Gene editing in tree and clonal crops: progress and challenges
Because of the limitations inherent in conventional breeding of trees and clonally propagated crops, gene editing is of great interest. Dozens of published papers attest to the high efficiency of CRISPR-based systems in clonal crops and trees. The opportunity for "clean" edits is expected...
Saved in:
Published in | In vitro cellular & developmental biology. Plant Vol. 57; no. 4; pp. 683 - 699 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Science + Business Media, LLC
01.08.2021
Springer US Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1054-5476 1475-2689 |
DOI | 10.1007/s11627-021-10197-x |
Cover
Loading…
Abstract | Because of the limitations inherent in conventional breeding of trees and clonally propagated crops, gene editing is of great interest. Dozens of published papers attest to the high efficiency of CRISPR-based systems in clonal crops and trees. The opportunity for "clean" edits is expected to avoid or reduce regulatory burdens in many countries and may improve market acceptance. To date, however, nearly all studies in trees and clonal crops retained all of the gene editing machinery in the genome. Despite high gene editing efficiency, technical and regulatory obstacles are likely to greatly limit progress toward commercial use. Technical obstacles include difficult and slow transformation and regeneration, delayed onset of flowering or clonal systems that make sexual segregation of CRISPR-associated genes difficult, inefficient excision systems to enable removal of functional (protein- or RNA-encoding) transgenic DNA, and narrow host range or limited gene-payload viral systems for efficient transient editing. Regulatory obstacles include those such as in the EU where gene-edited plants are regulated like GMO crops, and the many forms of method-based systems that regulate stringently based on the method vs. product novelty and thus are largely applied to each insertion event. Other major obstacles include the provisions of the Cartagena Protocol with respect to international trade and the need for compliance with the National Environmental Policy Act in the USA. The USDA SECURE act has taken a major step toward a more science- and risk-based—vs. method and insertion event based—system, but much further regulatory and legal innovation is needed in the USA and beyond. |
---|---|
AbstractList | Because of the limitations inherent in conventional breeding of trees and clonally propagated crops, gene editing is of great interest. Dozens of published papers attest to the high efficiency of CRISPR-based systems in clonal crops and trees. The opportunity for “clean” edits is expected to avoid or reduce regulatory burdens in many countries and may improve market acceptance. To date, however, nearly all studies in trees and clonal crops retained all of the gene editing machinery in the genome. Despite high gene editing efficiency, technical and regulatory obstacles are likely to greatly limit progress toward commercial use. Technical obstacles include difficult and slow transformation and regeneration, delayed onset of flowering or clonal systems that make sexual segregation of CRISPR-associated genes difficult, inefficient excision systems to enable removal of functional (protein- or RNA-encoding) transgenic DNA, and narrow host range or limited gene-payload viral systems for efficient transient editing. Regulatory obstacles include those such as in the EU where gene-edited plants are regulated like GMO crops, and the many forms of method-based systems that regulate stringently based on the method vs. product novelty and thus are largely applied to each insertion event. Other major obstacles include the provisions of the Cartagena Protocol with respect to international trade and the need for compliance with the National Environmental Policy Act in the USA. The USDA SECURE act has taken a major step toward a more science- and risk-based—vs. method and insertion event based—system, but much further regulatory and legal innovation is needed in the USA and beyond. Because of the limitations inherent in conventional breeding of trees and clonally propagated crops, gene editing is of great interest. Dozens of published papers attest to the high efficiency of CRISPR-based systems in clonal crops and trees. The opportunity for "clean" edits is expected to avoid or reduce regulatory burdens in many countries and may improve market acceptance. To date, however, nearly all studies in trees and clonal crops retained all of the gene editing machinery in the genome. Despite high gene editing efficiency, technical and regulatory obstacles are likely to greatly limit progress toward commercial use. Technical obstacles include difficult and slow transformation and regeneration, delayed onset of flowering or clonal systems that make sexual segregation of CRISPR-associated genes difficult, inefficient excision systems to enable removal of functional (protein- or RNA-encoding) transgenic DNA, and narrow host range or limited gene-payload viral systems for efficient transient editing. Regulatory obstacles include those such as in the EU where gene-edited plants are regulated like GMO crops, and the many forms of method-based systems that regulate stringently based on the method vs. product novelty and thus are largely applied to each insertion event. Other major obstacles include the provisions of the Cartagena Protocol with respect to international trade and the need for compliance with the National Environmental Policy Act in the USA. The USDA SECURE act has taken a major step toward a more science- and risk-based—vs. method and insertion event based—system, but much further regulatory and legal innovation is needed in the USA and beyond. Because of the limitations inherent in conventional breeding of trees and clonally propagated crops, gene editing is of great interest. Dozens of published papers attest to the high efficiency of CRISPR-based systems in clonal crops and trees. The opportunity for "clean" edits is expected to avoid or reduce regulatory burdens in many countries and may improve market acceptance. To date, however, nearly all studies in trees and clonal crops retained all of the gene editing machinery in the genome. Despite high gene editing efficiency, technical and regulatory obstacles are likely to greatly limit progress toward commercial use. Technical obstacles include difficult and slow transformation and regeneration, delayed onset of flowering or clonal systems that make sexual segregation of CRISPR-associated genes difficult, inefficient excision systems to enable removal of functional (protein- or RNA-encoding) transgenic DNA, and narrow host range or limited gene-payload viral systems for efficient transient editing. Regulatory obstacles include those such as in the EU where gene-edited plants are regulated like GMO crops, and the many forms ofmethod-based systems that regulate stringently based on the method vs. product novelty and thus are largely applied to each insertion event. Other major obstacles include the provisions of the Cartagena Protocol with respect to international trade and the need for compliance with the National Environmental Policy Act in the USA. The USDA SECURE act has taken a major step toward a more science- and risk-based- vs. method and insertion event based-system, but much further regulatory and legal innovation is needed in the USA and beyond. |
Author | Strauss, Steven H. Goralogia, Greg S. Redick, Thomas P. |
Author_xml | – sequence: 1 givenname: Greg S. surname: Goralogia fullname: Goralogia, Greg S. – sequence: 2 givenname: Thomas P. surname: Redick fullname: Redick, Thomas P. – sequence: 3 givenname: Steven H. surname: Strauss fullname: Strauss, Steven H. |
BookMark | eNp9kM1KAzEURoNUsFZfQBAG3LgZvZn8zbgQpGgVCm50HTLpnTplmqlJCvr2RkcUuugqgZxz893vmIxc75CQMwpXFEBdB0ploXIoaE6BVir_OCBjypXIC1lWo3QHwXPBlTwixyGsACBxakxuZ-gww0UbW7fMWpdFj5gZt8hs1zvTZdb3m3CTbXy_9BjC8PRmug7dEsMJOWxMF_D095yQ14f7l-ljPn-ePU3v5rnlJY85E0VZswYYKGaxKQ3KFAiRllIJaoumtrxiFGpkFUjGaiFNwxc1B2OrqhZsQi6HuSnH-xZD1Os2WOw647DfBl1IJkUaoaqEXuygq37r0yqJEiUHnhaXiSoGKu0XgsdGb3y7Nv5TU9DfleqhUp0q1T-V6o8klTuSbaOJbe-iN223X2WDGtI_qTn_n2qvdT5YqxB7_xeRCw5K8IJ9AUrglWk |
CitedBy_id | crossref_primary_10_1111_nph_19855 crossref_primary_10_3390_f13111887 crossref_primary_10_1080_13416979_2023_2267304 crossref_primary_10_3389_fpls_2024_1452767 crossref_primary_10_1111_nph_20415 crossref_primary_10_3832_ifor4544_017 crossref_primary_10_1016_j_cosust_2022_101216 crossref_primary_10_1360_TB_2023_1125 crossref_primary_10_1089_crispr_2022_0096 crossref_primary_10_1093_hr_uhad132 crossref_primary_10_3390_ijms23020966 crossref_primary_10_1016_j_pbi_2022_102329 crossref_primary_10_3389_fbioe_2024_1412927 crossref_primary_10_1002_pld3_507 crossref_primary_10_1016_j_xplc_2022_100465 crossref_primary_10_1038_s41587_024_02489_5 |
Cites_doi | 10.1111/ppl.12731 10.1111/pbi.13132 10.3389/fpls.2018.00594 10.3389/fpls.2016.01904 10.3389/fpls.2018.01443 10.1038/s41596-018-0067-9 10.1038/s41598-018-32049-2 10.3389/fpls.2018.01607 10.1186/s12896-020-00652-9 10.3389/fpls.2018.00268 10.1089/073003100750036663 10.1007/s11248-018-0083-0 10.1007/s10059-012-2212-6 10.1186/s12870-015-0479-4 10.1038/nbt.1938 10.1038/s41587-020-0703-0 10.3389/fpls.2017.01780 10.1186/s12985-020-01453-4 10.1038/s41438-018-0023-4 10.1146/annurev-arplant-050718-100049 10.1046/j.1365-313X.1995.08050637.x 10.3389/fpls.2020.583374 10.1186/s13007-019-0428-6 10.1007/s11248-019-00153-2 10.1111/j.1438-8677.2009.00293.x 10.1186/s12915-019-0629-5 10.1007/s11816-020-00629-2 10.1038/nbt1084 10.1007/s11295-009-0241-x 10.3389/fpls.2019.00388 10.3389/fpls.2020.575477 10.1016/j.indcrop.2020.112146 10.1111/j.1439-0523.2008.01591.x 10.1038/s41438-019-0188-5 10.1105/tpc.16.00124 10.1038/s41587-020-0455-x 10.1038/s41587-019-0337-2 10.1111/pbi.12922 10.1104/pp.19.01550 10.1104/pp.18.00906 10.1111/pbi.12431 10.1007/s11248-018-0072-3 10.1038/s41467-017-00336-7 10.3389/fpls.2018.01594 10.3390/ijms20164045 10.1111/pbi.12740 10.1186/s12896-020-00621-2 10.3389/fpls.2018.00284 10.1371/journal.pgen.1008983 10.1038/s41598-020-77110-1 10.1111/pbi.13451 10.1038/s41477-020-0672-9 10.1093/treephys/tpy088 10.1038/srep41209 10.1016/j.procbio.2021.01.001 10.1038/s41598-019-54126-w 10.1007/s11627-019-10042-2 10.1007/s00299-017-2151-y 10.1007/s10725-010-9554-x 10.1038/nbt0710-656 10.1038/s41598-020-58985-6 10.1007/s12038-012-9187-5 10.1007/s10142-017-0577-5 10.1111/pbi.13375 10.1111/pbi.13216 10.1042/ETLS20170010 10.1186/s12870-020-02609-8 10.1038/s41538-019-0035-y 10.1186/s13059-015-0796-9 10.1111/j.1469-8137.2005.01412.x 10.1111/j.1467-7652.2004.00067.x 10.1093/jxb/erq092 10.1111/tpj.14615 10.1016/j.plaphy.2021.01.006 10.1093/jxb/ery384 10.1104/pp.19.01194 10.1007/s11248-006-9021-7 10.1038/d41586-018-05814-6 10.1094/MPMI.1998.11.7.668 10.1093/jxb/ery400 10.5511/plantbiotechnology.19.0805a 10.1038/s41598-019-43141-6 10.1038/s42003-019-0288-7 10.3389/fpls.2019.01649 10.1007/s00299-019-02465-3 10.1038/nbt0609-519 10.1111/pbi.12677 10.1073/pnas.94.6.2117 10.3389/fpls.2017.02135 10.1016/j.devcel.2019.10.004 10.1093/pcp/pcaa123 10.1007/s11240-018-1429-2 10.1007/s11103-020-01043-6 10.1038/s41438-020-00371-4 10.1111/mpp.12849 10.3389/fpls.2020.574959 10.1371/journal.pone.0235942 10.1186/s13068-020-01843-4 10.1111/pbi.12833 10.1016/j.ymben.2020.01.008 10.1111/pbi.13137 10.1038/s41586-019-1711-4 10.1186/s13059-018-1443-z 10.1111/pbi.12868 10.1080/14620316.2020.1822760 10.1146/annurev.arplant.48.1.297 10.1007/s00425-010-1254-2 10.1111/pbi.12733 10.1038/s41477-019-0489-6 10.1038/nature25447 10.1126/science.1079514 10.1038/s41598-019-55681-y 10.1007/s11248-020-00196-w 10.1111/pbi.13317 10.1038/s41598-020-78417-9 10.3389/fpls.2019.00376 10.1111/pbi.13253 10.1038/s41467-020-18822-w 10.1186/s12864-019-6211-2 10.1111/pbi.12444 10.3389/fpls.2019.00673 10.1186/1754-6834-7-91 10.3389/fpls.2018.01957 10.1038/s41477-020-0670-y 10.1111/tpj.14092 10.1038/s42003-020-0768-9 10.1111/j.1469-8137.2011.03813.x 10.1111/j.1438-8677.1989.tb01907.x 10.1111/pbi.12987 10.3389/fpls.2019.00040 10.1371/journal.pone.0040715 10.1111/j.1467-7652.2007.00310.x 10.1007/s11248-005-0884-9 10.3390/ijms21103408 10.3389/fpls.2020.00996 10.1371/journal.pone.0177966 10.1038/s41467-020-14981-y 10.1111/pbi.13109 10.1248/bpb.b16-00542 10.3390/ijms20020402 10.5376/mpb.2020.11.0017 10.17226/23395 10.1038/nplants.2016.164 10.3390/ijms20194702 10.3390/qubs3020007 10.1111/pbi.12832 10.1016/j.cub.2019.06.003 10.1111/nph.14569 10.1111/nph.17032 10.1111/nph.17353 10.1111/nph.17234 10.1111/pbi.13588 10.1038/s41598-017-11760-6 10.1007/s11240-013-0346-7 10.1186/s13059-020-02146-5 10.21203/rs.3.rs-117877/v1 10.1111/pbi.12884 10.1101/2020.06.18.159111 10.3389/fpls.2020.593938 10.1105/tpc.16.00922 10.1094/MPMI-22-11-1356 10.1007/978-1-4939-9635-3_9 10.1074/jbc.M116.733154 10.1111/pbi.13021 10.1093/g3journal/jkab028 10.1016/j.jgg.2018.04.006 10.1007/s00299-010-0938-1 10.1093/plphys/kiaa087 10.1111/pbi.13559 10.1111/pbi.13534 |
ContentType | Journal Article |
Copyright | 2021 The Society for in Vitro Biology The Author(s) 2021 Copyright Springer Nature B.V. Aug 2021 |
Copyright_xml | – notice: 2021 The Society for in Vitro Biology – notice: The Author(s) 2021 – notice: Copyright Springer Nature B.V. Aug 2021 |
DBID | C6C AAYXX CITATION 3V. 4T- 4U- 7X2 7X7 7XB 88A 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M2P M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7S9 L.6 |
DOI | 10.1007/s11627-021-10197-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Docstoc University Readers Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database University Readers ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Docstoc ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology Botany |
EISSN | 1475-2689 |
EndPage | 699 |
ExternalDocumentID | 10_1007_s11627_021_10197_x 45407542 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~F 2~H 30V 4.4 406 408 40D 40E 53G 5GY 5RE 5VS 67N 67Z 6NX 78A 7X2 7X7 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHBH AAHKG AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AAPSS AARTL AASML AATNV AATVU AAUYE AAXTN AAYIU AAYQN AAYZH ABAKF ABBHK ABBRH ABDBE ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABPLY ABQBU ABSXP ABTEG ABTHY ABTKH ABTLG ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACUHS ACZOJ ADBBV ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFAZZ AFDZB AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHYZX AIAKS AICQM AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BBNVY BENPR BGNMA BHPHI BPHCQ BVXVI CBGCD CCPQU CS3 CSCUP D1J DATOO DDRTE DNIVK DPUIP DWQXO EBD EBLON EBS EIOEI ESBYG ESX F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR IJ- IKXTQ IPSME ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBS JBSCW JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LK8 LLZTM M0K M2P M2Q M4Y M7P MA- NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF0 PHGZM PHGZT PQ0 PQQKQ PROAC PT4 PT5 Q2X QOK QOR QOS R89 R9I RBO RHV ROL RPX RSV RWL RXW S0X S16 S27 S3A S3B SA0 SAP SBL SBY SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TAE TSG TSK TSV TUC TUS U2A U5U U9L UG4 UKHRP UNMZH UOJIU UTJUX VC2 W48 WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 ~EX ~KM -4W -56 -5G -BR -EM -JH -Y2 .55 28- 2VQ 3O- 3SX 3V. 88A AAAVM AANXM AARHV AAYTO ABDPE ABQSL ABULA ABXSQ ACBXY ACHIC ADHSS ADINQ ADULT ADYPR AEBTG AEKMD AEPYG AFDYV AFEXP AFFIJ AFGCZ AFNWH AGJBK AHXOZ AJBLW AKPMI AQVQM AS~ BBWZM BDATZ C6C CAG COF DC7 DOOOF EJD EN4 FINBP FSGXE GQ6 GTFYD H13 HTVGU HZ~ JSODD M0L N2Q NDZJH O9- OVD Q5J RNI RZK S1Z S26 S28 SCLPG T16 TEORI UZXMN VFIZW WK6 X7M Z7U Z7V Z7W Z7Y Z87 Z8O Z8P Z8Q Z8S Z91 AAYXX ADHKG AGQPQ AGUYK CITATION 4T- 4U- 7XB 8FK ABRTQ K9. PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U 7S9 L.6 |
ID | FETCH-LOGICAL-c484t-3528b3f03073cef8ae6105ee186751c2fbc49310be390633b56af4db40ac99b53 |
IEDL.DBID | BENPR |
ISSN | 1054-5476 |
IngestDate | Fri Sep 05 07:43:03 EDT 2025 Sat Aug 23 14:11:29 EDT 2025 Tue Jul 01 00:28:12 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 Fri Feb 21 02:47:35 EST 2025 Thu Jul 03 21:35:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Forest Biotechnology Clonal propagation Genome editing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-3528b3f03073cef8ae6105ee186751c2fbc49310be390633b56af4db40ac99b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9670-3082 |
OpenAccessLink | https://link.springer.com/10.1007/s11627-021-10197-x |
PQID | 2584041016 |
PQPubID | 31404 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2636549379 proquest_journals_2584041016 crossref_primary_10_1007_s11627_021_10197_x crossref_citationtrail_10_1007_s11627_021_10197_x springer_journals_10_1007_s11627_021_10197_x jstor_primary_45407542 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Heidelberg |
PublicationTitle | In vitro cellular & developmental biology. Plant |
PublicationTitleAbbrev | In Vitro Cell.Dev.Biol.-Plant |
PublicationYear | 2021 |
Publisher | Springer Science + Business Media, LLC Springer US Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media, LLC – name: Springer US – name: Springer Nature B.V |
References | Callaway (CR21) 2018; 560 Dutt, Mou, Zhang, Tanwir, Grosser (CR37) 2020; 20 Metje-Sprink, Menz, Modrzejewski, Sprink (CR97) 2019; 9 De Meester, Madariaga Calderón, de Vries, Pollier, Goeminne, Van Doorsselaere, Chen, Ralph, Vanholme, Boerjan (CR31) 2020; 11 CR160 Wilson, Harrison, Armitage, Simkin, Harrison (CR172) 2019; 15 Qin, Fan, Li, Li, Hu, Li, Luo (CR127) 2020; 13 CR35 Wu, Terol, Ibanez, López-García, Pérez-Román, Borredá, Domingo, Tadeo, Carbonell-Caballero, Alonso (CR175) 2018; 554 CR33 CR159 Kusano, Ohnuma, Mutsuro-Aoki, Asahi, Ichinosawa, Onodera, Asano, Noda, Horie, Fukumoto (CR83) 2018; 8 CR157 Lin, Zong, Xue, Wang, Jin, Zhu, Wang, Anzalone, Raguram, Doman (CR88) 2020; 38 CR155 Schaart, Krens, Pelgrom, Mendes, Rouwendal (CR132) 2004; 2 CR156 Klocko, Ma, Robertson, Esfandiari, Nilsson, Strauss (CR81) 2016; 14 CR153 Yang, Zhao, Ran, Li, Fan, Luo (CR179) 2017; 7 Veillet, Kermarrec, Chauvin, Chauvin, Nogué (CR158) 2020; 15 Čermák, Baltes, Čegan, Zhang, Voytas (CR22) 2015; 16 Dalla Costa, Piazza, Pompili, Salvagnin, Cestaro, Moffa, Vittani, Moser, Malnoy (CR30) 2020; 10 Grossman (CR62) 2008; 2 Walter, Fladung, Boerjan (CR162) 2010; 28 Modrzejewski, Hartung, Lehnert, Sprink, Kohl, Keilwagen, Wilhelm (CR99) 2020; 11 Ye, Geng, Zhang, Mao, Qu, Chua (CR181) 2014; 7 Fan, Wang, Tang, Ye, Ren, Wang, Luo (CR45) 2018; 96 Jia, Xu, Orbović, Zhang, Wang (CR72) 2017; 8 Akagi, Pilkington, Varkonyi-Gasic, Henry, Sugano, Sonoda, Firl, McNeilage, Douglas, Wang (CR1) 2019; 5 Huang, Wang, Xu, Wang (CR68) 2020; 104 CR174 CR171 Srinivasan, Dardick, Callahan, Scorza (CR138) 2012; 7 CR170 Zhu, Zheng, Huang, Ye, Chen, Zhang, Zhao, Xie, Zhang, Wang (CR187) 2019; 17 Chen, Wang, Zhang, Zhang, Gao (CR27) 2019; 70 CR44 Vondras, Minio, Blanco-Ulate, Figueroa-Balderas, Penn, Zhou, Seymour, Ye, Liang, Espinoza (CR161) 2019; 20 CR42 CR168 An, Geng, Yao, Fu, Lu, Wang, Du (CR4) 2020; 11 CR169 CR166 Li, Jiao, Wang, Zhang, Wang, Liu, Yin, Xu, Liu (CR86) 2020; 7 CR167 CR164 CR165 Ghoshal, Vong, Picard, Feng, Tam, Jacobsen (CR58) 2020; 16 Tränkner, Lehmann, Hoenicka, Hanke, Fladung, Lenhardt, Dunemann, Gau, Schlangen, Malnoy (CR145) 2010; 232 Zhou, Bai, Wang, Sun, Zhang, Zhu, Dong (CR185) 2020; 11 Tuteja, Verma, Sahoo, Raveendar, Reddy (CR149) 2012; 37 Shao, Blechl, Thomson (CR134) 2017; 15 Elorriaga, Klocko, Ma, Strauss (CR41) 2018; 9 Tuncel, Corbin, Ahn-Jarvis, Harris, Hawkins, Smedley, Harwood, Warren, Patron, Smith (CR148) 2019; 17 Ebinuma, Sugita, Matsunaga, Yamakado (CR38) 1997; 94 Awasthi, Kocábek, Mishra, Nath, Shrestha, Matoušek (CR9) 2021; 160 Gao, Luo, Li, Liu, Kang (CR57) 2020; 18 CR55 Li, Zong, Wang, Jin, Zhang, Song, Zhang, Gao (CR85) 2018; 19 Kaur, Alok, Shivani, Pandey, Awasthi, Tiwari (CR77) 2018; 18 Kaur, Alok, Shivani, Kaur, Awasthi, Chaturvedi, Pandey, Pandey, Pandey (CR78) 2020; 59 Shao, Wu, Dou, Zhu, Hu, Huo, He, Deng, Sheng, Bi (CR135) 2020; 18 Kilby, Davies, Snaith, Murray (CR79) 1995; 8 Omori, Yamane, Osakabe, Osakabe, Tao (CR117) 2021; 96 Busov, Brunner, Meilan, Filichkin, Ganio, Gandhi, Strauss (CR20) 2005; 167 Strauss, Tan, Boerjan, Sedjo (CR141) 2009; 27 Graham, Patil, Bubeck, Dobert, Glenn, Gutsche, Kumar, Lindbo, Maas, May (CR61) 2020; 183 Bairu, Aremu, Van Staden (CR11) 2011; 63 Martín-Pizarro, Triviño, Posé (CR96) 2019; 70 CR139 González, Massa, Andersson, Turesson, Olsson, Fält, Storani, Décima Oneto, Hofvander, Feingold (CR60) 2020; 10 Flachowsky, Le Roux, Peil, Patocchi, Richter, Hanke (CR51) 2011; 192 Pompili, Dalla Costa, Piazza, Pindo, Malnoy (CR125) 2020; 18 Florez, Erwin, Maximova, Guiltinan, Curtis (CR54) 2015; 15 Van Eenennaam, Wells, Murray (CR151) 2019; 3 Duan, Bai, Sun, Wang, Ma, Li, Wang, Jiao, Legall, Mao (CR36) 2017; 8 CR152 Banakar, Eggenberger, Lee, Wright, Murugan, Zarecor, Lawrence-Dill, Sashital, Wang (CR12) 2019; 9 Mysore, Bassuner, Deng, Darbinian, Motchoulski, Ream, Gelvin (CR104) 1998; 11 Ding, Chen, Ma, Wang, Wei (CR34) 2020; 14 Malnoy, Viola, Jung, Koo, Kim, Kim, Velasco, Nagamangala Kanchiswamy (CR93) 2016; 7 CR67 Hummel, Chauhan, Cermak, Mutka, Vijayaraghavan, Boyher, Starker, Bart, Voytas, Taylor (CR69) 2018; 16 Fladung, Schenk, Polak, Becker (CR53) 2010; 6 CR65 CR143 Brand, Quimbaya, Tohme, Chavarriaga-Aguirre (CR18) 2019; 10 Ren, Guo, Gathunga, Duan, Li, Liang (CR130) 2019; 38 Ellison, Nagalakshmi, Gamo, Huang, Dinesh-Kumar, Voytas (CR40) 2020; 6 Flachowsky, Hanke, Peil, Strauss, Fladung (CR50) 2009; 128 Petri, Alburquerque, Faize, Scorza, Dardick (CR124) 2018; 27 Zhang, Harry, Ma, Yuceer, Hsu, Vikram, Shevchenko, Etherington, Strauss (CR183) 2010; 61 Fladung, Becker (CR52) 2010; 12 Peng, Chen, Lei, Xu, He, Wu, Yao, Zou (CR122) 2017; 15 Murovec, Guček, Bohanec, Avbelj, Jerala (CR103) 2018; 9 Strauss (CR140) 2003; 300 Anzalone, Randolph, Davis, Sousa, Koblan, Levy, Chen, Wilson, Newby, Raguram (CR6) 2019; 576 Feng, Dai, Luo, Han, Liu, Kang (CR48) 2019; 70 Johansen, Liu, Jørgensen, Bennett, Andreasson, Nielsen, Blennow, Petersen (CR75) 2019; 9 Wolt, Wang, Yang (CR173) 2016; 14 Bradford, Van Deynze, Gutterson, Parrott, Strauss (CR17) 2005; 23 Kannan, Jung, Moxley, Lee, Altpeter (CR76) 2018; 16 Soares, Weber, Qiu, Stanton, Mahmoud, Wu, Huyck, Zale, Al Jasim, Grosser (CR136) 2020; 10 Timerbaev, Mitiouchkina, Pushin, Dolgov (CR144) 2019; 10 Yasumoto, Umemoto, Lee, Nakayasu, Sawai, Sakuma, Yamamoto, Mizutani, Saito, Muranaka (CR180) 2019; 36 Azeez, Busov (CR10) 2021; 19 CR113 CR74 CR114 CR111 Van Eenennaam, Muir (CR150) 2011; 29 Nadakuduti, Buell, Voytas, Starker, Douches (CR105) 2018; 9 Song, Walworth, Lin, Chen, Han, Irina Zaharia, Zhong (CR137) 2019; 6 CR70 Ma, Kang, Liu, Zhang, Lin, Li, Chen (CR91) 2021; 101 CR119 Hoerster, Wang, Ryan, Wu, Anand, McBride, Lowe, Jones, Gordon-Kamm (CR63) 2020; 56 Chen, Li, Katin-Grazzini, Ding, Gu, Li, Gu, Wang, Lin, Deng (CR26) 2018; 5 Jia, Wang (CR71) 2020; 18 Fister, Landherr, Maximova, Guiltinan (CR49) 2018; 9 Osakabe, Liang, Ren, Nishitani, Osakabe, Wada, Komori, Malnoy, Velasco, Poli (CR118) 2018; 13 Bánfalvi, Csákvári, Villányi, Kondrák (CR13) 2020; 20 Milner, Craze, Hope, Wallington (CR98) 2020; 11 CR3 Birch (CR16) 1997; 48 Gomez, Lin, Moll, Chauhan, Hayden, Renninger, Beyene, Taylor, Carrington, Staskawicz (CR59) 2019; 17 Tsai, Xu, Xue, Hu, Nyamdari, Naran, Zhou, Goeminne, Gao, Gjersing (CR147) 2020; 183 Lowe, Wu, Wang, Hoerster, Hastings, Cho, Scelonge, Lenderts, Chamberlin, Cushatt (CR90) 2016; 28 Young, Zastrow-Hayes, Deschamps, Svitashev, Zaremba, Acharya, Paulraj, Peterson-Burch, Schwartz, Djukanovic (CR182) 2019; 9 CR7 Debernardi, Tricoli, Ercoli, Hayta, Ronald, Palatnik, Dubcovsky (CR32) 2020; 38 CR89 CR126 Fossi, Amundson, Kuppu, Britt, Comai (CR56) 2019; 180 CR87 CR84 Nill, Redick, Drew (CR112) 2000; 19 CR123 CR120 CR121 Naim, Dugdale, Kleidon, Brinin, Shand, Waterhouse, Dale (CR107) 2018; 27 Ntui, Tripathi, Tripathi (CR115) 2020; 21 Ellens, Levac, Pearson, Savoie, Strand, Louter, Tibelius (CR39) 2019; 28 CR128 Maher, Nasti, Vollbrecht, Starker, Clark, Voytas (CR92) 2020; 38 Tripathi, Ntui, Ron, Muiruri, Britt, Tripathi (CR146) 2019; 2 Andersson, Turesson, Olsson, Fält, Ohlsson, Gonzalez, Samuelsson, Hofvander (CR5) 2018; 164 Jia, Zhang, Orbović, Xu, White, Jones, Wang (CR73) 2017; 15 Razzaq, Saleem, Kanwal, Mustafa, Yousaf, Imran Arshad, Hameed, Khan, Joyia (CR129) 2019; 20 Odipio, Alicai, Ingelbrecht, Nusinow, Bart, Taylor (CR116) 2017; 8 CR14 Zou, Fan, Peng, He, Xu, Lei, Yao, Li, Luo (CR188) 2019; 46 Wan, Li, Ma, Luo (CR163) 2017; 36 Breitler, Dechamp, Campa, Zebral Rodrigues, Guyot, Marraccini, Etienne (CR19) 2018; 134 CR177 CR178 Fellenberg, Corea, Yan, Archinuk, Piirtola, Gordon, Reichelt, Brandt, Wulff, Ehlting (CR47) 2020; 102 Sevestre, Facon, Wattebled, Szydlowski (CR133) 2020; 10 Ariga, Toki, Ishibashi (CR8) 2020; 61 Bharat, Li, Li, Yan, Xia (CR15) 2020; 8 Charrier, Vergne, Dousset, Richer, Petiteau, Chevreau (CR24) 2019; 10 Enciso-Rodriguez, Manrique-Carpintero, Nadakuduti, Buell, Zarka, Douches (CR43) 2019; 10 Zhou, Wang, Liu (CR184) 2018; 16 Ali, Shami, Sedeek, Kamel, Alhabsi, Tehseen, Hassan, Butt, Kababji, Hamdan (CR2) 2020; 3 Hoshijima, Jurynec, Klatt Shaw, Jacobi, Behlke, Grunwald (CR64) 2019; 51 Muhr, Paulat, Awwanah, Brinkkötter, Teichmann (CR101) 2018; 38 Fan, Xin, Dai, Yang, Huang, Hua (CR46) 2020; 146 Malzahn, Tang, Lee, Ren, Sretenovic, Zhang, Chen, Kang, Bao, Zheng (CR94) 2019; 17 Martínez-Fortún, Phillips, Jones (CR95) 2017; 1 CR29 CR28 Nagle, Déjardin, Pilate, Strauss (CR106) 2018; 9 Müller, Kersten, Leite Montalvão, Mähler, Bernhardsson, Bräutigam, Carracedo Lorenzo, Hoenicka, Kumar, Mader (CR102) 2020; 6 Kim, Cho, Ryoo, Qu, Wang, Jeon (CR80) 2012; 33 CR23 Hu, Li, Li, Li, Song, Zhao, Lai, Xia, Li, Zhang (CR66) 2019; 20 Sunitha, Rock (CR142) 2020; 29 Roest, Gilissen (CR131) 1989; 38 CR100 Chatukuta, Rey (CR25) 2020; 17 Kondrák, van der Meer, Bánfalvi (CR82) 2006; 15 CR186 van Zeijl, Wardhani, Seifi Kalhor, Rutten, Bu, Hartog, Linders, Fedorova, Bisseling, Kohlen (CR154) 2018; 9 Wu, Zhu, Liu, Yang, Shao, Bi, Hu, Huo, Chen, Yi (CR176) 2020; 20 CR108 CR109 Nakayasu, Akiyama, Lee, Osakabe, Osakabe, Watanabe, Sugimoto, Umemoto, Saito, Muranaka (CR110) 2018; 131 A Azeez (10197_CR10) 2021; 19 10197_CR143 10197_CR42 NJ Kilby (10197_CR79) 1995; 8 10197_CR44 H Zhang (10197_CR183) 2010; 61 A Brand (10197_CR18) 2019; 10 G Hoerster (10197_CR63) 2020; 56 M Kondrák (10197_CR82) 2006; 15 10197_CR35 M Omori (10197_CR117) 2021; 96 C Tränkner (10197_CR145) 2010; 232 NA Müller (10197_CR102) 2020; 6 H Zhou (10197_CR185) 2020; 11 E Elorriaga (10197_CR41) 2018; 9 J Hu (10197_CR66) 2019; 20 Q Gao (10197_CR57) 2020; 18 L Ding (10197_CR34) 2020; 14 AV Anzalone (10197_CR6) 2019; 576 E Callaway (10197_CR21) 2018; 560 F Naim (10197_CR107) 2018; 27 M Fossi (10197_CR56) 2019; 180 N Kaur (10197_CR78) 2020; 59 10197_CR139 10197_CR33 N Tuteja (10197_CR149) 2012; 37 RG Birch (10197_CR16) 1997; 48 10197_CR29 10197_CR28 MF Maher (10197_CR92) 2020; 38 Q Lin (10197_CR88) 2020; 38 AW Hummel (10197_CR69) 2018; 16 M Andersson (10197_CR5) 2018; 164 VB Busov (10197_CR20) 2005; 167 Y An (10197_CR4) 2020; 11 M Malnoy (10197_CR93) 2016; 7 M Dutt (10197_CR37) 2020; 20 10197_CR164 10197_CR165 10197_CR166 C Li (10197_CR85) 2018; 19 10197_CR167 JG Schaart (10197_CR132) 2004; 2 10197_CR168 10197_CR169 SS Bharat (10197_CR15) 2020; 8 10197_CR23 N Kaur (10197_CR77) 2018; 18 X Zou (10197_CR188) 2019; 46 H Jia (10197_CR71) 2020; 18 H Jia (10197_CR73) 2017; 15 H Jia (10197_CR72) 2017; 8 K Lowe (10197_CR90) 2016; 28 C Ren (10197_CR130) 2019; 38 X Huang (10197_CR68) 2020; 104 T Akagi (10197_CR1) 2019; 5 K Nill (10197_CR112) 2000; 19 10197_CR14 JM Soares (10197_CR136) 2020; 10 SL Florez (10197_CR54) 2015; 15 A Charrier (10197_CR24) 2019; 10 10197_CR160 AM Vondras (10197_CR161) 2019; 20 P Awasthi (10197_CR9) 2021; 160 T Čermák (10197_CR22) 2015; 16 S Qin (10197_CR127) 2020; 13 10197_CR152 JM Debernardi (10197_CR32) 2020; 38 10197_CR153 Z Bánfalvi (10197_CR13) 2020; 20 10197_CR155 Y Fan (10197_CR46) 2020; 146 10197_CR156 Z Ali (10197_CR2) 2020; 3 10197_CR157 S Sunitha (10197_CR142) 2020; 29 10197_CR159 C Zhu (10197_CR187) 2019; 17 A Tuncel (10197_CR148) 2019; 17 S Wu (10197_CR176) 2020; 20 B Ghoshal (10197_CR58) 2020; 16 J Metje-Sprink (10197_CR97) 2019; 9 A Razzaq (10197_CR129) 2019; 20 S Yasumoto (10197_CR180) 2019; 36 IE Johansen (10197_CR75) 2019; 9 D Modrzejewski (10197_CR99) 2020; 11 M Nagle (10197_CR106) 2018; 9 C Martín-Pizarro (10197_CR96) 2019; 70 C Walter (10197_CR162) 2010; 28 AA Malzahn (10197_CR94) 2019; 17 J Feng (10197_CR48) 2019; 70 C Petri (10197_CR124) 2018; 27 K Hoshijima (10197_CR64) 2019; 51 S Wan (10197_CR163) 2017; 36 10197_CR186 AL Van Eenennaam (10197_CR151) 2019; 3 10197_CR100 H-B Kim (10197_CR80) 2012; 33 10197_CR87 MN González (10197_CR60) 2020; 10 10197_CR89 EE Ellison (10197_CR40) 2020; 6 10197_CR108 10197_CR109 MW Bairu (10197_CR11) 2011; 63 10197_CR84 KJ Bradford (10197_CR17) 2005; 23 M Nakayasu (10197_CR110) 2018; 131 N Graham (10197_CR61) 2020; 183 SH Strauss (10197_CR140) 2003; 300 J Odipio (10197_CR116) 2017; 8 AL Klocko (10197_CR81) 2016; 14 J Young (10197_CR182) 2019; 9 C Fellenberg (10197_CR47) 2020; 102 JN Tripathi (10197_CR146) 2019; 2 10197_CR174 10197_CR70 10197_CR7 10197_CR177 H Ebinuma (10197_CR38) 1997; 94 AS Fister (10197_CR49) 2018; 9 10197_CR178 M Shao (10197_CR134) 2017; 15 KW Ellens (10197_CR39) 2019; 28 F Enciso-Rodriguez (10197_CR43) 2019; 10 M Fladung (10197_CR52) 2010; 12 M-Y Li (10197_CR86) 2020; 7 D Fan (10197_CR45) 2018; 96 J Murovec (10197_CR103) 2018; 9 10197_CR74 M Muhr (10197_CR101) 2018; 38 S Roest (10197_CR131) 1989; 38 10197_CR3 H Flachowsky (10197_CR50) 2009; 128 C-J Tsai (10197_CR147) 2020; 183 V Timerbaev (10197_CR144) 2019; 10 MJ Milner (10197_CR98) 2020; 11 B Kannan (10197_CR76) 2018; 16 J Zhou (10197_CR184) 2018; 16 H Ariga (10197_CR8) 2020; 61 Y Osakabe (10197_CR118) 2018; 13 FM Wilson (10197_CR172) 2019; 15 10197_CR170 10197_CR171 L Yang (10197_CR179) 2017; 7 N Duan (10197_CR36) 2017; 8 10197_CR120 10197_CR121 L Dalla Costa (10197_CR30) 2020; 10 10197_CR123 V Pompili (10197_CR125) 2020; 18 MR Grossman (10197_CR62) 2008; 2 10197_CR126 C Srinivasan (10197_CR138) 2012; 7 R Banakar (10197_CR12) 2019; 9 10197_CR65 10197_CR128 K Chen (10197_CR27) 2019; 70 10197_CR67 A van Zeijl (10197_CR154) 2018; 9 VO Ntui (10197_CR115) 2020; 21 A Peng (10197_CR122) 2017; 15 P Chatukuta (10197_CR25) 2020; 17 J Martínez-Fortún (10197_CR95) 2017; 1 KS Mysore (10197_CR104) 1998; 11 M Fladung (10197_CR53) 2010; 6 H Kusano (10197_CR83) 2018; 8 MA Gomez (10197_CR59) 2019; 17 J Ye (10197_CR181) 2014; 7 F Veillet (10197_CR158) 2020; 15 G Song (10197_CR137) 2019; 6 H Flachowsky (10197_CR51) 2011; 192 10197_CR111 10197_CR113 X Shao (10197_CR135) 2020; 18 AL Van Eenennaam (10197_CR150) 2011; 29 J-C Breitler (10197_CR19) 2018; 134 10197_CR114 10197_CR55 10197_CR119 B De Meester (10197_CR31) 2020; 11 W Ma (10197_CR91) 2021; 101 SS Nadakuduti (10197_CR105) 2018; 9 SH Strauss (10197_CR141) 2009; 27 L Chen (10197_CR26) 2018; 5 F Sevestre (10197_CR133) 2020; 10 GA Wu (10197_CR175) 2018; 554 JD Wolt (10197_CR173) 2016; 14 |
References_xml | – volume: 164 start-page: 378 year: 2018 end-page: 384 ident: CR5 article-title: Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery publication-title: Physiol Plant doi: 10.1111/ppl.12731 – volume: 17 start-page: 2199 year: 2019 end-page: 2210 ident: CR187 article-title: Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus ( ) publication-title: Plant Biotechnol J doi: 10.1111/pbi.13132 – volume: 9 start-page: 594 year: 2018 ident: CR41 article-title: Variation in mutation spectra among CRISPR/Cas9 mutagenized poplars publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00594 – volume: 7 start-page: 1904 year: 2016 end-page: 1904 ident: CR93 article-title: DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01904 – volume: 9 start-page: 1443 year: 2018 end-page: 1443 ident: CR106 article-title: Opportunities for innovation in genetic transformation of forest trees publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01443 – ident: CR74 – volume: 13 start-page: 2844 year: 2018 end-page: 2863 ident: CR118 article-title: CRISPR–Cas9-mediated genome editing in apple and grapevine publication-title: Nat Protoc doi: 10.1038/s41596-018-0067-9 – volume: 8 start-page: 13753 year: 2018 ident: CR83 article-title: Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato publication-title: Sci Rep doi: 10.1038/s41598-018-32049-2 – volume: 9 start-page: 1607 year: 2018 ident: CR105 article-title: Genome editing for crop improvement – applications in clonally propagated polyploids with a focus on potato ( ) publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01607 – volume: 20 start-page: 58 year: 2020 ident: CR37 article-title: Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures publication-title: BMC Biotechnol doi: 10.1186/s12896-020-00652-9 – volume: 9 start-page: 268 year: 2018 ident: CR49 article-title: Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00268 – volume: 19 start-page: 546 year: 2000 end-page: 559 ident: CR112 article-title: Precautionary priority in approving imports of genetically improved commodity crops publication-title: Biotechnol Law Rep - BIOTECHNOL LAW REP doi: 10.1089/073003100750036663 – volume: 27 start-page: 451 year: 2018 end-page: 460 ident: CR107 article-title: Gene editing the alleles of Cavendish banana using CRISPR/Cas9 publication-title: Transgenic Res doi: 10.1007/s11248-018-0083-0 – volume: 33 start-page: 61 year: 2012 end-page: 69 ident: CR80 article-title: Development of a simple and efficient system for excising selectable markers in Arabidopsis using a minimal promoter::Cre fusion construct publication-title: Mol Cell doi: 10.1007/s10059-012-2212-6 – ident: CR121 – ident: CR167 – ident: CR42 – volume: 15 start-page: 121 year: 2015 ident: CR54 article-title: Enhanced somatic embryogenesis in using the homologous BABY BOOM transcription factor publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0479-4 – volume: 29 start-page: 706 year: 2011 end-page: 710 ident: CR150 article-title: Transgenic salmon: a final leap to the grocery shelf? publication-title: Nat Biotechnol doi: 10.1038/nbt.1938 – volume: 38 start-page: 1274 year: 2020 end-page: 1279 ident: CR32 article-title: A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0703-0 – volume: 8 start-page: 1780 year: 2017 ident: CR116 article-title: Efficient CRISPR/Cas9 genome editing of in cassava publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01780 – volume: 17 start-page: 184 year: 2020 ident: CR25 article-title: A cassava protoplast system for screening genes associated with the response to South African cassava mosaic virus publication-title: Virol J doi: 10.1186/s12985-020-01453-4 – ident: CR178 – volume: 5 start-page: 13 year: 2018 ident: CR26 article-title: A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants publication-title: Hortic Res doi: 10.1038/s41438-018-0023-4 – volume: 70 start-page: 667 year: 2019 end-page: 697 ident: CR27 article-title: CRISPR/Cas Genome editing and precision plant breeding in agriculture publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050718-100049 – volume: 8 start-page: 637 year: 1995 end-page: 652 ident: CR79 article-title: FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis publication-title: Plant J doi: 10.1046/j.1365-313X.1995.08050637.x – volume: 11 start-page: 1780 year: 2020 ident: CR98 article-title: Turning up the temperature on CRISPR: increased temperature can improve the editing efficiency of wheat using CRISPR/Cas9 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.583374 – ident: CR153 – ident: CR170 – volume: 15 start-page: 45 year: 2019 ident: CR172 article-title: CRISPR/Cas9-mediated mutagenesis of in diploid and octoploid strawberry publication-title: Plant Methods doi: 10.1186/s13007-019-0428-6 – volume: 28 start-page: 165 year: 2019 end-page: 168 ident: CR39 article-title: Canadian regulatory aspects of gene editing technologies publication-title: Transgenic Res doi: 10.1007/s11248-019-00153-2 – volume: 12 start-page: 334 year: 2010 end-page: 340 ident: CR52 article-title: Targeted integration and removal of transgenes in hybrid aspen ( ) using site-specific recombination systems publication-title: Plant Biol doi: 10.1111/j.1438-8677.2009.00293.x – volume: 17 start-page: 9 year: 2019 ident: CR94 article-title: Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis publication-title: BMC Biol doi: 10.1186/s12915-019-0629-5 – volume: 14 start-page: 549 year: 2020 end-page: 558 ident: CR34 article-title: Effective reduction in chimeric mutants of poplar trees produced by CRISPR/Cas9 through a second round of shoot regeneration publication-title: Plant Biotechnol Rep doi: 10.1007/s11816-020-00629-2 – volume: 23 start-page: 439 year: 2005 end-page: 444 ident: CR17 article-title: Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics publication-title: Nat Biotechnol doi: 10.1038/nbt1084 – volume: 6 start-page: 205 year: 2010 end-page: 217 ident: CR53 article-title: Elimination of marker genes and targeted integration via FLP/FRT recombination system from yeast in hybrid aspen ( ) publication-title: Tree Genet Genomes doi: 10.1007/s11295-009-0241-x – volume: 10 start-page: 388 year: 2019 ident: CR144 article-title: Production of marker-free apple plants expressing the supersweet protein gene driven by plant promoter publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00388 – volume: 11 start-page: 575477 year: 2020 end-page: 575477 ident: CR185 article-title: CRISPR/Cas9-mediated mutagenesis of in apple callus and VIGS-mediated silencing of in fruits improve resistance to publication-title: Front Plant Sci doi: 10.3389/fpls.2020.575477 – volume: 146 start-page: 112146 year: 2020 ident: CR46 article-title: Efficient genome editing of rubber tree ( ) protoplasts using CRISPR/Cas9 ribonucleoproteins publication-title: Ind Crop Prod doi: 10.1016/j.indcrop.2020.112146 – volume: 128 start-page: 217 year: 2009 end-page: 226 ident: CR50 article-title: A review on transgenic approaches to accelerate breeding of woody plants publication-title: Plant Breed doi: 10.1111/j.1439-0523.2008.01591.x – ident: CR109 – ident: CR164 – ident: CR126 – volume: 6 start-page: 105 year: 2019 ident: CR137 article-title: -induced mobile florigenic signals in transgenic and transgrafted blueberries publication-title: Hortic Res doi: 10.1038/s41438-019-0188-5 – volume: 28 start-page: 1998 year: 2016 end-page: 2015 ident: CR90 article-title: Morphogenic regulators and improve monocot transformation publication-title: Plant Cell doi: 10.1105/tpc.16.00124 – ident: CR100 – volume: 38 start-page: 582 year: 2020 end-page: 585 ident: CR88 article-title: Prime genome editing in rice and wheat publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0455-x – volume: 38 start-page: 84 year: 2020 end-page: 89 ident: CR92 article-title: Plant gene editing through induction of meristems publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0337-2 – volume: 16 start-page: 1868 year: 2018 end-page: 1877 ident: CR184 article-title: Efficient genome editing of wild strawberry genes, vector development and validation publication-title: Plant Biotechnol J doi: 10.1111/pbi.12922 – ident: CR156 – ident: CR89 – volume: 183 start-page: 123 year: 2020 ident: CR147 article-title: Compensatory guaiacyl lignin biosynthesis at the expense of syringyl lignin in -knockout poplar publication-title: Plant Physiol doi: 10.1104/pp.19.01550 – ident: CR171 – volume: 180 start-page: 78 year: 2019 ident: CR56 article-title: Regeneration of plants from protoplasts induces widespread genome instability publication-title: Plant Physiol doi: 10.1104/pp.18.00906 – volume: 14 start-page: 808 year: 2016 end-page: 819 ident: CR81 article-title: overexpression induces precocious flowering and normal reproductive development in publication-title: Plant Biotechnol J doi: 10.1111/pbi.12431 – volume: 27 start-page: 225 year: 2018 end-page: 240 ident: CR124 article-title: Current achievements and future directions in genetic engineering of European plum ( ) publication-title: Transgenic Res doi: 10.1007/s11248-018-0072-3 – volume: 8 start-page: 249 year: 2017 ident: CR36 article-title: Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement publication-title: Nat Commun doi: 10.1038/s41467-017-00336-7 – volume: 9 start-page: 1594 year: 2018 end-page: 1594 ident: CR103 article-title: DNA-free genome editing of and protoplasts using CRISPR-Cas9 ribonucleoprotein complexes publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01594 – volume: 20 start-page: 4045 year: 2019 ident: CR129 article-title: Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox publication-title: Int J Mol Sci doi: 10.3390/ijms20164045 – volume: 15 start-page: 1577 year: 2017 end-page: 1589 ident: CR134 article-title: Small serine recombination systems ParA-MRS and CinH-RS2 perform precise excision of plastid DNA publication-title: Plant Biotechnol J doi: 10.1111/pbi.12740 – ident: CR33 – volume: 20 start-page: 25 year: 2020 ident: CR13 article-title: Generation of transgene-free mutants in potato by -mediated transformation publication-title: BMC Biotechnol doi: 10.1186/s12896-020-00621-2 – volume: 9 start-page: 284 year: 2018 ident: CR154 article-title: CRISPR/Cas9-mediated mutagenesis of four putative symbiosis genes of the tropical tree reveals novel phenotypes publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00284 – volume: 16 start-page: e1008983 year: 2020 ident: CR58 article-title: A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008983 – ident: CR165 – volume: 10 start-page: 20155 year: 2020 ident: CR30 article-title: Strategies to produce T-DNA free CRISPRed fruit trees via stable gene transfer publication-title: Sci Rep doi: 10.1038/s41598-020-77110-1 – ident: CR123 – ident: CR108 – volume: 19 start-page: 23 year: 2021 end-page: 25 ident: CR10 article-title: CRISPR/Cas9-mediated single and biallelic knockout of poplar leads to complete reproductive sterility publication-title: Plant Biotechnol J doi: 10.1111/pbi.13451 – volume: 6 start-page: 630 year: 2020 end-page: 637 ident: CR102 article-title: A single gene underlies the dynamic evolution of poplar sex determination publication-title: Nat Plants doi: 10.1038/s41477-020-0672-9 – ident: CR44 – volume: 38 start-page: 1588 year: 2018 end-page: 1597 ident: CR101 article-title: CRISPR/Cas9-mediated knockout of and orthologs reveals a major function in bud outgrowth control publication-title: Tree Physiol doi: 10.1093/treephys/tpy088 – volume: 7 start-page: 41209 year: 2017 ident: CR179 article-title: PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar publication-title: Sci Rep doi: 10.1038/srep41209 – ident: CR3 – volume: 101 start-page: 304 year: 2021 end-page: 311 ident: CR91 article-title: The analysis of transcription factor effects on caffeine accumulation in tea callus through CRISPR/Cas9 mediated gene editing publication-title: Process Biochem doi: 10.1016/j.procbio.2021.01.001 – volume: 9 start-page: 17715 year: 2019 ident: CR75 article-title: High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato publication-title: Sci Rep doi: 10.1038/s41598-019-54126-w – ident: CR139 – volume: 56 start-page: 265 year: 2020 end-page: 279 ident: CR63 article-title: Use of non-integrating vectors to enhance maize transformation publication-title: In Vitro Cell Dev Biol - Plant doi: 10.1007/s11627-019-10042-2 – ident: CR114 – volume: 36 start-page: 1263 year: 2017 end-page: 1276 ident: CR163 article-title: PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar publication-title: Plant Cell Rep doi: 10.1007/s00299-017-2151-y – ident: CR159 – ident: CR55 – volume: 63 start-page: 147 year: 2011 end-page: 173 ident: CR11 article-title: Somaclonal variation in plants: causes and detection methods publication-title: Plant Growth Regul doi: 10.1007/s10725-010-9554-x – ident: CR120 – ident: CR128 – volume: 28 start-page: 656 year: 2010 end-page: 658 ident: CR162 article-title: The 20-year environmental safety record of GM trees publication-title: Nat Biotechnol doi: 10.1038/nbt0710-656 – volume: 10 start-page: 2045 year: 2020 ident: CR133 article-title: Facilitating gene editing in potato: a single-nucleotide polymorphism (SNP) map of the cv. Desiree genome publication-title: Sci Rep doi: 10.1038/s41598-020-58985-6 – volume: 37 start-page: 167 year: 2012 end-page: 197 ident: CR149 article-title: Recent advances in development of marker-free transgenic plants: regulation and biosafety concern publication-title: J Biosci doi: 10.1007/s12038-012-9187-5 – volume: 18 start-page: 89 year: 2018 end-page: 99 ident: CR77 article-title: CRISPR/Cas9-mediated efficient editing in demonstrates precise manipulation in banana cv. Rasthali genome publication-title: Funct Integr Genomics doi: 10.1007/s10142-017-0577-5 – ident: CR70 – volume: 18 start-page: 1990 year: 2020 end-page: 1992 ident: CR71 article-title: Generation of homozygous canker-resistant citrus in the T0 generation using CRISPR-SpCas9p publication-title: Plant Biotechnol J doi: 10.1111/pbi.13375 – volume: 18 start-page: 17 year: 2020 end-page: 19 ident: CR135 article-title: Using CRISPR/Cas9 genome editing system to create gene-modified semi-dwarf banana publication-title: Plant Biotechnol J doi: 10.1111/pbi.13216 – volume: 1 start-page: 117 year: 2017 end-page: 133 ident: CR95 article-title: Potential impact of genome editing in world agriculture publication-title: Emerg Top Life Sci doi: 10.1042/ETLS20170010 – volume: 20 start-page: 425 year: 2020 ident: CR176 article-title: Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana publication-title: BMC Plant Biol doi: 10.1186/s12870-020-02609-8 – volume: 3 start-page: 3 year: 2019 ident: CR151 article-title: Proposed U.S. regulation of gene-edited food animals is not fit for purpose publication-title: Npj Sci Food doi: 10.1038/s41538-019-0035-y – ident: CR177 – volume: 16 start-page: 232 year: 2015 ident: CR22 article-title: High-frequency, precise modification of the tomato genome publication-title: Genome Biol doi: 10.1186/s13059-015-0796-9 – volume: 167 start-page: 9 year: 2005 end-page: 18 ident: CR20 article-title: Genetic transformation: a powerful tool for dissection of adaptive traits in trees publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01412.x – volume: 2 start-page: 233 year: 2004 end-page: 240 ident: CR132 article-title: Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene publication-title: Plant Biotechnol J doi: 10.1111/j.1467-7652.2004.00067.x – volume: 61 start-page: 2549 year: 2010 end-page: 2560 ident: CR183 article-title: Precocious flowering in trees: the gene as a research and breeding tool in publication-title: J Exp Bot doi: 10.1093/jxb/erq092 – ident: CR87 – volume: 102 start-page: 99 year: 2020 end-page: 115 ident: CR47 article-title: Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis publication-title: Plant J doi: 10.1111/tpj.14615 – ident: CR119 – volume: 160 start-page: 1 year: 2021 end-page: 7 ident: CR9 article-title: Establishment of CRISPR/Cas9 mediated targeted mutagenesis in hop ( ) publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2021.01.006 – ident: CR186 – volume: 70 start-page: 563 year: 2019 end-page: 574 ident: CR48 article-title: Reporter gene expression reveals precise auxin synthesis sites during fruit and root development in wild strawberry publication-title: J Exp Bot doi: 10.1093/jxb/ery384 – volume: 183 start-page: 1453 year: 2020 ident: CR61 article-title: Plant genome editing and the relevance of off-target changes publication-title: Plant Physiol doi: 10.1104/pp.19.01194 – volume: 15 start-page: 729 year: 2006 end-page: 737 ident: CR82 article-title: Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border agrobacterium transformation vector publication-title: Transgenic Res doi: 10.1007/s11248-006-9021-7 – ident: CR35 – ident: CR111 – volume: 560 start-page: 16 year: 2018 end-page: 16 ident: CR21 article-title: CRISPR plants now subject to tough GM laws in European Union publication-title: Nature doi: 10.1038/d41586-018-05814-6 – ident: CR29 – volume: 11 start-page: 668 year: 1998 end-page: 683 ident: CR104 article-title: Role of the VirD2 protein in T-DNA transfer and integration publication-title: Mol Plant-Microbe Interactions doi: 10.1094/MPMI.1998.11.7.668 – ident: CR84 – volume: 70 start-page: 885 year: 2019 end-page: 895 ident: CR96 article-title: Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis publication-title: J Exp Bot doi: 10.1093/jxb/ery400 – volume: 21 start-page: 100128 year: 2020 ident: CR115 article-title: Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.) publication-title: Spec Issue Plant Genomics Bioinforma – volume: 36 start-page: 167 year: 2019 end-page: 173 ident: CR180 article-title: Efficient genome engineering using platinum TALEN in potato publication-title: Plant Biotechnol doi: 10.5511/plantbiotechnology.19.0805a – volume: 9 start-page: 6729 year: 2019 ident: CR182 article-title: CRISPR-Cas9 editing in maize: systematic evaluation of off-target activity and its relevance in crop improvement publication-title: Sci Rep doi: 10.1038/s41598-019-43141-6 – volume: 131 start-page: 70 year: 2018 end-page: 77 ident: CR110 article-title: Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene publication-title: Genome Ed Technol Plant Physiol – volume: 2 start-page: 46 year: 2019 ident: CR146 article-title: CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of overcomes a major challenge in banana breeding publication-title: Commun Biol doi: 10.1038/s42003-019-0288-7 – volume: 10 start-page: 1649 year: 2020 ident: CR60 article-title: Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system publication-title: Front Plant Sci doi: 10.3389/fpls.2019.01649 – ident: CR174 – volume: 38 start-page: 1541 year: 2019 end-page: 1549 ident: CR130 article-title: Recovery of the non-functional EGFP-assisted identification of mutants generated by CRISPR/Cas9 publication-title: Plant Cell Rep doi: 10.1007/s00299-019-02465-3 – volume: 27 start-page: 519 year: 2009 end-page: 527 ident: CR141 article-title: Strangled at birth? Forest biotech and the Convention on Biological Diversity publication-title: Nat Biotechnol doi: 10.1038/nbt0609-519 – volume: 15 start-page: 817 year: 2017 end-page: 823 ident: CR73 article-title: Genome editing of the disease susceptibility gene in citrus confers resistance to citrus canker publication-title: Plant Biotechnol J doi: 10.1111/pbi.12677 – volume: 94 start-page: 2117 year: 1997 end-page: 2121 ident: CR38 article-title: Selection of marker-free transgenic plants using the isopentenyl transferase gene publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.6.2117 – ident: CR67 – volume: 8 start-page: 2135 year: 2017 ident: CR72 article-title: Editing genome via SaCas9/sgRNA System publication-title: Front Plant Sci doi: 10.3389/fpls.2017.02135 – ident: CR157 – volume: 51 start-page: 645 year: 2019 end-page: 657.e4 ident: CR64 article-title: Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish publication-title: Dev Cell doi: 10.1016/j.devcel.2019.10.004 – volume: 61 start-page: 1946 year: 2020 end-page: 1953 ident: CR8 article-title: Potato Virus X vector-mediated DNA-free genome editing in plants publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcaa123 – volume: 134 start-page: 383 year: 2018 end-page: 394 ident: CR19 article-title: CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of publication-title: Plant Cell Tissue Organ Cult PCTOC doi: 10.1007/s11240-018-1429-2 – volume: 104 start-page: 297 year: 2020 end-page: 307 ident: CR68 article-title: Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations publication-title: Plant Mol Biol doi: 10.1007/s11103-020-01043-6 – volume: 7 start-page: 149 year: 2020 ident: CR86 article-title: CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.) publication-title: Hortic Res doi: 10.1038/s41438-020-00371-4 – volume: 20 start-page: 1463 year: 2019 end-page: 1474 ident: CR66 article-title: A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize publication-title: Mol Plant Pathol doi: 10.1111/mpp.12849 – volume: 11 start-page: 1838 year: 2020 ident: CR99 article-title: Which factors affect the occurrence of off-target effects caused by the use of CRISPR/Cas: a systematic review in plants publication-title: Front Plant Sci doi: 10.3389/fpls.2020.574959 – volume: 15 start-page: e0235942 year: 2020 ident: CR158 article-title: CRISPR-induced indels and base editing using the Cas9 in potato publication-title: PLoS One doi: 10.1371/journal.pone.0235942 – volume: 13 start-page: 197 year: 2020 ident: CR127 article-title: LACCASE14 is required for the deposition of guaiacyl lignin and affects cell wall digestibility in poplar publication-title: Biotechnol Biofuels doi: 10.1186/s13068-020-01843-4 – ident: CR168 – volume: 16 start-page: 856 year: 2018 end-page: 866 ident: CR76 article-title: TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield publication-title: Plant Biotechnol J doi: 10.1111/pbi.12833 – volume: 59 start-page: 76 year: 2020 end-page: 86 ident: CR78 article-title: CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit publication-title: Metab Eng doi: 10.1016/j.ymben.2020.01.008 – volume: 17 start-page: 2259 year: 2019 end-page: 2271 ident: CR148 article-title: Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes publication-title: Plant Biotechnol J doi: 10.1111/pbi.13137 – volume: 576 start-page: 149 year: 2019 end-page: 157 ident: CR6 article-title: Search-and-replace genome editing without double-strand breaks or donor DNA publication-title: Nature doi: 10.1038/s41586-019-1711-4 – volume: 19 start-page: 59 year: 2018 ident: CR85 article-title: Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion publication-title: Genome Biol doi: 10.1186/s13059-018-1443-z – ident: CR143 – ident: CR160 – volume: 16 start-page: 1275 year: 2018 end-page: 1282 ident: CR69 article-title: Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava publication-title: Plant Biotechnol J doi: 10.1111/pbi.12868 – volume: 96 start-page: 153 year: 2021 end-page: 161 ident: CR117 article-title: Targeted mutagenesis of using CRISPR/Cas9 system through the improvement of genetic transformation efficiency of tetraploid highbush blueberry publication-title: J Hortic Sci Biotechnol doi: 10.1080/14620316.2020.1822760 – volume: 48 start-page: 297 year: 1997 end-page: 326 ident: CR16 article-title: Plant transformation: problems and Strategies for Practical Application publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.48.1.297 – volume: 232 start-page: 1309 year: 2010 end-page: 1324 ident: CR145 article-title: Over-expression of an -homologous gene of apple induces early flowering in annual and perennial plants publication-title: Planta doi: 10.1007/s00425-010-1254-2 – volume: 15 start-page: 1509 year: 2017 end-page: 1519 ident: CR122 article-title: Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene promoter in citrus publication-title: Plant Biotechnol J doi: 10.1111/pbi.12733 – ident: CR14 – volume: 5 start-page: 801 year: 2019 end-page: 809 ident: CR1 article-title: Two Y-chromosome-encoded genes determine sex in kiwifruit publication-title: Nat Plants doi: 10.1038/s41477-019-0489-6 – volume: 554 start-page: 311 year: 2018 end-page: 316 ident: CR175 article-title: Genomics of the origin and evolution of publication-title: Nature doi: 10.1038/nature25447 – volume: 300 start-page: 61 year: 2003 ident: CR140 article-title: Genomics, genetic engineering, and domestication of crops publication-title: Science doi: 10.1126/science.1079514 – ident: CR152 – volume: 46 start-page: 337 year: 2019 end-page: 344 ident: CR188 article-title: CRISPR/Cas9-mediated editing of multiple sites in the citrus promoter publication-title: Acta Hortic Sin – ident: CR113 – volume: 9 start-page: 19902 year: 2019 ident: CR12 article-title: High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice publication-title: Sci Rep doi: 10.1038/s41598-019-55681-y – volume: 2 start-page: 107 year: 2008 end-page: 194 ident: CR62 article-title: Anticipatory nuisance and the prevention of environmental harm and economic loss from GMOs in the United States publication-title: J Environ Law Pract – volume: 29 start-page: 355 year: 2020 end-page: 367 ident: CR142 article-title: CRISPR/Cas9-mediated targeted mutagenesis of and loci in grapevine rootstock 101-14 publication-title: Transgenic Res doi: 10.1007/s11248-020-00196-w – volume: 18 start-page: 1550 year: 2020 end-page: 1561 ident: CR57 article-title: Genetic modulation of RAP alters fruit coloration in both wild and cultivated strawberry publication-title: Plant Biotechnol J doi: 10.1111/pbi.13317 – volume: 10 start-page: 21404 year: 2020 ident: CR136 article-title: The vascular targeted citrus gene promotes non-inductive early flowering in transgenic Carrizo rootstocks and grafted juvenile scions publication-title: Sci Rep doi: 10.1038/s41598-020-78417-9 – ident: CR169 – volume: 10 start-page: 376 year: 2019 ident: CR43 article-title: Overcoming self-incompatibility in diploid potato using CRISPR-Cas9 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00376 – ident: CR23 – volume: 18 start-page: 845 year: 2020 end-page: 858 ident: CR125 article-title: Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system publication-title: Plant Biotechnol J doi: 10.1111/pbi.13253 – volume: 11 start-page: 5020 year: 2020 ident: CR31 article-title: Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele publication-title: Nat Commun doi: 10.1038/s41467-020-18822-w – volume: 20 start-page: 972 year: 2019 ident: CR161 article-title: The genomic diversification of grapevine clones publication-title: BMC Genomics doi: 10.1186/s12864-019-6211-2 – volume: 14 start-page: 510 year: 2016 end-page: 518 ident: CR173 article-title: The regulatory status of genome-edited crops publication-title: Plant Biotechnol J doi: 10.1111/pbi.12444 – ident: CR65 – volume: 10 start-page: 673 year: 2019 ident: CR18 article-title: Arabidopsis LEC1 and LEC2 orthologous genes are key regulators of somatic embryogenesis in cassava publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00673 – ident: CR155 – volume: 7 start-page: 91 year: 2014 ident: CR181 article-title: The ortholog is a systemic signal regulating growth and flowering time publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-7-91 – volume: 9 start-page: 1957 year: 2019 end-page: 1957 ident: CR97 article-title: DNA-free genome editing: past, present and future publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01957 – volume: 6 start-page: 620 year: 2020 end-page: 624 ident: CR40 article-title: Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs publication-title: Nat Plants doi: 10.1038/s41477-020-0670-y – volume: 96 start-page: 1121 year: 2018 end-page: 1136 ident: CR45 article-title: Histone H3K9 demethylase JMJ25 epigenetically modulates anthocyanin biosynthesis in poplar publication-title: Plant J doi: 10.1111/tpj.14092 – volume: 3 start-page: 44 year: 2020 ident: CR2 article-title: Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice publication-title: Commun Biol doi: 10.1038/s42003-020-0768-9 – ident: CR7 – volume: 11 start-page: 1776 year: 2020 ident: CR4 article-title: Efficient genome editing in using CRISPR/Cas12a publication-title: Front Plant Sci – volume: 8 start-page: 384 year: 2020 end-page: 395 ident: CR15 article-title: Base editing in plants: current status and challenges publication-title: Crop Genome Ed Big Step Breed Des – volume: 192 start-page: 364 year: 2011 end-page: 377 ident: CR51 article-title: Application of a high-speed breeding technology to apple ( based on transgenic early flowering plants and marker-assisted selection publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03813.x – volume: 38 start-page: 1 year: 1989 end-page: 23 ident: CR131 article-title: Plant regeneration from protoplasts: a literature review publication-title: Acta Bot Neerlandica doi: 10.1111/j.1438-8677.1989.tb01907.x – ident: CR28 – ident: CR166 – volume: 17 start-page: 421 year: 2019 end-page: 434 ident: CR59 article-title: Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence publication-title: Plant Biotechnol J doi: 10.1111/pbi.12987 – volume: 10 start-page: 40 year: 2019 ident: CR24 article-title: Efficient targeted mutagenesis in apple and pear using the CRISPR-Cas9 system publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00040 – volume: 7 start-page: e40715 year: 2012 end-page: e40715 ident: CR138 article-title: Plum (Prunus domestica) trees transformed with poplar result in altered architecture, dormancy requirement, and continuous flowering publication-title: PLoS One doi: 10.1371/journal.pone.0040715 – volume: 17 start-page: 184 year: 2020 ident: 10197_CR25 publication-title: Virol J doi: 10.1186/s12985-020-01453-4 – ident: 10197_CR67 doi: 10.1111/j.1467-7652.2007.00310.x – ident: 10197_CR168 doi: 10.1007/s11248-005-0884-9 – volume: 10 start-page: 20155 year: 2020 ident: 10197_CR30 publication-title: Sci Rep doi: 10.1038/s41598-020-77110-1 – volume: 16 start-page: 232 year: 2015 ident: 10197_CR22 publication-title: Genome Biol doi: 10.1186/s13059-015-0796-9 – volume: 28 start-page: 165 year: 2019 ident: 10197_CR39 publication-title: Transgenic Res doi: 10.1007/s11248-019-00153-2 – ident: 10197_CR29 doi: 10.3390/ijms21103408 – ident: 10197_CR165 doi: 10.3389/fpls.2020.00996 – volume: 59 start-page: 76 year: 2020 ident: 10197_CR78 publication-title: Metab Eng doi: 10.1016/j.ymben.2020.01.008 – volume: 134 start-page: 383 year: 2018 ident: 10197_CR19 publication-title: Plant Cell Tissue Organ Cult PCTOC doi: 10.1007/s11240-018-1429-2 – volume: 576 start-page: 149 year: 2019 ident: 10197_CR6 publication-title: Nature doi: 10.1038/s41586-019-1711-4 – volume: 38 start-page: 582 year: 2020 ident: 10197_CR88 publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0455-x – volume: 17 start-page: 2259 year: 2019 ident: 10197_CR148 publication-title: Plant Biotechnol J doi: 10.1111/pbi.13137 – volume: 11 start-page: 575477 year: 2020 ident: 10197_CR185 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.575477 – ident: 10197_CR108 doi: 10.1371/journal.pone.0177966 – ident: 10197_CR35 doi: 10.1038/s41467-020-14981-y – volume: 8 start-page: 637 year: 1995 ident: 10197_CR79 publication-title: Plant J doi: 10.1046/j.1365-313X.1995.08050637.x – volume: 146 start-page: 112146 year: 2020 ident: 10197_CR46 publication-title: Ind Crop Prod doi: 10.1016/j.indcrop.2020.112146 – volume: 20 start-page: 425 year: 2020 ident: 10197_CR176 publication-title: BMC Plant Biol doi: 10.1186/s12870-020-02609-8 – volume: 36 start-page: 167 year: 2019 ident: 10197_CR180 publication-title: Plant Biotechnol doi: 10.5511/plantbiotechnology.19.0805a – ident: 10197_CR70 doi: 10.1111/pbi.13109 – volume: 14 start-page: 510 year: 2016 ident: 10197_CR173 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12444 – volume: 96 start-page: 1121 year: 2018 ident: 10197_CR45 publication-title: Plant J doi: 10.1111/tpj.14092 – volume: 16 start-page: e1008983 year: 2020 ident: 10197_CR58 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008983 – volume: 9 start-page: 1594 year: 2018 ident: 10197_CR103 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01594 – ident: 10197_CR7 – volume: 2 start-page: 233 year: 2004 ident: 10197_CR132 publication-title: Plant Biotechnol J doi: 10.1111/j.1467-7652.2004.00067.x – ident: 10197_CR109 doi: 10.1248/bpb.b16-00542 – ident: 10197_CR157 doi: 10.3390/ijms20020402 – volume: 6 start-page: 620 year: 2020 ident: 10197_CR40 publication-title: Nat Plants doi: 10.1038/s41477-020-0670-y – volume: 46 start-page: 337 year: 2019 ident: 10197_CR188 publication-title: Acta Hortic Sin – volume: 1 start-page: 117 year: 2017 ident: 10197_CR95 publication-title: Emerg Top Life Sci doi: 10.1042/ETLS20170010 – volume: 5 start-page: 13 year: 2018 ident: 10197_CR26 publication-title: Hortic Res doi: 10.1038/s41438-018-0023-4 – ident: 10197_CR87 doi: 10.5376/mpb.2020.11.0017 – volume: 11 start-page: 1780 year: 2020 ident: 10197_CR98 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.583374 – volume: 18 start-page: 1990 year: 2020 ident: 10197_CR71 publication-title: Plant Biotechnol J doi: 10.1111/pbi.13375 – volume: 8 start-page: 2135 year: 2017 ident: 10197_CR72 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.02135 – volume: 18 start-page: 845 year: 2020 ident: 10197_CR125 publication-title: Plant Biotechnol J doi: 10.1111/pbi.13253 – volume: 14 start-page: 808 year: 2016 ident: 10197_CR81 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12431 – volume: 10 start-page: 2045 year: 2020 ident: 10197_CR133 publication-title: Sci Rep doi: 10.1038/s41598-020-58985-6 – volume: 10 start-page: 388 year: 2019 ident: 10197_CR144 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00388 – ident: 10197_CR111 doi: 10.17226/23395 – volume: 29 start-page: 706 year: 2011 ident: 10197_CR150 publication-title: Nat Biotechnol doi: 10.1038/nbt.1938 – volume: 48 start-page: 297 year: 1997 ident: 10197_CR16 publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.48.1.297 – volume: 560 start-page: 16 year: 2018 ident: 10197_CR21 publication-title: Nature doi: 10.1038/d41586-018-05814-6 – volume: 38 start-page: 1588 year: 2018 ident: 10197_CR101 publication-title: Tree Physiol doi: 10.1093/treephys/tpy088 – ident: 10197_CR152 doi: 10.1038/nplants.2016.164 – ident: 10197_CR120 – volume: 6 start-page: 105 year: 2019 ident: 10197_CR137 publication-title: Hortic Res doi: 10.1038/s41438-019-0188-5 – volume: 10 start-page: 376 year: 2019 ident: 10197_CR43 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00376 – volume: 38 start-page: 1 year: 1989 ident: 10197_CR131 publication-title: Acta Bot Neerlandica doi: 10.1111/j.1438-8677.1989.tb01907.x – volume: 17 start-page: 421 year: 2019 ident: 10197_CR59 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12987 – volume: 104 start-page: 297 year: 2020 ident: 10197_CR68 publication-title: Plant Mol Biol doi: 10.1007/s11103-020-01043-6 – volume: 101 start-page: 304 year: 2021 ident: 10197_CR91 publication-title: Process Biochem doi: 10.1016/j.procbio.2021.01.001 – volume: 11 start-page: 5020 year: 2020 ident: 10197_CR31 publication-title: Nat Commun doi: 10.1038/s41467-020-18822-w – volume: 9 start-page: 268 year: 2018 ident: 10197_CR49 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00268 – volume: 28 start-page: 1998 year: 2016 ident: 10197_CR90 publication-title: Plant Cell doi: 10.1105/tpc.16.00124 – volume: 14 start-page: 549 year: 2020 ident: 10197_CR34 publication-title: Plant Biotechnol Rep doi: 10.1007/s11816-020-00629-2 – volume: 6 start-page: 630 year: 2020 ident: 10197_CR102 publication-title: Nat Plants doi: 10.1038/s41477-020-0672-9 – volume: 9 start-page: 1607 year: 2018 ident: 10197_CR105 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01607 – ident: 10197_CR139 – volume: 7 start-page: 41209 year: 2017 ident: 10197_CR179 publication-title: Sci Rep doi: 10.1038/srep41209 – volume: 160 start-page: 1 year: 2021 ident: 10197_CR9 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2021.01.006 – volume: 27 start-page: 451 year: 2018 ident: 10197_CR107 publication-title: Transgenic Res doi: 10.1007/s11248-018-0083-0 – volume: 13 start-page: 197 year: 2020 ident: 10197_CR127 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-020-01843-4 – ident: 10197_CR164 doi: 10.3390/ijms20194702 – ident: 10197_CR100 – ident: 10197_CR74 doi: 10.3390/qubs3020007 – volume: 36 start-page: 1263 year: 2017 ident: 10197_CR163 publication-title: Plant Cell Rep doi: 10.1007/s00299-017-2151-y – ident: 10197_CR167 doi: 10.1111/pbi.12832 – volume: 7 start-page: 149 year: 2020 ident: 10197_CR86 publication-title: Hortic Res doi: 10.1038/s41438-020-00371-4 – volume: 38 start-page: 84 year: 2020 ident: 10197_CR92 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0337-2 – ident: 10197_CR128 doi: 10.1016/j.cub.2019.06.003 – volume: 27 start-page: 225 year: 2018 ident: 10197_CR124 publication-title: Transgenic Res doi: 10.1007/s11248-018-0072-3 – volume: 23 start-page: 439 year: 2005 ident: 10197_CR17 publication-title: Nat Biotechnol doi: 10.1038/nbt1084 – volume: 9 start-page: 594 year: 2018 ident: 10197_CR41 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00594 – volume: 6 start-page: 205 year: 2010 ident: 10197_CR53 publication-title: Tree Genet Genomes doi: 10.1007/s11295-009-0241-x – volume: 183 start-page: 1453 year: 2020 ident: 10197_CR61 publication-title: Plant Physiol doi: 10.1104/pp.19.01194 – volume: 56 start-page: 265 year: 2020 ident: 10197_CR63 publication-title: In Vitro Cell Dev Biol - Plant doi: 10.1007/s11627-019-10042-2 – volume: 17 start-page: 9 year: 2019 ident: 10197_CR94 publication-title: BMC Biol doi: 10.1186/s12915-019-0629-5 – volume: 9 start-page: 1443 year: 2018 ident: 10197_CR106 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01443 – volume: 9 start-page: 284 year: 2018 ident: 10197_CR154 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00284 – volume: 38 start-page: 1274 year: 2020 ident: 10197_CR32 publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0703-0 – volume: 192 start-page: 364 year: 2011 ident: 10197_CR51 publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03813.x – volume: 2 start-page: 46 year: 2019 ident: 10197_CR146 publication-title: Commun Biol doi: 10.1038/s42003-019-0288-7 – volume: 183 start-page: 123 year: 2020 ident: 10197_CR147 publication-title: Plant Physiol doi: 10.1104/pp.19.01550 – volume: 10 start-page: 673 year: 2019 ident: 10197_CR18 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00673 – ident: 10197_CR166 doi: 10.1111/nph.14569 – volume: 70 start-page: 885 year: 2019 ident: 10197_CR96 publication-title: J Exp Bot doi: 10.1093/jxb/ery400 – volume: 554 start-page: 311 year: 2018 ident: 10197_CR175 publication-title: Nature doi: 10.1038/nature25447 – volume: 5 start-page: 801 year: 2019 ident: 10197_CR1 publication-title: Nat Plants doi: 10.1038/s41477-019-0489-6 – volume: 9 start-page: 17715 year: 2019 ident: 10197_CR75 publication-title: Sci Rep doi: 10.1038/s41598-019-54126-w – ident: 10197_CR113 doi: 10.1111/nph.17032 – volume: 21 start-page: 100128 year: 2020 ident: 10197_CR115 publication-title: Spec Issue Plant Genomics Bioinforma – volume: 15 start-page: 729 year: 2006 ident: 10197_CR82 publication-title: Transgenic Res doi: 10.1007/s11248-006-9021-7 – ident: 10197_CR89 doi: 10.1111/nph.17353 – volume: 63 start-page: 147 year: 2011 ident: 10197_CR11 publication-title: Plant Growth Regul doi: 10.1007/s10725-010-9554-x – volume: 8 start-page: 384 year: 2020 ident: 10197_CR15 publication-title: Crop Genome Ed Big Step Breed Des – ident: 10197_CR155 doi: 10.1111/nph.17234 – volume: 11 start-page: 668 year: 1998 ident: 10197_CR104 publication-title: Mol Plant-Microbe Interactions doi: 10.1094/MPMI.1998.11.7.668 – volume: 300 start-page: 61 year: 2003 ident: 10197_CR140 publication-title: Science doi: 10.1126/science.1079514 – ident: 10197_CR42 doi: 10.1111/pbi.13588 – volume: 7 start-page: 1904 year: 2016 ident: 10197_CR93 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01904 – ident: 10197_CR14 doi: 10.1038/s41598-017-11760-6 – ident: 10197_CR171 doi: 10.1007/s11240-013-0346-7 – ident: 10197_CR177 doi: 10.1186/s13059-020-02146-5 – volume: 11 start-page: 1838 year: 2020 ident: 10197_CR99 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.574959 – volume: 20 start-page: 972 year: 2019 ident: 10197_CR161 publication-title: BMC Genomics doi: 10.1186/s12864-019-6211-2 – ident: 10197_CR126 doi: 10.21203/rs.3.rs-117877/v1 – volume: 18 start-page: 17 year: 2020 ident: 10197_CR135 publication-title: Plant Biotechnol J doi: 10.1111/pbi.13216 – volume: 38 start-page: 1541 year: 2019 ident: 10197_CR130 publication-title: Plant Cell Rep doi: 10.1007/s00299-019-02465-3 – ident: 10197_CR170 doi: 10.1111/pbi.12884 – volume: 37 start-page: 167 year: 2012 ident: 10197_CR149 publication-title: J Biosci doi: 10.1007/s12038-012-9187-5 – ident: 10197_CR159 doi: 10.1101/2020.06.18.159111 – volume: 9 start-page: 6729 year: 2019 ident: 10197_CR182 publication-title: Sci Rep doi: 10.1038/s41598-019-43141-6 – volume: 19 start-page: 59 year: 2018 ident: 10197_CR85 publication-title: Genome Biol doi: 10.1186/s13059-018-1443-z – volume: 96 start-page: 153 year: 2021 ident: 10197_CR117 publication-title: J Hortic Sci Biotechnol doi: 10.1080/14620316.2020.1822760 – volume: 15 start-page: e0235942 year: 2020 ident: 10197_CR158 publication-title: PLoS One doi: 10.1371/journal.pone.0235942 – volume: 7 start-page: e40715 year: 2012 ident: 10197_CR138 publication-title: PLoS One doi: 10.1371/journal.pone.0040715 – volume: 3 start-page: 3 year: 2019 ident: 10197_CR151 publication-title: Npj Sci Food doi: 10.1038/s41538-019-0035-y – volume: 61 start-page: 1946 year: 2020 ident: 10197_CR8 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcaa123 – volume: 2 start-page: 107 year: 2008 ident: 10197_CR62 publication-title: J Environ Law Pract – ident: 10197_CR3 – volume: 61 start-page: 2549 year: 2010 ident: 10197_CR183 publication-title: J Exp Bot doi: 10.1093/jxb/erq092 – volume: 10 start-page: 21404 year: 2020 ident: 10197_CR136 publication-title: Sci Rep doi: 10.1038/s41598-020-78417-9 – ident: 10197_CR121 – volume: 11 start-page: 1776 year: 2020 ident: 10197_CR4 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.593938 – ident: 10197_CR23 doi: 10.1105/tpc.16.00922 – volume: 164 start-page: 378 year: 2018 ident: 10197_CR5 publication-title: Physiol Plant doi: 10.1111/ppl.12731 – volume: 28 start-page: 656 year: 2010 ident: 10197_CR162 publication-title: Nat Biotechnol doi: 10.1038/nbt0710-656 – volume: 29 start-page: 355 year: 2020 ident: 10197_CR142 publication-title: Transgenic Res doi: 10.1007/s11248-020-00196-w – volume: 20 start-page: 25 year: 2020 ident: 10197_CR13 publication-title: BMC Biotechnol doi: 10.1186/s12896-020-00621-2 – volume: 51 start-page: 645 year: 2019 ident: 10197_CR64 publication-title: Dev Cell doi: 10.1016/j.devcel.2019.10.004 – ident: 10197_CR153 doi: 10.1094/MPMI-22-11-1356 – volume: 131 start-page: 70 year: 2018 ident: 10197_CR110 publication-title: Genome Ed Technol Plant Physiol – ident: 10197_CR119 doi: 10.1007/978-1-4939-9635-3_9 – ident: 10197_CR28 doi: 10.1074/jbc.M116.733154 – volume: 7 start-page: 91 year: 2014 ident: 10197_CR181 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-7-91 – volume: 3 start-page: 44 year: 2020 ident: 10197_CR2 publication-title: Commun Biol doi: 10.1038/s42003-020-0768-9 – ident: 10197_CR84 – volume: 70 start-page: 667 year: 2019 ident: 10197_CR27 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050718-100049 – volume: 232 start-page: 1309 year: 2010 ident: 10197_CR145 publication-title: Planta doi: 10.1007/s00425-010-1254-2 – volume: 10 start-page: 1649 year: 2020 ident: 10197_CR60 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.01649 – volume: 128 start-page: 217 year: 2009 ident: 10197_CR50 publication-title: Plant Breed doi: 10.1111/j.1439-0523.2008.01591.x – volume: 94 start-page: 2117 year: 1997 ident: 10197_CR38 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.6.2117 – volume: 70 start-page: 563 year: 2019 ident: 10197_CR48 publication-title: J Exp Bot doi: 10.1093/jxb/ery384 – ident: 10197_CR156 doi: 10.1111/pbi.13021 – ident: 10197_CR160 doi: 10.1093/g3journal/jkab028 – volume: 8 start-page: 1780 year: 2017 ident: 10197_CR116 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01780 – volume: 12 start-page: 334 year: 2010 ident: 10197_CR52 publication-title: Plant Biol doi: 10.1111/j.1438-8677.2009.00293.x – volume: 15 start-page: 1577 year: 2017 ident: 10197_CR134 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12740 – volume: 16 start-page: 856 year: 2018 ident: 10197_CR76 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12833 – volume: 20 start-page: 4045 year: 2019 ident: 10197_CR129 publication-title: Int J Mol Sci doi: 10.3390/ijms20164045 – volume: 18 start-page: 1550 year: 2020 ident: 10197_CR57 publication-title: Plant Biotechnol J doi: 10.1111/pbi.13317 – volume: 15 start-page: 1509 year: 2017 ident: 10197_CR122 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12733 – volume: 102 start-page: 99 year: 2020 ident: 10197_CR47 publication-title: Plant J doi: 10.1111/tpj.14615 – volume: 20 start-page: 1463 year: 2019 ident: 10197_CR66 publication-title: Mol Plant Pathol doi: 10.1111/mpp.12849 – ident: 10197_CR174 – volume: 13 start-page: 2844 year: 2018 ident: 10197_CR118 publication-title: Nat Protoc doi: 10.1038/s41596-018-0067-9 – ident: 10197_CR178 doi: 10.1016/j.jgg.2018.04.006 – ident: 10197_CR169 doi: 10.1007/s00299-010-0938-1 – volume: 18 start-page: 89 year: 2018 ident: 10197_CR77 publication-title: Funct Integr Genomics doi: 10.1007/s10142-017-0577-5 – volume: 9 start-page: 1957 year: 2019 ident: 10197_CR97 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01957 – ident: 10197_CR186 doi: 10.1093/plphys/kiaa087 – volume: 15 start-page: 817 year: 2017 ident: 10197_CR73 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12677 – volume: 16 start-page: 1275 year: 2018 ident: 10197_CR69 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12868 – ident: 10197_CR55 – ident: 10197_CR114 doi: 10.1111/pbi.13559 – volume: 27 start-page: 519 year: 2009 ident: 10197_CR141 publication-title: Nat Biotechnol doi: 10.1038/nbt0609-519 – volume: 20 start-page: 58 year: 2020 ident: 10197_CR37 publication-title: BMC Biotechnol doi: 10.1186/s12896-020-00652-9 – ident: 10197_CR123 – ident: 10197_CR65 doi: 10.1111/pbi.13534 – volume: 19 start-page: 23 year: 2021 ident: 10197_CR10 publication-title: Plant Biotechnol J doi: 10.1111/pbi.13451 – volume: 9 start-page: 19902 year: 2019 ident: 10197_CR12 publication-title: Sci Rep doi: 10.1038/s41598-019-55681-y – volume: 19 start-page: 546 year: 2000 ident: 10197_CR112 publication-title: Biotechnol Law Rep - BIOTECHNOL LAW REP doi: 10.1089/073003100750036663 – volume: 15 start-page: 121 year: 2015 ident: 10197_CR54 publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0479-4 – ident: 10197_CR44 – volume: 17 start-page: 2199 year: 2019 ident: 10197_CR187 publication-title: Plant Biotechnol J doi: 10.1111/pbi.13132 – volume: 33 start-page: 61 year: 2012 ident: 10197_CR80 publication-title: Mol Cell doi: 10.1007/s10059-012-2212-6 – volume: 8 start-page: 249 year: 2017 ident: 10197_CR36 publication-title: Nat Commun doi: 10.1038/s41467-017-00336-7 – volume: 10 start-page: 40 year: 2019 ident: 10197_CR24 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00040 – volume: 167 start-page: 9 year: 2005 ident: 10197_CR20 publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01412.x – volume: 15 start-page: 45 year: 2019 ident: 10197_CR172 publication-title: Plant Methods doi: 10.1186/s13007-019-0428-6 – ident: 10197_CR33 – volume: 16 start-page: 1868 year: 2018 ident: 10197_CR184 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12922 – volume: 180 start-page: 78 year: 2019 ident: 10197_CR56 publication-title: Plant Physiol doi: 10.1104/pp.18.00906 – ident: 10197_CR143 – volume: 8 start-page: 13753 year: 2018 ident: 10197_CR83 publication-title: Sci Rep doi: 10.1038/s41598-018-32049-2 |
SSID | ssj0001017 |
Score | 2.3855298 |
SecondaryResourceType | review_article |
Snippet | Because of the limitations inherent in conventional breeding of trees and clonally propagated crops, gene editing is of great interest. Dozens of published... |
SourceID | proquest crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 683 |
SubjectTerms | Barriers Biomedical and Life Sciences Cell Biology compliance CRISPR Crops Developmental Biology DNA Efficiency Environmental policy excision Flowering Genes Genetic modification Genetic transformation Genetically altered foods Genetically modified organisms Genome editing Genomes Host range Insertion International trade Life Sciences markets Mutation National Environmental Policy Act Plant breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Plant resistance Plant Sciences Regeneration SPECIAL ISSUE ON GENOME EDITING Trees USDA |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_ED9AH0emwOiWCbxpY2yRtfRCmOIagTw72Vpo2BWF0YjfQ_9679GNOVPCtkDSUJHf3u97d7wAuDFkNZQTPSJoE2nSeqCTjYZSZPCe-9pAKnB-f1GgsHiZyUheFlU22exOStJp6WezmKi_glFKA1ygKOCLHDYm-OyXyjb1Bq3_pktkYpxRcikDVpTI_r7FijqqMxBWs-S08aq3OcA92a7jIBtX57sOaKTqwVTWQ_OjA5u0MwR0-7HzhFTyAGyKTZmiWKKeZvRSMQs8sKTKWTgl5M-rbVV4zm5yFqq4aatqqlIcwHt4_34143SiBpyIUc04MLdrPrbymJg8Tg6BIGkNkddJNvVynIkIcp40fISTxtVRJLjIt-kkaRVr6XVgvZoU5ApYjQvB9SYWVEfpOuUb_g3yW0EVVkCXKAbfZrzitWcSpmcU0XvIf0x7HuMex3eP43YHL9p3XikPjz9ldewztVMsRKIXnQK85l7gWtDL2EED1Bf2CcOC8HUYRobhHUpjZAucoX6Eb7AeRA1fNeS6X-P1Tjv83_QS2PbpaNj2wB-vzt4U5Rcgy12f2hn4CFtLdWg priority: 102 providerName: Springer Nature |
Title | Gene editing in tree and clonal crops: progress and challenges |
URI | https://www.jstor.org/stable/45407542 https://link.springer.com/article/10.1007/s11627-021-10197-x https://www.proquest.com/docview/2584041016 https://www.proquest.com/docview/2636549379 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEB60VdAH8cR4lBV800Wb7G4SH5S2toqiiFioTyHHBgRJ1VbQf-_MZtOqoC9JYDcHe8x8k5n5BmBfk9ZQWvCMdpNAnc5jFWc8CDOd58TXHlCC882tuuyLq4Ec2B9uIxtWWclEI6izYUr_yI9c1JTHgmzNs5dXTlWjyLtqS2jMQh1FcCBrUG93b-_uJ7KYFpzxd0rBpfCVTZspk-eayvU5hShgr9DnHz9UUxmd-AN3_nKVGg3UW4YlCx1Zq5zrFZjRxSrMl8UkP1dhrj1EoIcXi984BtfglIilGaooim9mTwUjNzSLi4ylz4TCGdXwGp0wE6iFYq9sqkqsjNah3-s-dC65LZrAUxGIMSe2lsTLzd5NdR7EGgGS1JqI62QzdfMkFSFiukR7IcITL5EqzkWWiOM4DcNEehtQK4aF3gSWI1rwPElJliHaUXmCtgjZL0ETxUIWKwea1XhFqWUUp8IWz9GUC5nGOMIxjswYRx8OHEzueSn5NP7tvWGmYdLV8AVK4TqwU81LZDfdKJouEQf2Js24XcgHEhd6-I59lKfQJPb80IHDaj6nj_j7U7b-f-M2LLi0lExo4A7Uxm_vehfhyjhpwKw_8BtQb7XP2z06Xzxedxt2pWJrR3Xw2HdbXyJW5vA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8NAEB7EKuqDaLUYzxX0SRfbZLPNCiqe1KuIKPQt5tiAIKnaFvVP-Rud2SStFfTNt0K2B7NzfNOZ-QZgQ1PUkFrwmKxJYEzngQxi7qlYJwnxtXs04HzdlI17cdFyWyPwWczCUFtl4RONo47bEf1HvmNjpKwKyjUPnl84bY2i6mqxQiNTi0v98YYpW2fv_ATvd9O2z07vjhs83yrAI-GJLic6k9BJjHJHOvECjQjC1ZqY3dxaZCdhJBSCnlA7CuO3E7oySEQcimoQKRXSlgh0-SWEGQqtqHR02ry57ft-UnBTX3UFd0Vd5mM62bBeTdp1Ti0ReErV-ftQKMy6IYdw7o_SrIl4ZzMwnUNVdpjp1iyM6LQM49nyyo8yjB21EVjii6lvnIZzsE9E1gxDIvVTs8eUUdmbBWnMoidC_Yx2hnV2mWkMQzebPSpWunTm4f5fxFmB0bSd6gVgCaITx3FpqFNh3paEmPtQvuTV0A3FgbSgVsjLj3IGc1qk8eQPuJdJxj7K2Dcy9t8t2Oq_5znj7_jzdMVcQ_-o4Sd0hW3BcnEvfm7kHX-gkhas9x-jeVLNJUh1u4dnpCMxBXfqyoLt4j4HH_H7T1n8-xvXYKJxd33lX503L5dg0ia1Mm2JyzDafe3pFYRK3XA1108GD_9tEl8Vax2N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8NAEB6kHuiDaFWMVl1Bn3TRJptNIqh4FetRRBR8izl2QZBUbUX71_x1zmySVgV9862Q7cHszHwznZlvANYUoYZUgqdkTQIxnUcySrkfpEpr4mv3acD5siVPb8XZnXs3BB_lLAy1VZY-0TjqtJ3Qf-RbNiLltjC9Wbpoi7g6buw_PXPaIEWV1nKdRq4i56r3hulbZ7d5jHe9btuNk5ujU15sGOCJ8EWXE7VJ7Gij6InSfqQwmnCVIpY3t57YOk5EgAFQrJwAsdyJXRlpkcZiO0qCIKaNEej-hz1ERb8Cw4cnravrPg6Qsptaqyu4KzxZjOzkg3t1aXuc2iPwVODx92-wmHdGfot5f5RpDfo1pmCyCFvZQa5n0zCksiqM5osse1UYOWxjkIkvJr7wG87AHpFaM4RH6q1mDxmjEjiLspQlj5QBMNof1tlhpkkMXW7-qFzv0pmF238R5xxUsnam5oFpjFQcx6UBzwBzOB1jHkS5k19Hl5RG0oJ6Ka8wKdjMaanGYzjgYSYZhyjj0Mg4fLdgo_-ep5zL48_Tc-Ya-kcNV6ErbAtq5b2EhcF3woF6WrDaf4ymSvWXKFPtVzwjHYnpuOMFFmyW9zn4iN9_ysLf37gCY2gK4UWzdb4I4zZplelQrEGl-_KqljBq6sbLhXoyuP9vi_gEk94huQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+editing+in+tree+and+clonal+crops%3A+progress+and+challenges&rft.jtitle=In+vitro+cellular+%26+developmental+biology.+Plant&rft.au=Goralogia%2C+Greg+S.&rft.au=Redick%2C+Thomas+P.&rft.au=Strauss%2C+Steven+H.&rft.date=2021-08-01&rft.pub=Springer+Science+%2B+Business+Media%2C+LLC&rft.issn=1054-5476&rft.eissn=1475-2689&rft.volume=57&rft.issue=4&rft.spage=683&rft.epage=699&rft_id=info:doi/10.1007%2Fs11627-021-10197-x&rft.externalDocID=45407542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-5476&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-5476&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-5476&client=summon |