; 57 |
References_xml | – reference: FeireislERoccaESchimpernaGNonisothermal nematic liquid crystal flows with the Ball-Majumdar free energyAnn Mat Pura Appl, in press2015 – reference: WuHXuXLiuCAsymptotic behavior for a nematic liquid crystal model with different kinematic transport propertiesCalc Var Partial Differ Equ20124531934510.1007/s00526-011-0460-51259.350402984135 – reference: BaumanPParkJPhillipsDAnalysis of nematic liquid crystals with disclination linesArch Rational Mech Anal201220579582610.1007/s00205-012-0530-71281.760202960033 – reference: AbelsHDolzmannGLiuY NWell-posedness of a fully-coupled Navier-Stokes/Q-tensor system with inhomogeneous boundary dataSIAM J Math Anal2014463050307710.1137/130945405063658253252809 – reference: Guillén-GonzálezFRodríguez-BlellidoM AWeak time regularity and uniqueness for a Q-tensor modelSIAM J Math Anal2014463540356710.1137/13095015X064057153272623 – reference: HanJ QLuoYWangWFrom microscopic theory to macroscopic theory: a systematic study on static modeling for liquid crystalsArch Rational Mech Anal2014 – reference: DingS JHuangJ RLinJ YGlobal existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensionsSci China Math2013562233225010.1007/s11425-013-4620-2062721143123568 – reference: Mottram N J, Newton C. Introduction to Q-tensor theory. University of Strathclyde, Department of Mathematics, Research Report, 10, 2004 – reference: QianTShengPGeneralized hydrodynamic equations for nematic liquid crystlasPhysical Review E1998587475748510.1103/PhysRevE.58.7475 – reference: De GennesP GThe Physics of Liquid Crystals1974OxfordClarendon Press – reference: XuJZhangP WFrom microscopic theory to macroscopic theory-symmetries and order parameters of rigid moleculesSci China Math20145744346810.1007/s11425-013-4761-31299.820163166230 – reference: Guillén-GonzálezFRodríguez-BlellidoM AWeak solutions for a initial-boundary Q-tensor problem related to liquid crystalsNonlinear Anal TMA20151128410410.1016/j.na.2014.09.0111304.35547 – reference: MajumdarAZarnescuALandau-De Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyondArch Rational Mech Anal201019622728010.1007/s00205-009-0249-21304.760072601074 – reference: AbelsHDolzmannGLiuY NStrong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions2013 – reference: WangWZhangP WZhangZ FThe small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equationComm Pure Appl Math2015 – reference: WangWZhangP WZhangZ FFrom microscopic theory to macroscopic theory: dynamics of the rod-like liquid crystal molecules2013 – reference: PaicuMZarnescuAGlobal existence and regularity for the full coupled Navier-Stokes and Q-tensor systemSIAM J Math Anal2011432009204910.1137/10079224X1233.351602837493 – reference: WangWZhangP WZhangZ FRigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theorySIAM J Math Anal2015 – reference: BerisA NEdwardsB JThermodynamics of Flowing Systems with Internal Microstructure1994New YorkOxford University Press – reference: WuHXuXLiuCOn the General Ericksen-Leslie System: Parodis Relation, Well-Posedness and StabilityArch Ration Mech Anal20132085910710.1007/s00205-012-0588-2061490093021544 – reference: HuangJ RDingS JCompressible hydrodynamic flow of nematic liquid crystals with vacuumJ Differential Equations20152581653168410.1016/j.jde.2014.11.008063971213295596 – reference: Guillén-GonzálezFRodríguez-BlellidoM ARojas-MedarM ASufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal modelMa Math Nachr200928284686710.1002/mana.2006107761173.35033 – reference: PaicuMZarnescuAEnergy dissipation and regularity for a coupled Navier-Stokes and Q-tensor systemArch Ration Mech Anal2012203456710.1007/s00205-011-0443-x061019802864407 – reference: ChenHZhangP WA tensor model for liquid crystals on a spherical surfaceSci China Math2013562549255910.1007/s11425-013-4746-2 – reference: SunHLiuCOn energetic variational approaches in modelling the nematic liquid crystal flowsDiscrete Contin Dyn Syst20092345547510.3934/dcds.2009.23.4551156.760072449088 – reference: WangD HXuXYuCGlobal weak solution for a coupled compressible Navier-Stokes and Q-tensor systemCommum Math Sci201513498210.4310/CMS.2015.v13.n1.a3064082933238138 – reference: HuangJ RLinF HWangC YRegularity and existence of global solutions to the Ericksen-Leslie system in R2Comm Math Phys201433180585010.1007/s00220-014-2079-91298.351473238531 – volume: 56 start-page: 2233 year: 2013 ident: 4990_CR7 publication-title: Sci China Math doi: 10.1007/s11425-013-4620-2 – volume: 196 start-page: 227 year: 2010 ident: 4990_CR15 publication-title: Arch Rational Mech Anal doi: 10.1007/s00205-009-0249-2 – volume-title: Arch Rational Mech Anal year: 2014 ident: 4990_CR12 – ident: 4990_CR16 – volume: 23 start-page: 455 year: 2009 ident: 4990_CR20 publication-title: Discrete Contin Dyn Syst doi: 10.3934/dcds.2009.23.455 – volume: 205 start-page: 795 year: 2012 ident: 4990_CR3 publication-title: Arch Rational Mech Anal doi: 10.1007/s00205-012-0530-7 – volume-title: SIAM J Math Anal year: 2015 ident: 4990_CR23 – volume: 208 start-page: 59 year: 2013 ident: 4990_CR26 publication-title: Arch Ration Mech Anal doi: 10.1007/s00205-012-0588-2 – volume-title: Strong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions year: 2013 ident: 4990_CR1 – volume: 46 start-page: 3540 year: 2014 ident: 4990_CR10 publication-title: SIAM J Math Anal doi: 10.1137/13095015X – volume: 282 start-page: 846 year: 2009 ident: 4990_CR9 publication-title: Ma Math Nachr doi: 10.1002/mana.200610776 – volume: 203 start-page: 45 year: 2012 ident: 4990_CR18 publication-title: Arch Ration Mech Anal doi: 10.1007/s00205-011-0443-x – volume-title: Thermodynamics of Flowing Systems with Internal Microstructure year: 1994 ident: 4990_CR4 doi: 10.1093/oso/9780195076943.001.0001 – volume-title: Ann Mat Pura Appl, in press year: 2015 ident: 4990_CR8 – volume: 57 start-page: 443 year: 2014 ident: 4990_CR27 publication-title: Sci China Math doi: 10.1007/s11425-013-4761-3 – volume: 112 start-page: 84 year: 2015 ident: 4990_CR11 publication-title: Nonlinear Anal TMA doi: 10.1016/j.na.2014.09.011 – volume-title: From microscopic theory to macroscopic theory: dynamics of the rod-like liquid crystal molecules year: 2013 ident: 4990_CR22 – volume: 58 start-page: 7475 year: 1998 ident: 4990_CR19 publication-title: Physical Review E doi: 10.1103/PhysRevE.58.7475 – volume: 45 start-page: 319 year: 2012 ident: 4990_CR25 publication-title: Calc Var Partial Differ Equ doi: 10.1007/s00526-011-0460-5 – volume: 258 start-page: 1653 year: 2015 ident: 4990_CR14 publication-title: J Differential Equations doi: 10.1016/j.jde.2014.11.008 – volume-title: Comm Pure Appl Math year: 2015 ident: 4990_CR24 – volume-title: The Physics of Liquid Crystals year: 1974 ident: 4990_CR6 – volume: 43 start-page: 2009 year: 2011 ident: 4990_CR17 publication-title: SIAM J Math Anal doi: 10.1137/10079224X – volume: 13 start-page: 49 year: 2015 ident: 4990_CR21 publication-title: Commum Math Sci doi: 10.4310/CMS.2015.v13.n1.a3 – volume: 331 start-page: 805 year: 2014 ident: 4990_CR13 publication-title: Comm Math Phys doi: 10.1007/s00220-014-2079-9 – volume: 56 start-page: 2549 year: 2013 ident: 4990_CR5 publication-title: Sci China Math doi: 10.1007/s11425-013-4746-2 – volume: 46 start-page: 3050 year: 2014 ident: 4990_CR2 publication-title: SIAM J Math Anal doi: 10.1137/130945405 |
SSID | ssj0000390473 |
Score | 2.1909504 |
Snippet | We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor... We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q -tensor... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1349 |
SubjectTerms | Applications of Mathematics Computational fluid dynamics Dynamical systems Dynamics Fluid flow Fluids Liquid crystals Mathematical models Mathematics Mathematics and Statistics Navier-Stokes equations Navier-Stokes方程 向列液晶 张量 模型 流体模拟 解的存在性 连续依赖性 适定性 |
Title | Global well-posedness for the dynamical Q-tensor model of liquid crystals |
URI | http://lib.cqvip.com/qk/60114X/201506/664626811.html https://link.springer.com/article/10.1007/s11425-015-4990-8 https://www.proquest.com/docview/1709737817 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD647UUfvItzOiL4pESaNF3TxyHeURAczKfQpqmKo1W7Peiv96SXDUWFvZbTtM13mnwn5wZwwJ2QRUK71A0YpwIpOpU22T1EhUlc1zgmsrnDN7e9i4G4GnrDKo87r6Pda5dksVLPkt0Y6heavh5Flu5Q2YCWx2Qgm9Dqnz9cz45WHLTjReFbtiH21McdtPZn_jaOrarwlKWPb_jM77vTjHL-8JIWm8_ZCtzXr13GnLwcT8bRsf78UdFxzu9aheWKjJJ-qT1rsGDSdVi6mVZyzTfgsmwKQOwZH33NchPbtZEg1SUoReKyoT0K3FEbC4-Xi946JEvI6Plt8hwT_f6BDHSUb8Lg7PT-5IJW7ReoFlKMqWC-FIhYzzhxhHaIDjiLEXPGDeIaCFxGw8QJPa4F2jwmSIzxYmk8ZjTXLNHuFjTTLDXbQCxOnIUmdpkWKIdmaeTGCE4ghQyM24bOFAL1WpbZUL2eQGtLMtYGpwZF6apyuW2gMVKzmst2DhXOobJzqGQbDqe31OP9I7xfI63w57IekzA12SRXzLfVjHzJ_DYc1eip6i_P_x5xZy7pDixyC39xtrMLzfH7xOwh1RlH3Uq1u9AY8P4Xb9Hykg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90PqgP4ifW-RHBJyXQtOmaPg5xbLoNhA32Fto01cFot3V78L_30rUbigq-lksKv7skv8vl7gDuHDtkEVcudQPmUI4UnQqT7B6iwSSuq20dmdzhXr_RHvLnkTcq87jz6rV7FZIsdupNshtD-0LX16PI0m0qtmEHuYAwbQuGTnN9sWKjF8-LyLJ5YE99PD-raOZPs5iaCu9Z-jbDP349mzaE81uMtDh6WodwUHJG0lwp-Qi2dHoM-711wdX8BDqr2v3EXMXRaZbr2GxhBBkpQSkSr_rOo8ArNU_W8XPRAodkCZmMZ8txTNT8A4niJD-FYetp8NimZZcEqrjgC8qZLzgC29B2HKG7oAKHxaga5miEP-C424WJHXqO4uia6CDR2ouF9phWjmKJcs-glmapPgfiMYGDQx27THGUQ-8xcmNEMRBcBNq1oL7GSk5X1TBko8HRKRKMWWBX6ElVFhg3fS4mclMa2YAvEXxpwJfCgvv1kGq-P4RvK5VIXAMmsBGmOlvmkvmm6JAvmG_BQ6UrWS7G_PcZL_4lfQO77UGvK7ud_ksd9hxjQ8V1zCXUFvOlvkJ2soiuC2v8BGDg174 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8ANEH8RPnZwSflLCmTdf0UdSxqRsKDvYW2iRVYbTTbg_-9176saGo4Gu5pHB3SX6Xy_0O4Mx1IhZz5VEvZC7lCNGpsMXuETpM4nnGMbGtHe71W50Bvx36w6rPaV6_dq9TkmVNg2VpSifNsU6a88I3hr6GYbBPEbE7VCzCMu7GzDr6wL2cXbI4GNHzIstsH9vTAM_SOrP50yyWX-ElS5_f8O9fz6k5-PyWLy2OofYGrFf4kVyWBt-EBZNuwVpvRr6ab0O35PEn9lqOjrPcaLudEUSnBKWILnvQo8Ajtc_X8XPRDodkCRm9vk1fNVHvHwgaR_kODNo3T1cdWnVMoIoLPqGcBYKjklvG0TGGDip0mUYzMdegKUKOO1-UOJHvKo5higkTY3wtjM-MchVLlLcLS2mWmj0gPhM4ODLaY4qjHEaSsadRi6HgIjReAw5mupLjkhlDtlocAyTBWAOcWntSVWTjtufFSM5pkq3yJSpfWuVL0YDz2ZB6vj-ET2uTSFwPNskRpSab5pIFloAoECxowEVtK1ktzPz3Gff_JX0CKw_XbXnf7d8dwKprXai4mTmEpcn71BwhUJnEx4UzfgIWINv6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+well-posedness+for+the+dynamical+Q-tensor+model+of+liquid+crystals&rft.jtitle=Science+China.+Mathematics&rft.au=Huang%2C+JinRui&rft.au=Ding%2C+ShiJin&rft.date=2015-06-01&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=58&rft.issue=6&rft.spage=1349&rft.epage=1366&rft_id=info:doi/10.1007%2Fs11425-015-4990-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg |