A new method for interpolation of missing air quality data at monitor stations

Studies in environmental fields often suffer from air quality datasets incomplete at certain places and times. Here, a Spatial-Temporal Point Interpolation based on Biased Sentinel Hospitals Areal Disease Estimation (STPI-BSHADE) interpolation method was introduced to address this issue. The method...

Full description

Saved in:
Bibliographic Details
Published inEnvironment international Vol. 169; p. 107538
Main Authors Xu, Chengdong, Wang, Jinfeng, Hu, Maogui, Wang, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Studies in environmental fields often suffer from air quality datasets incomplete at certain places and times. Here, a Spatial-Temporal Point Interpolation based on Biased Sentinel Hospitals Areal Disease Estimation (STPI-BSHADE) interpolation method was introduced to address this issue. The method was based on the spatial statistic trinity theory, where the statistical error is determined by the population properties, the condition of the sample, and the method of estimation. In our study, the spatial association of the variables was quantified by the covariance and the ratio of air quality data between stations, resulting in linear unbiased estimates of the missing data. STPI-BSHADE was compared with two widely used statistical methods, inverse distance weighting (IDW) and Kriging. Theoretically, IDW and Kriging are short of the capacity of using the heterogeneous characteristics of the population and remedying the sample bias. Empirically, the accuracy of the STPI-BSHADE method was assessed using hourly particulate matter 2.5 data, collected from May 13 to December 31, 2014, in the Beijing-Tianjin-Hebei areas, where air quality presents spatial heterogeneity. The experimental results also demonstrated that STPI-BSHADE significantly outperformed the traditional methods.
AbstractList Studies in environmental fields often suffer from air quality datasets incomplete at certain places and times. Here, a Spatial-Temporal Point Interpolation based on Biased Sentinel Hospitals Areal Disease Estimation (STPI-BSHADE) interpolation method was introduced to address this issue. The method was based on the spatial statistic trinity theory, where the statistical error is determined by the population properties, the condition of the sample, and the method of estimation. In our study, the spatial association of the variables was quantified by the covariance and the ratio of air quality data between stations, resulting in linear unbiased estimates of the missing data. STPI-BSHADE was compared with two widely used statistical methods, inverse distance weighting (IDW) and Kriging. Theoretically, IDW and Kriging are short of the capacity of using the heterogeneous characteristics of the population and remedying the sample bias. Empirically, the accuracy of the STPI-BSHADE method was assessed using hourly particulate matter 2.5 data, collected from May 13 to December 31, 2014, in the Beijing-Tianjin-Hebei areas, where air quality presents spatial heterogeneity. The experimental results also demonstrated that STPI-BSHADE significantly outperformed the traditional methods.
Studies in environmental fields often suffer from air quality datasets incomplete at certain places and times. Here, a Spatial-Temporal Point Interpolation based on Biased Sentinel Hospitals Areal Disease Estimation (STPI-BSHADE) interpolation method was introduced to address this issue. The method was based on the spatial statistic trinity theory, where the statistical error is determined by the population properties, the condition of the sample, and the method of estimation. In our study, the spatial association of the variables was quantified by the covariance and the ratio of air quality data between stations, resulting in linear unbiased estimates of the missing data. STPI-BSHADE was compared with two widely used statistical methods, inverse distance weighting (IDW) and Kriging. Theoretically, IDW and Kriging are short of the capacity of using the heterogeneous characteristics of the population and remedying the sample bias. Empirically, the accuracy of the STPI-BSHADE method was assessed using hourly particulate matter 2.5 data, collected from May 13 to December 31, 2014, in the Beijing-Tianjin-Hebei areas, where air quality presents spatial heterogeneity. The experimental results also demonstrated that STPI-BSHADE significantly outperformed the traditional methods.Studies in environmental fields often suffer from air quality datasets incomplete at certain places and times. Here, a Spatial-Temporal Point Interpolation based on Biased Sentinel Hospitals Areal Disease Estimation (STPI-BSHADE) interpolation method was introduced to address this issue. The method was based on the spatial statistic trinity theory, where the statistical error is determined by the population properties, the condition of the sample, and the method of estimation. In our study, the spatial association of the variables was quantified by the covariance and the ratio of air quality data between stations, resulting in linear unbiased estimates of the missing data. STPI-BSHADE was compared with two widely used statistical methods, inverse distance weighting (IDW) and Kriging. Theoretically, IDW and Kriging are short of the capacity of using the heterogeneous characteristics of the population and remedying the sample bias. Empirically, the accuracy of the STPI-BSHADE method was assessed using hourly particulate matter 2.5 data, collected from May 13 to December 31, 2014, in the Beijing-Tianjin-Hebei areas, where air quality presents spatial heterogeneity. The experimental results also demonstrated that STPI-BSHADE significantly outperformed the traditional methods.
ArticleNumber 107538
Author Wang, Jinfeng
Hu, Maogui
Wang, Wei
Xu, Chengdong
Author_xml – sequence: 1
  givenname: Chengdong
  surname: Xu
  fullname: Xu, Chengdong
  organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Jinfeng
  surname: Wang
  fullname: Wang, Jinfeng
  organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Maogui
  surname: Hu
  fullname: Hu, Maogui
  email: humg@lreis.ac.cn
  organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
BookMark eNqNkb1OHDEUha2ISFlI3iCFS5pZ_O8ZCiSEgCChpElqy2PfIV7N2ovtBfH2GCY0KULkwtLV-Y7uPecQHcQUAaGvlKwpoepks4b4EGJdM8JYG2nJ-w9oRXvNO6UlOUCrJiOdoIx8QoelbAghTPRyhb6f4wiPeAv1d_J4Shk3H8i7NNsaUsRpwttQSoh32IaM7_d2DvUJe1stthVvUwy1QaW-ystn9HGyc4Evf_4j9Ovq8ufFt-72x_XNxflt50Qvase146Ok3oJjnI7eOw898WoYKeVtN62YlBSmfhTUM6cFGSYNgio7aCkU5UfoZvH1yW7MLoetzU8m2WBeBynfGZtrcDMYNQAHIkc1wiSUdSNVTHlhtR89AT40r-PFa5fT_R5KNe1iB_NsI6R9MUy3Hdvr5f9IKZMDG0STni5Sl1MpGSbjwhJSzTbMhhLz0p3ZmKU789KdWbprsPgLfjvxHexswaBF_xAgm-ICRAc-ZHC1ZRP-bfAMrKC3AA
CitedBy_id crossref_primary_10_1016_j_measurement_2025_116649
crossref_primary_10_1109_ACCESS_2024_3424265
crossref_primary_10_1007_s10668_024_04781_5
crossref_primary_10_1016_j_apr_2024_102089
crossref_primary_10_1109_ACCESS_2024_3460187
crossref_primary_10_1016_j_atmosenv_2024_120388
crossref_primary_10_1080_24694452_2023_2289982
crossref_primary_10_1016_j_atmosres_2024_107754
crossref_primary_10_1061_JHTRBP_HZENG_1450
crossref_primary_10_1016_j_heliyon_2024_e32812
crossref_primary_10_3390_geographies3040033
crossref_primary_10_1007_s10596_023_10206_5
crossref_primary_10_1016_j_chemosphere_2022_137636
crossref_primary_10_1109_JIOT_2024_3422470
crossref_primary_10_3390_w15081635
crossref_primary_10_1007_s00521_024_09637_7
crossref_primary_10_1111_tgis_13141
crossref_primary_10_1080_24694452_2023_2206469
Cites_doi 10.1007/BF00890327
10.1016/S0022-1694(00)00144-X
10.1007/s11004-010-9284-7
10.1007/s11356-018-3763-7
10.1016/j.envres.2012.11.003
10.1016/j.envres.2019.05.025
10.1016/j.envsoft.2020.104835
10.1016/j.ecolind.2016.02.052
10.2113/gsecongeo.58.8.1246
10.1289/ehp.1205006
10.1016/j.envpol.2017.12.070
10.1289/ehp.7673
10.1175/JCLI-D-17-0150.1
10.1016/j.envpol.2020.114259
10.1016/j.rse.2017.12.018
10.1056/NEJMoa0803894
10.1164/rccm.201303-0609OC
10.1289/ehp.1307049
10.1155/2016/6295878
10.1038/s41586-020-1983-8
10.1016/j.spasta.2012.08.001
10.1175/JCLI-D-12-00633.1
10.1016/S0140-6736(17)30505-6
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
DOA
DOI 10.1016/j.envint.2022.107538
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
Environmental Sciences
EISSN 1873-6750
ExternalDocumentID oai_doaj_org_article_69e3e05b6bef46acb1626d4a7dbd0e39
10_1016_j_envint_2022_107538
S0160412022004652
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SSJ
SSZ
T5K
TN5
WUQ
XPP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c484t-37c3b51daec231bddcde80d69b113000762551ef8b41d2c7409f7e416a9754613
IEDL.DBID DOA
ISSN 0160-4120
1873-6750
IngestDate Wed Aug 27 01:31:19 EDT 2025
Fri Aug 22 20:22:22 EDT 2025
Fri Jul 11 07:59:38 EDT 2025
Tue Jul 01 02:38:17 EDT 2025
Thu Apr 24 22:53:34 EDT 2025
Fri Feb 23 02:38:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sparse sample
Interpolation
Heterogeneous population
Air quality dataset
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-37c3b51daec231bddcde80d69b113000762551ef8b41d2c7409f7e416a9754613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/69e3e05b6bef46acb1626d4a7dbd0e39
PQID 2721259294
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_69e3e05b6bef46acb1626d4a7dbd0e39
proquest_miscellaneous_2723131385
proquest_miscellaneous_2721259294
crossref_citationtrail_10_1016_j_envint_2022_107538
crossref_primary_10_1016_j_envint_2022_107538
elsevier_sciencedirect_doi_10_1016_j_envint_2022_107538
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Environment international
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References de Gruijter, ter Braak (b0030) 1990; 22
Jerrett, Burnett, Pope, Ito, Thurston, Krewski, Shi, Calle, Thun (b0090) 2009; 360
Requia, Coull, Koutrakis (b0125) 2019; 175
Haining (b0050) 2003
He, Christakos, Jankowski (b0070) 2019; 12
Xu, Wang, Li (b0170) 2018; 31
Lee, Serre, van Donkelaar, Martin, Burnett, Jerrett (b0100) 2012; 120
Burnett, Pope, Ezzati, Olives, Lim, Mehta, Shin, Singh, Hubbell, Brauer, Anderson, Smith, Balmes, Bruce, Kan, Laden, Pruss-Ustun, Michelle, Gapstur, Diver, Cohen (b0015) 2014; 122
Goovaerts (b0045) 2000; 228
Han, Fang, Li, Wang, Shi (b0055) 2020; 262
Gilliland, Avol, Kinney, Jerrett, Dvonch, Lurmann, Buckley, Breysse, Keeler, de Villiers, McConnell (b0040) 2005; 113
Wang, Stein, Gao, Ge (b0150) 2012; 2
Hu, Waller, Al-Hamdan, Crosson, Estes, Estes, Quattrochi, Sarnat, Liu (b0080) 2013; 121
Wang, Gao, Stein (b0145) 2020; 134
Xu, Wang, Hu, Li (b0165) 2013; 26
Dedoussi, Eastham, Monier, Barrett (b0035) 2020; 578
Bai, Li, Chang, Gao (b0005) 2019; 254
Chu, Bilal (b0020) 2019; 26
Berrocal, Guan, Muyskens, Wang, Reich, Mulholland, Chang (b0010) 2020; 222
Cohen, Brauer, Burnett, Anderson, Frostad, Estep, Balakrishnan, Brunekreef, Dandona, Dandona, Feigin, Freedman, Hubbell, Jobling, Kan, Knibbs, Liu, Martin, Morawska, Pope, Shin, Straif, Shaddick, Thomas, van Dingenen, van Donkelaar, Vos, Murray, Forouzanfar (b0025) 2017; 389
Wang, Zhang, Fu (b0160) 2016; 67
Matheron (b0120) 1963; 58
Li, T., Wang, H., Zhao, T., Xue, M., Wang, Y., Che, H., Jiang, C., 2016. The Impacts of Different PBL Schemes on the Simulation of PM2.5 during Severe Haze Episodes in the Jing-Jin-Ji Region and Its Surroundings in China. Adv Meteorol,2016.
Jerrett, Burnett, Beckerman, Turner, Krewski, Thurston, Martin, van Donkelaar, Hughes, Shi, Gapstur, Thun, Pope (b0095) 2013; 188
Liu, Cao, Zhao, Mulligan, Ye (b0115) 2018; 235
He, Huang (b0075) 2018; 206
Wang, Xue, Zhang (b0155) 2016; 39
Harris, Fotheringham, Crespo, Charlton (b0060) 2010; 42
Gilliland (10.1016/j.envint.2022.107538_b0040) 2005; 113
Wang (10.1016/j.envint.2022.107538_b0145) 2020; 134
Dedoussi (10.1016/j.envint.2022.107538_b0035) 2020; 578
de Gruijter (10.1016/j.envint.2022.107538_b0030) 1990; 22
Bai (10.1016/j.envint.2022.107538_b0005) 2019; 254
Han (10.1016/j.envint.2022.107538_b0055) 2020; 262
Requia (10.1016/j.envint.2022.107538_b0125) 2019; 175
Jerrett (10.1016/j.envint.2022.107538_b0095) 2013; 188
Jerrett (10.1016/j.envint.2022.107538_b0090) 2009; 360
Goovaerts (10.1016/j.envint.2022.107538_b0045) 2000; 228
Hu (10.1016/j.envint.2022.107538_b0080) 2013; 121
He (10.1016/j.envint.2022.107538_b0075) 2018; 206
Harris (10.1016/j.envint.2022.107538_b0060) 2010; 42
Wang (10.1016/j.envint.2022.107538_b0155) 2016; 39
Matheron (10.1016/j.envint.2022.107538_b0120) 1963; 58
Burnett (10.1016/j.envint.2022.107538_b0015) 2014; 122
Liu (10.1016/j.envint.2022.107538_b0115) 2018; 235
Wang (10.1016/j.envint.2022.107538_b0150) 2012; 2
Xu (10.1016/j.envint.2022.107538_b0165) 2013; 26
Lee (10.1016/j.envint.2022.107538_b0100) 2012; 120
10.1016/j.envint.2022.107538_b0105
Berrocal (10.1016/j.envint.2022.107538_b0010) 2020; 222
Chu (10.1016/j.envint.2022.107538_b0020) 2019; 26
Cohen (10.1016/j.envint.2022.107538_b0025) 2017; 389
Haining (10.1016/j.envint.2022.107538_b0050) 2003
He (10.1016/j.envint.2022.107538_b0070) 2019; 12
Wang (10.1016/j.envint.2022.107538_b0160) 2016; 67
Xu (10.1016/j.envint.2022.107538_b0170) 2018; 31
References_xml – volume: 39
  start-page: 34
  year: 2016
  end-page: 42
  ident: b0155
  article-title: Analysis of Spatial-temporal Distribution Characteristics and Main Cause of Air Pollution in Beijing-Tianjin-Hebei region in 2014
  publication-title: Meteorological and Environmental Sciences.
– reference: Li, T., Wang, H., Zhao, T., Xue, M., Wang, Y., Che, H., Jiang, C., 2016. The Impacts of Different PBL Schemes on the Simulation of PM2.5 during Severe Haze Episodes in the Jing-Jin-Ji Region and Its Surroundings in China. Adv Meteorol,2016.
– volume: 26
  start-page: 1902
  year: 2019
  end-page: 1910
  ident: b0020
  article-title: PM2.5 mapping using integrated geographically temporally weighted regression (GTWR) and random sample consensus (RANSAC) models
  publication-title: Environ Sci Pollut R.
– volume: 113
  start-page: 1447
  year: 2005
  end-page: 1454
  ident: b0040
  article-title: Air pollution exposure assessment for epidemiologic studies of pregnant women and children: Lessons learned from the Centers for Children's Environmental Health and Disease Prevention Research
  publication-title: Environ Health Persp.
– volume: 262
  year: 2020
  ident: b0055
  article-title: Heterogeneity of influential factors across the entire air quality spectrum in Chinese cities: A spatial quantile regression analysis
  publication-title: Environ. Pollut.
– volume: 228
  start-page: 113
  year: 2000
  end-page: 129
  ident: b0045
  article-title: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall
  publication-title: J. Hydrol.
– volume: 22
  start-page: 407
  year: 1990
  end-page: 415
  ident: b0030
  article-title: Model-free estimation from spatial samples: a reappraisal of classical sampling theory
  publication-title: Math. Geol.
– year: 2003
  ident: b0050
  article-title: Spatial Data Analysis: Theory and Practice
– volume: 578
  start-page: 261
  year: 2020
  ident: b0035
  article-title: Premature mortality related to United States cross-state air pollution
  publication-title: Nature
– volume: 2
  start-page: 1
  year: 2012
  end-page: 14
  ident: b0150
  article-title: A review of spatial sampling
  publication-title: Spatial Statistics.
– volume: 175
  start-page: 421
  year: 2019
  end-page: 433
  ident: b0125
  article-title: Evaluation of predictive capabilities of ordinary geostatistical interpolation, hybrid interpolation, and machine learning methods for estimating PM2.5 constituents over space
  publication-title: Environ. Res.
– volume: 360
  start-page: 1085
  year: 2009
  end-page: 1095
  ident: b0090
  article-title: Long-Term Ozone Exposure and Mortality
  publication-title: New Engl J Med.
– volume: 42
  start-page: 657
  year: 2010
  end-page: 680
  ident: b0060
  article-title: The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets
  publication-title: Math. Geosci.
– volume: 122
  start-page: 397
  year: 2014
  end-page: 403
  ident: b0015
  article-title: An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure
  publication-title: Environ Health Persp.
– volume: 254
  year: 2019
  ident: b0005
  article-title: Advancing the prediction accuracy of satellite-based PM2.5 concentration mapping: A perspective of data mining through in situ PM2.5 measurements
  publication-title: Environ. Pollut.
– volume: 31
  start-page: 1757
  year: 2018
  end-page: 1770
  ident: b0170
  article-title: A New Method for Temperature Spatial Interpolation Based on Sparse Historical Stations
  publication-title: J Climate.
– volume: 134
  year: 2020
  ident: b0145
  article-title: The spatial statistic trinity: A generic framework for spatial sampling and inference
  publication-title: Environ Modell Softw.
– volume: 26
  start-page: 7452
  year: 2013
  end-page: 7463
  ident: b0165
  article-title: Interpolation of missing temperature data at meteorological stations using P-BSHADE
  publication-title: J Climate.
– volume: 12
  start-page: 1734
  year: 2019
  end-page: 1747
  ident: b0070
  article-title: Comparative Performance of the LUR, ANN, and BME Techniques in the Multiscale Spatiotemporal Mapping of PM2.5 Concentrations in North China
  publication-title: Ieee J-Stars.
– volume: 235
  start-page: 272
  year: 2018
  end-page: 282
  ident: b0115
  article-title: Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach
  publication-title: Environ. Pollut.
– volume: 188
  start-page: 593
  year: 2013
  end-page: 599
  ident: b0095
  article-title: Spatial Analysis of Air Pollution and Mortality in California
  publication-title: Am J Resp Crit Care.
– volume: 222
  year: 2020
  ident: b0010
  article-title: A comparison of statistical and machine learning methods for creating national daily maps of ambient PM2.5 concentration
  publication-title: Atmos. Environ.
– volume: 120
  start-page: 1727
  year: 2012
  end-page: 1732
  ident: b0100
  article-title: Comparison of Geostatistical Interpolation and Remote Sensing Techniques for Estimating Long-Term Exposure to Ambient PM2.5 Concentrations across the Continental United States
  publication-title: Environ Health Persp.
– volume: 121
  start-page: 1
  year: 2013
  end-page: 10
  ident: b0080
  article-title: Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression
  publication-title: Environ. Res.
– volume: 58
  start-page: 1246
  year: 1963
  end-page: 1266
  ident: b0120
  publication-title: Principles of geostatistics. Economic geology.
– volume: 389
  start-page: 1907
  year: 2017
  end-page: 1918
  ident: b0025
  article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study
  publication-title: Lancet
– volume: 67
  start-page: 250
  year: 2016
  end-page: 256
  ident: b0160
  article-title: A measure of spatial stratified heterogeneity
  publication-title: Ecol. Ind.
– volume: 206
  start-page: 72
  year: 2018
  end-page: 83
  ident: b0075
  article-title: Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling
  publication-title: Remote Sens. Environ.
– volume: 39
  start-page: 34
  year: 2016
  ident: 10.1016/j.envint.2022.107538_b0155
  article-title: Analysis of Spatial-temporal Distribution Characteristics and Main Cause of Air Pollution in Beijing-Tianjin-Hebei region in 2014
  publication-title: Meteorological and Environmental Sciences.
– volume: 22
  start-page: 407
  year: 1990
  ident: 10.1016/j.envint.2022.107538_b0030
  article-title: Model-free estimation from spatial samples: a reappraisal of classical sampling theory
  publication-title: Math. Geol.
  doi: 10.1007/BF00890327
– volume: 228
  start-page: 113
  year: 2000
  ident: 10.1016/j.envint.2022.107538_b0045
  article-title: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00144-X
– volume: 42
  start-page: 657
  year: 2010
  ident: 10.1016/j.envint.2022.107538_b0060
  article-title: The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-010-9284-7
– volume: 26
  start-page: 1902
  year: 2019
  ident: 10.1016/j.envint.2022.107538_b0020
  article-title: PM2.5 mapping using integrated geographically temporally weighted regression (GTWR) and random sample consensus (RANSAC) models
  publication-title: Environ Sci Pollut R.
  doi: 10.1007/s11356-018-3763-7
– volume: 121
  start-page: 1
  year: 2013
  ident: 10.1016/j.envint.2022.107538_b0080
  article-title: Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2012.11.003
– volume: 175
  start-page: 421
  year: 2019
  ident: 10.1016/j.envint.2022.107538_b0125
  article-title: Evaluation of predictive capabilities of ordinary geostatistical interpolation, hybrid interpolation, and machine learning methods for estimating PM2.5 constituents over space
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2019.05.025
– volume: 134
  year: 2020
  ident: 10.1016/j.envint.2022.107538_b0145
  article-title: The spatial statistic trinity: A generic framework for spatial sampling and inference
  publication-title: Environ Modell Softw.
  doi: 10.1016/j.envsoft.2020.104835
– volume: 222
  issue: 14
  year: 2020
  ident: 10.1016/j.envint.2022.107538_b0010
  article-title: A comparison of statistical and machine learning methods for creating national daily maps of ambient PM2.5 concentration
  publication-title: Atmos. Environ.
– volume: 67
  start-page: 250
  year: 2016
  ident: 10.1016/j.envint.2022.107538_b0160
  article-title: A measure of spatial stratified heterogeneity
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2016.02.052
– volume: 58
  start-page: 1246
  year: 1963
  ident: 10.1016/j.envint.2022.107538_b0120
  publication-title: Principles of geostatistics. Economic geology.
  doi: 10.2113/gsecongeo.58.8.1246
– volume: 120
  start-page: 1727
  year: 2012
  ident: 10.1016/j.envint.2022.107538_b0100
  article-title: Comparison of Geostatistical Interpolation and Remote Sensing Techniques for Estimating Long-Term Exposure to Ambient PM2.5 Concentrations across the Continental United States
  publication-title: Environ Health Persp.
  doi: 10.1289/ehp.1205006
– volume: 235
  start-page: 272
  year: 2018
  ident: 10.1016/j.envint.2022.107538_b0115
  article-title: Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.12.070
– volume: 113
  start-page: 1447
  year: 2005
  ident: 10.1016/j.envint.2022.107538_b0040
  article-title: Air pollution exposure assessment for epidemiologic studies of pregnant women and children: Lessons learned from the Centers for Children's Environmental Health and Disease Prevention Research
  publication-title: Environ Health Persp.
  doi: 10.1289/ehp.7673
– volume: 31
  start-page: 1757
  year: 2018
  ident: 10.1016/j.envint.2022.107538_b0170
  article-title: A New Method for Temperature Spatial Interpolation Based on Sparse Historical Stations
  publication-title: J Climate.
  doi: 10.1175/JCLI-D-17-0150.1
– volume: 262
  year: 2020
  ident: 10.1016/j.envint.2022.107538_b0055
  article-title: Heterogeneity of influential factors across the entire air quality spectrum in Chinese cities: A spatial quantile regression analysis
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114259
– volume: 206
  start-page: 72
  year: 2018
  ident: 10.1016/j.envint.2022.107538_b0075
  article-title: Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.12.018
– volume: 360
  start-page: 1085
  year: 2009
  ident: 10.1016/j.envint.2022.107538_b0090
  article-title: Long-Term Ozone Exposure and Mortality
  publication-title: New Engl J Med.
  doi: 10.1056/NEJMoa0803894
– volume: 12
  start-page: 1734
  year: 2019
  ident: 10.1016/j.envint.2022.107538_b0070
  article-title: Comparative Performance of the LUR, ANN, and BME Techniques in the Multiscale Spatiotemporal Mapping of PM2.5 Concentrations in North China
  publication-title: Ieee J-Stars.
– volume: 188
  start-page: 593
  year: 2013
  ident: 10.1016/j.envint.2022.107538_b0095
  article-title: Spatial Analysis of Air Pollution and Mortality in California
  publication-title: Am J Resp Crit Care.
  doi: 10.1164/rccm.201303-0609OC
– volume: 122
  start-page: 397
  year: 2014
  ident: 10.1016/j.envint.2022.107538_b0015
  article-title: An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure
  publication-title: Environ Health Persp.
  doi: 10.1289/ehp.1307049
– ident: 10.1016/j.envint.2022.107538_b0105
  doi: 10.1155/2016/6295878
– volume: 254
  issue: 10
  year: 2019
  ident: 10.1016/j.envint.2022.107538_b0005
  article-title: Advancing the prediction accuracy of satellite-based PM2.5 concentration mapping: A perspective of data mining through in situ PM2.5 measurements
  publication-title: Environ. Pollut.
– volume: 578
  start-page: 261
  year: 2020
  ident: 10.1016/j.envint.2022.107538_b0035
  article-title: Premature mortality related to United States cross-state air pollution
  publication-title: Nature
  doi: 10.1038/s41586-020-1983-8
– year: 2003
  ident: 10.1016/j.envint.2022.107538_b0050
– volume: 2
  start-page: 1
  year: 2012
  ident: 10.1016/j.envint.2022.107538_b0150
  article-title: A review of spatial sampling
  publication-title: Spatial Statistics.
  doi: 10.1016/j.spasta.2012.08.001
– volume: 26
  start-page: 7452
  year: 2013
  ident: 10.1016/j.envint.2022.107538_b0165
  article-title: Interpolation of missing temperature data at meteorological stations using P-BSHADE
  publication-title: J Climate.
  doi: 10.1175/JCLI-D-12-00633.1
– volume: 389
  start-page: 1907
  issue: 10082
  year: 2017
  ident: 10.1016/j.envint.2022.107538_b0025
  article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)30505-6
SSID ssj0002485
Score 2.480508
Snippet Studies in environmental fields often suffer from air quality datasets incomplete at certain places and times. Here, a Spatial-Temporal Point Interpolation...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107538
SubjectTerms air quality
Air quality dataset
covariance
data collection
environment
Heterogeneous population
Interpolation
kriging
particulates
Sparse sample
spatial variation
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-tAEB7EkyKiVXn1-WQFr7HJZpNNjr6iFEEvKnhb9lck8kylrQcv_u1vJpuo9aAgPWWZpCEzmf0mO9-3AMd5yaVNeBXJyqWR0EJGhlPVanxmEDGUjhPf-fIqn9yKi7vsbgXGPReG2iq73B9yeputu5FR9zRHT3U9uiZtNJFwoopikZdRHhZCUpSfvL63eZBkV9D3jiOy7ulzbY8Xkcka6qjkHIcQuRdL01Or4r80S33K1-0kdL4Fmx16ZKfhBrdhxTcDWP-gKTiAvbN36hqadu_ufAAb4QsdC8SjHbg6ZQipWdhCmiF2ZXXYcyt0x7FpxTAG6FMC0_WMBfblC6OWUqYX7LFNBjM2D2v58124PT-7GU-ibneFyIpCLDCz2BS94bS3iPGMc9b5InZ5aRJa4ooxSyKa8lVhROK4lVgIVtIjftOlzASigD1YbaaN_wUMYZzhFAyZpXXW1CDs9CIXnpNamxZDSPuHqmwnPU47YPxTfY_ZgwquUOQKFVwxhOjtrKcgvfGN_V_y15stCWe3A9PZveoiR-WlT32cmdz4SuTamgQrOie0dMbFPi2HIHtvq6U4xEvV3_z9UR8cCt1D6y668dPnueJYZWOVyUvxpU2a4K_I9n98B79hjY4CU_IAVhezZ_8HIdPCHLbvxH-wSROD
  priority: 102
  providerName: Elsevier
Title A new method for interpolation of missing air quality data at monitor stations
URI https://dx.doi.org/10.1016/j.envint.2022.107538
https://www.proquest.com/docview/2721259294
https://www.proquest.com/docview/2723131385
https://doaj.org/article/69e3e05b6bef46acb1626d4a7dbd0e39
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4XEAIwQAxHlOQuBbaNH0dBwINEDuBxC3Kq9IQdGgbBy78duym5XVgF9RblD7t2J8b-zPAcVrwzES8DLLSxoFQIgs0p6hVu0QjYigsp3rn22E6uBfXD8nDt1ZflBPm6YH9hztNCxe7MNGpdqVIldERQnArVGa1DV1cl-6hz2uDqcYGE1GXZ_UOAxHxsC2aqzO7qISsojxKznEI8Xr-wynV3P0_fNMvK127nssNWG8wI-v7Z92EBVd1YPUbk2AHdi6-CtZwarNipx1Y8__lmC832oJhnyGQZr5xNEPEyka-05bPiWPjkqHk6QcCU6MJ8zWXb4wSSZmasefaBEzY1O_gT7fh_vLi7nwQND0VAiNyMUN7YmKUgVXOILLT1hrr8tCmhY5oYytE24gYypW5FpHlJsPwr8wcojZVZIlA378DS9W4crvAELxpTiqQGNpdjTWCTSdS4ThxtCnRhbj9qNI0hOPU9-JJtpllj9KLQpIopBdFF4LPs1484cac-Wckr8-5RJddD6ASyUaJ5Dwl6kLWSls2yMMjCrzUaM7tj1rlkCge2m1RlRu_TiXH2BpjS16IP-fEER55svcfr7EPK_RovlTyAJZmk1d3iJhppnuwePIe9WC5f3UzGPbqxfIB5F8WNg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5QBVhWAL6hZaXKnXaBPHeR23CLQU2AsgcbP8SpWqzaLd5dB_35nY2bI9FAnl5jgPZSbjb-z5PgN8yStemITXUVHbNBJKFJHmlLVql2lEDJXlxHe-meXTe_HtIXvYgrOeC0NllSH2-5jeRevQMg5fc_zYNONb0kYTCSeqKCZ5GcbhbVKnygawPbm8ms7WAZlUu7zEdxzRBT2DrivzIj5ZS0WVnGMTgvdyY4TqhPw3Bqp_QnY3Dl3sw14AkGzi3_EAtlw7hDfPZAWHcHT-l72GXcPvuxzCWz9Jxzz36B3MJgxRNfO7SDOEr6zx2275Ajk2rxm6Ac0mMNUsmCdg_mZUVcrUiv3q4sGCLf1y_vIQ7i_O786mUdhgITKiFCsMLiZFg1jlDMI8ba2xroxtXumEVrliDJQIqFxdapFYbgrMBevCIYRTVZEJBAJHMGjnrXsPDJGc5uQPmaGl1lQj8nQiF46TYJsSI0j7jypNUB-nTTB-yr7M7If0ppBkCulNMYJofdWjV994of9Xste6L2lndw3zxXcZnEfmlUtdnOlcu1rkyugEkzorVGG1jV1ajaDorS03XBFv1bzw-M-9c0g0Dy29qNbNn5aSY6KNiSavxH_7pAkeZfbh1W9wCjvTu5treX05uzqGXTrjiZMnMFgtntxHRFAr_Sn8IX8AwhQXwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+method+for+interpolation+of+missing+air+quality+data+at+monitor+stations&rft.jtitle=Environment+international&rft.au=Xu%2C+Chengdong&rft.au=Wang%2C+Jinfeng&rft.au=Hu%2C+Maogui&rft.au=Wang%2C+Wei&rft.date=2022-11-01&rft.issn=0160-4120&rft.volume=169+p.107538-&rft_id=info:doi/10.1016%2Fj.envint.2022.107538&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon