A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis

During the last 3 years, a number of approaches for the normalization of RNA sequencing data have emerged in the literature, differing both in the type of bias adjustment and in the statistical strategy adopted. However, as data continue to accumulate, there has been no clear consensus on the approp...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 14; no. 6; pp. 671 - 683
Main Authors Dillies, M.-A., Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Servant, N., Keime, C., Marot, G., Castel, D., Estelle, J., Guernec, G., Jagla, B., Jouneau, L., Laloe, D., Le Gall, C., Schaeffer, B., Le Crom, S., Guedj, M., Jaffrezic, F.
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.11.2013
Oxford University Press (OUP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During the last 3 years, a number of approaches for the normalization of RNA sequencing data have emerged in the literature, differing both in the type of bias adjustment and in the statistical strategy adopted. However, as data continue to accumulate, there has been no clear consensus on the appropriate normalization method to be used or the impact of a chosen method on the downstream analysis. In this work, we focus on a comprehensive comparison of seven recently proposed normalization methods for the differential analysis of RNA-seq data, with an emphasis on the use of varied real and simulated datasets involving different species and experimental designs to represent data characteristics commonly observed in practice. Based on this comparison study, we propose practical recommendations on the appropriate normalization method to be used and its impact on the differential analysis of RNA-seq data.
AbstractList During the last 3 years, a number of approaches for the normalization of RNA sequencing data have emerged in the literature, differing both in the type of bias adjustment and in the statistical strategy adopted. However, as data continue to accumulate, there has been no clear consensus on the appropriate normalization method to be used or the impact of a chosen method on the downstream analysis. In this work, we focus on a comprehensive comparison of seven recently proposed normalization methods for the differential analysis of RNA-seq data, with an emphasis on the use of varied real and simulated datasets involving different species and experimental designs to represent data characteristics commonly observed in practice. Based on this comparison study, we propose practical recommendations on the appropriate normalization method to be used and its impact on the differential analysis of RNA-seq data.During the last 3 years, a number of approaches for the normalization of RNA sequencing data have emerged in the literature, differing both in the type of bias adjustment and in the statistical strategy adopted. However, as data continue to accumulate, there has been no clear consensus on the appropriate normalization method to be used or the impact of a chosen method on the downstream analysis. In this work, we focus on a comprehensive comparison of seven recently proposed normalization methods for the differential analysis of RNA-seq data, with an emphasis on the use of varied real and simulated datasets involving different species and experimental designs to represent data characteristics commonly observed in practice. Based on this comparison study, we propose practical recommendations on the appropriate normalization method to be used and its impact on the differential analysis of RNA-seq data.
During the last 3 years, a number of approaches for the normalization of RNA sequencing data have emerged in the literature, differing both in the type of bias adjustment and in the statistical strategy adopted. However, as data continue to accumulate, there has been no clear consensus on the appropriate normalization method to be used or the impact of a chosen method on the downstream analysis. In this work, we focus on a comprehensive comparison of seven recently proposed normalization methods for the differential analysis of RNA-seq data, with an emphasis on the use of varied real and simulated datasets involving different species and experimental designs to represent data characteristics commonly observed in practice. Based on this comparison study, we propose practical recommendations on the appropriate normalization method to be used and its impact on the differential analysis of RNA-seq data.
During the last 3 years, a number of approaches for the normalization of RNA sequencing data have emerged in the literature, differing both in the type of bias adjustment and in the statistical strategy adopted. However, as data continue to accumulate, there has been no clear consensus on the appropriate normalization method to be used or the impact of a chosen method on the downstream analysis. In this work, we focus on a comprehensive comparison of seven recently proposed normalization methods for the differential analysis of RNA-seq data, with an emphasis on the use of varied real and simulated datasets involving different species and experimental designs to represent data characteristics commonly observed in practice. Based on this comparison study, we propose practical recommendations on the appropriate normalization method to be used and its impact on the differential analysis of RNA-seq data. [PUBLICATION ABSTRACT]
Author Le Crom, S.
Castel, D.
Aubert, J.
Jaffrezic, F.
Dillies, M.-A.
Hennequet-Antier, C.
Servant, N.
Rau, A.
Jouneau, L.
Le Gall, C.
Marot, G.
Keime, C.
Estelle, J.
Jagla, B.
Jeanmougin, M.
Laloe, D.
Guedj, M.
Schaeffer, B.
Guernec, G.
Author_xml – sequence: 1
  givenname: M.-A.
  surname: Dillies
  fullname: Dillies, M.-A.
– sequence: 2
  givenname: A.
  surname: Rau
  fullname: Rau, A.
– sequence: 3
  givenname: J.
  surname: Aubert
  fullname: Aubert, J.
– sequence: 4
  givenname: C.
  surname: Hennequet-Antier
  fullname: Hennequet-Antier, C.
– sequence: 5
  givenname: M.
  surname: Jeanmougin
  fullname: Jeanmougin, M.
– sequence: 6
  givenname: N.
  surname: Servant
  fullname: Servant, N.
– sequence: 7
  givenname: C.
  surname: Keime
  fullname: Keime, C.
– sequence: 8
  givenname: G.
  surname: Marot
  fullname: Marot, G.
– sequence: 9
  givenname: D.
  surname: Castel
  fullname: Castel, D.
– sequence: 10
  givenname: J.
  surname: Estelle
  fullname: Estelle, J.
– sequence: 11
  givenname: G.
  surname: Guernec
  fullname: Guernec, G.
– sequence: 12
  givenname: B.
  surname: Jagla
  fullname: Jagla, B.
– sequence: 13
  givenname: L.
  surname: Jouneau
  fullname: Jouneau, L.
– sequence: 14
  givenname: D.
  surname: Laloe
  fullname: Laloe, D.
– sequence: 15
  givenname: C.
  surname: Le Gall
  fullname: Le Gall, C.
– sequence: 16
  givenname: B.
  surname: Schaeffer
  fullname: Schaeffer, B.
– sequence: 17
  givenname: S.
  surname: Le Crom
  fullname: Le Crom, S.
– sequence: 18
  givenname: M.
  surname: Guedj
  fullname: Guedj, M.
– sequence: 19
  givenname: F.
  surname: Jaffrezic
  fullname: Jaffrezic, F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22988256$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-00782486$$DView record in HAL
BookMark eNqN0U1r3DAQBmBRUpqvXvoDiqCXtuBGkvXl4xLSJrC0UNKzGWultYIsbSV7If318cZpDqGHniSGZ4Zh3lN0FFO0CL2j5AslTX3R-e6i6wrh8hU6oVypihPBjw5_qSrBZX2MTku5I4QRpekbdMxYozUT8gQNK2zSsMu2t7H4vcV2D2GC0aeIk8Mx5QGC_7MUBjv2aVOwSxnfhDANPgLu_bavxj6nadvvphH__L7Cxf6ebDQ-bvEGRsAQIdwXX87Raweh2LdP7xn69fXq9vK6Wv_4dnO5WleGaz5W1GnpFBdNp5QwpBGaytp1VirFLHEcwNXANbFE2E7UVAPIjmkHnBqjjK7P0Kdlbg-h3WU_QL5vE_j2erVuDzUyH4JxLfd0th8Xu8tp3rqM7eCLsSFAtGkqLeUNk5QKqf-DCkJ1zerD1A8v6F2a8nyGR9Uwqhkjs3r_pKZusJvnVf_mM4PPCzA5lZKteyaUtIfw2zn8dgl_xuQFNn58TG7M4MO_Wh4Am3-yVg
CitedBy_id crossref_primary_10_3390_life10090185
crossref_primary_10_7717_peerj_3859
crossref_primary_10_1093_bioinformatics_btu003
crossref_primary_10_1016_j_biotechadv_2016_03_001
crossref_primary_10_1071_ZO18005
crossref_primary_10_1080_15384101_2022_2123187
crossref_primary_10_1007_s11738_020_3013_8
crossref_primary_10_1097_TP_0000000000003992
crossref_primary_10_1093_nar_gky129
crossref_primary_10_1371_journal_pone_0294308
crossref_primary_10_1016_j_gdata_2015_05_022
crossref_primary_10_3389_fcimb_2017_00076
crossref_primary_10_1126_sciadv_ade3399
crossref_primary_10_3233_BLC_170144
crossref_primary_10_1186_s12864_016_2584_7
crossref_primary_10_1186_s12864_016_3022_6
crossref_primary_10_1167_iovs_19_26767
crossref_primary_10_1093_bib_bbaa156
crossref_primary_10_1016_j_csbj_2015_08_004
crossref_primary_10_1186_s12859_016_1195_2
crossref_primary_10_1186_s13059_014_0527_7
crossref_primary_10_4137_CIN_S21631
crossref_primary_10_1007_s12275_016_6233_2
crossref_primary_10_1186_s13059_016_0927_y
crossref_primary_10_1093_chemse_bjw003
crossref_primary_10_3389_fgene_2022_838679
crossref_primary_10_3389_fmicb_2016_00794
crossref_primary_10_1186_s12864_025_11357_8
crossref_primary_10_1186_s12863_021_01015_9
crossref_primary_10_1186_s12864_024_10714_3
crossref_primary_10_3390_microorganisms13010051
crossref_primary_10_3389_fcell_2020_602493
crossref_primary_10_4049_jimmunol_2000908
crossref_primary_10_1096_fj_202402497R
crossref_primary_10_3390_v8040111
crossref_primary_10_1186_s12920_023_01601_z
crossref_primary_10_1093_bioinformatics_btx768
crossref_primary_10_1038_s41396_018_0230_x
crossref_primary_10_1111_mec_13945
crossref_primary_10_1371_journal_pone_0191452
crossref_primary_10_1093_bioinformatics_btaa1063
crossref_primary_10_3389_fendo_2023_1021640
crossref_primary_10_1261_rna_053959_115
crossref_primary_10_1093_bib_bbab257
crossref_primary_10_1186_s12575_018_0067_8
crossref_primary_10_1007_s12561_016_9182_8
crossref_primary_10_21508_1027_4065_2022_67_4_5_13
crossref_primary_10_1186_s12859_018_2382_0
crossref_primary_10_1016_j_mam_2019_10_002
crossref_primary_10_1093_bioinformatics_btv377
crossref_primary_10_1186_s13059_015_0604_6
crossref_primary_10_1080_19490976_2023_2244139
crossref_primary_10_1534_g3_116_027995
crossref_primary_10_1038_srep18399
crossref_primary_10_3389_fgene_2024_1417533
crossref_primary_10_1016_j_mineng_2022_107660
crossref_primary_10_1111_gtc_12372
crossref_primary_10_1186_s12864_018_4488_1
crossref_primary_10_3389_fbioe_2019_00358
crossref_primary_10_1093_nar_gku1273
crossref_primary_10_1038_s41598_018_24865_3
crossref_primary_10_1093_bioinformatics_btv124
crossref_primary_10_1161_CIRCRESAHA_121_319300
crossref_primary_10_1186_s12864_016_2442_7
crossref_primary_10_1016_j_compbiomed_2018_10_021
crossref_primary_10_1038_srep33398
crossref_primary_10_1093_bib_bbaa351
crossref_primary_10_3390_horticulturae9080896
crossref_primary_10_1093_nar_gku1042
crossref_primary_10_4014_jmb_2007_07036
crossref_primary_10_1038_s41598_023_41443_4
crossref_primary_10_3390_ijerph18157939
crossref_primary_10_1038_s41596_019_0264_1
crossref_primary_10_1093_molbev_msad078
crossref_primary_10_1016_j_trac_2015_09_011
crossref_primary_10_1016_j_freeradbiomed_2015_07_007
crossref_primary_10_1038_s41598_023_29224_5
crossref_primary_10_1094_PHYTO_01_19_0024_R
crossref_primary_10_1038_s41598_022_10662_6
crossref_primary_10_1093_gbe_evy265
crossref_primary_10_1186_s12864_024_10364_5
crossref_primary_10_1016_j_cca_2023_117683
crossref_primary_10_1182_blood_2014_04_512756
crossref_primary_10_1038_s41467_018_03766_z
crossref_primary_10_1016_j_mam_2024_101269
crossref_primary_10_1186_s13068_015_0407_8
crossref_primary_10_1093_bioinformatics_btw475
crossref_primary_10_1126_science_1253435
crossref_primary_10_1016_j_artmed_2023_102589
crossref_primary_10_1016_j_fsi_2022_03_024
crossref_primary_10_1186_s12859_019_2879_1
crossref_primary_10_1186_s12864_018_4941_1
crossref_primary_10_3389_fmicb_2024_1447485
crossref_primary_10_1016_j_micres_2022_127240
crossref_primary_10_1038_s42003_024_06325_z
crossref_primary_10_1186_s12870_014_0335_y
crossref_primary_10_1016_j_bbagen_2016_04_008
crossref_primary_10_1155_2022_5600190
crossref_primary_10_1111_mec_17265
crossref_primary_10_1186_s13040_017_0150_8
crossref_primary_10_1177_0962280218764187
crossref_primary_10_1016_j_neuroscience_2024_07_002
crossref_primary_10_1093_bioinformatics_btab327
crossref_primary_10_3390_app12125895
crossref_primary_10_1136_jitc_2021_004440
crossref_primary_10_3233_JAD_220120
crossref_primary_10_1038_nmeth_3208
crossref_primary_10_1111_1755_0998_13128
crossref_primary_10_1186_s12859_024_05870_y
crossref_primary_10_1186_1471_2105_15_293
crossref_primary_10_1016_j_tig_2013_05_010
crossref_primary_10_1093_bib_bbaa314
crossref_primary_10_18632_aging_205429
crossref_primary_10_1371_journal_pntd_0005398
crossref_primary_10_3389_fcimb_2022_904606
crossref_primary_10_1093_bioinformatics_btv165
crossref_primary_10_1016_j_neuron_2016_09_026
crossref_primary_10_1007_s00436_021_07251_3
crossref_primary_10_3389_fgene_2016_00164
crossref_primary_10_3390_ijms18081652
crossref_primary_10_1186_s13059_018_1466_5
crossref_primary_10_3389_fpls_2022_815443
crossref_primary_10_1186_s12915_019_0643_7
crossref_primary_10_1038_srep42460
crossref_primary_10_1101_gr_217984_116
crossref_primary_10_1002_evl3_22
crossref_primary_10_1186_s12859_020_03666_4
crossref_primary_10_1016_j_autrev_2023_103314
crossref_primary_10_3390_ijms222111334
crossref_primary_10_1038_s41598_017_03083_3
crossref_primary_10_52547_jsdp_18_2_97
crossref_primary_10_1155_2014_969768
crossref_primary_10_1371_journal_pone_0072918
crossref_primary_10_1080_01621459_2017_1328358
crossref_primary_10_1007_s11103_017_0627_3
crossref_primary_10_3390_ijms23094875
crossref_primary_10_1016_j_dci_2018_02_018
crossref_primary_10_1038_s41598_017_02404_w
crossref_primary_10_1039_C9MO00174C
crossref_primary_10_3389_fpls_2018_00108
crossref_primary_10_1016_j_csbj_2024_11_003
crossref_primary_10_1186_s12864_021_07742_8
crossref_primary_10_1016_j_envexpbot_2021_104555
crossref_primary_10_3389_fmicb_2017_00553
crossref_primary_10_2139_ssrn_3071522
crossref_primary_10_1002_lno_11370
crossref_primary_10_1093_nargab_lqab087
crossref_primary_10_1038_s41522_020_00160_w
crossref_primary_10_3389_fpls_2017_00468
crossref_primary_10_1038_nrg3788
crossref_primary_10_1093_gbe_evu254
crossref_primary_10_1371_journal_pone_0192391
crossref_primary_10_3389_fgene_2020_00594
crossref_primary_10_1111_jfb_13798
crossref_primary_10_1073_pnas_1700231114
crossref_primary_10_1186_s12864_017_3819_y
crossref_primary_10_1111_mec_12680
crossref_primary_10_1093_nar_gkv736
crossref_primary_10_1371_journal_pone_0084920
crossref_primary_10_1016_j_chemosphere_2020_127156
crossref_primary_10_1016_j_celrep_2016_08_060
crossref_primary_10_1371_journal_pone_0197840
crossref_primary_10_15252_msb_202110240
crossref_primary_10_1016_j_tig_2016_02_002
crossref_primary_10_1109_TCBB_2017_2665495
crossref_primary_10_1111_nph_14835
crossref_primary_10_1007_s00299_018_2255_z
crossref_primary_10_1111_mec_13520
crossref_primary_10_1038_s41467_020_17445_5
crossref_primary_10_1371_journal_pone_0114159
crossref_primary_10_1186_s12859_024_05717_6
crossref_primary_10_1098_rsta_2015_0069
crossref_primary_10_1371_journal_pone_0089158
crossref_primary_10_1186_s40748_021_00131_9
crossref_primary_10_1021_pr401249b
crossref_primary_10_3389_fpls_2015_01246
crossref_primary_10_3390_biology13070482
crossref_primary_10_1016_j_cmet_2018_10_007
crossref_primary_10_1186_s12859_017_1498_y
crossref_primary_10_1186_s12862_016_0767_0
crossref_primary_10_1093_nar_gkv711
crossref_primary_10_1002_btpr_2137
crossref_primary_10_1186_s13059_021_02568_9
crossref_primary_10_1093_biostatistics_kxx028
crossref_primary_10_1186_s13007_020_00611_7
crossref_primary_10_1007_s10142_018_0636_6
crossref_primary_10_1371_journal_pcbi_1011447
crossref_primary_10_1186_s12903_024_05201_w
crossref_primary_10_1016_j_celrep_2020_108506
crossref_primary_10_1002_wics_1586
crossref_primary_10_1038_s41598_022_24237_y
crossref_primary_10_1093_nar_gkad429
crossref_primary_10_3389_fphys_2022_937899
crossref_primary_10_3389_fpls_2024_1309762
crossref_primary_10_1016_j_jhazmat_2020_122661
crossref_primary_10_3389_fimmu_2017_00118
crossref_primary_10_1097_MEG_0000000000002349
crossref_primary_10_1101_gr_278822_123
crossref_primary_10_1371_journal_pcbi_1010342
crossref_primary_10_3390_w15010063
crossref_primary_10_5691_jjb_36_63
crossref_primary_10_1111_ahg_12441
crossref_primary_10_1186_s12859_020_03866_y
crossref_primary_10_3390_biology11071019
crossref_primary_10_1186_s12864_021_07775_z
crossref_primary_10_3389_fgene_2023_1143382
crossref_primary_10_3390_f15091621
crossref_primary_10_3390_ani9010004
crossref_primary_10_1186_s12859_015_0847_y
crossref_primary_10_1093_bioinformatics_btx073
crossref_primary_10_3390_biom11101445
crossref_primary_10_1186_s12864_020_6502_7
crossref_primary_10_1186_s12864_016_2546_0
crossref_primary_10_1049_iet_syb_2015_0026
crossref_primary_10_1016_j_parint_2016_10_011
crossref_primary_10_1093_ismejo_wrae234
crossref_primary_10_1016_j_gene_2022_146435
crossref_primary_10_1016_j_ibmb_2016_07_002
crossref_primary_10_3390_ijms23052611
crossref_primary_10_1016_j_envexpbot_2019_03_026
crossref_primary_10_1016_j_intimp_2020_106882
crossref_primary_10_1080_10412905_2025_2470788
crossref_primary_10_1016_j_canlet_2024_216919
crossref_primary_10_1186_s12864_017_3809_0
crossref_primary_10_1186_s12864_019_5753_7
crossref_primary_10_1002_0471142905_hg1113s83
crossref_primary_10_1016_j_gene_2016_08_027
crossref_primary_10_1016_j_jhazmat_2024_133688
crossref_primary_10_1038_s41598_019_42173_2
crossref_primary_10_3389_fgene_2021_823431
crossref_primary_10_1016_j_mocell_2024_100139
crossref_primary_10_3389_fimmu_2022_1039956
crossref_primary_10_1186_s12864_022_08992_w
crossref_primary_10_1002_wcms_1658
crossref_primary_10_14336_AD_2024_0125_1
crossref_primary_10_1016_j_taap_2015_02_013
crossref_primary_10_1016_j_cbd_2016_06_002
crossref_primary_10_3390_cells11223527
crossref_primary_10_1093_bib_bbx104
crossref_primary_10_3390_stats7030059
crossref_primary_10_1186_s13059_024_03303_w
crossref_primary_10_1016_j_fsi_2020_03_005
crossref_primary_10_1371_journal_pone_0206312
crossref_primary_10_1007_s12035_019_01681_y
crossref_primary_10_1016_j_csbj_2024_01_013
crossref_primary_10_1016_j_jff_2023_105591
crossref_primary_10_1038_s41598_021_83345_3
crossref_primary_10_1186_s12859_018_2246_7
crossref_primary_10_1186_s12859_016_1254_8
crossref_primary_10_1093_bioinformatics_bty175
crossref_primary_10_1186_s12859_021_04438_4
crossref_primary_10_1093_nar_gkw734
crossref_primary_10_1111_pbi_12926
crossref_primary_10_1016_j_stem_2024_09_014
crossref_primary_10_1158_1078_0432_CCR_20_2107
crossref_primary_10_1002_widm_1383
crossref_primary_10_1038_s41598_022_23172_2
crossref_primary_10_1038_srep14476
crossref_primary_10_1016_j_scienta_2019_109140
crossref_primary_10_1021_acs_est_8b01066
crossref_primary_10_1111_mec_14591
crossref_primary_10_1007_s00421_023_05167_7
crossref_primary_10_1016_j_isci_2022_105166
crossref_primary_10_1177_1759091415593066
crossref_primary_10_1038_s41419_024_06694_7
crossref_primary_10_1038_srep32975
crossref_primary_10_1093_jac_dkx199
crossref_primary_10_1093_bioinformatics_btz052
crossref_primary_10_1371_journal_pone_0137782
crossref_primary_10_1093_nar_gkw545
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2023046030
crossref_primary_10_1093_bioinformatics_btab091
crossref_primary_10_3390_ijms18061281
crossref_primary_10_1038_s41597_019_0043_4
crossref_primary_10_1093_bioinformatics_btu845
crossref_primary_10_1038_nmeth_4292
crossref_primary_10_1534_g3_115_021022
crossref_primary_10_1094_MPMI_10_18_0275_R
crossref_primary_10_1186_1471_2105_15_S9_S6
crossref_primary_10_3389_fimmu_2019_00261
crossref_primary_10_1007_s00299_018_2318_1
crossref_primary_10_3390_insects15010030
crossref_primary_10_1016_j_ygeno_2015_07_006
crossref_primary_10_1093_ecco_jcc_jjaa236
crossref_primary_10_1371_journal_pcbi_1008890
crossref_primary_10_1080_20013078_2019_1684425
crossref_primary_10_1016_j_jconrel_2023_07_045
crossref_primary_10_1214_17_BA1055
crossref_primary_10_1194_jlr_M090555
crossref_primary_10_1515_sagmb_2014_0018
crossref_primary_10_1186_s12864_015_1406_7
crossref_primary_10_1186_s12967_021_02936_w
crossref_primary_10_1371_journal_pone_0263344
crossref_primary_10_3389_fmicb_2020_00649
crossref_primary_10_1186_s12864_016_2646_x
crossref_primary_10_1016_j_cbd_2020_100716
crossref_primary_10_1038_s41477_023_01545_3
crossref_primary_10_3389_fgene_2021_650795
crossref_primary_10_4137_BBI_S29470
crossref_primary_10_1186_s12864_019_5851_6
crossref_primary_10_1371_journal_pone_0071462
crossref_primary_10_1161_CIRCGENETICS_113_000129
crossref_primary_10_3390_biomedinformatics1020004
crossref_primary_10_1007_s00425_023_04236_7
crossref_primary_10_1111_tpj_17125
crossref_primary_10_1007_s12192_021_01217_1
crossref_primary_10_1186_s12859_019_3070_4
crossref_primary_10_1080_15592294_2020_1789270
crossref_primary_10_1371_journal_pbio_3001909
crossref_primary_10_1109_RBME_2012_2228311
crossref_primary_10_3389_fmicb_2018_00299
crossref_primary_10_1093_bib_bbae241
crossref_primary_10_1177_2211068214561788
crossref_primary_10_1007_s13253_015_0232_3
crossref_primary_10_1038_s41598_017_01299_x
crossref_primary_10_1016_j_genrep_2016_12_011
crossref_primary_10_1093_nar_gkv014
crossref_primary_10_1093_nar_gku166
crossref_primary_10_3390_jof8060637
crossref_primary_10_1016_j_compbiomed_2015_07_029
crossref_primary_10_1007_s00500_022_07515_9
crossref_primary_10_1186_s42523_022_00186_9
crossref_primary_10_1172_jci_insight_98240
crossref_primary_10_4137_BBI_S38193
crossref_primary_10_1038_s41467_018_05627_1
crossref_primary_10_1093_bioinformatics_btz089
crossref_primary_10_1016_j_isci_2022_105102
crossref_primary_10_1155_2014_248090
crossref_primary_10_1093_nar_gkx680
crossref_primary_10_1038_srep46264
crossref_primary_10_4109_jslab_32_123
crossref_primary_10_1007_s10260_019_00496_4
crossref_primary_10_3390_w14213391
crossref_primary_10_1242_dev_098657
crossref_primary_10_1016_j_tplants_2015_06_013
crossref_primary_10_3892_ol_2021_13136
crossref_primary_10_3390_ijerph18157975
crossref_primary_10_1155_2015_621690
crossref_primary_10_1186_1471_2164_15_1008
crossref_primary_10_1007_s12064_016_0224_z
crossref_primary_10_1002_biot_201500107
crossref_primary_10_1016_j_tplants_2013_02_001
crossref_primary_10_1016_j_compbiolchem_2017_10_010
crossref_primary_10_3402_jev_v4_29454
crossref_primary_10_7717_peerj_6710
crossref_primary_10_1016_j_vaccine_2015_04_054
crossref_primary_10_3389_fmicb_2023_1225781
crossref_primary_10_1038_s41559_023_02224_4
crossref_primary_10_3389_fgene_2019_00097
crossref_primary_10_3390_cancers13143470
crossref_primary_10_1186_s12920_020_00767_0
crossref_primary_10_4137_CIN_S13876
crossref_primary_10_1016_j_compbiomed_2021_104603
crossref_primary_10_1111_vco_12863
crossref_primary_10_1093_database_bav019
crossref_primary_10_1093_molbev_msab249
crossref_primary_10_1371_journal_pgen_1005592
crossref_primary_10_1016_j_csda_2016_01_011
crossref_primary_10_2147_IJGM_S439845
crossref_primary_10_1007_s10750_018_3682_0
crossref_primary_10_1186_s40880_015_0040_8
crossref_primary_10_1016_j_scitotenv_2022_153778
crossref_primary_10_1186_1471_2229_13_213
crossref_primary_10_1371_journal_pone_0273766
crossref_primary_10_3168_jds_2019_16397
crossref_primary_10_1038_s41576_019_0150_2
crossref_primary_10_1111_1462_2920_12668
crossref_primary_10_1126_science_aao3526
crossref_primary_10_1186_s13058_016_0710_8
crossref_primary_10_1007_s13592_019_00702_y
crossref_primary_10_1016_j_jprot_2016_05_032
crossref_primary_10_1093_nar_gkaa850
crossref_primary_10_1371_journal_pone_0158899
crossref_primary_10_1186_s12864_019_6261_5
crossref_primary_10_1093_jas_skab346
crossref_primary_10_3389_fgene_2019_00911
crossref_primary_10_1186_s12864_022_08465_0
crossref_primary_10_1080_10618600_2022_2090947
crossref_primary_10_3389_fgene_2021_700489
crossref_primary_10_3390_v13040593
crossref_primary_10_1093_bib_bbab193
crossref_primary_10_1038_s41598_022_15578_9
crossref_primary_10_1186_s13229_015_0040_1
crossref_primary_10_1016_j_jcmgh_2023_04_004
crossref_primary_10_1007_s40484_018_0144_7
crossref_primary_10_1093_bib_bbab194
crossref_primary_10_1007_s10123_024_00536_4
crossref_primary_10_4014_jmb_2201_01034
crossref_primary_10_1038_s41598_020_74567_y
crossref_primary_10_3389_fmars_2021_695236
crossref_primary_10_1038_s41590_017_0005_y
crossref_primary_10_1016_j_toxlet_2016_06_2101
crossref_primary_10_1177_1471082X17706135
crossref_primary_10_1016_j_copbio_2014_06_011
crossref_primary_10_1111_1755_0998_12500
crossref_primary_10_1007_s00280_023_04616_6
crossref_primary_10_1186_s12859_015_0778_7
crossref_primary_10_32707_ercivet_1142293
crossref_primary_10_1038_s41598_017_14084_7
crossref_primary_10_1186_s12920_015_0116_y
crossref_primary_10_1038_s41598_019_42157_2
crossref_primary_10_1089_omi_2013_0010
crossref_primary_10_3389_fgene_2023_1235927
crossref_primary_10_1261_rna_059360_116
crossref_primary_10_1038_s41598_019_42485_3
crossref_primary_10_1186_s12859_015_0763_1
crossref_primary_10_1007_s11427_021_2060_x
crossref_primary_10_1038_s41536_021_00129_z
crossref_primary_10_1080_20013078_2018_1446660
crossref_primary_10_1186_2049_2618_2_15
crossref_primary_10_1160_TH15_05_0411
crossref_primary_10_1093_bioinformatics_btz801
crossref_primary_10_1371_journal_pone_0077885
crossref_primary_10_1186_s12864_016_2508_6
crossref_primary_10_1534_genetics_114_169268
crossref_primary_10_1038_ncomms9878
crossref_primary_10_1093_nar_gky258
crossref_primary_10_1038_s41437_018_0136_4
crossref_primary_10_1016_j_psyneuen_2019_104468
crossref_primary_10_1186_s12864_016_3417_4
crossref_primary_10_3390_ijms17122125
crossref_primary_10_1038_s43586_022_00188_6
crossref_primary_10_1038_s41598_018_23069_z
crossref_primary_10_1128_AEM_00185_16
crossref_primary_10_1016_j_freeradbiomed_2019_08_010
crossref_primary_10_1016_j_csbj_2020_05_018
crossref_primary_10_1186_s12859_024_05801_x
crossref_primary_10_7717_peerj_576
crossref_primary_10_1016_j_csbj_2020_05_010
crossref_primary_10_1016_j_jprot_2018_03_032
crossref_primary_10_1186_1471_2105_16_S9_S2
crossref_primary_10_3389_fmicb_2023_1217750
crossref_primary_10_1038_srep46318
crossref_primary_10_3389_fnmol_2017_00045
crossref_primary_10_1186_s12859_018_2261_8
crossref_primary_10_1111_biom_12516
crossref_primary_10_1111_tpj_15666
crossref_primary_10_1111_tpj_16513
crossref_primary_10_1186_1754_6834_6_179
crossref_primary_10_1186_1471_2105_15_79
crossref_primary_10_1007_s11676_018_0773_8
crossref_primary_10_1038_s41598_024_75864_6
crossref_primary_10_1186_s12920_019_0538_z
crossref_primary_10_1002_1878_0261_12669
crossref_primary_10_1111_2041_210X_13582
crossref_primary_10_1038_s41598_017_02325_8
crossref_primary_10_1038_s41598_017_02073_9
crossref_primary_10_1093_bioinformatics_btab645
crossref_primary_10_1002_vms3_859
crossref_primary_10_3390_ijms21010167
crossref_primary_10_3390_v13122409
crossref_primary_10_3389_fpls_2016_00348
crossref_primary_10_1182_bloodadvances_2017006668
crossref_primary_10_1214_17_AOAS1123
crossref_primary_10_1016_j_plgene_2020_100257
crossref_primary_10_1093_bib_bbab573
crossref_primary_10_1093_bioinformatics_btab641
crossref_primary_10_1093_bioinformatics_btv253
crossref_primary_10_1038_s41392_022_00990_4
crossref_primary_10_1111_2041_210X_13115
crossref_primary_10_1186_s12864_015_2353_z
crossref_primary_10_7554_eLife_15657
crossref_primary_10_1534_g3_118_200174
crossref_primary_10_1016_j_cbd_2019_100601
crossref_primary_10_1093_jxb_eraa221
crossref_primary_10_1111_acel_12283
crossref_primary_10_3389_fpls_2014_00213
crossref_primary_10_4137_BBI_S12467
crossref_primary_10_1109_TCBB_2015_2485223
crossref_primary_10_1186_s13059_025_03525_6
crossref_primary_10_1016_j_livsci_2014_04_028
crossref_primary_10_1371_journal_pbio_3000481
crossref_primary_10_1155_2016_4305252
crossref_primary_10_1371_journal_ppat_1006033
crossref_primary_10_1186_s12864_021_07563_9
crossref_primary_10_1111_gbb_12007
crossref_primary_10_1016_j_exer_2018_01_009
crossref_primary_10_1093_bioinformatics_btx210
crossref_primary_10_1093_bioinformatics_bty783
crossref_primary_10_1186_s12864_018_4487_2
crossref_primary_10_1016_j_mib_2014_11_011
crossref_primary_10_1093_bib_bbab345
crossref_primary_10_1093_dnares_dsy011
crossref_primary_10_1016_j_plantsci_2019_110383
crossref_primary_10_1038_s41598_024_57670_2
crossref_primary_10_48130_forres_0024_0017
crossref_primary_10_1016_j_jphotobiol_2022_112550
crossref_primary_10_3389_ffunb_2021_768648
crossref_primary_10_3389_fpls_2016_01403
crossref_primary_10_1093_bib_bbab343
crossref_primary_10_1186_s12859_020_3450_9
crossref_primary_10_1002_wrna_1274
crossref_primary_10_3389_fmolb_2024_1499220
crossref_primary_10_1371_journal_pntd_0005209
crossref_primary_10_3390_genes10121042
crossref_primary_10_1016_j_csbj_2023_11_012
crossref_primary_10_1021_acs_jproteome_7b00646
crossref_primary_10_1111_pedi_13207
crossref_primary_10_1371_journal_pone_0116008
crossref_primary_10_1371_journal_pone_0242382
crossref_primary_10_1186_s13007_019_0440_x
crossref_primary_10_1038_s41467_019_14184_0
crossref_primary_10_1186_2049_1891_5_32
crossref_primary_10_1186_s12864_017_3916_y
crossref_primary_10_1016_j_ncrna_2025_03_003
crossref_primary_10_1093_bfgp_elu035
crossref_primary_10_3389_fgene_2018_00588
crossref_primary_10_1038_s41598_021_96046_8
crossref_primary_10_1136_jitc_2021_004335
crossref_primary_10_3389_fmicb_2020_570903
crossref_primary_10_1016_j_bbalip_2018_02_001
crossref_primary_10_1093_nar_gku976
crossref_primary_10_1186_1471_2164_16_S6_S2
crossref_primary_10_1128_AEM_02312_19
crossref_primary_10_21769_BioProtoc_4161
crossref_primary_10_1038_nbt_2931
crossref_primary_10_1186_s12859_015_0794_7
crossref_primary_10_1093_bib_bby045
crossref_primary_10_3389_fgene_2021_644091
crossref_primary_10_1007_s12094_022_02944_2
crossref_primary_10_1093_bioinformatics_btx017
crossref_primary_10_1016_j_semcdb_2017_07_030
crossref_primary_10_1186_s12864_018_4637_6
crossref_primary_10_1371_journal_pone_0182694
crossref_primary_10_1002_ece3_7083
crossref_primary_10_1186_s12859_016_1208_1
crossref_primary_10_1371_journal_pone_0201813
crossref_primary_10_18632_oncotarget_7364
crossref_primary_10_3168_jds_2018_15516
crossref_primary_10_1111_mec_14522
crossref_primary_10_18632_oncotarget_28690
crossref_primary_10_3390_ijms21051720
crossref_primary_10_18632_aging_203588
crossref_primary_10_1038_srep16946
crossref_primary_10_1016_j_plgene_2016_11_006
crossref_primary_10_1021_acs_jafc_9b02295
crossref_primary_10_1038_s41598_018_21587_4
crossref_primary_10_1093_nar_gkv806
crossref_primary_10_1016_j_plantsci_2017_01_005
crossref_primary_10_1016_j_heliyon_2019_e03079
crossref_primary_10_1016_j_margen_2018_05_005
crossref_primary_10_1038_nbt_2957
crossref_primary_10_1021_pr401106h
crossref_primary_10_1186_s12859_023_05147_w
crossref_primary_10_1186_s12864_015_1503_7
crossref_primary_10_1007_s00253_021_11563_w
crossref_primary_10_18632_oncotarget_1822
crossref_primary_10_1109_TCBB_2017_2770120
crossref_primary_10_1186_1471_2105_15_188
crossref_primary_10_1097_HCO_0000000000000275
crossref_primary_10_1101_gr_184168_114
crossref_primary_10_1093_bioinformatics_btaa153
crossref_primary_10_1002_bit_26847
crossref_primary_10_1016_j_freeradbiomed_2015_01_004
crossref_primary_10_3389_fpls_2018_00004
crossref_primary_10_1534_genetics_115_182311
crossref_primary_10_1186_s40537_024_00902_z
crossref_primary_10_1142_S0219720015500109
crossref_primary_10_1093_molbev_msw096
crossref_primary_10_1109_TCBB_2018_2790918
crossref_primary_10_1186_s12864_021_07369_9
crossref_primary_10_1371_journal_pntd_0005067
crossref_primary_10_1371_journal_pntd_0006152
crossref_primary_10_2119_molmed_2016_00078
crossref_primary_10_1093_nar_gkw953
crossref_primary_10_1016_j_gene_2017_04_023
crossref_primary_10_3389_fgene_2019_01207
crossref_primary_10_1038_s42003_018_0059_x
crossref_primary_10_3389_fmicb_2016_00459
crossref_primary_10_1111_php_14003
crossref_primary_10_1093_bib_bbx153
crossref_primary_10_1002_ajhb_23784
crossref_primary_10_1016_j_gene_2015_01_002
crossref_primary_10_3390_plants12162894
crossref_primary_10_7554_eLife_78216
crossref_primary_10_3389_fgene_2022_833989
crossref_primary_10_1016_j_yrtph_2015_04_010
crossref_primary_10_3390_cells13171502
crossref_primary_10_1186_s12859_017_1912_5
crossref_primary_10_1038_s41598_018_37669_2
crossref_primary_10_1093_gbe_evx218
crossref_primary_10_3390_fishes7040152
crossref_primary_10_1093_nargab_lqaa093
crossref_primary_10_1186_s12864_015_1767_y
crossref_primary_10_3389_fgene_2020_00041
crossref_primary_10_1016_j_bbagrm_2024_195058
crossref_primary_10_3389_fpls_2023_1210046
crossref_primary_10_1016_j_tiv_2016_09_013
crossref_primary_10_3390_ijms24108671
crossref_primary_10_1177_2515841419835460
crossref_primary_10_1186_s12870_021_02993_9
crossref_primary_10_3389_fonc_2021_779042
crossref_primary_10_1200_CCI_19_00118
crossref_primary_10_7554_eLife_02510
crossref_primary_10_1186_s12864_017_4251_z
crossref_primary_10_1371_journal_pone_0094839
crossref_primary_10_4142_jvs_2018_19_1_99
crossref_primary_10_1038_srep45674
crossref_primary_10_1128_mBio_02302_20
crossref_primary_10_3390_insects15080612
crossref_primary_10_1186_s12859_014_0397_8
crossref_primary_10_1016_j_phytochem_2022_113419
crossref_primary_10_1261_rna_074922_120
crossref_primary_10_1038_jhg_2015_123
crossref_primary_10_1038_s41598_020_76881_x
crossref_primary_10_1093_bib_bbx008
crossref_primary_10_3389_fmicb_2022_963218
crossref_primary_10_1016_j_scitotenv_2019_02_281
crossref_primary_10_1186_s12859_019_3247_x
crossref_primary_10_1016_j_jhazmat_2024_135759
crossref_primary_10_3389_fgene_2021_722981
crossref_primary_10_1016_j_mbs_2021_108713
crossref_primary_10_1038_s44220_023_00148_3
crossref_primary_10_1128_mBio_01442_14
crossref_primary_10_3389_fimmu_2019_02367
crossref_primary_10_3934_mbe_2023476
crossref_primary_10_3390_a17080342
crossref_primary_10_1101_gr_177725_114
crossref_primary_10_3389_fgene_2022_890672
crossref_primary_10_1038_s41598_019_52770_w
crossref_primary_10_1186_s12864_014_1194_5
crossref_primary_10_1038_s41598_018_28168_5
crossref_primary_10_1093_bib_bbw139
crossref_primary_10_1093_function_zqaa009
crossref_primary_10_1186_s12957_018_1380_z
crossref_primary_10_1530_REP_16_0034
crossref_primary_10_3389_fgene_2024_1369628
crossref_primary_10_1371_journal_pone_0165919
crossref_primary_10_1111_mec_14003
crossref_primary_10_1016_j_gdata_2014_07_003
crossref_primary_10_1038_s41467_022_32906_9
crossref_primary_10_1186_s12859_015_0704_z
crossref_primary_10_1016_j_mce_2014_10_005
crossref_primary_10_1038_s41587_022_01440_w
crossref_primary_10_1186_s13059_015_0679_0
crossref_primary_10_3390_v8080239
crossref_primary_10_1093_bib_bbw128
crossref_primary_10_1002_ddr_21215
crossref_primary_10_1186_s40168_022_01423_8
crossref_primary_10_1128_msystems_00053_18
crossref_primary_10_1002_wrna_1631
crossref_primary_10_1016_j_xpro_2021_100397
crossref_primary_10_18632_oncotarget_28161
crossref_primary_10_1186_s12864_018_4852_1
crossref_primary_10_15252_msb_20188746
crossref_primary_10_1080_10495398_2020_1784185
crossref_primary_10_1038_s42003_019_0284_y
crossref_primary_10_1186_s40064_015_0873_2
crossref_primary_10_13070_mm_en_3_203
crossref_primary_10_1016_j_csbj_2019_04_012
crossref_primary_10_1038_srep42659
crossref_primary_10_1126_scitranslmed_aan1217
crossref_primary_10_2174_1574893615666200203104214
crossref_primary_10_1093_bib_bbt086
crossref_primary_10_1186_s12934_020_01489_9
crossref_primary_10_1093_bib_bbv019
crossref_primary_10_3390_cimb44030074
crossref_primary_10_1016_j_cbd_2022_101014
crossref_primary_10_1016_j_celrep_2018_07_025
crossref_primary_10_1534_g3_117_040683
crossref_primary_10_1186_s13068_015_0213_3
crossref_primary_10_1089_scd_2015_0321
crossref_primary_10_1016_j_trsl_2016_07_012
crossref_primary_10_1016_j_cell_2021_04_024
crossref_primary_10_3390_jcm12206683
crossref_primary_10_1038_ismej_2013_229
crossref_primary_10_1371_journal_pone_0151975
crossref_primary_10_3390_cancers17060996
crossref_primary_10_3389_fpls_2019_00983
crossref_primary_10_1089_cmb_2020_0558
crossref_primary_10_1094_PDIS_04_16_0492_RE
crossref_primary_10_1007_s12539_017_0276_x
crossref_primary_10_1016_j_jgr_2018_05_007
crossref_primary_10_1038_s42003_019_0721_y
crossref_primary_10_1186_s13062_018_0204_y
crossref_primary_10_1261_rna_037895_112
crossref_primary_10_1038_s41467_025_55845_7
crossref_primary_10_1371_journal_pone_0125224
crossref_primary_10_1007_s12035_018_0988_x
crossref_primary_10_1371_journal_pone_0169249
crossref_primary_10_1016_j_pmpp_2020_101480
crossref_primary_10_1371_journal_pone_0157022
crossref_primary_10_1186_s12864_024_10414_y
crossref_primary_10_1111_mec_13344
crossref_primary_10_1007_s00122_018_3070_1
crossref_primary_10_1093_nar_gkac1056
crossref_primary_10_1186_1471_2105_14_357
crossref_primary_10_1093_nar_gkw655
crossref_primary_10_1186_s12870_023_04263_2
crossref_primary_10_3389_fpls_2017_01876
crossref_primary_10_1016_j_csbj_2017_10_001
crossref_primary_10_1640_0002_8444_109_3_224
crossref_primary_10_1016_j_abb_2021_108986
crossref_primary_10_3389_fmicb_2021_588025
crossref_primary_10_1093_nar_gkac064
crossref_primary_10_1093_gbe_evz176
crossref_primary_10_1186_s12859_014_0401_3
crossref_primary_10_1186_s13059_019_1738_8
crossref_primary_10_3389_fgene_2021_642227
crossref_primary_10_1111_acer_12457
crossref_primary_10_3389_fgene_2021_724527
crossref_primary_10_1186_s40168_017_0237_y
crossref_primary_10_3389_fimmu_2021_635131
crossref_primary_10_18632_oncotarget_26808
crossref_primary_10_1080_07352689_2022_2084227
crossref_primary_10_1186_s12859_017_1872_9
crossref_primary_10_7717_peerj_12233
crossref_primary_10_1186_s12864_015_1709_8
crossref_primary_10_1049_nbt2_12115
crossref_primary_10_3389_fnins_2022_915907
crossref_primary_10_12688_f1000research_6536_1
crossref_primary_10_7554_eLife_55862
crossref_primary_10_1038_s41467_021_23558_2
crossref_primary_10_1038_s41467_020_19829_z
crossref_primary_10_1016_j_cej_2025_160952
crossref_primary_10_1371_journal_pcbi_1006794
crossref_primary_10_3390_genes13122265
crossref_primary_10_1038_srep06347
crossref_primary_10_1186_s13072_025_00571_z
crossref_primary_10_1261_rna_070227_118
crossref_primary_10_1186_s12859_017_1994_0
crossref_primary_10_1016_j_actatropica_2016_12_021
crossref_primary_10_1186_s12859_021_04339_6
crossref_primary_10_1007_s12892_023_00197_1
crossref_primary_10_1038_ismej_2014_78
crossref_primary_10_1093_icb_icw003
crossref_primary_10_1016_j_heliyon_2024_e35121
crossref_primary_10_1002_jcp_27486
crossref_primary_10_1038_nature23278
crossref_primary_10_1126_science_aaa9420
crossref_primary_10_1371_journal_pone_0147426
crossref_primary_10_1371_journal_pone_0227760
crossref_primary_10_1038_s41467_024_50420_y
crossref_primary_10_1038_s41576_021_00326_y
crossref_primary_10_1186_s12870_019_2195_y
crossref_primary_10_3389_fmicb_2018_02397
crossref_primary_10_1093_pcp_pcv117
crossref_primary_10_1016_j_eti_2023_103377
crossref_primary_10_1111_ppa_13865
crossref_primary_10_1007_s00497_014_0253_z
crossref_primary_10_1093_nar_gkw267
crossref_primary_10_1371_journal_pone_0147873
crossref_primary_10_1371_journal_pgen_1008328
crossref_primary_10_7717_peerj_1360
crossref_primary_10_1007_s10725_019_00507_0
crossref_primary_10_1038_s41467_020_19015_1
crossref_primary_10_2298_ABS240301014P
crossref_primary_10_1073_pnas_2106682118
crossref_primary_10_3390_ani9100753
crossref_primary_10_1186_s12864_018_5386_2
crossref_primary_10_1111_1755_0998_13730
crossref_primary_10_1371_journal_pone_0176185
crossref_primary_10_3389_fgene_2023_1094099
crossref_primary_10_1086_710763
crossref_primary_10_1186_s12864_021_07790_0
crossref_primary_10_1038_s41564_018_0285_5
crossref_primary_10_1016_j_ejphar_2021_174094
crossref_primary_10_3892_ijmm_2022_5217
crossref_primary_10_1089_omi_2013_0110
crossref_primary_10_1186_s13059_015_0853_4
crossref_primary_10_1093_bioinformatics_btw521
crossref_primary_10_3389_fphys_2019_00008
crossref_primary_10_15446_abc_v19n2_41010
crossref_primary_10_1093_molbev_msac269
crossref_primary_10_1016_j_cbd_2024_101243
crossref_primary_10_1186_s12864_019_5870_3
crossref_primary_10_1002_ece3_6235
crossref_primary_10_1371_journal_pone_0192610
crossref_primary_10_1038_nprot_2013_084
crossref_primary_10_1371_journal_pone_0268072
crossref_primary_10_1371_journal_pntd_0004406
crossref_primary_10_1186_s13059_019_1682_7
crossref_primary_10_29130_dubited_803846
crossref_primary_10_1038_hdy_2017_50
crossref_primary_10_1093_bioinformatics_btv425
crossref_primary_10_1093_bib_bbac158
crossref_primary_10_1111_1758_2229_70026
crossref_primary_10_1111_imb_12260
crossref_primary_10_1371_journal_pone_0199021
crossref_primary_10_3389_fgene_2021_667936
crossref_primary_10_1016_j_aquaculture_2023_740200
crossref_primary_10_1016_j_csbj_2020_02_010
crossref_primary_10_1515_biolog_2015_0127
crossref_primary_10_1093_bioinformatics_btx606
crossref_primary_10_1016_j_gene_2018_03_073
crossref_primary_10_7717_peerj_4600
Cites_doi 10.1038/415530a
10.1017/S0016672307008646
10.1038/nature07509
10.1038/ng.259
10.1038/nbt.1883
10.1007/978-1-60761-842-3_3
10.1186/gb-2002-3-7-reports0033
10.1093/bioinformatics/19.2.185
10.1093/biostatistics/kxr054
10.1186/1471-2105-12-480
10.1093/nar/gkn430
10.1038/onc.2010.612
10.1073/pnas.0932692100
10.1093/nar/gkq817
10.1038/nmeth.1226
10.1093/bioinformatics/bts094
10.1111/j.2517-6161.1995.tb02031.x
10.1038/nrg2484
10.1038/ng1032
10.1186/1748-7188-7-5
10.1038/nbt.1621
10.1186/1471-2105-12-323
10.1038/nbt.1633
10.1371/journal.pone.0012336
10.1038/nature08872
ContentType Journal Article
Copyright Copyright Oxford Publishing Limited(England) Nov 2013
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Oxford Publishing Limited(England) Nov 2013
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor on behalf of The French StatOmique Consortium
French StatOmique Consortium
CorporateAuthor_xml – name: on behalf of The French StatOmique Consortium
– name: French StatOmique Consortium
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
7TM
1XC
DOI 10.1093/bib/bbs046
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Nucleic Acids Abstracts
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Nucleic Acids Abstracts
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 1477-4054
EndPage 683
ExternalDocumentID oai_HAL_hal_00782486v1
3129297121
22988256
10_1093_bib_bbs046
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAGQS
AAUQX
ABQTQ
C1A
CAG
CGR
COF
CUY
CVF
ECM
EIF
GROUPED_DOAJ
M49
NPM
NU-
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
7TM
1XC
AHGBF
ID FETCH-LOGICAL-c484t-1f86f7459b775c0958163fbe6772e0f4aaf3a480e05eb5318aa6b28fa41cc7c83
ISSN 1467-5463
1477-4054
IngestDate Sat Aug 23 06:30:57 EDT 2025
Thu Jul 10 18:28:19 EDT 2025
Thu Jul 10 22:02:03 EDT 2025
Mon Jun 30 09:02:23 EDT 2025
Thu Apr 03 06:59:55 EDT 2025
Tue Jul 01 03:39:21 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords differential analysis
RNA-seq
normalization
high-throughput sequencing
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-1f86f7459b775c0958163fbe6772e0f4aaf3a480e05eb5318aa6b28fa41cc7c83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9487-2624
0000-0002-6241-1732
0000-0001-7579-6419
0000-0002-5094-7302
0000-0001-5836-2803
0000-0001-7604-3814
0000-0003-1678-7410
0000-0001-5203-5748
0000-0002-7437-8239
0000-0001-6239-4357
0000-0001-8359-0760
0000-0001-6469-488X
0000-0002-0534-7797
OpenAccessLink https://academic.oup.com/bib/article-pdf/14/6/671/467651/bbs046.pdf
PMID 22988256
PQID 1459218220
PQPubID 26846
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_00782486v1
proquest_miscellaneous_1492611568
proquest_miscellaneous_1450183231
proquest_journals_1459218220
pubmed_primary_22988256
crossref_primary_10_1093_bib_bbs046
crossref_citationtrail_10_1093_bib_bbs046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2013
Publisher Oxford Publishing Limited (England)
Oxford University Press (OUP)
Publisher_xml – name: Oxford Publishing Limited (England)
– name: Oxford University Press (OUP)
References (11_43628715) 2010; 79
(18_28263016) 2002; 32
(42_43628721) 2010; 112
Mortazavi (19_31403652) 2008; 5
Jeanmougin (29_38125486) 2010; 5
Pan (4_32505995) 2008; 40
(28_31629782) 2008; 36
(10_43628714) 2009; 4587234
Li (45_40502883) 2011; 12
Grabherr (8_39941153) 2011; 29
Calza (43_38119305) 2010; 673
(2_19682808) 2003; 100
Risso (32_41800854) 2011; 12
Wang (3_32505959) 2008; 456
(12_43628716) 2010; 674
Bolstad (22_17474861) 2003; 19
(36_41492176) 2011; 10
(40_38158488) 2011; 39
van 't Veer (1_16897320) 2002; 415
Strub (30_39056446) 2011; 30
(34_43628718) 2003; 197
(35_43628719) 2004; 10116
(7_43628713) 2010; 11
Kadota (44_42343489) 2012; 7
Jaffrezic (27_28757437) 2007; 89
Wang (38_32672279) 2009; 10
(33_41589437) 2012; 13
(23_39128509) 2003; 40
(39_43628720) 2002; 3
Trapnell (5_37213217) 2010; 28
(9_41913738) 2012; 28
(37_31268577) 1995; 57
Guttman (6_37213215) 2010; 28
Pickrell (21_36792846) 2010; 464
(14_43628717) 2010; 11106
References_xml – volume: 415
  start-page: 530
  issn: 1476-4687
  issue: 6871
  year: 2002
  ident: 1_16897320
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/415530a
– volume: 89
  start-page: 19
  issn: 0016-6723
  issue: 1
  year: 2007
  ident: 27_28757437
  publication-title: Genetical research
  doi: 10.1017/S0016672307008646
– volume: 456
  start-page: 470
  issn: 1476-4687
  issue: 7221
  year: 2008
  ident: 3_32505959
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/nature07509
– volume: 40
  start-page: 1413
  issn: 1061-4036
  issue: 12
  year: 2008
  ident: 4_32505995
  publication-title: Nature genetics
  doi: 10.1038/ng.259
– volume: 29
  start-page: 644
  issn: 1087-0156
  issue: 7
  year: 2011
  ident: 8_39941153
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.1883
– volume: 10
  start-page: 1
  issn: 1544-6115
  year: 2011
  ident: 36_41492176
– volume: 79
  start-page: 709
  issn: 1548-7091
  year: 2010
  ident: 11_43628715
– volume: 673
  start-page: 37
  issn: 1064-3745
  year: 2010
  ident: 43_38119305
  publication-title: Methods in molecular biology (Clifton, N.J.)
  doi: 10.1007/978-1-60761-842-3_3
– volume: 3
  start-page: research0033
  issn: 1465-6906
  year: 2002
  ident: 39_43628720
  publication-title: Genome biology
  doi: 10.1186/gb-2002-3-7-reports0033
– volume: 19
  start-page: 185
  issn: 1367-4803
  issue: 2
  year: 2003
  ident: 22_17474861
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.185
– volume: 197
  start-page: 362
  issn: 0168-9525
  year: 2003
  ident: 34_43628718
  publication-title: Trends in genetics : TIG
– volume: 13
  start-page: 204
  issn: 1465-4644
  issue: 2
  year: 2012
  ident: 33_41589437
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr054
– volume: 112
  start-page: R14
  issn: 1465-6906
  year: 2010
  ident: 42_43628721
  publication-title: Genome biology
– volume: 4587234
  start-page: 97
  issn: 1476-4687
  year: 2009
  ident: 10_43628714
  publication-title: Nature; Physical Science (London)
– volume: 12
  start-page: 480
  issn: 1471-2105
  year: 2011
  ident: 32_41800854
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-12-480
– volume: 36
  start-page: e108
  issn: 0305-1048
  issue: 17
  year: 2008
  ident: 28_31629782
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkn430
– volume: 30
  start-page: 2319
  issn: 0950-9232
  issue: 20
  year: 2011
  ident: 30_39056446
  publication-title: Oncogene
  doi: 10.1038/onc.2010.612
– volume: 100
  start-page: 8418
  issn: 0027-8424
  issue: 14
  year: 2003
  ident: 2_19682808
  publication-title: PNAS
  doi: 10.1073/pnas.0932692100
– volume: 39
  start-page: 578
  issn: 0305-1048
  issue: 2
  year: 2011
  ident: 40_38158488
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkq817
– volume: 674
  start-page: 569
  issn: 1420-682X
  year: 2010
  ident: 12_43628716
  publication-title: Cellular and molecular life sciences : CMLS
– volume: 11
  start-page: 909
  issn: 1548-7091
  year: 2010
  ident: 7_43628713
– volume: 5
  start-page: 621
  issn: 1548-7091
  issue: 7
  year: 2008
  ident: 19_31403652
  doi: 10.1038/nmeth.1226
– volume: 11106
  start-page: R106
  issn: 1465-6906
  year: 2010
  ident: 14_43628717
  publication-title: Genome biology
– volume: 28
  start-page: 1086
  issn: 1367-4803
  issue: 8
  year: 2012
  ident: 9_41913738
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts094
– volume: 57
  start-page: 289
  year: 1995
  ident: 37_31268577
  publication-title: J R STAT SOC B STAT METHODOL
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 10
  start-page: 57
  issn: 1471-0056
  issue: 1
  year: 2009
  ident: 38_32672279
  publication-title: Nature reviews. Genetics
  doi: 10.1038/nrg2484
– volume: 32
  start-page: 496
  issn: 1061-4036
  year: 2002
  ident: 18_28263016
  publication-title: Nature genetics
  doi: 10.1038/ng1032
– volume: 7
  start-page: 5
  issn: 1748-7188
  issue: 1
  year: 2012
  ident: 44_42343489
  doi: 10.1186/1748-7188-7-5
– volume: 28
  start-page: 511
  issn: 1087-0156
  issue: 5
  year: 2010
  ident: 5_37213217
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.1621
– volume: 12
  start-page: 323
  issn: 1471-2105
  year: 2011
  ident: 45_40502883
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-12-323
– volume: 28
  start-page: 503
  issn: 1087-0156
  issue: 5
  year: 2010
  ident: 6_37213215
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.1633
– volume: 5
  start-page: e12336
  issn: 1932-6203
  issue: 9
  year: 2010
  ident: 29_38125486
  doi: 10.1371/journal.pone.0012336
– volume: 464
  start-page: 768
  issn: 1476-4687
  issue: 7289
  year: 2010
  ident: 21_36792846
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/nature08872
– volume: 10116
  start-page: 6062
  issn: 0027-8424
  year: 2004
  ident: 35_43628719
  publication-title: PNAS
– volume: 40
  start-page: 403
  year: 2003
  ident: 23_39128509
  publication-title: SCIENCE AND STATISTICS A FESTSCHRIFT FOR TERRY SPEED
SSID ssj0020781
Score 2.5940583
Snippet During the last 3 years, a number of approaches for the normalization of RNA sequencing data have emerged in the literature, differing both in the type of bias...
SourceID hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 671
SubjectTerms Applications
Bias
Biochemistry, Molecular Biology
Bioinformatics
Comparative analysis
Genomics
High-Throughput Nucleotide Sequencing - methods
High-Throughput Nucleotide Sequencing - standards
Life Sciences
Methodology
Ribonucleic acid
RNA
Sequence Analysis, RNA - methods
Sequence Analysis, RNA - standards
Simulation
Statistics
Title A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/22988256
https://www.proquest.com/docview/1459218220
https://www.proquest.com/docview/1450183231
https://www.proquest.com/docview/1492611568
https://inria.hal.science/hal-00782486
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe6ISReEN8UBjIfL6jKlg87cR4j2FRQ6V46qW-R7TlbpZFOW4oET_zp3NlO0kJBg5cocq3U8v18vrPvfkfIW5mFLNImCrg2ecCE1IGKkwze4lN2qqMqNjbaYpqOT9inOZ8PBj_WopZWjdrX37fmlfyPVKEN5IpZsv8g2e6j0ADvIF94goTheSMZFzYi_Mqc-yj0nrrbxmegOXrh8yx9qWjLvjD6iOWNF7UcIVlx4Ev1XGKA8rQY-eBqPELA8NGR9LQlG9e_4GBXtuDnoh6pxdLTrzZrofMf8CDH6aDP6I8HxVltb-VFH10vV11MZbc7FCvl04gwdbuHHW4IMLAmKOpm4bMXLTEC3jysn11EiU_i69UtywAWoaOR3jdb2lodzdawuK5wU1fA5beNwJFkqYXCp7oO2Ra-7elxeXQymZSzw_lsh9yKwdFATTk7nncuO1Ih2fw0P6aW4DZPDuDbB-7LGybNzjkG1P7JW7FWy-weuevdDVo47NwnA1M_ILddAdJvD8mXgm4giPYIosuKbiCIegRREDVtEUR_QRAFBNEeQRQRRFsEPSInR4ez9-PAF-AINBOsCaJKpFXGeK6yjGswxgVY75UyKcyUCSsmZZVIJkITcqNAmQspUxWLSsLy15kWyWOyWy9r85RQ2EU5F0nGjM6YqEyucq5gg5OxkDwxckjetXNYas9Oj0VSLkoXJZGUMN-lm-8hedP1vXScLFt7vQZRdB2QRn1cTEpss3YxE-nXaEj2WkmVfmFfgzfMcyxsEIdD8qr7GdQu3qXJ2ixXtk-Iu2ES_a1PHqfgcaViSJ44FHTDieMcfFuePrvBPzwnd_rFs0d2m6uVeQGmcKNeWrT-BERlu-w
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+evaluation+of+normalization+methods+for+Illumina+high-throughput+RNA+sequencing+data+analysis&rft.jtitle=Briefings+in+bioinformatics&rft.au=Dillies%2C+Marie-Agn%C3%A8s&rft.au=Rau%2C+Andrea&rft.au=Aubert%2C+Julie&rft.au=Hennequet-Antier%2C+Christelle&rft.date=2013-11-01&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=14&rft.issue=6&rft.spage=671&rft_id=info:doi/10.1093%2Fbib%2Fbbs046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon