Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus
Activation of Esr1 + neurons of the mouse ventromedial hypothalamus initiates graded social behavioural responses–weak activation triggers close investigation (sniffing) during a social encounter that often leads, with continued stimulation, to mounting behaviours by males towards either gender; mou...
Saved in:
Published in | Nature (London) Vol. 509; no. 7502; pp. 627 - 632 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Activation of Esr1
+
neurons of the mouse ventromedial hypothalamus initiates graded social behavioural responses–weak activation triggers close investigation (sniffing) during a social encounter that often leads, with continued stimulation, to mounting behaviours by males towards either gender; mounting behaviour transitions to aggressive attacks with greater stimulation intensity.
Hypothalamus neurons that mediate aggression
In the mouse ventromedial hypothalamus, there are intermixed populations of neurons differentiated by the expression of the oestrogen receptor, Esr1. Previous work revealed that Esr1
+
neurons can initiate aggressive behaviour when artificially activated. Here, David Anderson and colleagues extend those results to demonstrate a graded behavioural response to the activation of these neurons along a continuum of social behavior. Weaker activation could initiate close inspection during an encounter that could lead to mounting behaviours by males towards either gender with further stimulation. Mounting behaviour transitioned to aggressive attacks with even greater stimulation intensity. Thus, these data reveal a circuit that controls the nature of a set of social behaviors in a scalable manner based on neuronal activity levels.
Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases
1
that are associated with increasing levels of arousal
2
. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male–male and male–female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting
3
. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1
+
(but not Esr1
−
) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1
+
neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments
in vitro
, as well as c-Fos analysis
in vivo
, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1
+
neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population. |
---|---|
AbstractList | Activation of Esr1
+
neurons of the mouse ventromedial hypothalamus initiates graded social behavioural responses–weak activation triggers close investigation (sniffing) during a social encounter that often leads, with continued stimulation, to mounting behaviours by males towards either gender; mounting behaviour transitions to aggressive attacks with greater stimulation intensity.
Hypothalamus neurons that mediate aggression
In the mouse ventromedial hypothalamus, there are intermixed populations of neurons differentiated by the expression of the oestrogen receptor, Esr1. Previous work revealed that Esr1
+
neurons can initiate aggressive behaviour when artificially activated. Here, David Anderson and colleagues extend those results to demonstrate a graded behavioural response to the activation of these neurons along a continuum of social behavior. Weaker activation could initiate close inspection during an encounter that could lead to mounting behaviours by males towards either gender with further stimulation. Mounting behaviour transitioned to aggressive attacks with even greater stimulation intensity. Thus, these data reveal a circuit that controls the nature of a set of social behaviors in a scalable manner based on neuronal activity levels.
Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases
1
that are associated with increasing levels of arousal
2
. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male–male and male–female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting
3
. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1
+
(but not Esr1
−
) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1
+
neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments
in vitro
, as well as c-Fos analysis
in vivo
, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1
+
neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population. Social behaviors, such as aggression or mating, proceed through a series of appetitive and consummatory phases 1 that are associated with increasing levels of arousal 2 . How such escalation is encoded in the brain, and linked to behavioral action selection, remains an important unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters. Non-cell type-specific optogenetic activation of this region elicited attack behavior, but not mounting 3 . We have identified a subset of VMHvl neurons marked by the estrogen receptor 1 (Esr1), and investigated their role in male social behavior. Optogenetic manipulations indicated that Esr1 + (but not Esr1 - ) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behavior. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behavior, rather than attack, towards both males and females, as well as sniffing and close investigation (CI). Increasing photostimulation intensity could promote a transition from CI and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1 + neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro , as well as c-Fos analysis in vivo , indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1 + neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population. Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of arousal. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1(+) (but not Esr1(-)) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1(+) neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro, as well as c-Fos analysis in vivo, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1(+) neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population. |
Author | Chang, Angela Kim, Dong-Wook Lee, Hyosang Remedios, Ryan Anthony, Todd E. Anderson, David J. Madisen, Linda Zeng, Hongkui |
AuthorAffiliation | 4 Allen Institute for Brain Science, Seattle, WA 98103, USA 2 Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA 1 Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA 3 Howard Hughes Medical Institute, Seattle, WA 98103, USA |
AuthorAffiliation_xml | – name: 4 Allen Institute for Brain Science, Seattle, WA 98103, USA – name: 2 Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA – name: 1 Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA – name: 3 Howard Hughes Medical Institute, Seattle, WA 98103, USA |
Author_xml | – sequence: 1 givenname: Hyosang surname: Lee fullname: Lee, Hyosang organization: Division of Biology and Biological Engineering 156-29, California Institute of Technology, Howard Hughes Medical Institute – sequence: 2 givenname: Dong-Wook surname: Kim fullname: Kim, Dong-Wook organization: Computation and Neural Systems, California Institute of Technology – sequence: 3 givenname: Ryan surname: Remedios fullname: Remedios, Ryan organization: Division of Biology and Biological Engineering 156-29, California Institute of Technology – sequence: 4 givenname: Todd E. surname: Anthony fullname: Anthony, Todd E. organization: Division of Biology and Biological Engineering 156-29, California Institute of Technology – sequence: 5 givenname: Angela surname: Chang fullname: Chang, Angela organization: Division of Biology and Biological Engineering 156-29, California Institute of Technology – sequence: 6 givenname: Linda surname: Madisen fullname: Madisen, Linda organization: Allen Institute for Brain Science – sequence: 7 givenname: Hongkui surname: Zeng fullname: Zeng, Hongkui organization: Allen Institute for Brain Science – sequence: 8 givenname: David J. surname: Anderson fullname: Anderson, David J. email: wuwei@caltech.edu organization: Division of Biology and Biological Engineering 156-29, California Institute of Technology, Howard Hughes Medical Institute, Computation and Neural Systems, California Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24739975$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1LJDEQhoMoOn6cvC85LmivqUm6k74sLKLuguBBPXgK6XT1TLvdyZikhfn3m2FUFPaUQz315OWtQ7LrvENCToH9AMbVhTNpCggcqnqHzEDIqhCVkrtkxthcFUzx6oAcxvjMGCtBin1yMBeS17UsZ-Tp3prBNANS610KfqC-o6OfXOrdghrXUpOSsX9ps6ZXMcAZdTgF7yLtHU1LpK-4WRux7c1Al-uVT8ssHKd4TPY6M0Q8eXuPyOP11cPl7-L27ubP5a_bwgolUgFGyaZhCjAnKjkASlsLWzaqbrlAKyqBvGWCCym5srIt550C06KSYDte8iPyc-tdTU2OYTd5zKBXoR9NWGtvev114vqlXvhXLVitcjdZ8P1NEPzLhDHpsY8Wh8E49FPUUHJWlyAEZPRsi9rgYwzYfXwDTG-OoT8dI9PfPif7YN_bz8D5Foh55BYY9LOfgstt_df3D5dhmJw |
CitedBy_id | crossref_primary_10_1371_journal_pone_0219522 crossref_primary_10_1111_joim_12815 crossref_primary_10_1038_npp_2015_198 crossref_primary_10_1016_j_yhbeh_2024_105519 crossref_primary_10_1038_nature23885 crossref_primary_10_1038_s41593_018_0204_3 crossref_primary_10_1126_science_adh8489 crossref_primary_10_1371_journal_pbio_3002624 crossref_primary_10_1038_nn_4208 crossref_primary_10_1016_j_scitotenv_2023_164876 crossref_primary_10_1126_science_abo7933 crossref_primary_10_3389_fnint_2022_862437 crossref_primary_10_1038_s41398_024_02878_z crossref_primary_10_1016_j_conb_2023_102749 crossref_primary_10_1016_j_yhbeh_2017_07_006 crossref_primary_10_1016_j_conb_2018_02_002 crossref_primary_10_1038_s41598_017_04335_y crossref_primary_10_1016_j_yhbeh_2017_07_001 crossref_primary_10_1186_s13064_016_0067_9 crossref_primary_10_2108_zs220108 crossref_primary_10_1016_j_neuron_2020_05_028 crossref_primary_10_1126_sciadv_abg3203 crossref_primary_10_1523_JNEUROSCI_0155_20_2020 crossref_primary_10_1002_cne_24847 crossref_primary_10_1016_j_ynstr_2023_100537 crossref_primary_10_1038_s41586_022_05057_6 crossref_primary_10_1073_pnas_1817503116 crossref_primary_10_1016_j_cell_2014_07_049 crossref_primary_10_1242_dev_167379 crossref_primary_10_1038_npp_2017_259 crossref_primary_10_1038_ncomms11022 crossref_primary_10_1073_pnas_2011782117 crossref_primary_10_7554_eLife_69065 crossref_primary_10_1016_j_cell_2018_12_041 crossref_primary_10_1093_molbev_msad158 crossref_primary_10_1016_j_neuron_2017_06_046 crossref_primary_10_3390_biology11111682 crossref_primary_10_1016_j_cell_2016_06_008 crossref_primary_10_1038_s41593_023_01475_5 crossref_primary_10_1016_j_nlm_2016_07_025 crossref_primary_10_1002_cne_23969 crossref_primary_10_1007_s00429_022_02601_y crossref_primary_10_1016_j_cell_2019_01_024 crossref_primary_10_1210_en_2017_00873 crossref_primary_10_1016_j_neuron_2020_08_025 crossref_primary_10_1016_j_cub_2023_06_070 crossref_primary_10_1038_s41598_020_77061_7 crossref_primary_10_1038_nature14108 crossref_primary_10_3389_fnagi_2022_867863 crossref_primary_10_1016_j_neuroscience_2023_11_019 crossref_primary_10_1038_s41467_020_20050_1 crossref_primary_10_1016_j_applanim_2017_01_013 crossref_primary_10_2337_db18_0380 crossref_primary_10_1016_j_neures_2021_07_001 crossref_primary_10_1038_nn_4220 crossref_primary_10_1016_j_pneurobio_2018_09_002 crossref_primary_10_1016_j_cell_2016_08_067 crossref_primary_10_1038_s41467_017_02648_0 crossref_primary_10_1016_j_molmet_2022_101604 crossref_primary_10_7554_eLife_06633 crossref_primary_10_1002_oby_21099 crossref_primary_10_1016_j_celrep_2014_12_011 crossref_primary_10_1523_ENEURO_0204_18_2018 crossref_primary_10_1523_JNEUROSCI_3320_16_2017 crossref_primary_10_1016_j_cell_2023_07_021 crossref_primary_10_1016_j_tem_2022_01_004 crossref_primary_10_1016_j_cobeha_2018_06_011 crossref_primary_10_1126_sciadv_abk0185 crossref_primary_10_3389_fnbeh_2018_00004 crossref_primary_10_1016_j_cell_2014_03_003 crossref_primary_10_1016_j_neuron_2022_04_030 crossref_primary_10_7554_eLife_58942 crossref_primary_10_3389_fendo_2022_957114 crossref_primary_10_1038_s41593_018_0072_x crossref_primary_10_1016_j_cophys_2018_08_003 crossref_primary_10_1093_cercor_bhaa072 crossref_primary_10_1088_2631_8695_ac6bde crossref_primary_10_1016_j_celrep_2019_01_078 crossref_primary_10_1016_j_conb_2016_01_006 crossref_primary_10_3389_fnmol_2022_1010152 crossref_primary_10_1101_gr_253047_119 crossref_primary_10_1515_revneuro_2020_0067 crossref_primary_10_1016_j_cub_2015_12_065 crossref_primary_10_1007_s00018_021_03956_x crossref_primary_10_7554_eLife_62889 crossref_primary_10_1093_icb_icad049 crossref_primary_10_1038_s41386_024_01808_3 crossref_primary_10_1142_S0218127419501384 crossref_primary_10_1016_j_celrep_2014_12_040 crossref_primary_10_1016_j_cell_2021_12_031 crossref_primary_10_1073_pnas_1521160113 crossref_primary_10_3389_fnmol_2022_860275 crossref_primary_10_1038_nn_4091 crossref_primary_10_3389_fnsys_2017_00094 crossref_primary_10_1038_s41593_023_01563_6 crossref_primary_10_1016_j_neuron_2021_02_012 crossref_primary_10_1038_nrn_2017_15 crossref_primary_10_1016_j_neuron_2018_02_019 crossref_primary_10_1016_j_neuron_2020_04_029 crossref_primary_10_1038_nn_4644 crossref_primary_10_1523_ENEURO_0049_21_2021 crossref_primary_10_1016_j_yfrne_2020_100860 crossref_primary_10_2337_db16_1344 crossref_primary_10_7554_eLife_63720 crossref_primary_10_1016_j_neuron_2018_02_026 crossref_primary_10_1126_science_adh8287 crossref_primary_10_1016_j_molmet_2015_11_007 crossref_primary_10_1523_JNEUROSCI_1776_15_2015 crossref_primary_10_1016_j_yhbeh_2022_105295 crossref_primary_10_1073_pnas_1524907113 crossref_primary_10_1038_s41593_020_0675_x crossref_primary_10_1210_endocr_bqab141 crossref_primary_10_1016_j_steroids_2023_109324 crossref_primary_10_1016_j_celrep_2016_05_067 crossref_primary_10_1016_j_yjmcc_2023_09_009 crossref_primary_10_1016_j_cobeha_2015_02_007 crossref_primary_10_3390_ijms22136998 crossref_primary_10_1016_j_neuron_2017_05_038 crossref_primary_10_1016_j_tig_2018_07_001 crossref_primary_10_1016_j_autneu_2018_12_008 crossref_primary_10_1111_febs_16714 crossref_primary_10_1016_j_bbr_2018_11_027 crossref_primary_10_1016_j_celrep_2020_03_081 crossref_primary_10_1016_j_yhbeh_2023_105348 crossref_primary_10_1016_j_neuron_2021_12_002 crossref_primary_10_1080_15294145_2022_2054464 crossref_primary_10_1146_annurev_neuro_070918_050414 crossref_primary_10_7554_eLife_52701 crossref_primary_10_7554_eLife_52702 crossref_primary_10_1016_j_tins_2022_10_004 crossref_primary_10_1515_hsz_2023_0194 crossref_primary_10_1016_j_neuron_2018_01_016 crossref_primary_10_1016_j_neubiorev_2020_11_014 crossref_primary_10_1093_hmg_ddac273 crossref_primary_10_7554_eLife_57148 crossref_primary_10_1016_j_physbeh_2023_114237 crossref_primary_10_1038_s41386_024_01863_w crossref_primary_10_1016_j_physbeh_2019_112674 crossref_primary_10_1038_s41586_020_2995_0 crossref_primary_10_1016_j_conb_2019_12_001 crossref_primary_10_3389_fncir_2024_1409994 crossref_primary_10_3390_ijms19041091 crossref_primary_10_1155_2017_8361290 crossref_primary_10_1016_j_neures_2021_06_005 crossref_primary_10_1098_rstb_2015_0109 crossref_primary_10_1016_j_bbr_2019_112276 crossref_primary_10_1093_brain_awx204 crossref_primary_10_1016_j_conb_2016_04_015 crossref_primary_10_1016_j_conb_2016_04_014 crossref_primary_10_1038_s41598_020_59293_9 crossref_primary_10_1038_s41593_021_00985_4 crossref_primary_10_1016_j_cell_2023_01_025 crossref_primary_10_1038_s41586_022_04686_1 crossref_primary_10_3389_fnsys_2014_00168 crossref_primary_10_1002_cne_25528 crossref_primary_10_1111_nyas_15096 crossref_primary_10_1016_j_cell_2015_04_052 crossref_primary_10_1016_j_cell_2023_01_022 crossref_primary_10_1038_s41586_022_05328_2 crossref_primary_10_1523_ENEURO_0247_20_2021 crossref_primary_10_1016_j_cell_2016_05_011 crossref_primary_10_1016_j_cub_2023_12_030 crossref_primary_10_7554_eLife_81818 crossref_primary_10_1016_j_conb_2020_05_003 crossref_primary_10_1038_s41593_023_01297_5 crossref_primary_10_1016_j_neures_2022_07_008 crossref_primary_10_2176_nmc_ra_2020_0088 crossref_primary_10_1210_en_2017_00267 crossref_primary_10_3390_brainsci13060943 crossref_primary_10_1016_j_cub_2022_05_029 crossref_primary_10_1038_s41593_018_0153_x crossref_primary_10_1038_s41583_018_0039_7 crossref_primary_10_1016_j_cell_2022_11_027 crossref_primary_10_3390_cells12141822 crossref_primary_10_1038_d41586_021_02725_x crossref_primary_10_1016_j_pnpbp_2024_110971 crossref_primary_10_1016_j_copsyc_2017_04_006 crossref_primary_10_1016_j_physbeh_2015_04_040 crossref_primary_10_1016_j_copsyc_2017_04_002 crossref_primary_10_1016_j_conb_2018_07_005 crossref_primary_10_1016_j_conb_2021_03_005 crossref_primary_10_1016_j_semcdb_2021_09_016 crossref_primary_10_1016_j_yhbeh_2015_06_014 crossref_primary_10_1093_icb_icad068 crossref_primary_10_1111_jne_13127 crossref_primary_10_1038_s41593_018_0126_0 crossref_primary_10_1073_pnas_2100673118 crossref_primary_10_1016_j_biopsych_2016_02_013 crossref_primary_10_1177_1073858415585108 crossref_primary_10_1016_j_cub_2014_09_062 crossref_primary_10_4036_iis_2015_B_02 crossref_primary_10_1016_j_pnpbp_2018_12_014 crossref_primary_10_1038_s41586_023_06147_9 crossref_primary_10_7554_eLife_64680 crossref_primary_10_1016_j_neuropharm_2014_12_028 crossref_primary_10_1038_s41586_023_06958_w crossref_primary_10_1016_j_conb_2016_04_001 crossref_primary_10_1016_j_isci_2021_103090 crossref_primary_10_1242_dev_180042 crossref_primary_10_1523_JNEUROSCI_1377_23_2023 crossref_primary_10_1038_nn_3767 crossref_primary_10_1016_j_conb_2021_03_010 crossref_primary_10_1210_en_2017_00488 crossref_primary_10_1016_j_cell_2020_11_048 crossref_primary_10_1016_j_physbeh_2018_06_028 crossref_primary_10_2139_ssrn_4108222 crossref_primary_10_1523_JNEUROSCI_1876_20_2020 crossref_primary_10_1016_j_conb_2019_11_011 crossref_primary_10_1016_j_metabol_2015_12_011 crossref_primary_10_1016_j_conb_2020_08_009 crossref_primary_10_1523_JNEUROSCI_0316_19_2019 crossref_primary_10_1016_j_conb_2016_04_007 crossref_primary_10_1038_ng_3551 crossref_primary_10_1002_cne_25167 crossref_primary_10_1111_nyas_12862 crossref_primary_10_1016_j_yhbeh_2020_104742 crossref_primary_10_1016_j_bbr_2021_113206 crossref_primary_10_15252_embj_201591942 crossref_primary_10_3389_fnsys_2015_00066 crossref_primary_10_1146_annurev_neuro_111020_103314 crossref_primary_10_2139_ssrn_3927431 crossref_primary_10_1126_science_ade2128 crossref_primary_10_1523_JNEUROSCI_3234_17_2018 crossref_primary_10_1016_j_molmet_2021_101332 crossref_primary_10_1038_s41586_022_05484_5 crossref_primary_10_1111_jne_12816 crossref_primary_10_1016_j_biopha_2022_113808 crossref_primary_10_1152_jn_00026_2021 crossref_primary_10_1016_j_celrep_2017_11_089 crossref_primary_10_1016_j_neuron_2016_10_015 crossref_primary_10_1016_j_celrep_2019_07_005 crossref_primary_10_1038_s42255_020_0189_6 crossref_primary_10_1016_j_yfrne_2021_100964 crossref_primary_10_1111_jne_12801 crossref_primary_10_1016_j_cell_2021_02_028 crossref_primary_10_1016_j_bbr_2022_113986 crossref_primary_10_1016_j_neubiorev_2018_10_012 crossref_primary_10_1016_j_yhbeh_2023_105390 crossref_primary_10_1007_s00018_018_2948_z crossref_primary_10_1007_s11011_019_00431_2 crossref_primary_10_1172_JCI136105 crossref_primary_10_7554_eLife_59502 crossref_primary_10_1038_s41467_020_15982_7 crossref_primary_10_1016_j_cobeha_2018_01_017 crossref_primary_10_1016_j_celrep_2022_110850 crossref_primary_10_1051_shsconf_202315704030 crossref_primary_10_1016_j_celrep_2020_108061 crossref_primary_10_1016_j_neubiorev_2019_06_005 crossref_primary_10_1016_j_cell_2019_09_020 crossref_primary_10_1002_aur_2978 crossref_primary_10_3389_fncir_2022_792959 crossref_primary_10_1007_s11427_021_2043_2 crossref_primary_10_1016_j_cub_2014_12_048 crossref_primary_10_1002_cne_24975 crossref_primary_10_1038_s41593_020_0655_1 crossref_primary_10_1038_s41598_017_12811_8 crossref_primary_10_7554_eLife_85547 crossref_primary_10_1016_j_bbi_2019_01_015 crossref_primary_10_1073_pnas_2116972119 crossref_primary_10_1016_j_yhbeh_2022_105301 crossref_primary_10_1016_j_conb_2022_102526 crossref_primary_10_1016_j_neuron_2021_03_002 crossref_primary_10_1038_s41467_017_02797_2 crossref_primary_10_3389_fendo_2024_1408677 crossref_primary_10_1016_j_cell_2019_10_025 crossref_primary_10_3389_fncir_2022_944895 crossref_primary_10_1007_s12264_015_1564_2 crossref_primary_10_1016_j_cell_2018_03_037 crossref_primary_10_1016_j_bbr_2020_112860 crossref_primary_10_1016_j_neuropharm_2018_11_039 crossref_primary_10_1016_j_cub_2019_11_052 crossref_primary_10_1038_s41586_018_0772_0 crossref_primary_10_1016_j_neuron_2020_02_014 crossref_primary_10_1038_s41467_019_11399_z crossref_primary_10_1007_s10827_017_0654_8 crossref_primary_10_1038_nrn_2016_125 crossref_primary_10_1523_ENEURO_0147_20_2020 crossref_primary_10_1038_nn_4264 crossref_primary_10_1016_j_neures_2018_10_009 crossref_primary_10_1016_j_neuron_2023_07_011 crossref_primary_10_1038_s41598_021_82255_8 crossref_primary_10_3389_fnins_2015_00067 crossref_primary_10_1016_j_cell_2016_08_028 crossref_primary_10_1016_j_bbr_2023_114597 crossref_primary_10_1016_j_neuron_2017_07_041 crossref_primary_10_1016_j_neuropharm_2018_09_019 crossref_primary_10_1016_j_neuron_2022_05_002 crossref_primary_10_1038_s41593_020_00715_2 crossref_primary_10_1210_en_2017_00606 crossref_primary_10_1016_j_conb_2018_02_013 crossref_primary_10_1016_j_neuron_2018_10_027 crossref_primary_10_1007_s00429_023_02691_2 crossref_primary_10_7554_eLife_11346 |
Cites_doi | 10.1016/j.conb.2010.09.014 10.1038/nature12354 10.1038/nn1325 10.1038/nature10754 10.1038/nn1525 10.1038/nature05453 10.1146/annurev.neuro.25.112701.142745 10.1016/j.bbr.2010.02.033 10.1073/pnas.82.23.7889 10.1016/j.physbeh.2006.05.030 10.1016/j.cell.2011.12.018 10.1111/ejn.12131 10.1038/nature09553 10.1016/j.biopsych.2011.11.012 10.1016/j.brainres.2005.02.068 10.1126/science.3037702 10.1016/S0018-506X(03)00127-2 10.1038/nature11270 10.1016/j.cell.2013.04.017 10.1002/0471142301.ns0120s59 10.1016/j.cell.2010.02.037 10.1016/0301-0082(92)90045-G 10.1146/annurev.ps.39.020188.000355 10.1073/pnas.0603045103 10.1016/j.neuron.2007.02.030 10.1371/journal.pone.0008054 10.1159/000255766 10.1146/annurev.ne.01.030178.000343 10.1038/nature11810 10.1038/nature09736 10.1016/j.neuroscience.2006.08.080 10.1016/j.cub.2008.07.081 10.1038/nature12176 10.1088/1741-2560/4/3/S02 10.1016/0006-8993(83)90764-3 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1038/nature13169 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 632 |
ExternalDocumentID | 10_1038_nature13169 24739975 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH085082 – fundername: Howard Hughes Medical Institute – fundername: NIMH NIH HHS grantid: R01 MH070053 – fundername: NICHD NIH HHS grantid: 1F32HD055198-01 – fundername: NICHD NIH HHS grantid: F32 HD055198 – fundername: NINDS NIH HHS grantid: K99 NS074077 – fundername: NINDS NIH HHS grantid: 1K99NS074077 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAZLF ABAWZ ABDBF ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABVXF ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AFFNX AFKRA AFLOW AFRAH AFRQD AFSHS AGAYW AGEZK AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B-7 B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESTFP ESX EX3 EXGXG F20 F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YNT YOC YQT YR2 YXB YZZ ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AAYZH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM AETEA |
ID | FETCH-LOGICAL-c484t-1a87bb081e3995311e7c94c5b89d34ec464e3d04347738c7d52f81ade871cf353 |
ISSN | 0028-0836 |
IngestDate | Tue Sep 17 21:19:32 EDT 2024 Wed Dec 04 01:27:35 EST 2024 Fri Dec 13 06:58:03 EST 2024 Wed Oct 16 00:42:32 EDT 2024 Fri Oct 11 20:46:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7502 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c484t-1a87bb081e3995311e7c94c5b89d34ec464e3d04347738c7d52f81ade871cf353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4098836 |
PMID | 24739975 |
PQID | 1530951441 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4098836 proquest_miscellaneous_1530951441 crossref_primary_10_1038_nature13169 pubmed_primary_24739975 springer_journals_10_1038_nature13169 |
PublicationCentury | 2000 |
PublicationDate | 2014-05-29 |
PublicationDateYYYYMMDD | 2014-05-29 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK |
Publisher_xml | – name: Nature Publishing Group UK |
References | AtasoyDBetleyJNSuHHSternsonSMDeconstruction of a neural circuit for hungerNature20124881721772012Natur.488..172A1:CAS:528:DC%2BC38XhtFWjtrfE10.1038/nature11270 YangCFSexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in malesCell20131538969091:CAS:528:DC%2BC3sXnsFSksLg%3D10.1016/j.cell.2013.04.017 Harris, J. A., Oh, S. W. & Zeng, H. Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and cre driver mice. Curr Protoc Neurosci Chapter 1, Unit 1 20 21-18. (2012) KowLMEastonAPfaffDWAcute estrogen potentiates excitatory responses of neurons in rat hypothalamic ventromedial nucleusBrain Res.20051012413110.1016/j.brainres.2005.02.068 SanoKTsudaMCMusatovSSakamotoTOgawaSDifferential effects of site-specific knockdown of estrogen receptor alpha in the medial amygdala, medial pre-optic area, and ventromedial nucleus of the hypothalamus on sexual and aggressive behavior of male miceEur. J. Neurosci.2013371308131910.1111/ejn.12131 SimerlyRBWired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrainAnnu. Rev. Neurosci.2002255075361:CAS:528:DC%2BD38XmtF2hsbg%3D10.1146/annurev.neuro.25.112701.142745 AndersonDJOptogenetics, sex, and violence in the brain: implications for psychiatryBiol. Psychiatry2011711081108910.1016/j.biopsych.2011.11.012 ChenTWUltrasensitive fluorescent proteins for imaging neuronal activityNature20134992953002013Natur.499..295C1:CAS:528:DC%2BC3sXhtFalsrrI10.1038/nature12354 CohenRSPfaffDWVentromedial hypothalamic neurons in the mediation of long-lasting effects of estrogen on lordosis behaviorProg. Neurobiol.1992384234531:CAS:528:DyaK38Xkt1Smtrs%3D10.1016/0301-0082(92)90045-G BlanchardDCBlanchardRJEthoexperimental approaches to the biology of emotionAnnu. Rev. Psychol.19883943681:STN:280:DyaL1c7kvV2msw%3D%3D10.1146/annurev.ps.39.020188.000355 MusatovSChenWPfaffDWKaplittMGOgawaSRNAi-mediated silencing of estrogen receptor α in the ventromedial nucleus of hypothalamus abolishes female sexual behaviorsProc. Natl Acad. Sci. USA200610310456104602006PNAS..10310456M1:CAS:528:DC%2BD28XnsVShsLo%3D10.1073/pnas.0603045103 BlanchardRJWallPMBlanchardDCProblems in the study of rodent aggressionHorm. Behav.20034416117010.1016/S0018-506X(03)00127-2 KrukMRDiscriminant analysis of the localization of aggression-inducing electrode placements in the hypothalamus of male ratsBrain Res.198326061791:STN:280:DyaL3s7ivVKgsA%3D%3D10.1016/0006-8993(83)90764-3 ChanEKovacevicNHoSKHenkelmanRMHendersonJTDevelopment of a high resolution three-dimensional surgical atlas of the murine head for strains 129S1/SvImJ and C57Bl/6J using magnetic resonance imaging and micro-computed tomographyNeuroscience20071446046151:CAS:528:DC%2BD28Xht12qs7nF10.1016/j.neuroscience.2006.08.080 BentleyDKonishiMNeural control of behaviorAnnu. Rev. Neurosci.1978135591:STN:280:DyaL3c%2FktFSksQ%3D%3D10.1146/annurev.ne.01.030178.000343 KvitsianiDDistinct behavioural and network correlates of two interneuron types in prefrontal cortexNature20134983633662013Natur.498..363K1:CAS:528:DC%2BC3sXotFSgsbs%3D10.1038/nature12176 XuXModular genetic control of sexually dimorphic behaviorsCell20121485966071:CAS:528:DC%2BC38XhvFartbo%3D10.1016/j.cell.2011.12.018 WuYWangCSunHLeRoithDYakarSHigh-efficient FLPo deleter mice in C57BL/6J backgroundPLoS ONE20094e80542009PLoSO...4.8054W10.1371/journal.pone.0008054 LerchnerWReversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl− channelNeuron20075435491:CAS:528:DC%2BD2sXkvVegt78%3D10.1016/j.neuron.2007.02.030 LinDFunctional identification of an aggression locus in the mouse hypothalamusNature20114702212262011Natur.470..221L1:CAS:528:DC%2BC3MXhslWrt74%3D10.1038/nature09736 WuMVShahNMControl of masculinization of the brain and behaviorCurr. Opin. Neurobiol.2011211161231:CAS:528:DC%2BC3MXjsFChsLs%3D10.1016/j.conb.2010.09.014 BoydenESZhangFBambergENagelGDeisserothKMillisecond-timescale, genetically targeted optical control of neural activityNature Neurosci.20058126312681:CAS:528:DC%2BD2MXpt1egtrc%3D10.1038/nn1525 TinbergenNPhysiological Mechanisms in Animal Behaviour1950305312 DevidzeNLeeAZhouJPfaffDCNS arousal mechanisms bearing on sex and other biologically regulated behaviorsPhysiol. Behav.2006882832931:CAS:528:DC%2BD28Xmt1Oqt78%3D10.1016/j.physbeh.2006.05.030 GradinaruVMolecular and cellular approaches for diversifying and extending optogeneticsCell20101411541651:CAS:528:DC%2BC3cXlsVSgtbY%3D10.1016/j.cell.2010.02.037 WalterPCloning of the human estrogen receptor cDNAProc. Natl Acad. Sci. USA198582788978931985PNAS...82.7889W1:CAS:528:DyaL28XotlShsA%3D%3D10.1073/pnas.82.23.7889 KristanWBNeuronal decision-making circuitsCurr. Biol.200818R928R9321:CAS:528:DC%2BD1cXht1entLzK10.1016/j.cub.2008.07.081 SpiteriTEstrogen-induced sexual incentive motivation, proceptivity and receptivity depend on a functional estrogen receptor alpha in the ventromedial nucleus of the hypothalamus but not in the amygdalaNeuroendocrinology2010911421541:CAS:528:DC%2BC3cXjs12mu7o%3D10.1159/000255766 MorganJICohenDRHempsteadJLCurranTMapping patterns of c-fos expression in the central nervous system after seizureScience19872371921971987Sci...237..192M1:CAS:528:DyaL2sXkslajs7k%3D10.1126/science.3037702 LeinESGenome-wide atlas of gene expression in the adult mouse brainNature20074451681762007Natur.445..168L1:CAS:528:DC%2BD2sXjtFKjtw%3D%3D10.1038/nature05453 AravanisAMAn optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technologyJ. Neural Eng.20074S143S15610.1088/1741-2560/4/3/S02 VrontouSWongAMRauKKKoerberHRAndersonDJGenetic identification of C fibres that detect massage-like stroking of hairy skin in vivoNature20134936696732013Natur.493..669V1:CAS:528:DC%2BC3sXhslWrsL0%3D10.1038/nature11810 SpiteriTThe role of the estrogen receptor alpha in the medial amygdala and ventromedial nucleus of the hypothalamus in social recognition, anxiety and aggressionBehav. Brain Res.20102102112201:CAS:528:DC%2BC3cXlsFaqs70%3D10.1016/j.bbr.2010.02.033 MorrisJAJordanCLBreedloveSMSexual differentiation of the vertebrate nervous systemNature Neurosci.20047103410391:CAS:528:DC%2BD2cXnvVOnt74%3D10.1038/nn1325 HaubensakWGenetic dissection of an amygdala microcircuit that gates conditioned fearNature20104682702762010Natur.468..270H1:CAS:528:DC%2BC3cXhsVWjsb3N10.1038/nature09553 CohenJYHaeslerSVongLLowellBBUchidaNNeuron-type-specific signals for reward and punishment in the ventral tegmental areaNature201248285882012Natur.482...85C1:CAS:528:DC%2BC38XhtVKisb4%3D10.1038/nature10754 W Lerchner (BFnature13169_CR16) 2007; 54 S Vrontou (BFnature13169_CR30) 2013; 493 RJ Blanchard (BFnature13169_CR14) 2003; 44 D Atasoy (BFnature13169_CR37) 2012; 488 P Walter (BFnature13169_CR6) 1985; 82 T Spiteri (BFnature13169_CR20) 2010; 210 ES Boyden (BFnature13169_CR8) 2005; 8 D Bentley (BFnature13169_CR25) 1978; 1 DJ Anderson (BFnature13169_CR27) 2011; 71 T Spiteri (BFnature13169_CR19) 2010; 91 MV Wu (BFnature13169_CR23) 2011; 21 JA Morris (BFnature13169_CR22) 2004; 7 S Musatov (BFnature13169_CR18) 2006; 103 BFnature13169_CR33 ES Lein (BFnature13169_CR35) 2007; 445 D Lin (BFnature13169_CR3) 2011; 470 X Xu (BFnature13169_CR7) 2012; 148 V Gradinaru (BFnature13169_CR13) 2010; 141 JY Cohen (BFnature13169_CR40) 2012; 482 JI Morgan (BFnature13169_CR5) 1987; 237 AM Aravanis (BFnature13169_CR9) 2007; 4 D Kvitsiani (BFnature13169_CR41) 2013; 498 RB Simerly (BFnature13169_CR21) 2002; 25 Y Wu (BFnature13169_CR31) 2009; 4 DC Blanchard (BFnature13169_CR10) 1988; 39 RS Cohen (BFnature13169_CR17) 1992; 38 W Haubensak (BFnature13169_CR29) 2010; 468 N Tinbergen (BFnature13169_CR1) 1950 TW Chen (BFnature13169_CR15) 2013; 499 D Lin (BFnature13169_CR32) 2011; 470 N Devidze (BFnature13169_CR2) 2006; 88 CF Yang (BFnature13169_CR11) 2013; 153 ES Lein (BFnature13169_CR4) 2007; 445 TW Chen (BFnature13169_CR38) 2013; 499 LM Kow (BFnature13169_CR24) 2005; 10 WB Kristan (BFnature13169_CR28) 2008; 18 W Haubensak (BFnature13169_CR36) 2010; 468 K Sano (BFnature13169_CR12) 2013; 37 MR Kruk (BFnature13169_CR26) 1983; 260 E Chan (BFnature13169_CR34) 2007; 144 S Vrontou (BFnature13169_CR39) 2013; 493 |
References_xml | – volume: 21 start-page: 116 year: 2011 ident: BFnature13169_CR23 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2010.09.014 contributor: fullname: MV Wu – volume: 499 start-page: 295 year: 2013 ident: BFnature13169_CR15 publication-title: Nature doi: 10.1038/nature12354 contributor: fullname: TW Chen – volume: 7 start-page: 1034 year: 2004 ident: BFnature13169_CR22 publication-title: Nature Neurosci. doi: 10.1038/nn1325 contributor: fullname: JA Morris – volume: 482 start-page: 85 year: 2012 ident: BFnature13169_CR40 publication-title: Nature doi: 10.1038/nature10754 contributor: fullname: JY Cohen – volume: 8 start-page: 1263 year: 2005 ident: BFnature13169_CR8 publication-title: Nature Neurosci. doi: 10.1038/nn1525 contributor: fullname: ES Boyden – volume: 445 start-page: 168 year: 2007 ident: BFnature13169_CR4 publication-title: Nature doi: 10.1038/nature05453 contributor: fullname: ES Lein – volume: 25 start-page: 507 year: 2002 ident: BFnature13169_CR21 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.25.112701.142745 contributor: fullname: RB Simerly – volume: 210 start-page: 211 year: 2010 ident: BFnature13169_CR20 publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2010.02.033 contributor: fullname: T Spiteri – volume: 82 start-page: 7889 year: 1985 ident: BFnature13169_CR6 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.82.23.7889 contributor: fullname: P Walter – volume: 88 start-page: 283 year: 2006 ident: BFnature13169_CR2 publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2006.05.030 contributor: fullname: N Devidze – volume: 148 start-page: 596 year: 2012 ident: BFnature13169_CR7 publication-title: Cell doi: 10.1016/j.cell.2011.12.018 contributor: fullname: X Xu – volume: 37 start-page: 1308 year: 2013 ident: BFnature13169_CR12 publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.12131 contributor: fullname: K Sano – volume: 468 start-page: 270 year: 2010 ident: BFnature13169_CR36 publication-title: Nature doi: 10.1038/nature09553 contributor: fullname: W Haubensak – volume: 71 start-page: 1081 year: 2011 ident: BFnature13169_CR27 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2011.11.012 contributor: fullname: DJ Anderson – volume: 10 start-page: 124 year: 2005 ident: BFnature13169_CR24 publication-title: Brain Res. doi: 10.1016/j.brainres.2005.02.068 contributor: fullname: LM Kow – volume: 237 start-page: 192 year: 1987 ident: BFnature13169_CR5 publication-title: Science doi: 10.1126/science.3037702 contributor: fullname: JI Morgan – volume: 44 start-page: 161 year: 2003 ident: BFnature13169_CR14 publication-title: Horm. Behav. doi: 10.1016/S0018-506X(03)00127-2 contributor: fullname: RJ Blanchard – volume: 488 start-page: 172 year: 2012 ident: BFnature13169_CR37 publication-title: Nature doi: 10.1038/nature11270 contributor: fullname: D Atasoy – volume: 153 start-page: 896 year: 2013 ident: BFnature13169_CR11 publication-title: Cell doi: 10.1016/j.cell.2013.04.017 contributor: fullname: CF Yang – ident: BFnature13169_CR33 doi: 10.1002/0471142301.ns0120s59 – volume: 141 start-page: 154 year: 2010 ident: BFnature13169_CR13 publication-title: Cell doi: 10.1016/j.cell.2010.02.037 contributor: fullname: V Gradinaru – volume: 38 start-page: 423 year: 1992 ident: BFnature13169_CR17 publication-title: Prog. Neurobiol. doi: 10.1016/0301-0082(92)90045-G contributor: fullname: RS Cohen – volume: 39 start-page: 43 year: 1988 ident: BFnature13169_CR10 publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.ps.39.020188.000355 contributor: fullname: DC Blanchard – volume: 103 start-page: 10456 year: 2006 ident: BFnature13169_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0603045103 contributor: fullname: S Musatov – volume: 54 start-page: 35 year: 2007 ident: BFnature13169_CR16 publication-title: Neuron doi: 10.1016/j.neuron.2007.02.030 contributor: fullname: W Lerchner – volume: 4 start-page: e8054 year: 2009 ident: BFnature13169_CR31 publication-title: PLoS ONE doi: 10.1371/journal.pone.0008054 contributor: fullname: Y Wu – volume: 91 start-page: 142 year: 2010 ident: BFnature13169_CR19 publication-title: Neuroendocrinology doi: 10.1159/000255766 contributor: fullname: T Spiteri – volume: 1 start-page: 35 year: 1978 ident: BFnature13169_CR25 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.01.030178.000343 contributor: fullname: D Bentley – volume: 493 start-page: 669 year: 2013 ident: BFnature13169_CR39 publication-title: Nature doi: 10.1038/nature11810 contributor: fullname: S Vrontou – volume: 470 start-page: 221 year: 2011 ident: BFnature13169_CR32 publication-title: Nature doi: 10.1038/nature09736 contributor: fullname: D Lin – volume: 493 start-page: 669 year: 2013 ident: BFnature13169_CR30 publication-title: Nature doi: 10.1038/nature11810 contributor: fullname: S Vrontou – volume: 144 start-page: 604 year: 2007 ident: BFnature13169_CR34 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2006.08.080 contributor: fullname: E Chan – volume: 445 start-page: 168 year: 2007 ident: BFnature13169_CR35 publication-title: Nature doi: 10.1038/nature05453 contributor: fullname: ES Lein – volume: 470 start-page: 221 year: 2011 ident: BFnature13169_CR3 publication-title: Nature doi: 10.1038/nature09736 contributor: fullname: D Lin – volume: 18 start-page: R928 year: 2008 ident: BFnature13169_CR28 publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.07.081 contributor: fullname: WB Kristan – volume: 468 start-page: 270 year: 2010 ident: BFnature13169_CR29 publication-title: Nature doi: 10.1038/nature09553 contributor: fullname: W Haubensak – volume: 499 start-page: 295 year: 2013 ident: BFnature13169_CR38 publication-title: Nature doi: 10.1038/nature12354 contributor: fullname: TW Chen – volume: 498 start-page: 363 year: 2013 ident: BFnature13169_CR41 publication-title: Nature doi: 10.1038/nature12176 contributor: fullname: D Kvitsiani – start-page: 305 volume-title: Physiological Mechanisms in Animal Behaviour year: 1950 ident: BFnature13169_CR1 contributor: fullname: N Tinbergen – volume: 4 start-page: S143 year: 2007 ident: BFnature13169_CR9 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/3/S02 contributor: fullname: AM Aravanis – volume: 260 start-page: 61 year: 1983 ident: BFnature13169_CR26 publication-title: Brain Res. doi: 10.1016/0006-8993(83)90764-3 contributor: fullname: MR Kruk |
SSID | ssj0005174 |
Score | 2.6308932 |
Snippet | Activation of Esr1
+
neurons of the mouse ventromedial hypothalamus initiates graded social behavioural responses–weak activation triggers close investigation... Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of... Social behaviors, such as aggression or mating, proceed through a series of appetitive and consummatory phases 1 that are associated with increasing levels of... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 627 |
SubjectTerms | 13/1 14/19 42/41 631/378 64/60 9/74 Aggression - physiology Animals Estrogen Receptor alpha - metabolism Female Humanities and Social Sciences Integrases - genetics Integrases - metabolism letter Male Mice multidisciplinary Neurons - metabolism Optogenetics Science Sexual Behavior, Animal - physiology Ventromedial Hypothalamic Nucleus - cytology Ventromedial Hypothalamic Nucleus - physiology |
Title | Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus |
URI | https://link.springer.com/article/10.1038/nature13169 https://www.ncbi.nlm.nih.gov/pubmed/24739975 https://search.proquest.com/docview/1530951441 https://pubmed.ncbi.nlm.nih.gov/PMC4098836 |
Volume | 509 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6TUhcEBu_wo_KSEMCVRlN48TucSsdFRLV1G1QTlHiODChJRXJDuXA386z_dK56w6wS9SmlR35-_L8bL_3PUL2o4KrOBB9X7PBZ6IvfFGkBXwFbyTUuZi5ifKdxpNz9mkezTudP252SZMdyN-35pXcBVW4B7jqLNn_QHbVKNyAz4AvXAFhuP4TxqcwwCb1aYQB5zqepS3-oHfED5smlT-1izk-nYHNOuoZMQ4bPK5dzi96c7fC9JHJcgG4QZOXuBuATuvUiH-6xT9WuwcYxzNZVnWKc2C6KtH8oSq_-19bL16f6ijdkw3smy2veYkKBoY7VZ73xgfuZkTA9Dk69tkmB1jBazu9WJvKeOyzGOdVNLpRf-iwC9yWgWNFYysXgBNybDdAN2y9VXa3-qdBGNiKLw7qi0sD-4BxcMJseZZ1ve2TzyNY3Qp42i2yo4UUde0FMXJChG6oeGN-J3T83ulW60ljH-vOzcaKZTPw9sbpu3Fqzh6SB7gaoYeWWruko8o9cs9EBct6j-yi5a_pW5Qnf_eIfGtZR5F1tCpoyzoKrKOWdTRbUs26HkXO0YuSAueoyznqcu4xOT8en40mPhbo8CUTrPGDVPAsA6dS6QTpMAgUl0Mmo0wM85ApyWKmwhxeeMZ5KCTPo0EhgjRXsEqXRRiFT8h2WZXqGaHxUMioXyiRpylwRaTguEcijgbQeA4-r0f225FNFlaHJTHxE6FIHCw88rod9QTspD78SktVXdUJzOx6NQHev0eeWhRWDbXweYSv4bP6g9ZgX_-lvPhhtNiRQB550yKZoIGob3u-53fu4QW5f_3CvSTbza8r9Qr84Sbrki0-511DXX09_tglO0fj6cnsLzq0t3o |
link.rule.ids | 230,314,780,784,885,27924,27925,31720,33267,33374,33745 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Control+of+Mounting+and+Attack+by+ESR1%2B+Neurons+in+the+Ventromedial+Hypothalamus&rft.jtitle=Nature+%28London%29&rft.au=Lee%2C+Hyosang&rft.au=Kim%2C+Dong-Wook&rft.au=Remedios%2C+Ryan&rft.au=Anthony%2C+Todd+E.&rft.date=2014-05-29&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=509&rft.issue=7502&rft.spage=627&rft.epage=632&rft_id=info:doi/10.1038%2Fnature13169&rft_id=info%3Apmid%2F24739975&rft.externalDBID=PMC4098836 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |