A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells

Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients' fibroblasts into induced pluripotent stem cells (iPSC) and di...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular neuroscience Vol. 56; pp. 355 - 364
Main Authors Burkhardt, Matthew F., Martinez, Fernando J., Wright, Sarah, Ramos, Carla, Volfson, Dmitri, Mason, Michael, Garnes, Jeff, Dang, Vu, Lievers, Jeffery, Shoukat-Mumtaz, Uzma, Martinez, Rita, Gai, Hui, Blake, Robert, Vaisberg, Eugeni, Grskovic, Marica, Johnson, Charles, Irion, Stefan, Bright, Jessica, Cooper, Bonnie, Nguyen, Leane, Griswold-Prenner, Irene, Javaherian, Ashkan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2013
Subjects
Online AccessGet full text
ISSN1044-7431
1095-9327
1095-9327
DOI10.1016/j.mcn.2013.07.007

Cover

Loading…
Abstract Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients' fibroblasts into induced pluripotent stem cells (iPSC) and differentiation into affected neurons that show a disease phenotype could provide a cellular model for disease mechanism studies and drug discovery. Here we report the reprogramming to pluripotency of fibroblasts from a large cohort of healthy controls and ALS patients and their differentiation into motor neurons. We demonstrate that motor neurons derived from three sALS patients show de novo TDP-43 aggregation and that the aggregates recapitulate pathology in postmortem tissue from one of the same patients from which the iPSC were derived. We configured a high-content chemical screen using the TDP-43 aggregate endpoint both in lower motor neurons and upper motor neuron like cells and identified FDA-approved small molecule modulators including Digoxin demonstrating the feasibility of patient-derived iPSC-based disease modeling for drug screening.
AbstractList Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients' fibroblasts into induced pluripotent stem cells (iPSC) and differentiation into affected neurons that show a disease phenotype could provide a cellular model for disease mechanism studies and drug discovery. Here we report the reprogramming to pluripotency of fibroblasts from a large cohort of healthy controls and ALS patients and their differentiation into motor neurons. We demonstrate that motor neurons derived from three sALS patients show de novo TDP-43 aggregation and that the aggregates recapitulate pathology in postmortem tissue from one of the same patients from which the iPSC were derived. We configured a high-content chemical screen using the TDP-43 aggregate endpoint both in lower motor neurons and upper motor neuron like cells and identified FDA-approved small molecule modulators including Digoxin demonstrating the feasibility of patient-derived iPSC-based disease modeling for drug screening.
Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients’ fibroblasts into induced pluripotent stem cells (iPSC) and differentiation into affected neurons that show a disease phenotype could provide a cellular model for disease mechanism studies and drug discovery. Here we report the reprogramming to pluripotency of fibroblasts from a large cohort of healthy controls and ALS patients and their differentiation into motor neurons. We demonstrate that motor neurons derived from three sALS patients show de novo TDP-43 aggregation and that the aggregates recapitulate pathology in postmortem tissue from one of the same patients from which the iPSC were derived. We configured a high-content chemical screen using the TDP-43 aggregate endpoint both in lower motor neurons and upper motor neuron like cells and identified FDA-approved small molecule modulators including Digoxin demonstrating the feasibility of patient-derived iPSC-based disease modelling for drug screening.
Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients' fibroblasts into induced pluripotent stem cells (iPSC) and differentiation into affected neurons that show a disease phenotype could provide a cellular model for disease mechanism studies and drug discovery. Here we report the reprogramming to pluripotency of fibroblasts from a large cohort of healthy controls and ALS patients and their differentiation into motor neurons. We demonstrate that motor neurons derived from three sALS patients show de novo TDP-43 aggregation and that the aggregates recapitulate pathology in postmortem tissue from one of the same patients from which the iPSC were derived. We configured a high-content chemical screen using the TDP-43 aggregate endpoint both in lower motor neurons and upper motor neuron like cells and identified FDA-approved small molecule modulators including Digoxin demonstrating the feasibility of patient-derived iPSC-based disease modeling for drug screening.Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients' fibroblasts into induced pluripotent stem cells (iPSC) and differentiation into affected neurons that show a disease phenotype could provide a cellular model for disease mechanism studies and drug discovery. Here we report the reprogramming to pluripotency of fibroblasts from a large cohort of healthy controls and ALS patients and their differentiation into motor neurons. We demonstrate that motor neurons derived from three sALS patients show de novo TDP-43 aggregation and that the aggregates recapitulate pathology in postmortem tissue from one of the same patients from which the iPSC were derived. We configured a high-content chemical screen using the TDP-43 aggregate endpoint both in lower motor neurons and upper motor neuron like cells and identified FDA-approved small molecule modulators including Digoxin demonstrating the feasibility of patient-derived iPSC-based disease modeling for drug screening.
Author Vaisberg, Eugeni
Ramos, Carla
Gai, Hui
Blake, Robert
Shoukat-Mumtaz, Uzma
Grskovic, Marica
Martinez, Rita
Dang, Vu
Burkhardt, Matthew F.
Martinez, Fernando J.
Bright, Jessica
Nguyen, Leane
Wright, Sarah
Mason, Michael
Johnson, Charles
Griswold-Prenner, Irene
Garnes, Jeff
Irion, Stefan
Cooper, Bonnie
Javaherian, Ashkan
Volfson, Dmitri
Lievers, Jeffery
AuthorAffiliation 1 iPierian Inc., 951 Gateway Blvd, South San Francisco, CA 94080
AuthorAffiliation_xml – name: 1 iPierian Inc., 951 Gateway Blvd, South San Francisco, CA 94080
Author_xml – sequence: 1
  givenname: Matthew F.
  surname: Burkhardt
  fullname: Burkhardt, Matthew F.
– sequence: 2
  givenname: Fernando J.
  surname: Martinez
  fullname: Martinez, Fernando J.
– sequence: 3
  givenname: Sarah
  surname: Wright
  fullname: Wright, Sarah
– sequence: 4
  givenname: Carla
  surname: Ramos
  fullname: Ramos, Carla
– sequence: 5
  givenname: Dmitri
  surname: Volfson
  fullname: Volfson, Dmitri
– sequence: 6
  givenname: Michael
  surname: Mason
  fullname: Mason, Michael
– sequence: 7
  givenname: Jeff
  surname: Garnes
  fullname: Garnes, Jeff
– sequence: 8
  givenname: Vu
  surname: Dang
  fullname: Dang, Vu
– sequence: 9
  givenname: Jeffery
  surname: Lievers
  fullname: Lievers, Jeffery
– sequence: 10
  givenname: Uzma
  surname: Shoukat-Mumtaz
  fullname: Shoukat-Mumtaz, Uzma
– sequence: 11
  givenname: Rita
  surname: Martinez
  fullname: Martinez, Rita
– sequence: 12
  givenname: Hui
  surname: Gai
  fullname: Gai, Hui
– sequence: 13
  givenname: Robert
  surname: Blake
  fullname: Blake, Robert
– sequence: 14
  givenname: Eugeni
  surname: Vaisberg
  fullname: Vaisberg, Eugeni
– sequence: 15
  givenname: Marica
  surname: Grskovic
  fullname: Grskovic, Marica
– sequence: 16
  givenname: Charles
  surname: Johnson
  fullname: Johnson, Charles
– sequence: 17
  givenname: Stefan
  surname: Irion
  fullname: Irion, Stefan
– sequence: 18
  givenname: Jessica
  surname: Bright
  fullname: Bright, Jessica
– sequence: 19
  givenname: Bonnie
  surname: Cooper
  fullname: Cooper, Bonnie
– sequence: 20
  givenname: Leane
  surname: Nguyen
  fullname: Nguyen, Leane
– sequence: 21
  givenname: Irene
  surname: Griswold-Prenner
  fullname: Griswold-Prenner, Irene
  email: Irene.Griswold-Prenner@ipierian.com
– sequence: 22
  givenname: Ashkan
  surname: Javaherian
  fullname: Javaherian, Ashkan
  email: ashkanjavaherian@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23891805$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaR7tD-imaNmN3auHLZtCYQh9wUAXSbsVGuk61WBbrmQP5N9X7iSlzSJZ3Qs653B0v3NyMoYRCXnNoGTA6nf7crBjyYGJElQJoJ6RMwZtVbSCq5N1l7JQUrBTcp7SHgAq3ooX5JSLpmUNVGfkx4Za7PulN5EOwWFPuxBpmkI0zlu62V7RJfnxhk5m9jjOhcPoD-ioH91i85z6JfopzPmNphmHP3HpJXnemT7hq7t5Qb5_-nh9-aXYfvv89XKzLaxs5FxwWWMHjtVdI6yxSlVV4xwTDl1lGkCprMmLBGZt1Sq122GXLcqZXeskE-KCfDjmTstuQGdzi2h6PUU_mHirg_H6_5fR_9Q34aClUlzyJge8vQuI4deCadaDT-sXzIhhSZrVXLV1Izh7WiqlkKyqGWTpm39r_e1zf_csUEeBjSGliJ22fs4XDmtL32sGeiWs9zoT1ithDUpnwtnJHjjvwx_zvD96MKM4eIw62Qwz4_MR7axd8I-4fwNKDL-U
CitedBy_id crossref_primary_10_1093_hmg_ddu205
crossref_primary_10_1093_hmg_ddu204
crossref_primary_10_1038_s41583_022_00564_x
crossref_primary_10_1016_j_pneurobio_2015_07_004
crossref_primary_10_3390_neuroglia5010003
crossref_primary_10_3389_fcell_2022_1030390
crossref_primary_10_1038_nrd4738
crossref_primary_10_3389_fncel_2020_581907
crossref_primary_10_3389_fnins_2023_1223777
crossref_primary_10_1016_j_mcn_2015_12_004
crossref_primary_10_1038_s41598_017_05616_2
crossref_primary_10_3389_fcell_2022_962881
crossref_primary_10_1126_scitranslmed_abq6089
crossref_primary_10_1016_j_bbadis_2019_03_004
crossref_primary_10_1016_j_jmb_2020_01_024
crossref_primary_10_1016_j_tins_2014_07_008
crossref_primary_10_1016_j_omtn_2017_06_017
crossref_primary_10_1016_j_neurobiolaging_2019_02_008
crossref_primary_10_1016_j_parkreldis_2016_06_007
crossref_primary_10_1016_j_addr_2013_11_012
crossref_primary_10_1016_j_expneurol_2014_07_001
crossref_primary_10_1113_JP278117
crossref_primary_10_1002_ana_26047
crossref_primary_10_1016_j_jbiosc_2021_06_015
crossref_primary_10_1016_j_nbd_2016_04_007
crossref_primary_10_1186_scrt476
crossref_primary_10_1007_s11154_021_09671_z
crossref_primary_10_1186_s13041_023_01050_w
crossref_primary_10_14336_AD_2024_0440
crossref_primary_10_3390_cells10102773
crossref_primary_10_15252_embj_2020106177
crossref_primary_10_1177_2472630318803277
crossref_primary_10_1002_jcp_29800
crossref_primary_10_1186_s13287_018_1048_1
crossref_primary_10_1016_j_tig_2017_06_005
crossref_primary_10_1016_j_mcn_2020_103524
crossref_primary_10_3390_jpm12091485
crossref_primary_10_1038_nrneurol_2015_79
crossref_primary_10_4155_fmc_2018_0520
crossref_primary_10_1186_s13073_018_0541_6
crossref_primary_10_3390_metabo14020084
crossref_primary_10_1186_s13024_018_0258_4
crossref_primary_10_3389_fncel_2023_1327361
crossref_primary_10_1016_j_therap_2020_12_006
crossref_primary_10_1016_j_tig_2015_03_005
crossref_primary_10_1016_j_brainres_2014_09_017
crossref_primary_10_1016_j_neuron_2019_05_048
crossref_primary_10_1177_0963689718775406
crossref_primary_10_3389_fnins_2017_00591
crossref_primary_10_1016_j_neuron_2015_02_023
crossref_primary_10_1007_s10571_023_01344_6
crossref_primary_10_1186_s12974_017_1028_x
crossref_primary_10_1093_stmcls_sxab006
crossref_primary_10_1080_01616412_2021_1893564
crossref_primary_10_1073_pnas_1522872114
crossref_primary_10_3934_celltissue_2018_2_91
crossref_primary_10_1002_stem_2634
crossref_primary_10_3389_fendo_2021_635662
crossref_primary_10_1038_s41598_021_97928_7
crossref_primary_10_1038_nrn_2016_46
crossref_primary_10_1016_j_lfs_2021_120156
crossref_primary_10_1111_jcmm_15048
crossref_primary_10_1098_rsob_180177
crossref_primary_10_1007_s13770_014_0099_3
crossref_primary_10_3390_biom12030344
crossref_primary_10_3389_fncel_2015_00448
crossref_primary_10_1007_s00401_013_1222_6
crossref_primary_10_1212_NXG_0000000000200225
crossref_primary_10_3389_fmolb_2024_1383453
crossref_primary_10_1016_j_nbd_2015_06_011
crossref_primary_10_3109_01677063_2014_881358
crossref_primary_10_1038_s41380_018_0207_1
crossref_primary_10_1051_jbio_2016004
crossref_primary_10_1016_j_stem_2014_05_001
crossref_primary_10_1016_j_drudis_2014_10_006
crossref_primary_10_1016_j_expneurol_2017_03_014
crossref_primary_10_1186_s40478_023_01648_0
crossref_primary_10_1016_j_brainres_2015_11_013
crossref_primary_10_1016_j_cell_2018_09_010
crossref_primary_10_1523_JNEUROSCI_2126_14_2015
crossref_primary_10_1016_j_brainres_2016_03_051
crossref_primary_10_1038_s41598_021_97405_1
crossref_primary_10_1080_14728222_2018_1439923
crossref_primary_10_1007_s12272_016_0871_0
crossref_primary_10_3389_fnins_2017_00671
crossref_primary_10_1016_j_brainres_2014_10_031
crossref_primary_10_3390_ijms22158196
crossref_primary_10_3390_ijms21249593
crossref_primary_10_1016_j_neurobiolaging_2014_09_007
crossref_primary_10_3389_fcell_2020_00328
crossref_primary_10_1089_scd_2015_0076
crossref_primary_10_1016_j_mcn_2016_12_001
crossref_primary_10_4103_1673_5374_375347
crossref_primary_10_1016_j_neulet_2021_135911
crossref_primary_10_1515_revneuro_2017_0018
crossref_primary_10_1111_jcmm_12488
crossref_primary_10_1177_0963689718785154
crossref_primary_10_1016_j_nbt_2014_05_001
crossref_primary_10_3390_ijms23020624
crossref_primary_10_1126_scitranslmed_abp8869
crossref_primary_10_1016_j_tins_2014_05_006
crossref_primary_10_1111_bph_15148
crossref_primary_10_1016_j_scr_2021_102558
crossref_primary_10_3389_fcell_2022_838402
crossref_primary_10_1155_2016_9279516
crossref_primary_10_3389_fnins_2018_00056
crossref_primary_10_1016_j_brainres_2015_10_003
crossref_primary_10_1016_j_stemcr_2017_03_021
crossref_primary_10_3390_ijms25042392
crossref_primary_10_1586_14737175_2015_1013096
crossref_primary_10_1080_21678421_2018_1431787
crossref_primary_10_1016_j_nbd_2020_105088
crossref_primary_10_3389_fnins_2017_00530
crossref_primary_10_3906_biy_1507_138
crossref_primary_10_1038_nrm_2015_27
crossref_primary_10_3389_fnins_2018_00047
crossref_primary_10_1093_braincomms_fcac176
crossref_primary_10_1111_bpa_12353
crossref_primary_10_3389_fcell_2020_00455
crossref_primary_10_1016_j_molmed_2020_09_013
crossref_primary_10_3389_fcell_2022_1089970
crossref_primary_10_31083_j_fbl2903114
crossref_primary_10_1126_science_abb4309
crossref_primary_10_1002_med_21974
crossref_primary_10_1038_s41598_024_73869_9
crossref_primary_10_1016_j_nbd_2015_07_017
crossref_primary_10_1002_cyto_a_22630
crossref_primary_10_1242_dev_130278
crossref_primary_10_1016_j_pharmthera_2017_02_026
crossref_primary_10_1371_journal_pone_0155274
crossref_primary_10_1088_1757_899X_508_1_012145
crossref_primary_10_1007_s13311_015_0339_9
crossref_primary_10_1038_nn_3787
crossref_primary_10_1155_2017_1809592
crossref_primary_10_1038_s41380_020_00999_7
crossref_primary_10_1186_s40478_014_0181_z
crossref_primary_10_3390_ijms22031203
crossref_primary_10_1038_nrd_2016_175
crossref_primary_10_1007_s13311_022_01260_5
crossref_primary_10_3389_fncel_2024_1435619
crossref_primary_10_3390_cells12060971
crossref_primary_10_1016_j_neuron_2016_09_050
crossref_primary_10_1002_stem_1872
crossref_primary_10_1161_CIRCRESAHA_116_305372
crossref_primary_10_1111_nan_12334
crossref_primary_10_3390_molecules25082000
crossref_primary_10_1002_ana_24584
crossref_primary_10_3389_fddsv_2021_773424
crossref_primary_10_1016_j_jneumeth_2019_108533
crossref_primary_10_1038_s41531_020_0110_8
crossref_primary_10_1080_17460441_2018_1533953
crossref_primary_10_4103_1673_5374_206635
crossref_primary_10_1016_j_stemcr_2017_02_006
crossref_primary_10_1146_annurev_pharmtox_010715_103548
crossref_primary_10_1002_2211_5463_13482
crossref_primary_10_3390_ph14060565
crossref_primary_10_1016_j_stem_2021_12_008
crossref_primary_10_1080_14712598_2018_1503248
crossref_primary_10_1007_s12015_019_09946_8
crossref_primary_10_1007_s12015_020_10042_5
crossref_primary_10_1155_2019_5171032
crossref_primary_10_1155_2015_382530
crossref_primary_10_5966_sctm_2015_0170
crossref_primary_10_1097_MOT_0000000000000348
crossref_primary_10_1016_j_expneurol_2014_10_005
crossref_primary_10_1016_j_celrep_2021_109685
crossref_primary_10_3390_genes11050537
crossref_primary_10_1126_scitranslmed_aaf3962
crossref_primary_10_1074_jbc_R113_529156
crossref_primary_10_3390_cells9030571
crossref_primary_10_3389_fncel_2015_00289
crossref_primary_10_1007_s11515_016_1413_3
crossref_primary_10_1002_jcla_24464
crossref_primary_10_1007_s00401_016_1666_6
crossref_primary_10_1093_brain_awac306
crossref_primary_10_3390_ijms23031684
crossref_primary_10_1038_s41591_018_0140_5
crossref_primary_10_1038_nrd_2016_245
crossref_primary_10_3934_celltissue_2018_1_1
crossref_primary_10_1093_brain_awz350
crossref_primary_10_3389_fcell_2022_840256
crossref_primary_10_21830_23460628_105
crossref_primary_10_1016_j_neuron_2018_10_033
crossref_primary_10_1038_s41390_018_0064_2
crossref_primary_10_1021_acs_jmedchem_5b00789
crossref_primary_10_1038_nchembio_1663
crossref_primary_10_1016_j_omtm_2016_12_007
crossref_primary_10_1002_iub_2595
crossref_primary_10_1080_15384101_2015_1093712
crossref_primary_10_2217_rme_2020_0067
crossref_primary_10_1111_nyas_14012
crossref_primary_10_1016_j_bcp_2018_01_016
crossref_primary_10_1016_j_scr_2018_05_009
crossref_primary_10_1038_nn_3853
crossref_primary_10_1016_j_cell_2018_03_040
crossref_primary_10_4103_1673_5374_310671
crossref_primary_10_3390_cells9010164
crossref_primary_10_3389_fphar_2014_00150
crossref_primary_10_1016_j_mcn_2020_103553
crossref_primary_10_1016_j_neurobiolaging_2014_08_019
crossref_primary_10_1016_j_csbj_2016_09_001
Cites_doi 10.1016/j.cub.2004.03.003
10.3109/17482961003602363
10.1016/j.febslet.2008.07.027
10.1016/j.neuron.2004.12.036
10.1212/WNL.0b013e318202038c
10.1093/hmg/ddh045
10.1038/nbt.1529
10.1111/j.1440-1789.2009.01029.x
10.1016/j.brainres.2007.09.048
10.1016/j.cell.2006.07.024
10.1016/S1474-4422(08)70071-1
10.1016/j.stem.2013.04.003
10.1038/nrn1971
10.1007/s00401-008-0477-9
10.1002/ana.21154
10.1523/JNEUROSCI.4988-09.2010
10.1073/pnas.1202922109
10.1126/science.1134108
10.1007/s12031-011-9636-x
10.1126/scitranslmed.3004052
10.1002/ana.21147
10.2353/ajpath.2007.070182
10.1007/s00401-012-1045-x
10.1038/ng.132
10.1126/science.1154584
10.1111/j.1440-1789.2009.01089.x
10.1016/j.bbrc.2006.10.093
10.1126/science.1158799
10.1038/nrd2682
10.1001/archneur.64.10.1388
10.1074/jbc.M109.061846
10.1007/s00401-007-0261-2
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2013.
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2013.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1016/j.mcn.2013.07.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1095-9327
EndPage 364
ExternalDocumentID PMC4772428
23891805
10_1016_j_mcn_2013_07_007
S1044743113000730
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: RC2 NS069395
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
3O-
4.4
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFMIJ
AFTJW
AFXIZ
AGHFR
AGHSJ
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CAG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HLW
HMQ
HVGLF
HZ~
H~9
IH2
IHE
J1W
KOM
LG5
LX2
M2U
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSU
SSZ
T5K
TEORI
TN5
UHS
UNMZH
WUQ
X7M
XPP
YNT
YQT
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c484t-246ef0d16f83cac77558dd13ded5a80e47ca5a8401cc5977bbef46e7dab9d4133
IEDL.DBID .~1
ISSN 1044-7431
1095-9327
IngestDate Thu Aug 21 14:04:48 EDT 2025
Fri Jul 11 07:25:49 EDT 2025
Fri Jul 11 12:43:29 EDT 2025
Mon Jul 21 05:23:19 EDT 2025
Tue Jul 01 00:59:12 EDT 2025
Thu Apr 24 23:11:16 EDT 2025
Fri Feb 23 02:29:34 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords iPSC-CN
Digoxin
iPSC-MN
TDP-43
HTS
iPSC
FTLD
ALS
Drug screening
iPS
SOD1
fronto-temporal lobar degeneration
high-throughput screening
amyotrophic lateral sclerosis
TARDBP, TAR DNA binding protein
induced pluripotent stem cell-derived motor neurons
induced pluripotent stem cells
induced pluripotent stem cell-derived cortical neurons
superoxide dismutase 1
Language English
License 2013.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-246ef0d16f83cac77558dd13ded5a80e47ca5a8401cc5977bbef46e7dab9d4133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
Present address: The J. David Gladstone Institutes, 1650 Owens Street, San Francisco California 94158.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4772428
PMID 23891805
PQID 1443415610
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4772428
proquest_miscellaneous_1627968321
proquest_miscellaneous_1443415610
pubmed_primary_23891805
crossref_citationtrail_10_1016_j_mcn_2013_07_007
crossref_primary_10_1016_j_mcn_2013_07_007
elsevier_sciencedirect_doi_10_1016_j_mcn_2013_07_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular and cellular neuroscience
PublicationTitleAlternate Mol Cell Neurosci
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Egawa, Kitaoka, Tsukita, Naitoh, Takahashi, Yamamoto, Adachi, Kondo, Okita, Asaka, Aoi, Watanabe, Yamada, Morizane, Takahashi, Ayaki, Ito, Yoshikawa, Yamawaki, Suzuki, Watanabe, Hioki, Kaneko, Makioka, Okamoto, Takuma, Tamaoka, Hasegawa, Nonaka, Hasegawa, Kawata, Yoshida, Nakahata, Takahashi, Marchetto, Gage, Yamanaka, Inoue (bb0065) 2012; 4
Arlotta, Molyneaux, Chen, Inoue, Kominami, Macklis (bb0020) 2005; 45
Pasinelli, Brown (bb0120) 2006; 7
Piccioni, Roman, Fischbeck, Taylor (bb0125) 2004; 13
Bilican, Serio, Barmada, Nishimura, Sullivan, Carrasco, Phatnani, Puddifoot, Story, Fletcher, Park, Friedman, Daley, Wyllie, Hardingham, Wilmut, Finkbeiner, Maniatis, Shaw, Chandran (bb0030) 2012; 109
Barmada, Barmada, Skibinski, Korb, Rao, Wu, Finkbeiner (bb0025) 2010; 30
Bodansky, Kim, Tempest, Velagapudi, Libby, Ravits (bb0035) 2010; 11
Kabashi, Valdmanis, Dion, Spiegelman, McConkey, Vande Velde, Bouchard, Lacomblez, Pochigaeva, Salachas, Pradat, Camu, Meininger, Dupre, Rouleau (bb0080) 2008; 40
Dimos, Rodolfa, Niakan, Weisenthal, Mitsumoto, Chung, Croft, Saphier, Leibel, Goland, Wichterle, Henderson, Eggan (bb0060) 2008; 321
Arai, Hasegawa, Nonoka, Kametani, Yamashita, Hosokawa, Niizato, Tsuchiya, Kobayashi, Ikeda, Yoshida, Onaya, Fujishiro, Akiyama (bb0015) 2010; 30
Chambers, Fasano, Papapetrou, Tomishima, Sadelain, Studer (bb0045) 2009; 27
Sephton, Good, Atkin, Dewey, Mayer, Herz, Yu (bb0140) 2010; 285
Neumann, Kwong, Lee, Kremmer, Flatley, Xu, Forman, Troost, Kretzschmar, Trojanowski, Lee (bb0105) 2009; 117
Corcoran, Mitchison, Liu (bb0055) 2004; 14
Inukai, Nonaka, Arai, Yoshida, Hashizume, Beach, Buratti, Baralle, Akiyama, Hisanaga, Hasegawa (bb0075) 2008; 582
Maekawa, Leigh, King, Jones, Steele, Bodi, Shaw, Hortobagyi, Al-Sarraj (bb0095) 2009; 29
Amador-Ortiz, Lin, Ahmed, Personett, Davies, Duara, Graff-Radford, Hutton, Dickson (bb0005) 2007; 61
Neumann, Kwong, Sampathu, Trojanowski, Lee (bb0110) 2007; 64
Van Deerlin, Leverenz, Bekris, Bird, Yuan, Elman, Clay, Wood, Chen-Plotkin, Martinez-Lage, Steinbart, McCluskey, Grossman, Neumann, Wu, Yang, Kalb, Galasko, Montine, Trojanowski, Lee, Schellenberg, Yu (bb0155) 2008; 7
Collins, Riascos, Kovalik, An, Krupa, Hood, Conrads, Renton, Traynor, Bowser (bb0050) 2012; 124
Sreedharan, Blair, Tripathi, Hu, Vance, Rogelj, Ackerley, Durnall, Williams, Buratti, Baralle, de Belleroche, Mitchell, Leigh, Al-Chalabi, Miller, Nicholson, Shaw (bb0145) 2008; 319
Higashi, Iseki, Yamamoto, Minegishi, Hino, Fujisawa, Togo, Katsuse, Uchikado, Furukawa, Kosaka, Arai (bb0070) 2007; 1184
Neumann, Sampathu, Kwong, Truax, Micsenyi, Chou, Bruce, Schuck, Grossman, Clark, McCluskey, Miller, Masliah, Mackenzie, Feldman, Feiden, Kretzschmar, Trojanowski, Lee (bb0115) 2006; 314
Rohrer, Geser, Zhou, Gennatas, Sidhu, Trojanowski, Dearmond, Miller, Seeley (bb0135) 2010; 75
Cairns, Neumann, Bigio, Holm, Troost, Hatanpaa, Foong, White, Schneider, Kretzschmar, Carter, Taylor-Reinwald, Paulsmeyer, Strider, Gitcho, Goate, Morris, Mishra, Kwong, Stieber, Xu, Forman, Trojanowski, Lee, Mackenzie (bb0040) 2007; 171
Prassas, Diamandis (bb0130) 2008; 7
Mackenzie, Bigio, Ince, Geser, Neumann, Cairns, Kwong, Forman, Ravits, Stewart, Eisen, McClusky, Kretzschmar, Monoranu, Highley, Kirby, Siddique, Shaw, Lee, Trojanowski (bb0090) 2007; 61
Nakashima-Yasuda, Uryu, Robinson, Xie, Hurtig, Duda, Arnold, Siderowf, Grossman, Leverenz, Woltjer, Lopez, Hamilton, Tsuang, Galasko, Masliah, Kaye, Clark, Montine, Lee, Trojanowski (bb0100) 2007; 114
Lomen-Hoerth (bb0085) 2011; 45
Yang, Gupta, Kim, Powers, Cerqueira, Wainger, Ngo, Rosowski, Schein, Ackeifi, Arvanites, Davidow, Woolf, Rubin (bb0160) 2013; 12
Arai, Hasegawa, Akiyama, Ikeda, Nonaka, Mori, Mann, Tsuchiya, Yoshida, Hashizume, Oda (bb0010) 2006; 351
Takahashi, Yamanaka (bb0150) 2006; 126
Takahashi (10.1016/j.mcn.2013.07.007_bb0150) 2006; 126
Neumann (10.1016/j.mcn.2013.07.007_bb0110) 2007; 64
Higashi (10.1016/j.mcn.2013.07.007_bb0070) 2007; 1184
Bilican (10.1016/j.mcn.2013.07.007_bb0030) 2012; 109
Rohrer (10.1016/j.mcn.2013.07.007_bb0135) 2010; 75
Maekawa (10.1016/j.mcn.2013.07.007_bb0095) 2009; 29
Arai (10.1016/j.mcn.2013.07.007_bb0015) 2010; 30
Prassas (10.1016/j.mcn.2013.07.007_bb0130) 2008; 7
Arlotta (10.1016/j.mcn.2013.07.007_bb0020) 2005; 45
Piccioni (10.1016/j.mcn.2013.07.007_bb0125) 2004; 13
Neumann (10.1016/j.mcn.2013.07.007_bb0115) 2006; 314
Chambers (10.1016/j.mcn.2013.07.007_bb0045) 2009; 27
Kabashi (10.1016/j.mcn.2013.07.007_bb0080) 2008; 40
Nakashima-Yasuda (10.1016/j.mcn.2013.07.007_bb0100) 2007; 114
Sephton (10.1016/j.mcn.2013.07.007_bb0140) 2010; 285
Pasinelli (10.1016/j.mcn.2013.07.007_bb0120) 2006; 7
Yang (10.1016/j.mcn.2013.07.007_bb0160) 2013; 12
Cairns (10.1016/j.mcn.2013.07.007_bb0040) 2007; 171
Bodansky (10.1016/j.mcn.2013.07.007_bb0035) 2010; 11
Dimos (10.1016/j.mcn.2013.07.007_bb0060) 2008; 321
Amador-Ortiz (10.1016/j.mcn.2013.07.007_bb0005) 2007; 61
Inukai (10.1016/j.mcn.2013.07.007_bb0075) 2008; 582
Sreedharan (10.1016/j.mcn.2013.07.007_bb0145) 2008; 319
Egawa (10.1016/j.mcn.2013.07.007_bb0065) 2012; 4
Arai (10.1016/j.mcn.2013.07.007_bb0010) 2006; 351
Lomen-Hoerth (10.1016/j.mcn.2013.07.007_bb0085) 2011; 45
Barmada (10.1016/j.mcn.2013.07.007_bb0025) 2010; 30
Neumann (10.1016/j.mcn.2013.07.007_bb0105) 2009; 117
Corcoran (10.1016/j.mcn.2013.07.007_bb0055) 2004; 14
Van Deerlin (10.1016/j.mcn.2013.07.007_bb0155) 2008; 7
Collins (10.1016/j.mcn.2013.07.007_bb0050) 2012; 124
Mackenzie (10.1016/j.mcn.2013.07.007_bb0090) 2007; 61
17084815 - Biochem Biophys Res Commun. 2006 Dec 22;351(3):602-11
19496940 - Neuropathology. 2009 Dec;29(6):672-83
21172843 - Neurology. 2010 Dec 14;75(24):2204-11
21971978 - J Mol Neurosci. 2011 Nov;45(3):656-62
18669821 - Science. 2008 Aug 29;321(5893):1218-21
22855461 - Sci Transl Med. 2012 Aug 1;4(145):145ra104
17023659 - Science. 2006 Oct 6;314(5796):130-3
17923623 - Arch Neurol. 2007 Oct;64(10):1388-94
22451909 - Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5803-8
20225928 - Amyotroph Lateral Scler. 2010 May 3;11(3):321-7
14709594 - Hum Mol Genet. 2004 Feb 15;13(4):437-46
17591968 - Am J Pathol. 2007 Jul;171(1):227-40
18948999 - Nat Rev Drug Discov. 2008 Nov;7(11):926-35
19252484 - Nat Biotechnol. 2009 Mar;27(3):275-80
18656473 - FEBS Lett. 2008 Aug 20;582(19):2899-904
20071528 - J Neurosci. 2010 Jan 13;30(2):639-49
19125255 - Acta Neuropathol. 2009 Feb;117(2):137-49
22993125 - Acta Neuropathol. 2012 Nov;124(5):717-32
16904174 - Cell. 2006 Aug 25;126(4):663-76
15664173 - Neuron. 2005 Jan 20;45(2):207-21
20040602 - J Biol Chem. 2010 Feb 26;285(9):6826-34
16924260 - Nat Rev Neurosci. 2006 Sep;7(9):710-23
17469116 - Ann Neurol. 2007 May;61(5):427-34
17469117 - Ann Neurol. 2007 May;61(5):435-45
17653732 - Acta Neuropathol. 2007 Sep;114(3):221-9
18372902 - Nat Genet. 2008 May;40(5):572-4
15043813 - Curr Biol. 2004 Mar 23;14(6):488-92
18309045 - Science. 2008 Mar 21;319(5870):1668-72
20102522 - Neuropathology. 2010 Apr;30(2):170-81
17963732 - Brain Res. 2007 Dec 12;1184:284-94
18396105 - Lancet Neurol. 2008 May;7(5):409-16
23602540 - Cell Stem Cell. 2013 Jun 6;12(6):713-26
References_xml – volume: 124
  start-page: 717
  year: 2012
  end-page: 732
  ident: bb0050
  article-title: The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients
  publication-title: Acta Neuropathol.
– volume: 30
  start-page: 639
  year: 2010
  end-page: 649
  ident: bb0025
  article-title: Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis
  publication-title: J. Neurosci.
– volume: 61
  start-page: 427
  year: 2007
  end-page: 434
  ident: bb0090
  article-title: Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations
  publication-title: Ann. Neurol.
– volume: 30
  start-page: 170
  year: 2010
  end-page: 181
  ident: bb0015
  article-title: Phosphorylated and cleaved TDP-43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP-43 proteinopathy
  publication-title: Neuropathology
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bb0150
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 27
  start-page: 275
  year: 2009
  end-page: 280
  ident: bb0045
  article-title: Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling
  publication-title: Nat. Biotechnol.
– volume: 40
  start-page: 572
  year: 2008
  end-page: 574
  ident: bb0080
  article-title: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis
  publication-title: Nat. Genet.
– volume: 114
  start-page: 221
  year: 2007
  end-page: 229
  ident: bb0100
  article-title: Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases
  publication-title: Acta Neuropathol.
– volume: 351
  start-page: 602
  year: 2006
  end-page: 611
  ident: bb0010
  article-title: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 45
  start-page: 207
  year: 2005
  end-page: 221
  ident: bb0020
  article-title: Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo
  publication-title: Neuron
– volume: 319
  start-page: 1668
  year: 2008
  end-page: 1672
  ident: bb0145
  article-title: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis
  publication-title: Science
– volume: 321
  start-page: 1218
  year: 2008
  end-page: 1221
  ident: bb0060
  article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons
  publication-title: Science
– volume: 61
  start-page: 435
  year: 2007
  end-page: 445
  ident: bb0005
  article-title: TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease
  publication-title: Ann. Neurol.
– volume: 1184
  start-page: 284
  year: 2007
  end-page: 294
  ident: bb0070
  article-title: Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies
  publication-title: Brain Res.
– volume: 12
  start-page: 1
  year: 2013
  end-page: 14
  ident: bb0160
  article-title: A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 710
  year: 2006
  end-page: 723
  ident: bb0120
  article-title: Molecular biology of amyotrophic lateral sclerosis: insights from genetics
  publication-title: Nat. Rev. Neurosci.
– volume: 13
  start-page: 437
  year: 2004
  end-page: 446
  ident: bb0125
  article-title: A screen for drugs that protect against the cytotoxicity of polyglutamine-expanded androgen receptor
  publication-title: Hum. Mol. Genet.
– volume: 4
  year: 2012
  ident: bb0065
  article-title: Drug screening for ALS using patient-specific induced pluripotent stem cells
  publication-title: Sci. Transl. Med.
– volume: 64
  start-page: 1388
  year: 2007
  end-page: 1394
  ident: bb0110
  article-title: TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis
  publication-title: Arch. Neurol.
– volume: 45
  start-page: 656
  year: 2011
  end-page: 662
  ident: bb0085
  article-title: Clinical phenomenology and neuroimaging correlates in ALS-FTD
  publication-title: J. Mol. Neurosci.
– volume: 7
  start-page: 926
  year: 2008
  end-page: 935
  ident: bb0130
  article-title: Novel therapeutic applications of cardiac glycosides
  publication-title: Nat. Rev. Drug. Discov.
– volume: 29
  start-page: 672
  year: 2009
  end-page: 683
  ident: bb0095
  article-title: TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations
  publication-title: Neuropathology
– volume: 75
  start-page: 2204
  year: 2010
  end-page: 2211
  ident: bb0135
  article-title: TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia
  publication-title: Neurology
– volume: 109
  start-page: 5803
  year: 2012
  end-page: 5808
  ident: bb0030
  article-title: Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 314
  start-page: 130
  year: 2006
  end-page: 133
  ident: bb0115
  article-title: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Science
– volume: 582
  start-page: 2899
  year: 2008
  end-page: 2904
  ident: bb0075
  article-title: Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS
  publication-title: FEBS Lett.
– volume: 14
  start-page: 488
  year: 2004
  end-page: 492
  ident: bb0055
  article-title: A novel action of histone deacetylase inhibitors in a protein aggresome disease model
  publication-title: Curr. Biol.
– volume: 7
  start-page: 409
  year: 2008
  end-page: 416
  ident: bb0155
  article-title: TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis
  publication-title: Lancet Neurol.
– volume: 11
  start-page: 321
  year: 2010
  end-page: 327
  ident: bb0035
  article-title: TDP-43 and ubiquitinated cytoplasmic aggregates in sporadic ALS are low frequency and widely distributed in the lower motor neuron columns independent of disease spread
  publication-title: Amyotroph. Lateral Scler.
– volume: 117
  start-page: 137
  year: 2009
  end-page: 149
  ident: bb0105
  article-title: Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies
  publication-title: Acta Neuropathol.
– volume: 285
  start-page: 6826
  year: 2010
  end-page: 6834
  ident: bb0140
  article-title: TDP-43 is a developmentally regulated protein essential for early embryonic development
  publication-title: J. Biol. Chem.
– volume: 171
  start-page: 227
  year: 2007
  end-page: 240
  ident: bb0040
  article-title: TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions
  publication-title: Am. J. Pathol.
– volume: 14
  start-page: 488
  year: 2004
  ident: 10.1016/j.mcn.2013.07.007_bb0055
  article-title: A novel action of histone deacetylase inhibitors in a protein aggresome disease model
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.03.003
– volume: 11
  start-page: 321
  year: 2010
  ident: 10.1016/j.mcn.2013.07.007_bb0035
  article-title: TDP-43 and ubiquitinated cytoplasmic aggregates in sporadic ALS are low frequency and widely distributed in the lower motor neuron columns independent of disease spread
  publication-title: Amyotroph. Lateral Scler.
  doi: 10.3109/17482961003602363
– volume: 582
  start-page: 2899
  year: 2008
  ident: 10.1016/j.mcn.2013.07.007_bb0075
  article-title: Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2008.07.027
– volume: 45
  start-page: 207
  year: 2005
  ident: 10.1016/j.mcn.2013.07.007_bb0020
  article-title: Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.12.036
– volume: 75
  start-page: 2204
  year: 2010
  ident: 10.1016/j.mcn.2013.07.007_bb0135
  article-title: TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318202038c
– volume: 13
  start-page: 437
  year: 2004
  ident: 10.1016/j.mcn.2013.07.007_bb0125
  article-title: A screen for drugs that protect against the cytotoxicity of polyglutamine-expanded androgen receptor
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddh045
– volume: 27
  start-page: 275
  year: 2009
  ident: 10.1016/j.mcn.2013.07.007_bb0045
  article-title: Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1529
– volume: 29
  start-page: 672
  year: 2009
  ident: 10.1016/j.mcn.2013.07.007_bb0095
  article-title: TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations
  publication-title: Neuropathology
  doi: 10.1111/j.1440-1789.2009.01029.x
– volume: 1184
  start-page: 284
  year: 2007
  ident: 10.1016/j.mcn.2013.07.007_bb0070
  article-title: Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2007.09.048
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.mcn.2013.07.007_bb0150
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 7
  start-page: 409
  year: 2008
  ident: 10.1016/j.mcn.2013.07.007_bb0155
  article-title: TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70071-1
– volume: 12
  start-page: 1
  year: 2013
  ident: 10.1016/j.mcn.2013.07.007_bb0160
  article-title: A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.04.003
– volume: 7
  start-page: 710
  year: 2006
  ident: 10.1016/j.mcn.2013.07.007_bb0120
  article-title: Molecular biology of amyotrophic lateral sclerosis: insights from genetics
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1971
– volume: 117
  start-page: 137
  year: 2009
  ident: 10.1016/j.mcn.2013.07.007_bb0105
  article-title: Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-008-0477-9
– volume: 61
  start-page: 435
  year: 2007
  ident: 10.1016/j.mcn.2013.07.007_bb0005
  article-title: TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21154
– volume: 30
  start-page: 639
  issue: 2
  year: 2010
  ident: 10.1016/j.mcn.2013.07.007_bb0025
  article-title: Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4988-09.2010
– volume: 109
  start-page: 5803
  year: 2012
  ident: 10.1016/j.mcn.2013.07.007_bb0030
  article-title: Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1202922109
– volume: 314
  start-page: 130
  year: 2006
  ident: 10.1016/j.mcn.2013.07.007_bb0115
  article-title: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Science
  doi: 10.1126/science.1134108
– volume: 45
  start-page: 656
  year: 2011
  ident: 10.1016/j.mcn.2013.07.007_bb0085
  article-title: Clinical phenomenology and neuroimaging correlates in ALS-FTD
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-011-9636-x
– volume: 4
  year: 2012
  ident: 10.1016/j.mcn.2013.07.007_bb0065
  article-title: Drug screening for ALS using patient-specific induced pluripotent stem cells
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3004052
– volume: 61
  start-page: 427
  year: 2007
  ident: 10.1016/j.mcn.2013.07.007_bb0090
  article-title: Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21147
– volume: 171
  start-page: 227
  year: 2007
  ident: 10.1016/j.mcn.2013.07.007_bb0040
  article-title: TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2007.070182
– volume: 124
  start-page: 717
  year: 2012
  ident: 10.1016/j.mcn.2013.07.007_bb0050
  article-title: The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-012-1045-x
– volume: 40
  start-page: 572
  year: 2008
  ident: 10.1016/j.mcn.2013.07.007_bb0080
  article-title: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis
  publication-title: Nat. Genet.
  doi: 10.1038/ng.132
– volume: 319
  start-page: 1668
  year: 2008
  ident: 10.1016/j.mcn.2013.07.007_bb0145
  article-title: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis
  publication-title: Science
  doi: 10.1126/science.1154584
– volume: 30
  start-page: 170
  year: 2010
  ident: 10.1016/j.mcn.2013.07.007_bb0015
  article-title: Phosphorylated and cleaved TDP-43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP-43 proteinopathy
  publication-title: Neuropathology
  doi: 10.1111/j.1440-1789.2009.01089.x
– volume: 351
  start-page: 602
  year: 2006
  ident: 10.1016/j.mcn.2013.07.007_bb0010
  article-title: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.10.093
– volume: 321
  start-page: 1218
  year: 2008
  ident: 10.1016/j.mcn.2013.07.007_bb0060
  article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons
  publication-title: Science
  doi: 10.1126/science.1158799
– volume: 7
  start-page: 926
  year: 2008
  ident: 10.1016/j.mcn.2013.07.007_bb0130
  article-title: Novel therapeutic applications of cardiac glycosides
  publication-title: Nat. Rev. Drug. Discov.
  doi: 10.1038/nrd2682
– volume: 64
  start-page: 1388
  year: 2007
  ident: 10.1016/j.mcn.2013.07.007_bb0110
  article-title: TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.64.10.1388
– volume: 285
  start-page: 6826
  year: 2010
  ident: 10.1016/j.mcn.2013.07.007_bb0140
  article-title: TDP-43 is a developmentally regulated protein essential for early embryonic development
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.061846
– volume: 114
  start-page: 221
  year: 2007
  ident: 10.1016/j.mcn.2013.07.007_bb0100
  article-title: Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-007-0261-2
– reference: 18309045 - Science. 2008 Mar 21;319(5870):1668-72
– reference: 17469116 - Ann Neurol. 2007 May;61(5):427-34
– reference: 18669821 - Science. 2008 Aug 29;321(5893):1218-21
– reference: 17591968 - Am J Pathol. 2007 Jul;171(1):227-40
– reference: 18948999 - Nat Rev Drug Discov. 2008 Nov;7(11):926-35
– reference: 19125255 - Acta Neuropathol. 2009 Feb;117(2):137-49
– reference: 17923623 - Arch Neurol. 2007 Oct;64(10):1388-94
– reference: 22993125 - Acta Neuropathol. 2012 Nov;124(5):717-32
– reference: 23602540 - Cell Stem Cell. 2013 Jun 6;12(6):713-26
– reference: 17963732 - Brain Res. 2007 Dec 12;1184:284-94
– reference: 19496940 - Neuropathology. 2009 Dec;29(6):672-83
– reference: 17084815 - Biochem Biophys Res Commun. 2006 Dec 22;351(3):602-11
– reference: 16924260 - Nat Rev Neurosci. 2006 Sep;7(9):710-23
– reference: 18656473 - FEBS Lett. 2008 Aug 20;582(19):2899-904
– reference: 17653732 - Acta Neuropathol. 2007 Sep;114(3):221-9
– reference: 21172843 - Neurology. 2010 Dec 14;75(24):2204-11
– reference: 15043813 - Curr Biol. 2004 Mar 23;14(6):488-92
– reference: 17023659 - Science. 2006 Oct 6;314(5796):130-3
– reference: 20225928 - Amyotroph Lateral Scler. 2010 May 3;11(3):321-7
– reference: 21971978 - J Mol Neurosci. 2011 Nov;45(3):656-62
– reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76
– reference: 18396105 - Lancet Neurol. 2008 May;7(5):409-16
– reference: 22855461 - Sci Transl Med. 2012 Aug 1;4(145):145ra104
– reference: 22451909 - Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5803-8
– reference: 14709594 - Hum Mol Genet. 2004 Feb 15;13(4):437-46
– reference: 18372902 - Nat Genet. 2008 May;40(5):572-4
– reference: 20102522 - Neuropathology. 2010 Apr;30(2):170-81
– reference: 19252484 - Nat Biotechnol. 2009 Mar;27(3):275-80
– reference: 17469117 - Ann Neurol. 2007 May;61(5):435-45
– reference: 20071528 - J Neurosci. 2010 Jan 13;30(2):639-49
– reference: 20040602 - J Biol Chem. 2010 Feb 26;285(9):6826-34
– reference: 15664173 - Neuron. 2005 Jan 20;45(2):207-21
SSID ssj0005293
Score 2.5291693
Snippet Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 355
SubjectTerms ALS
Amyotrophic Lateral Sclerosis - metabolism
Amyotrophic Lateral Sclerosis - pathology
Case-Control Studies
Cell Differentiation
Cellular Reprogramming
Digoxin
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Drug screening
Fibroblasts - cytology
Fibroblasts - metabolism
Fibroblasts - pathology
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - pathology
iPS
Motor Neurons - cytology
Motor Neurons - metabolism
Motor Neurons - pathology
TDP-43
Title A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells
URI https://dx.doi.org/10.1016/j.mcn.2013.07.007
https://www.ncbi.nlm.nih.gov/pubmed/23891805
https://www.proquest.com/docview/1443415610
https://www.proquest.com/docview/1627968321
https://pubmed.ncbi.nlm.nih.gov/PMC4772428
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4huHBZLe_ykpHQHpBC83Ds5BghUHleWBC3KH4EiiCtoEXiwm9nxkkqyqIe9la1dpV4Jp75Mp-_AdiPJFpam9iLilB4XKfaU7EiJcxSYy4nfSXocPLllejd8LO7-G4OjtqzMESrbPb-ek93u3XzTbdZze6w3-9eI5DgFP-oIEOOSifYuSQvP_z4SvNIa5I95x6NbiubjuP1rEkCNYicfid1lP05Nv2be36nUH6JSSe_4VeTTLKsvt4lmLPVMqxkFQLp53f2hzl6p3tvvgK3GaOX9MQ6Za79DcN0lRGoLUxfs-zimhEH_p41SqueQd98s4YhaEfzGzZ8GuMGM8Ace8RI_dn93esq3Jwc_z3qeU1TBU_zhI-8kAtb-iYQZRLpQksZx4kxQWSsiYvEt1zqAj8g7NKatOmUsiVOkaZQqcGIF63BfDWo7AYwRdplqTCllYpHVqVcBZYHVGxMjYiDDvjtcua6URynxhdPeUste8zRAjlZIPepDi47cDCZMqzlNmYN5q2N8imfyTEczJq219ozx2eJFquo7GD8ijCIRwRoA3_GGBHKVFB_pw6s1z4wudKQir6JH3dATnnHZABpeU__UvUfnKY3R5SDSHDz_25pCxZD16aDuG_bMD96GdsdTJZGatc9DbuwkJ2e964-ATtxFLo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9AAXVCiPQAuLhDggWfFjH_bRqlqlNM2lLept5X24BLVORBMk_j0zaztqAOXALXJ2LXtnvDOf5_M3AB8zhZa2TkRZlcqI28JGRhhSwqwt5nIqNpI-Tj6fyvEV_3ItrnfgqP8WhmiV3d7f7ulht-6OjLrVHC1ms9EFAglO8Y8KMuSoj2CX1KnEAHbL07Px9AHTo2h59pxHNKEvbgaa150lFdQkCxKe1FT23-Hp7_TzTxblg7B0sgdPu3ySle0lP4Md3zyH_bJBLH33i31igeEZXp3vw9eS0Xt6Ip6y0AGHYcbKCNdWbmZZOblgRIO_YZ3YauTQPX96xxC3owc4trhd4R4zxzR7yUgAOpzu_gVcnRxfHo2jrq9CZHnOl1HKpa9jl8g6z2xllRIidy7JnHeiymPPla3wByIva0mezhhf4xTlKlM4DHrZSxg088a_BmZIvqyQrvbK8MybgpvE84TqjYWTIhlC3C-ntp3oOPW-uNU9u-y7RgtosoCOqRSuhvB5PWXRKm5sG8x7G-kNt9EYEbZN-9DbU-PjRItVNX6-ukckxDPCtEm8ZYxMVSGpxdMQXrU-sL7SlOq-eSyGoDa8Yz2A5Lw3_2lm34KsN0egg2Dwzf_d0nt4PL48n-jJ6fTsLTxJQ9cOosIdwGD5Y-UPMXdamnfds_EbpOkXaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cellular+model+for+sporadic+ALS+using+patient-derived+induced+pluripotent+stem+cells&rft.jtitle=Molecular+and+cellular+neuroscience&rft.au=Burkhardt%2C+Matthew+F&rft.au=Martinez%2C+Fernando+J&rft.au=Wright%2C+Sarah&rft.au=Ramos%2C+Carla&rft.date=2013-09-01&rft.eissn=1095-9327&rft.volume=56&rft.spage=355&rft_id=info:doi/10.1016%2Fj.mcn.2013.07.007&rft_id=info%3Apmid%2F23891805&rft.externalDocID=23891805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-7431&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-7431&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-7431&client=summon