Statistical fault detection in photovoltaic systems

•A new approach to fault detection in photovoltaic systems is developed.•Fault detection is based on the residuals obtained from a one-diode model.•EWMA test is used to monitor the performance of photovoltaic systems.•The proposed method has been experimentally validated in a grid connected PV syste...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 150; pp. 485 - 499
Main Authors Garoudja, Elyes, Harrou, Fouzi, Sun, Ying, Kara, Kamel, Chouder, Aissa, Silvestre, Santiago
Format Journal Article Publication
LanguageEnglish
Published New York Elsevier Ltd 01.07.2017
Pergamon Press Inc
Subjects
Online AccessGet full text
ISSN0038-092X
1471-1257
DOI10.1016/j.solener.2017.04.043

Cover

Loading…
Abstract •A new approach to fault detection in photovoltaic systems is developed.•Fault detection is based on the residuals obtained from a one-diode model.•EWMA test is used to monitor the performance of photovoltaic systems.•The proposed method has been experimentally validated in a grid connected PV system.•This scheme successfully monitors the DC side of PV systems and detects partial shading. Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array’s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.
AbstractList Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array’s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.
Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array’s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading. Peer Reviewed
•A new approach to fault detection in photovoltaic systems is developed.•Fault detection is based on the residuals obtained from a one-diode model.•EWMA test is used to monitor the performance of photovoltaic systems.•The proposed method has been experimentally validated in a grid connected PV system.•This scheme successfully monitors the DC side of PV systems and detects partial shading. Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array’s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.
Author Sun, Ying
Garoudja, Elyes
Chouder, Aissa
Silvestre, Santiago
Kara, Kamel
Harrou, Fouzi
Author_xml – sequence: 1
  givenname: Elyes
  surname: Garoudja
  fullname: Garoudja, Elyes
  organization: SET Laboratory, Electronics Department, Blida 1 University, BP 270 Blida, Algeria
– sequence: 2
  givenname: Fouzi
  surname: Harrou
  fullname: Harrou, Fouzi
  email: fouzi.harrou@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
– sequence: 3
  givenname: Ying
  surname: Sun
  fullname: Sun, Ying
  organization: King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
– sequence: 4
  givenname: Kamel
  surname: Kara
  fullname: Kara, Kamel
  organization: SET Laboratory, Electronics Department, Blida 1 University, BP 270 Blida, Algeria
– sequence: 5
  givenname: Aissa
  surname: Chouder
  fullname: Chouder, Aissa
  organization: Electrical Engineering Laboratory (LGE), University Mohamed Boudiaf of M’sila, BP 166, 28000, Algeria
– sequence: 6
  givenname: Santiago
  surname: Silvestre
  fullname: Silvestre, Santiago
  organization: Electronic Engineering Department, Universitat Politècnica de Catalunya, C/ Jordi Girona 1-3, Campus Nord UPC, 08034 Barcelona, Spain
BookMark eNqFkE9LAzEQxYNUsK1-BGHB89Ykm90keBAp_oOCBxW8hTSZxZTtpiZpod_eLC0IXkomDMO83yN5EzTqfQ8IXRM8I5g0t6tZ9B30EGYUEz7DLFd1hsaEcVISWvMRGmNciRJL-nWBJjGucBYSwceoek86uZic0V3R6m2XCgsJTHK-L1xfbL598jvfJe1MEfcxwTpeovNWdxGujn2KPp8eP-Yv5eLt-XX-sCgNEyyVVALlmhMreWVrUZuGYEZZ2zIil5JbsZQaGG0raFrJ26wT3DbWagHS1pRVU0QOviZujQpgIBidlNfubxguxZwqKmpe4czcHJhN8D9biEmt_Db0-ZmKyHywqAnNqvroHHyMAVq1CW6tw14RrIZM1UodM1VDpgqzXFXm7v5xxg35-T4F7bqT9P2BhhzazuVtNA56A9bl_yRlvTvh8AuyS5gT
CitedBy_id crossref_primary_10_3390_en14227770
crossref_primary_10_3390_su13041629
crossref_primary_10_3390_en13184901
crossref_primary_10_1016_j_neucom_2018_05_017
crossref_primary_10_3390_en12101995
crossref_primary_10_1016_j_rser_2017_09_101
crossref_primary_10_1109_ACCESS_2020_3039182
crossref_primary_10_1002_etep_2640
crossref_primary_10_1007_s41050_023_00044_w
crossref_primary_10_3390_en15155492
crossref_primary_10_1016_j_renene_2020_05_091
crossref_primary_10_1016_j_solener_2017_12_013
crossref_primary_10_1016_j_clet_2022_100460
crossref_primary_10_1002_pip_3479
crossref_primary_10_3390_s21072269
crossref_primary_10_3390_su10030608
crossref_primary_10_3390_en10121964
crossref_primary_10_1016_j_enconman_2019_111793
crossref_primary_10_1109_ACCESS_2019_2957806
crossref_primary_10_1109_TSTE_2018_2867009
crossref_primary_10_1002_dac_4755
crossref_primary_10_1016_j_segan_2020_100335
crossref_primary_10_1016_j_solener_2020_09_071
crossref_primary_10_1109_JESTIE_2022_3140648
crossref_primary_10_1109_TIM_2024_3379087
crossref_primary_10_1007_s40095_020_00342_4
crossref_primary_10_1016_j_ijepes_2021_107858
crossref_primary_10_3390_app13042470
crossref_primary_10_1002_etep_2771
crossref_primary_10_1016_j_ijleo_2021_167030
crossref_primary_10_3390_solar2010006
crossref_primary_10_1088_1757_899X_982_1_012019
crossref_primary_10_1109_ACCESS_2022_3174555
crossref_primary_10_1109_TSTE_2020_2974404
crossref_primary_10_1016_j_solener_2024_112820
crossref_primary_10_1016_j_enconman_2020_113374
crossref_primary_10_1007_s00202_023_01816_4
crossref_primary_10_1016_j_ifacol_2018_11_781
crossref_primary_10_1016_j_energy_2019_05_029
crossref_primary_10_1016_j_ref_2023_100530
crossref_primary_10_1016_j_rser_2024_114861
crossref_primary_10_1016_j_energy_2018_06_194
crossref_primary_10_3390_pr9101711
crossref_primary_10_1109_JPHOTOV_2019_2896652
crossref_primary_10_1109_JPHOTOV_2020_2972356
crossref_primary_10_1016_j_enconman_2018_11_022
crossref_primary_10_1049_el_2018_6510
crossref_primary_10_3390_en13030737
crossref_primary_10_1016_j_solener_2018_08_044
crossref_primary_10_3390_en16186746
crossref_primary_10_1109_TMAG_2020_3013648
crossref_primary_10_1016_j_solener_2020_08_027
crossref_primary_10_3390_en14092397
crossref_primary_10_1109_JPHOTOV_2021_3060732
crossref_primary_10_1109_JPHOTOV_2021_3057169
crossref_primary_10_1016_j_enconman_2021_114278
crossref_primary_10_1016_j_solener_2020_06_019
crossref_primary_10_1109_JPHOTOV_2020_3033777
crossref_primary_10_1016_j_asoc_2020_106283
crossref_primary_10_1016_j_simpat_2022_102704
crossref_primary_10_1016_j_isatra_2019_03_026
crossref_primary_10_1109_ACCESS_2020_2970531
crossref_primary_10_1016_j_ijleo_2024_171797
crossref_primary_10_3390_en11030485
crossref_primary_10_3390_mi14030674
crossref_primary_10_3390_en13153992
crossref_primary_10_1016_j_apenergy_2021_117874
crossref_primary_10_1109_TAC_2021_3074849
crossref_primary_10_1002_pip_3654
crossref_primary_10_3390_signals4020020
crossref_primary_10_1016_j_energy_2019_04_016
crossref_primary_10_1016_j_solener_2021_10_044
crossref_primary_10_1109_JPHOTOV_2019_2892189
crossref_primary_10_2139_ssrn_4058819
crossref_primary_10_1016_j_oceaneng_2020_107968
crossref_primary_10_3390_en13010100
crossref_primary_10_1016_j_apenergy_2022_119271
crossref_primary_10_1515_ijeeps_2020_0001
crossref_primary_10_1080_21642583_2022_2071779
crossref_primary_10_1016_j_aei_2022_101696
crossref_primary_10_1016_j_egyr_2020_08_034
crossref_primary_10_1145_3460236
crossref_primary_10_1016_j_solener_2018_12_048
crossref_primary_10_3390_app10165527
crossref_primary_10_1080_00224065_2021_1948372
crossref_primary_10_1088_1742_6596_2942_1_012001
crossref_primary_10_1109_MIAS_2022_3214017
crossref_primary_10_1016_j_solener_2018_12_045
crossref_primary_10_1088_1755_1315_167_1_012037
crossref_primary_10_1016_j_enconman_2024_118692
crossref_primary_10_1016_j_jobe_2023_107285
crossref_primary_10_1016_j_solener_2021_01_011
crossref_primary_10_3934_energy_2024034
crossref_primary_10_56845_rebs_v2i2_27
crossref_primary_10_1016_j_enbuild_2021_111818
crossref_primary_10_1049_iet_smt_2019_0338
crossref_primary_10_1007_s42835_023_01429_8
crossref_primary_10_1016_j_rser_2018_09_020
crossref_primary_10_3390_en15217978
crossref_primary_10_3390_solar4010003
crossref_primary_10_1109_ACCESS_2020_3021577
crossref_primary_10_1016_j_eswa_2022_117892
crossref_primary_10_1016_j_rser_2018_03_082
crossref_primary_10_1016_j_solener_2019_01_083
crossref_primary_10_1016_j_solener_2020_03_015
crossref_primary_10_1016_j_nexus_2023_100257
crossref_primary_10_1016_j_solener_2020_03_019
crossref_primary_10_3390_en17174263
crossref_primary_10_3390_en17235986
crossref_primary_10_1016_j_ijepes_2022_108591
crossref_primary_10_1049_rpg2_12458
crossref_primary_10_1016_j_measurement_2019_02_045
crossref_primary_10_1016_j_ifacol_2019_08_235
crossref_primary_10_1109_TPEL_2018_2884292
crossref_primary_10_1155_2020_2176971
crossref_primary_10_1016_j_epsr_2021_107084
crossref_primary_10_3390_app122312016
crossref_primary_10_1016_j_jclepro_2018_09_023
crossref_primary_10_1016_j_renene_2018_09_101
crossref_primary_10_1155_2018_5412062
crossref_primary_10_1016_j_ifacol_2024_07_567
crossref_primary_10_1049_iet_rpg_2018_5220
crossref_primary_10_1016_j_jestch_2021_02_017
crossref_primary_10_1016_j_enconman_2018_10_040
crossref_primary_10_1016_j_renene_2023_01_059
crossref_primary_10_3390_e24091311
crossref_primary_10_1016_j_solener_2019_10_052
crossref_primary_10_1016_j_enconman_2019_112078
crossref_primary_10_1016_j_enconman_2024_118076
crossref_primary_10_1049_elp2_12212
crossref_primary_10_1109_ACCESS_2019_2920053
crossref_primary_10_1016_j_egyr_2022_04_043
crossref_primary_10_1109_JPHOTOV_2023_3318828
crossref_primary_10_3390_electronics12020282
crossref_primary_10_1016_j_solener_2022_08_022
crossref_primary_10_1016_j_ifacol_2020_12_763
crossref_primary_10_3389_fenrg_2021_785420
crossref_primary_10_3390_en15228693
crossref_primary_10_1007_s41872_021_00176_x
crossref_primary_10_1016_j_rser_2018_03_062
crossref_primary_10_3390_en12091712
crossref_primary_10_1007_s41055_023_00132_8
crossref_primary_10_1016_j_enconman_2017_09_019
crossref_primary_10_1016_j_solener_2018_03_073
crossref_primary_10_1063_1_5119055
crossref_primary_10_1002_env_2851
crossref_primary_10_1016_j_solener_2020_10_086
crossref_primary_10_1007_s11356_021_14419_y
crossref_primary_10_1007_s42452_020_2796_y
crossref_primary_10_1016_j_energy_2020_118591
crossref_primary_10_1080_03772063_2023_2215214
crossref_primary_10_1109_ACCESS_2021_3111904
crossref_primary_10_1155_2019_6953530
crossref_primary_10_1002_pip_3578
crossref_primary_10_4995_riai_2019_11449
crossref_primary_10_1016_j_enconman_2019_05_086
crossref_primary_10_1109_ACCESS_2020_3010233
crossref_primary_10_1016_j_ohx_2022_e00302
crossref_primary_10_1016_j_solener_2018_06_004
crossref_primary_10_3390_en15249422
crossref_primary_10_1016_j_solcom_2023_100066
crossref_primary_10_1088_1742_6596_2208_1_012019
crossref_primary_10_1016_j_apenergy_2023_122252
crossref_primary_10_1016_j_rser_2020_110347
crossref_primary_10_1016_j_enconman_2020_112898
crossref_primary_10_1016_j_rser_2017_10_107
crossref_primary_10_1016_j_solener_2018_10_014
crossref_primary_10_2118_214686_PA
crossref_primary_10_3390_en12091722
crossref_primary_10_1016_j_solener_2019_08_021
crossref_primary_10_3390_en15145086
crossref_primary_10_1080_17445302_2021_2012015
crossref_primary_10_1109_ACCESS_2018_2840086
crossref_primary_10_1109_ACCESS_2022_3168140
Cites_doi 10.1016/j.simpat.2016.05.005
10.1007/s10916-016-0639-6
10.1080/21642583.2014.913821
10.1109/TIE.2012.2205355
10.1109/TIE.2008.927404
10.1016/j.rser.2010.11.037
10.1016/j.neucom.2015.10.009
10.1198/004017005000000382
10.1109/JPHOTOV.2016.2581478
10.1109/TPEL.2014.2364203
10.1016/j.rser.2016.01.122
10.1016/j.renene.2016.01.036
10.1016/j.enconman.2010.02.025
10.1109/TSTE.2015.2421447
10.1016/j.enconman.2016.11.031
10.1080/00224065.1986.11979014
10.1016/j.solener.2011.06.011
10.1109/TPEL.2014.2325062
10.1109/JPHOTOV.2015.2397599
10.1109/TEC.2012.2217144
10.1016/j.enconman.2014.05.008
10.1016/j.epsr.2006.12.012
10.1016/j.enbuild.2016.05.031
10.1016/j.rser.2015.04.037
10.1115/1.3097275
10.1016/j.energy.2015.03.123
10.1080/00401706.1990.10484583
10.1016/j.jlp.2015.05.017
10.1016/j.enconman.2014.01.030
10.1016/j.arcontrol.2014.03.003
10.1016/j.apenergy.2013.03.023
10.1016/j.asoc.2015.03.047
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. MNT - Grup de Recerca en Micro i Nanotecnologies
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. MNT - Grup de Recerca en Micro i Nanotecnologies
Copyright 2017 Elsevier Ltd
Copyright Pergamon Press Inc. Jul 1, 2017
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Jul 1, 2017
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
XX2
DOI 10.1016/j.solener.2017.04.043
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Recercat
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 499
ExternalDocumentID oai_recercat_cat_2072_285730
10_1016_j_solener_2017_04_043
S0038092X17303377
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
SAC
SEW
SSH
UKR
VOH
WUQ
XOL
ZY4
~A~
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
XX2
ID FETCH-LOGICAL-c484t-29e27a71d973d585c610424ff419b97d8b9ae42f3e6f97f1d987d6dda8e9d5243
IEDL.DBID AIKHN
ISSN 0038-092X
IngestDate Fri Sep 05 18:07:21 EDT 2025
Wed Aug 13 06:28:26 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Tue Jul 01 01:08:45 EDT 2025
Fri Feb 23 02:28:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Photovoltaic systems
Statistical monitoring charts
Fault detection
One-diode model
Temporary shading
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-29e27a71d973d585c610424ff419b97d8b9ae42f3e6f97f1d987d6dda8e9d5243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://recercat.cat/handle/2072/285730
PQID 1919108512
PQPubID 9393
PageCount 15
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_285730
proquest_journals_1919108512
crossref_primary_10_1016_j_solener_2017_04_043
crossref_citationtrail_10_1016_j_solener_2017_04_043
elsevier_sciencedirect_doi_10_1016_j_solener_2017_04_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2017
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Reynolds, Stoumbos (b0160) 2005; 47
Johansson (b0095) 1993
Kadri, Harrou, Chaabane, Sun, Tahon (b0105) 2016; 173
Shrikhande, Varde, Datta (b0165) 2016
Hunter (b0090) 1986; 18
Pavan, Mellit, Pieri, Kalogirou (b0150) 2013; 108
Zhao, Ball, Mosesian, dePalma, Lehman (b0205) 2015; 30
Chouder, Silvestre (b0035) 2009; 131
Suganthi, Iniyan, Samuel (b0180) 2015; 48
Chao, Ho, Wang (b0025) 2008; 78
Hachana, Tina, Hemsas (b0055) 2016; 126
Silvestre, Kichou, Chouder, Nofuentes, Karatepe (b0175) 2015; 86
Alam, Khan, Johnson, Flicker (b0010) 2015; 5
Kang, Kim, Bae, Park (b0110) 2012; 27
Harrou, Nounou, Nounou, Madakyaru (b0080) 2015; 36
Zerrouki, Harrou, Sun, Houacine (b0200) 2016; 40
Arab, Cherfa, Chouder, Chenlo (b0015) 2005
McEvoy, Castaner, Markvart (b0120) 2012
Abou, Chouder, Kara, Silvestre (b0005) 2015; 32
Mekki, Mellit, Salhi (b0125) 2016; 67
Zhao, dePalma, Mosesian, Lyons, Lehman (b0210) 2013; 60
Hare, Shi, Gupta, Bazzi (b0060) 2016; 60
Chouder, Silvestre (b0040) 2010; 51
Harrou, Nounou (b0075) 2014; 2
Chine, Mellit, Lughi, Malek, Sulligoi, Pavan (b0030) 2016; 90
Vergura, Acciani, Amoruso, Patrono, Vacca (b0190) 2009; 56
Lucas, Saccucci (b0115) 1990; 32
Platon, Martel, Woodruff, Chau (b0155) 2015; 6
Hu, Cao, Wu, Ji, Holliday (b0085) 2014; 29
Hariharan, Chakkarapani, Ilango, Nagamani (b0065) 2016; 6
Tadj, Benmouiza, Cheknane, Silvestre (b0185) 2014; 80
Panwar, Kaushik, Kothari (b0145) 2011; 15
Montgomery (b0130) 2007
Brooks (b0020) 2011; 4
Yahyaoui, Segatto (b0195) 2017; 132
Duffie, Beckman (b0045) 2013; vol. 3
Garoudja, Kara, Chouder, Silvestre (b0050) 2015
Montgomery (b0135) 2005
Harrou, Fillatre, Nikiforov (b0070) 2014; 38
Johnson, Kuszmaul, Bower, Schoenwald (b0100) 2011
Munoz, Alonso-Garcia, Vela, Chenlo (b0140) 2011; 85
Silvestre, daSilva, Chouder, Guasch, Karatepe (b0170) 2014; 86
Garoudja (10.1016/j.solener.2017.04.043_b0050) 2015
Yahyaoui (10.1016/j.solener.2017.04.043_b0195) 2017; 132
Zerrouki (10.1016/j.solener.2017.04.043_b0200) 2016; 40
Lucas (10.1016/j.solener.2017.04.043_b0115) 1990; 32
Hariharan (10.1016/j.solener.2017.04.043_b0065) 2016; 6
Zhao (10.1016/j.solener.2017.04.043_b0210) 2013; 60
Hu (10.1016/j.solener.2017.04.043_b0085) 2014; 29
Suganthi (10.1016/j.solener.2017.04.043_b0180) 2015; 48
Harrou (10.1016/j.solener.2017.04.043_b0075) 2014; 2
Harrou (10.1016/j.solener.2017.04.043_b0070) 2014; 38
Chouder (10.1016/j.solener.2017.04.043_b0040) 2010; 51
McEvoy (10.1016/j.solener.2017.04.043_b0120) 2012
Montgomery (10.1016/j.solener.2017.04.043_b0130) 2007
Chouder (10.1016/j.solener.2017.04.043_b0035) 2009; 131
Montgomery (10.1016/j.solener.2017.04.043_b0135) 2005
Zhao (10.1016/j.solener.2017.04.043_b0205) 2015; 30
Panwar (10.1016/j.solener.2017.04.043_b0145) 2011; 15
Alam (10.1016/j.solener.2017.04.043_b0010) 2015; 5
Pavan (10.1016/j.solener.2017.04.043_b0150) 2013; 108
Silvestre (10.1016/j.solener.2017.04.043_b0170) 2014; 86
Munoz (10.1016/j.solener.2017.04.043_b0140) 2011; 85
Vergura (10.1016/j.solener.2017.04.043_b0190) 2009; 56
Chao (10.1016/j.solener.2017.04.043_b0025) 2008; 78
Shrikhande (10.1016/j.solener.2017.04.043_b0165) 2016
Hunter (10.1016/j.solener.2017.04.043_b0090) 1986; 18
Silvestre (10.1016/j.solener.2017.04.043_b0175) 2015; 86
Hare (10.1016/j.solener.2017.04.043_b0060) 2016; 60
Hachana (10.1016/j.solener.2017.04.043_b0055) 2016; 126
Harrou (10.1016/j.solener.2017.04.043_b0080) 2015; 36
Abou (10.1016/j.solener.2017.04.043_b0005) 2015; 32
Chine (10.1016/j.solener.2017.04.043_b0030) 2016; 90
Reynolds (10.1016/j.solener.2017.04.043_b0160) 2005; 47
Kadri (10.1016/j.solener.2017.04.043_b0105) 2016; 173
Kang (10.1016/j.solener.2017.04.043_b0110) 2012; 27
Brooks (10.1016/j.solener.2017.04.043_b0020) 2011; 4
Johansson (10.1016/j.solener.2017.04.043_b0095) 1993
Tadj (10.1016/j.solener.2017.04.043_b0185) 2014; 80
Duffie (10.1016/j.solener.2017.04.043_b0045) 2013; vol. 3
Mekki (10.1016/j.solener.2017.04.043_b0125) 2016; 67
Arab (10.1016/j.solener.2017.04.043_b0015) 2005
Johnson (10.1016/j.solener.2017.04.043_b0100) 2011
Platon (10.1016/j.solener.2017.04.043_b0155) 2015; 6
References_xml – volume: 30
  start-page: 2848
  year: 2015
  end-page: 2858
  ident: b0205
  article-title: Graph-based semi-supervised learning for fault detection and classification in solar photovoltaic arrays
  publication-title: IEEE Trans. Power Electron.
– volume: 60
  start-page: 3784
  year: 2013
  end-page: 3795
  ident: b0210
  article-title: Line–line fault analysis and protection challenges in solar photovoltaic arrays
  publication-title: IEEE Trans. Ind. Electron.
– volume: 131
  start-page: 024504
  year: 2009
  ident: b0035
  article-title: Analysis model of mismatch power losses in PV systems
  publication-title: J. Sol. Energy Eng.
– volume: 90
  start-page: 501
  year: 2016
  end-page: 512
  ident: b0030
  article-title: A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks
  publication-title: Renew. Energy
– year: 1993
  ident: b0095
  article-title: Renewable Energy: Sources for Fuels and Electricity
– volume: 6
  start-page: 1278
  year: 2016
  end-page: 1285
  ident: b0065
  article-title: A method to detect photovoltaic array faults and partial shading in PV systems
  publication-title: IEEE J. Photovoltaics
– volume: 85
  start-page: 2264
  year: 2011
  end-page: 2274
  ident: b0140
  article-title: Early degradation of silicon PV modules and guaranty conditions
  publication-title: Sol. Energy
– volume: 15
  start-page: 1513
  year: 2011
  end-page: 1524
  ident: b0145
  article-title: Role of renewable energy sources in environmental protection: a review
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 6
  year: 2005
  end-page: 10
  ident: b0015
  article-title: Grid-connected photovoltaic system at CDER-algeria
  publication-title: 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelone
– year: 2007
  ident: b0130
  article-title: Introduction to Statistical Quality Control
– start-page: 213
  year: 2016
  end-page: 227
  ident: b0165
  article-title: Prognostics and health management: methodologies & soft computing techniques
  publication-title: Current Trends in Reliability, Availability, Maintainability and Safety
– volume: 80
  start-page: 298
  year: 2014
  end-page: 304
  ident: b0185
  article-title: Improving the performance of PV systems by faults detection using GISTEL approach
  publication-title: Energy Convers. Manage.
– volume: 40
  start-page: 284
  year: 2016
  ident: b0200
  article-title: Accelerometer and camera-based strategy for improved human fall detection
  publication-title: J. Med. Syst.
– volume: 36
  start-page: 108
  year: 2015
  end-page: 119
  ident: b0080
  article-title: PLS-based EWMA fault detection strategy for process monitoring
  publication-title: J. Loss Prev. Process Ind.
– volume: 126
  start-page: 263
  year: 2016
  end-page: 274
  ident: b0055
  article-title: PV array fault diagnostic technique for BIPV systems
  publication-title: Energy Build.
– volume: 27
  start-page: 885
  year: 2012
  end-page: 894
  ident: b0110
  article-title: Diagnosis of output power lowering in a PV array by using the Kalman-filter algorithm
  publication-title: IEEE Trans. Energy Convers.
– volume: 32
  start-page: 1
  year: 1990
  end-page: 12
  ident: b0115
  article-title: Exponentially weighted moving average control schemes: properties and enhancements
  publication-title: Technometrics
– volume: 47
  start-page: 409
  year: 2005
  end-page: 424
  ident: b0160
  article-title: Should exponentially weighted moving average and cumulative sum charts be used with Shewhart limits?
  publication-title: Technometrics
– volume: 48
  start-page: 585
  year: 2015
  end-page: 607
  ident: b0180
  article-title: Applications of fuzzy logic in renewable energy systems – a review
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 05
  year: 2011
  end-page: 09
  ident: b0100
  article-title: Using PV module and line frequency response data to create robust arc fault detectors
  publication-title: Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition
– year: 2005
  ident: b0135
  article-title: Introduction to Statistical Quality Control
– volume: 86
  start-page: 42
  year: 2015
  end-page: 50
  ident: b0175
  article-title: Analysis of current and voltage indicators in grid connected PV (photovoltaic) systems working in faulty and partial shading conditions
  publication-title: Energy
– volume: 32
  start-page: 38
  year: 2015
  end-page: 48
  ident: b0005
  article-title: Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions
  publication-title: Appl. Soft Comput.
– volume: 132
  start-page: 198
  year: 2017
  end-page: 206
  ident: b0195
  article-title: A practical technique for on-line monitoring of a photovoltaic plant connected to a single-phase grid
  publication-title: Energy Convers. Manage.
– volume: 67
  start-page: 1
  year: 2016
  end-page: 13
  ident: b0125
  article-title: Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules
  publication-title: Simul. Model. Pract. Theory
– volume: 5
  start-page: 982
  year: 2015
  end-page: 997
  ident: b0010
  article-title: A comprehensive review of catastrophic faults in PV arrays: types, detection, and mitigation techniques
  publication-title: IEEE J. Photovoltaics
– volume: 86
  start-page: 241
  year: 2014
  end-page: 249
  ident: b0170
  article-title: New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators
  publication-title: Energy Convers. Manage.
– volume: 18
  start-page: 203
  year: 1986
  end-page: 210
  ident: b0090
  article-title: The exponentially weighted moving average
  publication-title: J. Qual. Technol.
– volume: vol. 3
  year: 2013
  ident: b0045
  publication-title: Solar Engineering of Thermal Processes
– volume: 2
  start-page: 433
  year: 2014
  end-page: 443
  ident: b0075
  article-title: Monitoring linear antenna arrays using an exponentially weighted moving average-based fault detection scheme
  publication-title: Syst. Sci. Contr. Eng.: Open Access J.
– volume: 108
  start-page: 392
  year: 2013
  end-page: 401
  ident: b0150
  article-title: A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants
  publication-title: Appl. Energy
– volume: 78
  start-page: 97
  year: 2008
  end-page: 105
  ident: b0025
  article-title: Modeling and fault diagnosis of a photovoltaic system
  publication-title: Electr. Power Syst. Res.
– start-page: 1
  year: 2015
  end-page: 6
  ident: b0050
  article-title: Parameters extraction of photovoltaic module for long-term prediction using artificial bee colony optimization
  publication-title: 3rd International Conference on Control, Engineering & Information Technology (CEIT)
– volume: 29
  start-page: 5667
  year: 2014
  end-page: 5672
  ident: b0085
  article-title: Thermography-based virtual MPPT scheme for improving PV energy efficiency under partial shading conditions
  publication-title: IEEE Trans. Power Electron.
– volume: 6
  start-page: 1200
  year: 2015
  end-page: 1207
  ident: b0155
  article-title: Online fault detection in PV systems
  publication-title: IEEE Trans. Sustain. Energy
– volume: 51
  start-page: 1929
  year: 2010
  end-page: 1937
  ident: b0040
  article-title: Automatic supervision and fault detection of PV systems based on power losses analysis
  publication-title: Energy Convers. Manage.
– year: 2012
  ident: b0120
  article-title: Solar Cells: Materials, Manufacture and Operation
– volume: 56
  start-page: 4456
  year: 2009
  end-page: 4464
  ident: b0190
  article-title: Descriptive and inferential statistics for supervising and monitoring the operation of PV plants
  publication-title: IEEE Trans. Ind. Electron.
– volume: 38
  start-page: 32
  year: 2014
  end-page: 44
  ident: b0070
  article-title: Anomaly detection/detectability for a linear model with a bounded nuisance parameter
  publication-title: Ann. Rev. Contr.
– volume: 4
  year: 2011
  ident: b0020
  article-title: The bakersfield fire: a lesson in ground-fault protection
  publication-title: SolarPro
– volume: 60
  start-page: 1114
  year: 2016
  end-page: 1124
  ident: b0060
  article-title: Fault diagnostics in smart micro-grids: a survey
  publication-title: Renew. Sustain. Energy Rev.
– volume: 173
  start-page: 2102
  year: 2016
  end-page: 2114
  ident: b0105
  article-title: Seasonal ARMA-based SPC charts for anomaly detection: application to emergency department systems
  publication-title: Neurocomputing
– volume: 67
  start-page: 1
  year: 2016
  ident: 10.1016/j.solener.2017.04.043_b0125
  article-title: Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2016.05.005
– volume: 4
  issue: 2
  year: 2011
  ident: 10.1016/j.solener.2017.04.043_b0020
  article-title: The bakersfield fire: a lesson in ground-fault protection
  publication-title: SolarPro
– volume: 40
  start-page: 284
  issue: 12
  year: 2016
  ident: 10.1016/j.solener.2017.04.043_b0200
  article-title: Accelerometer and camera-based strategy for improved human fall detection
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0639-6
– volume: 2
  start-page: 433
  issue: 1
  year: 2014
  ident: 10.1016/j.solener.2017.04.043_b0075
  article-title: Monitoring linear antenna arrays using an exponentially weighted moving average-based fault detection scheme
  publication-title: Syst. Sci. Contr. Eng.: Open Access J.
  doi: 10.1080/21642583.2014.913821
– volume: 60
  start-page: 3784
  issue: 9
  year: 2013
  ident: 10.1016/j.solener.2017.04.043_b0210
  article-title: Line–line fault analysis and protection challenges in solar photovoltaic arrays
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2205355
– volume: 56
  start-page: 4456
  issue: 11
  year: 2009
  ident: 10.1016/j.solener.2017.04.043_b0190
  article-title: Descriptive and inferential statistics for supervising and monitoring the operation of PV plants
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.927404
– volume: 15
  start-page: 1513
  issue: 3
  year: 2011
  ident: 10.1016/j.solener.2017.04.043_b0145
  article-title: Role of renewable energy sources in environmental protection: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.037
– volume: vol. 3
  year: 2013
  ident: 10.1016/j.solener.2017.04.043_b0045
– volume: 173
  start-page: 2102
  year: 2016
  ident: 10.1016/j.solener.2017.04.043_b0105
  article-title: Seasonal ARMA-based SPC charts for anomaly detection: application to emergency department systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.009
– volume: 47
  start-page: 409
  issue: 4
  year: 2005
  ident: 10.1016/j.solener.2017.04.043_b0160
  article-title: Should exponentially weighted moving average and cumulative sum charts be used with Shewhart limits?
  publication-title: Technometrics
  doi: 10.1198/004017005000000382
– year: 2012
  ident: 10.1016/j.solener.2017.04.043_b0120
– year: 2005
  ident: 10.1016/j.solener.2017.04.043_b0135
– volume: 6
  start-page: 1278
  issue: 5
  year: 2016
  ident: 10.1016/j.solener.2017.04.043_b0065
  article-title: A method to detect photovoltaic array faults and partial shading in PV systems
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2016.2581478
– year: 1993
  ident: 10.1016/j.solener.2017.04.043_b0095
– volume: 30
  start-page: 2848
  issue: 5
  year: 2015
  ident: 10.1016/j.solener.2017.04.043_b0205
  article-title: Graph-based semi-supervised learning for fault detection and classification in solar photovoltaic arrays
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2014.2364203
– volume: 60
  start-page: 1114
  year: 2016
  ident: 10.1016/j.solener.2017.04.043_b0060
  article-title: Fault diagnostics in smart micro-grids: a survey
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.01.122
– volume: 90
  start-page: 501
  year: 2016
  ident: 10.1016/j.solener.2017.04.043_b0030
  article-title: A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.01.036
– start-page: 05
  year: 2011
  ident: 10.1016/j.solener.2017.04.043_b0100
  article-title: Using PV module and line frequency response data to create robust arc fault detectors
– volume: 51
  start-page: 1929
  issue: 10
  year: 2010
  ident: 10.1016/j.solener.2017.04.043_b0040
  article-title: Automatic supervision and fault detection of PV systems based on power losses analysis
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.02.025
– volume: 6
  start-page: 1200
  issue: 4
  year: 2015
  ident: 10.1016/j.solener.2017.04.043_b0155
  article-title: Online fault detection in PV systems
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2015.2421447
– volume: 132
  start-page: 198
  year: 2017
  ident: 10.1016/j.solener.2017.04.043_b0195
  article-title: A practical technique for on-line monitoring of a photovoltaic plant connected to a single-phase grid
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.11.031
– volume: 18
  start-page: 203
  issue: 4
  year: 1986
  ident: 10.1016/j.solener.2017.04.043_b0090
  article-title: The exponentially weighted moving average
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.1986.11979014
– volume: 85
  start-page: 2264
  issue: 9
  year: 2011
  ident: 10.1016/j.solener.2017.04.043_b0140
  article-title: Early degradation of silicon PV modules and guaranty conditions
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.06.011
– volume: 29
  start-page: 5667
  issue: 11
  year: 2014
  ident: 10.1016/j.solener.2017.04.043_b0085
  article-title: Thermography-based virtual MPPT scheme for improving PV energy efficiency under partial shading conditions
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2014.2325062
– volume: 5
  start-page: 982
  issue: 3
  year: 2015
  ident: 10.1016/j.solener.2017.04.043_b0010
  article-title: A comprehensive review of catastrophic faults in PV arrays: types, detection, and mitigation techniques
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2015.2397599
– start-page: 1
  year: 2015
  ident: 10.1016/j.solener.2017.04.043_b0050
  article-title: Parameters extraction of photovoltaic module for long-term prediction using artificial bee colony optimization
– volume: 27
  start-page: 885
  issue: 4
  year: 2012
  ident: 10.1016/j.solener.2017.04.043_b0110
  article-title: Diagnosis of output power lowering in a PV array by using the Kalman-filter algorithm
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2012.2217144
– start-page: 6
  year: 2005
  ident: 10.1016/j.solener.2017.04.043_b0015
  article-title: Grid-connected photovoltaic system at CDER-algeria
– volume: 86
  start-page: 241
  year: 2014
  ident: 10.1016/j.solener.2017.04.043_b0170
  article-title: New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.05.008
– volume: 78
  start-page: 97
  issue: 1
  year: 2008
  ident: 10.1016/j.solener.2017.04.043_b0025
  article-title: Modeling and fault diagnosis of a photovoltaic system
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2006.12.012
– volume: 126
  start-page: 263
  year: 2016
  ident: 10.1016/j.solener.2017.04.043_b0055
  article-title: PV array fault diagnostic technique for BIPV systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.05.031
– start-page: 213
  year: 2016
  ident: 10.1016/j.solener.2017.04.043_b0165
  article-title: Prognostics and health management: methodologies & soft computing techniques
– volume: 48
  start-page: 585
  year: 2015
  ident: 10.1016/j.solener.2017.04.043_b0180
  article-title: Applications of fuzzy logic in renewable energy systems – a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.037
– volume: 131
  start-page: 024504
  issue: 2
  year: 2009
  ident: 10.1016/j.solener.2017.04.043_b0035
  article-title: Analysis model of mismatch power losses in PV systems
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.3097275
– volume: 86
  start-page: 42
  year: 2015
  ident: 10.1016/j.solener.2017.04.043_b0175
  article-title: Analysis of current and voltage indicators in grid connected PV (photovoltaic) systems working in faulty and partial shading conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.123
– volume: 32
  start-page: 1
  issue: 1
  year: 1990
  ident: 10.1016/j.solener.2017.04.043_b0115
  article-title: Exponentially weighted moving average control schemes: properties and enhancements
  publication-title: Technometrics
  doi: 10.1080/00401706.1990.10484583
– volume: 36
  start-page: 108
  year: 2015
  ident: 10.1016/j.solener.2017.04.043_b0080
  article-title: PLS-based EWMA fault detection strategy for process monitoring
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2015.05.017
– year: 2007
  ident: 10.1016/j.solener.2017.04.043_b0130
– volume: 80
  start-page: 298
  year: 2014
  ident: 10.1016/j.solener.2017.04.043_b0185
  article-title: Improving the performance of PV systems by faults detection using GISTEL approach
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.01.030
– volume: 38
  start-page: 32
  issue: 1
  year: 2014
  ident: 10.1016/j.solener.2017.04.043_b0070
  article-title: Anomaly detection/detectability for a linear model with a bounded nuisance parameter
  publication-title: Ann. Rev. Contr.
  doi: 10.1016/j.arcontrol.2014.03.003
– volume: 108
  start-page: 392
  year: 2013
  ident: 10.1016/j.solener.2017.04.043_b0150
  article-title: A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.03.023
– volume: 32
  start-page: 38
  year: 2015
  ident: 10.1016/j.solener.2017.04.043_b0005
  article-title: Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.047
SSID ssj0017187
Score 2.605389
Snippet •A new approach to fault detection in photovoltaic systems is developed.•Fault detection is based on the residuals obtained from a one-diode model.•EWMA test...
Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault...
SourceID csuc
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 485
SubjectTerms Change detection
Control charts
Control systems
Direct current
Dispositius fotoelèctrics
Electric potential
Energy
Energy loss
Enginyeria electrònica
Fault detection
Indicators
Instal·lacions fotovoltaiques
Mathematical models
Maximum power
Modules
One-diode model
Optoelectrònica
Performance assessment
Photovoltaic cells
Photovoltaic power systems
Photovoltaic systems
Photovoltaics
Reliability
Renewable energy
Safety
Shading
Solar cells
Solar energy
Statistical monitoring charts
Temporary shading
Àrees temàtiques de la UPC
Title Statistical fault detection in photovoltaic systems
URI https://dx.doi.org/10.1016/j.solener.2017.04.043
https://www.proquest.com/docview/1919108512
https://recercat.cat/handle/2072/285730
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcimHqvQhtgWUQ09IYRPbie0jQkULCE4g7c3yU120yq7Y7JXfzjhxtt1ekColB0d2Es04M9_EM58BfhZOFoIZnfs6FDkLgee6jP_gK1_rQJ11VSxwvn-op0_sdlbN9uBqqIWJaZXJ9vc2vbPW6cokSXOyms9jjS8VhSSzEicppZzvwwGhsq5GcHB5czd92C4moPntqTNpXOknsz-FPJNnjGMXkd85JnnxjvSU0R0XNbLrjd3xVP_Y7M4RXX-CjwlBZpf9Sx7Bnm8-w-FfvIJfgEYI2TEwY8egN4s2c77tkq6abN5kq9_Ldol2qdVzm_Vczuuv8HT96_FqmqfdEXLLBGtzIj3hmpdOcuoQ9FsEQoygtFkpjeROGKk9I4GiFiQP2E9wVzunhZeuIox-g1GzbPwxZLrwmjGDYDFguOi9RhDAgzFWh9IIacbABoEom6jD4w4WCzXkiD2rJEcV5agKhgcdw8V22KrnznhvwHmUtkK9-xerWxW5r7eNeJKCE0VEhSofgxh0onZmjEJn8N5zTgYdqvTJrhUGrjKWYpTk-__f-Qd8iK0-n_cERu3Lxp8iamnNGexfvJZnaW6-AfO27aU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6F9FA4IEpBBNLWh56QTOzddXb3iFBRaIETSLmt9imCIidKnGt_e2f9SBsuSJXsg-31QzPrmW_tb74F-J45mQlmdOrHIUtZCDzVefwGX_ixDtRZV8QC54fH8eSZ_ZwW0x7cdLUwkVbZxv4mptfRut0zaq05Ws5mscaXikySaY6dlFLO9-ADKyiPvL6r31ueR47BtxHOpPE_P5n-LeMZveIodh7VnSPFi9eSp4zuJKi-XW_sTp56E7HrNHR7BIctfkyum0f8BD1fHsPBP6qCn4FGAFnrL2PDoDfzKnG-qilXZTIrk-XLolpgVKr0zCaNkvP6BJ5vfzzdTNJ2boTUMsGqlEhPuOa5k5w6hPwWYRAjaGuWSyO5E0Zqz0ig6APJA7YT3I2d08JLVxBGT6FfLkp_BonOvGbMIFQMOFj0XiME4MEYq0NuhDQDYJ1BlG2Fw-P8FXPVMcReVWtHFe2oMoYLHcDV9rRlo5zx3gmX0doKve5XVlcqKl9vN-JKMk4UEQU6fACi84na6S8KU8F79xl2PlTtC7tWOGyVsRAjJ-f_f-Vv8HHy9HCv7u8ef13AfjzSMHuH0K9WG_8F8Utlvtb98w_2re5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+fault+detection+in+photovoltaic+systems&rft.jtitle=Solar+energy&rft.au=Garoudja%2C+Elyes&rft.au=Harrou%2C+Fouzi&rft.au=Sun%2C+Ying&rft.au=Kara%2C+Kamel&rft.date=2017-07-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=150&rft.spage=485&rft.epage=499&rft_id=info:doi/10.1016%2Fj.solener.2017.04.043&rft.externalDocID=S0038092X17303377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon