Global well-posedness for the dynamical Q-tensor model of liquid crystals

We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 58; no. 6; pp. 1349 - 1366
Main Authors Huang, JinRui, Ding, ShiJin
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.06.2015
Subjects
Online AccessGet full text
ISSN1674-7283
1869-1862
DOI10.1007/s11425-015-4990-8

Cover

Abstract We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions.
AbstractList We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q -tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions.
We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions.
Author HUANG JinRui DING ShiJin
AuthorAffiliation School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
Author_xml – sequence: 1
  givenname: JinRui
  surname: Huang
  fullname: Huang, JinRui
  organization: School of Mathematics and Computational Science, Wuyi University
– sequence: 2
  givenname: ShiJin
  surname: Ding
  fullname: Ding, ShiJin
  email: dingsj@scnu.edu.cn
  organization: School of Mathematical Sciences, South China Normal University
BookMark eNp9kE1LAzEQhoNUsGp_gLfFk5doJpvdJEcpfhQEEfQc0uxsu2WbtMkW6b83peLBQ3PIhPA-M8NzSUY-eCTkBtg9MCYfEoDgFWVQUaE1o-qMjEHVmuaLj_K7loJKrsoLMklpxfIpNROyHJPZSx_mti--se_pJiRsPKZUtCEWwxKLZu_tunM58EEH9Cl_r0ODfRHaou-2u64pXNynwfbpmpy3ueDkt16Rr-enz-krfXt_mU0f36gTSgxUgFRCsLZG1swBlNMcGpwjcNTAtZA1ty2zFXdCViXqFrFqFFaAjjtoXXlF7o59NzFsd5gGs-6Sy-tbj2GXDEimZSkVyByFY9TFkFLE1mxit7Zxb4CZgzlzNGeyOXMwZ1Rm5D_GdYMduuCHaLv-JMmPZMpT_AKjWYVd9NnFSej2d9wy-MU2c3871rWoea0Ayh-Om493
CitedBy_id crossref_primary_10_1016_j_aml_2017_08_019
crossref_primary_10_1016_j_jde_2020_11_029
crossref_primary_10_1016_j_nonrwa_2022_103805
crossref_primary_10_1007_s10473_024_0413_7
crossref_primary_10_1186_s13661_021_01498_6
crossref_primary_10_1137_15M1048550
crossref_primary_10_1098_rsta_2020_0432
crossref_primary_10_3390_math9080912
crossref_primary_10_1007_s00205_020_01554_y
crossref_primary_10_1016_j_physd_2025_134596
crossref_primary_10_3934_era_2021063
crossref_primary_10_1016_j_jde_2021_08_021
crossref_primary_10_1137_19M129200X
crossref_primary_10_3934_era_2022113
crossref_primary_10_1016_j_jde_2016_10_011
crossref_primary_10_1007_s00526_022_02272_x
crossref_primary_10_1002_mma_6387
crossref_primary_10_1016_j_jde_2023_01_006
crossref_primary_10_1016_j_jnnfm_2018_05_003
crossref_primary_10_3390_math7100972
crossref_primary_10_1016_j_jde_2019_07_010
crossref_primary_10_1137_23M161149X
crossref_primary_10_1007_s00021_022_00677_4
crossref_primary_10_1007_s00205_024_01983_z
crossref_primary_10_1017_S0962492921000088
Cites_doi 10.1007/s11425-013-4620-2
10.1007/s00205-009-0249-2
10.3934/dcds.2009.23.455
10.1007/s00205-012-0530-7
10.1007/s00205-012-0588-2
10.1137/13095015X
10.1002/mana.200610776
10.1007/s00205-011-0443-x
10.1093/oso/9780195076943.001.0001
10.1007/s11425-013-4761-3
10.1016/j.na.2014.09.011
10.1103/PhysRevE.58.7475
10.1007/s00526-011-0460-5
10.1016/j.jde.2014.11.008
10.1137/10079224X
10.4310/CMS.2015.v13.n1.a3
10.1007/s00220-014-2079-9
10.1007/s11425-013-4746-2
10.1137/130945405
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2015
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s11425-015-4990-8
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Global well-posedness for the dynamical Q-tensor model of liquid crystals
EISSN 1869-1862
EndPage 1366
ExternalDocumentID 10_1007_s11425_015_4990_8
664626811
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BAPOH
BDATZ
BGNMA
CAG
CCEZO
CCVFK
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9R
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
~WA
-SA
-S~
0R~
5XA
5XB
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
CJPJV
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
7TB
8FD
ABRTQ
FR3
KR7
ID FETCH-LOGICAL-c484t-4178440f6e0db118c921debe12e91294762af0a52c4753e9fee5d8e51ec2c1fc3
IEDL.DBID AGYKE
ISSN 1674-7283
IngestDate Fri Sep 05 03:32:44 EDT 2025
Tue Jul 01 03:54:52 EDT 2025
Thu Apr 24 22:53:23 EDT 2025
Fri Feb 21 02:33:41 EST 2025
Wed Feb 14 10:30:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords nematic liquid crystals
global solutions
uniqueness
35R35
35Q30
tensor
76N10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-4178440f6e0db118c921debe12e91294762af0a52c4753e9fee5d8e51ec2c1fc3
Notes dynamical tensor Stokes parabolic nematic viscosity Navier estimates uniqueness proof
We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions.
11-1787/N
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1709737817
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_1709737817
crossref_primary_10_1007_s11425_015_4990_8
crossref_citationtrail_10_1007_s11425_015_4990_8
springer_journals_10_1007_s11425_015_4990_8
chongqing_primary_664626811
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Science China. Mathematics
PublicationTitleAbbrev Sci. China Math
PublicationTitleAlternate SCIENCE CHINA Mathematics
PublicationYear 2015
Publisher Science China Press
Publisher_xml – name: Science China Press
References Guillén-GonzálezFRodríguez-BlellidoM AWeak solutions for a initial-boundary Q-tensor problem related to liquid crystalsNonlinear Anal TMA20151128410410.1016/j.na.2014.09.0111304.35547
ChenHZhangP WA tensor model for liquid crystals on a spherical surfaceSci China Math2013562549255910.1007/s11425-013-4746-2
DingS JHuangJ RLinJ YGlobal existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensionsSci China Math2013562233225010.1007/s11425-013-4620-2062721143123568
XuJZhangP WFrom microscopic theory to macroscopic theory-symmetries and order parameters of rigid moleculesSci China Math20145744346810.1007/s11425-013-4761-31299.820163166230
HuangJ RDingS JCompressible hydrodynamic flow of nematic liquid crystals with vacuumJ Differential Equations20152581653168410.1016/j.jde.2014.11.008063971213295596
BaumanPParkJPhillipsDAnalysis of nematic liquid crystals with disclination linesArch Rational Mech Anal201220579582610.1007/s00205-012-0530-71281.760202960033
QianTShengPGeneralized hydrodynamic equations for nematic liquid crystlasPhysical Review E1998587475748510.1103/PhysRevE.58.7475
HuangJ RLinF HWangC YRegularity and existence of global solutions to the Ericksen-Leslie system in R2Comm Math Phys201433180585010.1007/s00220-014-2079-91298.351473238531
WangD HXuXYuCGlobal weak solution for a coupled compressible Navier-Stokes and Q-tensor systemCommum Math Sci201513498210.4310/CMS.2015.v13.n1.a3064082933238138
Guillén-GonzálezFRodríguez-BlellidoM ARojas-MedarM ASufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal modelMa Math Nachr200928284686710.1002/mana.2006107761173.35033
De GennesP GThe Physics of Liquid Crystals1974OxfordClarendon Press
PaicuMZarnescuAGlobal existence and regularity for the full coupled Navier-Stokes and Q-tensor systemSIAM J Math Anal2011432009204910.1137/10079224X1233.351602837493
PaicuMZarnescuAEnergy dissipation and regularity for a coupled Navier-Stokes and Q-tensor systemArch Ration Mech Anal2012203456710.1007/s00205-011-0443-x061019802864407
WuHXuXLiuCAsymptotic behavior for a nematic liquid crystal model with different kinematic transport propertiesCalc Var Partial Differ Equ20124531934510.1007/s00526-011-0460-51259.350402984135
FeireislERoccaESchimpernaGNonisothermal nematic liquid crystal flows with the Ball-Majumdar free energyAnn Mat Pura Appl, in press2015
AbelsHDolzmannGLiuY NWell-posedness of a fully-coupled Navier-Stokes/Q-tensor system with inhomogeneous boundary dataSIAM J Math Anal2014463050307710.1137/130945405063658253252809
HanJ QLuoYWangWFrom microscopic theory to macroscopic theory: a systematic study on static modeling for liquid crystalsArch Rational Mech Anal2014
Mottram N J, Newton C. Introduction to Q-tensor theory. University of Strathclyde, Department of Mathematics, Research Report, 10, 2004
Guillén-GonzálezFRodríguez-BlellidoM AWeak time regularity and uniqueness for a Q-tensor modelSIAM J Math Anal2014463540356710.1137/13095015X064057153272623
WuHXuXLiuCOn the General Ericksen-Leslie System: Parodis Relation, Well-Posedness and StabilityArch Ration Mech Anal20132085910710.1007/s00205-012-0588-2061490093021544
SunHLiuCOn energetic variational approaches in modelling the nematic liquid crystal flowsDiscrete Contin Dyn Syst20092345547510.3934/dcds.2009.23.4551156.760072449088
MajumdarAZarnescuALandau-De Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyondArch Rational Mech Anal201019622728010.1007/s00205-009-0249-21304.760072601074
BerisA NEdwardsB JThermodynamics of Flowing Systems with Internal Microstructure1994New YorkOxford University Press
WangWZhangP WZhangZ FFrom microscopic theory to macroscopic theory: dynamics of the rod-like liquid crystal molecules2013
AbelsHDolzmannGLiuY NStrong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions2013
WangWZhangP WZhangZ FThe small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equationComm Pure Appl Math2015
WangWZhangP WZhangZ FRigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theorySIAM J Math Anal2015
J Q Han (4990_CR12) 2014
H Wu (4990_CR25) 2012; 45
D H Wang (4990_CR21) 2015; 13
J R Huang (4990_CR14) 2015; 258
M Paicu (4990_CR18) 2012; 203
H Abels (4990_CR1) 2013
H Abels (4990_CR2) 2014; 46
P Bauman (4990_CR3) 2012; 205
W Wang (4990_CR22) 2013
W Wang (4990_CR24) 2015
F Guillén-González (4990_CR9) 2009; 282
4990_CR16
H Chen (4990_CR5) 2013; 56
S J Ding (4990_CR7) 2013; 56
M Paicu (4990_CR17) 2011; 43
T Qian (4990_CR19) 1998; 58
H Sun (4990_CR20) 2009; 23
E Feireisl (4990_CR8) 2015
P G Gennes De (4990_CR6) 1974
J R Huang (4990_CR13) 2014; 331
F Guillén-González (4990_CR10) 2014; 46
A N Beris (4990_CR4) 1994
F Guillén-González (4990_CR11) 2015; 112
W Wang (4990_CR23) 2015
A Majumdar (4990_CR15) 2010; 196
H Wu (4990_CR26) 2013; 208
J Xu (4990_CR27) 2014; 57
References_xml – reference: FeireislERoccaESchimpernaGNonisothermal nematic liquid crystal flows with the Ball-Majumdar free energyAnn Mat Pura Appl, in press2015
– reference: WuHXuXLiuCAsymptotic behavior for a nematic liquid crystal model with different kinematic transport propertiesCalc Var Partial Differ Equ20124531934510.1007/s00526-011-0460-51259.350402984135
– reference: BaumanPParkJPhillipsDAnalysis of nematic liquid crystals with disclination linesArch Rational Mech Anal201220579582610.1007/s00205-012-0530-71281.760202960033
– reference: AbelsHDolzmannGLiuY NWell-posedness of a fully-coupled Navier-Stokes/Q-tensor system with inhomogeneous boundary dataSIAM J Math Anal2014463050307710.1137/130945405063658253252809
– reference: Guillén-GonzálezFRodríguez-BlellidoM AWeak time regularity and uniqueness for a Q-tensor modelSIAM J Math Anal2014463540356710.1137/13095015X064057153272623
– reference: HanJ QLuoYWangWFrom microscopic theory to macroscopic theory: a systematic study on static modeling for liquid crystalsArch Rational Mech Anal2014
– reference: DingS JHuangJ RLinJ YGlobal existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensionsSci China Math2013562233225010.1007/s11425-013-4620-2062721143123568
– reference: Mottram N J, Newton C. Introduction to Q-tensor theory. University of Strathclyde, Department of Mathematics, Research Report, 10, 2004
– reference: QianTShengPGeneralized hydrodynamic equations for nematic liquid crystlasPhysical Review E1998587475748510.1103/PhysRevE.58.7475
– reference: De GennesP GThe Physics of Liquid Crystals1974OxfordClarendon Press
– reference: XuJZhangP WFrom microscopic theory to macroscopic theory-symmetries and order parameters of rigid moleculesSci China Math20145744346810.1007/s11425-013-4761-31299.820163166230
– reference: Guillén-GonzálezFRodríguez-BlellidoM AWeak solutions for a initial-boundary Q-tensor problem related to liquid crystalsNonlinear Anal TMA20151128410410.1016/j.na.2014.09.0111304.35547
– reference: MajumdarAZarnescuALandau-De Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyondArch Rational Mech Anal201019622728010.1007/s00205-009-0249-21304.760072601074
– reference: AbelsHDolzmannGLiuY NStrong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions2013
– reference: WangWZhangP WZhangZ FThe small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equationComm Pure Appl Math2015
– reference: WangWZhangP WZhangZ FFrom microscopic theory to macroscopic theory: dynamics of the rod-like liquid crystal molecules2013
– reference: PaicuMZarnescuAGlobal existence and regularity for the full coupled Navier-Stokes and Q-tensor systemSIAM J Math Anal2011432009204910.1137/10079224X1233.351602837493
– reference: WangWZhangP WZhangZ FRigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theorySIAM J Math Anal2015
– reference: BerisA NEdwardsB JThermodynamics of Flowing Systems with Internal Microstructure1994New YorkOxford University Press
– reference: WuHXuXLiuCOn the General Ericksen-Leslie System: Parodis Relation, Well-Posedness and StabilityArch Ration Mech Anal20132085910710.1007/s00205-012-0588-2061490093021544
– reference: HuangJ RDingS JCompressible hydrodynamic flow of nematic liquid crystals with vacuumJ Differential Equations20152581653168410.1016/j.jde.2014.11.008063971213295596
– reference: Guillén-GonzálezFRodríguez-BlellidoM ARojas-MedarM ASufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal modelMa Math Nachr200928284686710.1002/mana.2006107761173.35033
– reference: PaicuMZarnescuAEnergy dissipation and regularity for a coupled Navier-Stokes and Q-tensor systemArch Ration Mech Anal2012203456710.1007/s00205-011-0443-x061019802864407
– reference: ChenHZhangP WA tensor model for liquid crystals on a spherical surfaceSci China Math2013562549255910.1007/s11425-013-4746-2
– reference: SunHLiuCOn energetic variational approaches in modelling the nematic liquid crystal flowsDiscrete Contin Dyn Syst20092345547510.3934/dcds.2009.23.4551156.760072449088
– reference: WangD HXuXYuCGlobal weak solution for a coupled compressible Navier-Stokes and Q-tensor systemCommum Math Sci201513498210.4310/CMS.2015.v13.n1.a3064082933238138
– reference: HuangJ RLinF HWangC YRegularity and existence of global solutions to the Ericksen-Leslie system in R2Comm Math Phys201433180585010.1007/s00220-014-2079-91298.351473238531
– volume: 56
  start-page: 2233
  year: 2013
  ident: 4990_CR7
  publication-title: Sci China Math
  doi: 10.1007/s11425-013-4620-2
– volume: 196
  start-page: 227
  year: 2010
  ident: 4990_CR15
  publication-title: Arch Rational Mech Anal
  doi: 10.1007/s00205-009-0249-2
– volume-title: Arch Rational Mech Anal
  year: 2014
  ident: 4990_CR12
– ident: 4990_CR16
– volume: 23
  start-page: 455
  year: 2009
  ident: 4990_CR20
  publication-title: Discrete Contin Dyn Syst
  doi: 10.3934/dcds.2009.23.455
– volume: 205
  start-page: 795
  year: 2012
  ident: 4990_CR3
  publication-title: Arch Rational Mech Anal
  doi: 10.1007/s00205-012-0530-7
– volume-title: SIAM J Math Anal
  year: 2015
  ident: 4990_CR23
– volume: 208
  start-page: 59
  year: 2013
  ident: 4990_CR26
  publication-title: Arch Ration Mech Anal
  doi: 10.1007/s00205-012-0588-2
– volume-title: Strong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions
  year: 2013
  ident: 4990_CR1
– volume: 46
  start-page: 3540
  year: 2014
  ident: 4990_CR10
  publication-title: SIAM J Math Anal
  doi: 10.1137/13095015X
– volume: 282
  start-page: 846
  year: 2009
  ident: 4990_CR9
  publication-title: Ma Math Nachr
  doi: 10.1002/mana.200610776
– volume: 203
  start-page: 45
  year: 2012
  ident: 4990_CR18
  publication-title: Arch Ration Mech Anal
  doi: 10.1007/s00205-011-0443-x
– volume-title: Thermodynamics of Flowing Systems with Internal Microstructure
  year: 1994
  ident: 4990_CR4
  doi: 10.1093/oso/9780195076943.001.0001
– volume-title: Ann Mat Pura Appl, in press
  year: 2015
  ident: 4990_CR8
– volume: 57
  start-page: 443
  year: 2014
  ident: 4990_CR27
  publication-title: Sci China Math
  doi: 10.1007/s11425-013-4761-3
– volume: 112
  start-page: 84
  year: 2015
  ident: 4990_CR11
  publication-title: Nonlinear Anal TMA
  doi: 10.1016/j.na.2014.09.011
– volume-title: From microscopic theory to macroscopic theory: dynamics of the rod-like liquid crystal molecules
  year: 2013
  ident: 4990_CR22
– volume: 58
  start-page: 7475
  year: 1998
  ident: 4990_CR19
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.58.7475
– volume: 45
  start-page: 319
  year: 2012
  ident: 4990_CR25
  publication-title: Calc Var Partial Differ Equ
  doi: 10.1007/s00526-011-0460-5
– volume: 258
  start-page: 1653
  year: 2015
  ident: 4990_CR14
  publication-title: J Differential Equations
  doi: 10.1016/j.jde.2014.11.008
– volume-title: Comm Pure Appl Math
  year: 2015
  ident: 4990_CR24
– volume-title: The Physics of Liquid Crystals
  year: 1974
  ident: 4990_CR6
– volume: 43
  start-page: 2009
  year: 2011
  ident: 4990_CR17
  publication-title: SIAM J Math Anal
  doi: 10.1137/10079224X
– volume: 13
  start-page: 49
  year: 2015
  ident: 4990_CR21
  publication-title: Commum Math Sci
  doi: 10.4310/CMS.2015.v13.n1.a3
– volume: 331
  start-page: 805
  year: 2014
  ident: 4990_CR13
  publication-title: Comm Math Phys
  doi: 10.1007/s00220-014-2079-9
– volume: 56
  start-page: 2549
  year: 2013
  ident: 4990_CR5
  publication-title: Sci China Math
  doi: 10.1007/s11425-013-4746-2
– volume: 46
  start-page: 3050
  year: 2014
  ident: 4990_CR2
  publication-title: SIAM J Math Anal
  doi: 10.1137/130945405
SSID ssj0000390473
Score 2.1909504
Snippet We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor...
We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q -tensor...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1349
SubjectTerms Applications of Mathematics
Computational fluid dynamics
Dynamical systems
Dynamics
Fluid flow
Fluids
Liquid crystals
Mathematical models
Mathematics
Mathematics and Statistics
Navier-Stokes equations
Navier-Stokes方程
向列液晶
张量
模型
流体模拟
解的存在性
连续依赖性
适定性
Title Global well-posedness for the dynamical Q-tensor model of liquid crystals
URI http://lib.cqvip.com/qk/60114X/201506/664626811.html
https://link.springer.com/article/10.1007/s11425-015-4990-8
https://www.proquest.com/docview/1709737817
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD647UUfvItzOiL4pESaNF3TxyHeURAczKfQpqmKo1W7Peiv96SXDUWFvZbTtM13mnwn5wZwwJ2QRUK71A0YpwIpOpU22T1EhUlc1zgmsrnDN7e9i4G4GnrDKo87r6Pda5dksVLPkt0Y6heavh5Flu5Q2YCWx2Qgm9Dqnz9cz45WHLTjReFbtiH21McdtPZn_jaOrarwlKWPb_jM77vTjHL-8JIWm8_ZCtzXr13GnLwcT8bRsf78UdFxzu9aheWKjJJ-qT1rsGDSdVi6mVZyzTfgsmwKQOwZH33NchPbtZEg1SUoReKyoT0K3FEbC4-Xi946JEvI6Plt8hwT_f6BDHSUb8Lg7PT-5IJW7ReoFlKMqWC-FIhYzzhxhHaIDjiLEXPGDeIaCFxGw8QJPa4F2jwmSIzxYmk8ZjTXLNHuFjTTLDXbQCxOnIUmdpkWKIdmaeTGCE4ghQyM24bOFAL1WpbZUL2eQGtLMtYGpwZF6apyuW2gMVKzmst2DhXOobJzqGQbDqe31OP9I7xfI63w57IekzA12SRXzLfVjHzJ_DYc1eip6i_P_x5xZy7pDixyC39xtrMLzfH7xOwh1RlH3Uq1u9AY8P4Xb9Hykg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90PqgP4ifW-RHBJyXQtOmaPg5xbLoNhA32Fto01cFot3V78L_30rUbigq-lksKv7skv8vl7gDuHDtkEVcudQPmUI4UnQqT7B6iwSSuq20dmdzhXr_RHvLnkTcq87jz6rV7FZIsdupNshtD-0LX16PI0m0qtmEHuYAwbQuGTnN9sWKjF8-LyLJ5YE99PD-raOZPs5iaCu9Z-jbDP349mzaE81uMtDh6WodwUHJG0lwp-Qi2dHoM-711wdX8BDqr2v3EXMXRaZbr2GxhBBkpQSkSr_rOo8ArNU_W8XPRAodkCZmMZ8txTNT8A4niJD-FYetp8NimZZcEqrjgC8qZLzgC29B2HKG7oAKHxaga5miEP-C424WJHXqO4uia6CDR2ouF9phWjmKJcs-glmapPgfiMYGDQx27THGUQ-8xcmNEMRBcBNq1oL7GSk5X1TBko8HRKRKMWWBX6ElVFhg3fS4mclMa2YAvEXxpwJfCgvv1kGq-P4RvK5VIXAMmsBGmOlvmkvmm6JAvmG_BQ6UrWS7G_PcZL_4lfQO77UGvK7ud_ksd9hxjQ8V1zCXUFvOlvkJ2soiuC2v8BGDg174
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8ANEH8RPnZwSflLCmTdf0UdSxqRsKDvYW2iRVYbTTbg_-9176saGo4Gu5pHB3SX6Xy_0O4Mx1IhZz5VEvZC7lCNGpsMXuETpM4nnGMbGtHe71W50Bvx36w6rPaV6_dq9TkmVNg2VpSifNsU6a88I3hr6GYbBPEbE7VCzCMu7GzDr6wL2cXbI4GNHzIstsH9vTAM_SOrP50yyWX-ElS5_f8O9fz6k5-PyWLy2OofYGrFf4kVyWBt-EBZNuwVpvRr6ab0O35PEn9lqOjrPcaLudEUSnBKWILnvQo8Ajtc_X8XPRDodkCRm9vk1fNVHvHwgaR_kODNo3T1cdWnVMoIoLPqGcBYKjklvG0TGGDip0mUYzMdegKUKOO1-UOJHvKo5higkTY3wtjM-MchVLlLcLS2mWmj0gPhM4ODLaY4qjHEaSsadRi6HgIjReAw5mupLjkhlDtlocAyTBWAOcWntSVWTjtufFSM5pkq3yJSpfWuVL0YDz2ZB6vj-ET2uTSFwPNskRpSab5pIFloAoECxowEVtK1ktzPz3Gff_JX0CKw_XbXnf7d8dwKprXai4mTmEpcn71BwhUJnEx4UzfgIWINv6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+well-posedness+for+the+dynamical+Q-tensor+model+of+liquid+crystals&rft.jtitle=Science+China.+Mathematics&rft.au=Huang%2C+JinRui&rft.au=Ding%2C+ShiJin&rft.date=2015-06-01&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=58&rft.issue=6&rft.spage=1349&rft.epage=1366&rft_id=info:doi/10.1007%2Fs11425-015-4990-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg