Redox‐Active Metal Complexes for Anticancer Therapy
The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relativ...
Saved in:
Published in | European journal of inorganic chemistry Vol. 2017; no. 12; pp. 1541 - 1548 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
27.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes (“prodrugs”) can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three PtIV and two RuIII compounds that have already entered clinical trials. More recently, novel CoIII, FeIII, PtIV, Ru(III/II), OsII, and IrIII complexes have been reported to exhibit redox‐mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells.
Redox reactions in the reducing environment of cancer cells can activate metal complexes so as to deliver bioactive ligands or modulate the redox state of cancer cells. Such redox activation strategies can provide novel mechanisms of action that increase drug selectivity and combat resistance. |
---|---|
AbstractList | The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes ("prodrugs") can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three PtIV and two RuIII compounds that have already entered clinical trials. More recently, novel CoIII, FeIII, PtIV, Ru(III/II), OsII, and IrIII complexes have been reported to exhibit redox-mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells. The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes (“prodrugs”) can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three PtIV and two RuIII compounds that have already entered clinical trials. More recently, novel CoIII, FeIII, PtIV, Ru(III/II), OsII, and IrIII complexes have been reported to exhibit redox‐mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells. Redox reactions in the reducing environment of cancer cells can activate metal complexes so as to deliver bioactive ligands or modulate the redox state of cancer cells. Such redox activation strategies can provide novel mechanisms of action that increase drug selectivity and combat resistance. The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes ("prodrugs") can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three Pt super(IV) and two Ru super(III) compounds that have already entered clinical trials. More recently, novel Co super(III), Fe super(III), Pt super(IV), Ru(III/II), Os super(II), and Ir super(III) complexes have been reported to exhibit redox-mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells. Redox reactions in the reducing environment of cancer cells can activate metal complexes so as to deliver bioactive ligands or modulate the redox state of cancer cells. Such redox activation strategies can provide novel mechanisms of action that increase drug selectivity and combat resistance. The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes (“prodrugs”) can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three Pt IV and two Ru III compounds that have already entered clinical trials. More recently, novel Co III , Fe III , Pt IV , Ru(III/II), Os II , and Ir III complexes have been reported to exhibit redox‐mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells. |
Author | Zhang, Pingyu Sadler, Peter J. |
Author_xml | – sequence: 1 givenname: Pingyu surname: Zhang fullname: Zhang, Pingyu organization: University of Warwick – sequence: 2 givenname: Peter J. orcidid: 0000-0001-9160-1941 surname: Sadler fullname: Sadler, Peter J. email: P.J.Sadler@warwick.ac.uk organization: University of Warwick |
BookMark | eNqFkMtOGzEUhq0KpIbLtuuRumEz4djH8WUZRaEFgZAQrC3jnlEdTcapPSlk10foM_IkDAoqUiTK6pzF953Lf8D2utQRY184jDmAOKVFDGMBXAFYMJ_YiIO1NSgj9oZeoqy5leYzOyhlAQAIqEZsckM_0uPTn7_T0MffVF1R79tqlparlh6pVE3K1bTrY_BdoFzd_qTsV5sjtt_4ttDxaz1kd2fz29n3-vL62_lselkHaaSp7zkaNBOFwWrrMagGtUarTWh8g9Igh8A9J2yEVSSCoUZqraRAHeBeeDxkJ9u5q5x-ran0bhlLoLb1HaV1cdxYtFyDEQP6dQddpHXuhuuc0AqH_9Hi_yhuDNdWS6sGarylQk6lZGrcKselzxvHwb1k7V6ydv-yHgS5I4TY-z6mrs8-tu9rdqs9xJY2Hyxx84vz2Zv7DOVZk0s |
CitedBy_id | crossref_primary_10_1039_C8QI00664D crossref_primary_10_1021_acs_inorgchem_4c00244 crossref_primary_10_1002_cmdc_202400127 crossref_primary_10_1016_j_molstruc_2024_139048 crossref_primary_10_1039_C9CC04098F crossref_primary_10_1007_s12011_022_03545_4 crossref_primary_10_1016_j_jinorgbio_2023_112345 crossref_primary_10_1039_D1SC01418H crossref_primary_10_1016_j_forc_2021_100347 crossref_primary_10_3390_M1770 crossref_primary_10_1021_acs_jmedchem_0c00047 crossref_primary_10_1016_j_molstruc_2022_132426 crossref_primary_10_1016_j_ejmech_2018_08_054 crossref_primary_10_1002_aoc_4779 crossref_primary_10_1039_C9DT04620H crossref_primary_10_1002_chem_202003486 crossref_primary_10_3390_molecules28041808 crossref_primary_10_1002_anie_202004551 crossref_primary_10_1016_j_ica_2024_122294 crossref_primary_10_1016_j_jinorgbio_2018_01_008 crossref_primary_10_1016_j_ccr_2024_216252 crossref_primary_10_1021_acs_chemrev_8b00493 crossref_primary_10_1039_D1QI00512J crossref_primary_10_3390_molecules27238565 crossref_primary_10_1016_j_heliyon_2019_e01968 crossref_primary_10_1039_D2RA04813B crossref_primary_10_1039_D0SC04082G crossref_primary_10_1002_ejic_201800857 crossref_primary_10_1039_C8NJ04515A crossref_primary_10_1002_chem_201904699 crossref_primary_10_1021_acsmacrolett_1c00336 crossref_primary_10_1016_j_molstruc_2022_134827 crossref_primary_10_1016_j_ccr_2021_214129 crossref_primary_10_1007_s11172_022_3406_5 crossref_primary_10_1039_C7NJ03999A crossref_primary_10_1039_D2DT02748H crossref_primary_10_1007_s00775_024_02084_8 crossref_primary_10_1039_D2DT02332F crossref_primary_10_1002_ange_202000247 crossref_primary_10_1002_aoc_7389 crossref_primary_10_1039_C7MD00545H crossref_primary_10_3389_fchbi_2023_1165773 crossref_primary_10_1002_ejic_201900677 crossref_primary_10_3389_fchem_2022_967337 crossref_primary_10_1021_acs_inorgchem_7b01368 crossref_primary_10_1016_j_ica_2018_12_002 crossref_primary_10_1007_s11243_019_00322_6 crossref_primary_10_1039_D2DT01310J crossref_primary_10_1016_j_jtemb_2023_127245 crossref_primary_10_1039_D3CC05083A crossref_primary_10_1016_j_bbagen_2021_130078 crossref_primary_10_1039_c9mt00232d crossref_primary_10_1002_ange_202004551 crossref_primary_10_1039_D4DT01191K crossref_primary_10_1021_acs_inorgchem_0c01613 crossref_primary_10_1002_aoc_6917 crossref_primary_10_3390_molecules29010105 crossref_primary_10_3389_fchem_2023_1150164 crossref_primary_10_3389_fphar_2022_1035217 crossref_primary_10_1039_D0DT04051G crossref_primary_10_1016_j_molstruc_2022_132508 crossref_primary_10_1002_aoc_6472 crossref_primary_10_1002_adma_202209529 crossref_primary_10_1007_s11243_018_0234_4 crossref_primary_10_1016_j_ica_2023_121898 crossref_primary_10_1016_j_pharmthera_2025_108805 crossref_primary_10_1016_j_poly_2021_115617 crossref_primary_10_1021_acs_inorgchem_8b02542 crossref_primary_10_1002_slct_202404147 crossref_primary_10_2174_1381612826666201113104633 crossref_primary_10_1016_j_molstruc_2023_135744 crossref_primary_10_1039_D4DT02628D crossref_primary_10_1021_acs_chemrev_8b00211 crossref_primary_10_1134_S1070328422700105 crossref_primary_10_1016_j_chphi_2023_100424 crossref_primary_10_1016_j_poly_2021_115189 crossref_primary_10_3390_molecules25010024 crossref_primary_10_1016_j_ccr_2020_213339 crossref_primary_10_1016_j_ica_2024_122139 crossref_primary_10_1039_C7NJ03072J crossref_primary_10_1039_D4CS00101J crossref_primary_10_1016_j_bioelechem_2020_107682 crossref_primary_10_1016_j_jinorgbio_2019_110907 crossref_primary_10_1246_bcsj_20220218 crossref_primary_10_1021_acs_organomet_0c00728 crossref_primary_10_1080_14786419_2022_2148246 crossref_primary_10_1016_j_dyepig_2025_112710 crossref_primary_10_1080_0144235X_2020_1719699 crossref_primary_10_3390_ijms23137146 crossref_primary_10_1016_j_ijbiomac_2024_137544 crossref_primary_10_1039_C6DT04613D crossref_primary_10_1021_acs_inorgchem_0c01068 crossref_primary_10_1016_j_poly_2024_116949 crossref_primary_10_1002_anie_202401808 crossref_primary_10_1002_aoc_4128 crossref_primary_10_1002_ejic_202300368 crossref_primary_10_1016_j_jinorgbio_2019_110816 crossref_primary_10_1016_j_jinorgbio_2021_111408 crossref_primary_10_1080_00958972_2024_2381630 crossref_primary_10_1007_s12039_024_02274_6 crossref_primary_10_1002_chem_201801090 crossref_primary_10_3390_inorganics11020056 crossref_primary_10_1002_anie_202000247 crossref_primary_10_1021_acs_inorgchem_8b00053 crossref_primary_10_1021_acs_inorgchem_8b03447 crossref_primary_10_2174_0122127968314625241015155536 crossref_primary_10_1039_D0CS00630K crossref_primary_10_1016_j_poly_2020_114829 crossref_primary_10_1039_C8DT03432J crossref_primary_10_1039_D3DT01696J crossref_primary_10_1016_j_ica_2018_10_021 crossref_primary_10_1002_slct_202101663 crossref_primary_10_3390_chemistry2040056 crossref_primary_10_1002_hlca_202300064 crossref_primary_10_1021_acsami_3c06394 crossref_primary_10_3390_inorganics12060158 crossref_primary_10_1021_acs_chemrev_8b00209 crossref_primary_10_1021_acs_inorgchem_3c03801 crossref_primary_10_1021_acs_inorgchem_2c03279 crossref_primary_10_1002_ejic_202100379 crossref_primary_10_3389_fcimb_2023_1340135 crossref_primary_10_1002_ejic_201900734 crossref_primary_10_1515_revic_2020_0030 crossref_primary_10_1039_C9NR03313K crossref_primary_10_1002_aoc_5593 crossref_primary_10_1002_ejic_201801426 crossref_primary_10_1016_j_poly_2020_114614 crossref_primary_10_3390_ijms20020341 crossref_primary_10_1021_acs_inorgchem_7b03118 crossref_primary_10_3390_molecules27010148 crossref_primary_10_1016_j_jinorgbio_2022_111913 crossref_primary_10_1055_s_0041_1741035 crossref_primary_10_1002_ejic_201801550 crossref_primary_10_3390_inorganics11100391 crossref_primary_10_1002_ejic_201800225 crossref_primary_10_1016_j_jinorgbio_2020_111041 crossref_primary_10_1039_C7DT04615D crossref_primary_10_1016_j_ejmech_2023_115536 crossref_primary_10_2174_0929867326666181203141122 crossref_primary_10_1016_j_jorganchem_2018_10_008 crossref_primary_10_1002_slct_201800015 crossref_primary_10_1016_j_ijbiomac_2025_139885 crossref_primary_10_1016_j_poly_2021_115563 crossref_primary_10_1002_cplu_201900394 crossref_primary_10_1021_acs_organomet_2c00553 crossref_primary_10_31857_S0132344X22700037 crossref_primary_10_1002_asia_202200270 crossref_primary_10_1016_j_jinorgbio_2021_111453 crossref_primary_10_1016_j_jinorgbio_2020_111211 crossref_primary_10_1016_j_ica_2017_09_056 crossref_primary_10_1016_j_jinorgbio_2022_111975 crossref_primary_10_1039_D0DT01343A crossref_primary_10_1021_jacs_8b08249 crossref_primary_10_1007_s12013_021_00984_z crossref_primary_10_1016_j_ccr_2023_215230 crossref_primary_10_1080_02603594_2024_2313139 crossref_primary_10_1155_2018_4560757 crossref_primary_10_1016_j_ccr_2024_216026 crossref_primary_10_1039_C7DT03917D crossref_primary_10_1016_j_pharmthera_2020_107579 crossref_primary_10_1021_acs_inorgchem_0c01442 crossref_primary_10_1002_cmdc_202200652 crossref_primary_10_1016_j_drudis_2019_02_012 crossref_primary_10_1002_ange_202401808 crossref_primary_10_1016_j_ica_2018_11_050 crossref_primary_10_1039_C7DT03265J crossref_primary_10_1007_s12039_018_1584_3 crossref_primary_10_1016_j_ica_2021_120701 crossref_primary_10_54167_tecnociencia_v15i3_855 crossref_primary_10_1016_j_ejmech_2021_113770 crossref_primary_10_1093_intbio_zyac008 crossref_primary_10_1039_c8mt00352a crossref_primary_10_1002_cbdv_202300061 crossref_primary_10_1039_D1QI00233C crossref_primary_10_1002_slct_202303130 crossref_primary_10_3389_fphar_2022_1060827 crossref_primary_10_1016_j_inoche_2023_111101 crossref_primary_10_1039_D3DT04045C crossref_primary_10_1002_ejic_201701251 crossref_primary_10_1107_S2053229619004029 crossref_primary_10_1098_rsos_171340 crossref_primary_10_1039_D0DT01721C crossref_primary_10_1155_2018_8395374 crossref_primary_10_1021_acs_langmuir_4c02043 crossref_primary_10_1016_j_dyepig_2024_112134 crossref_primary_10_1007_s00775_020_01758_3 crossref_primary_10_3897_pharmacia_70_e105845 crossref_primary_10_1016_j_ccr_2025_216582 crossref_primary_10_1080_00958972_2023_2208260 crossref_primary_10_26565_2075_5457_2020_34_4 crossref_primary_10_1021_acsomega_0c00360 crossref_primary_10_3390_ijms21218355 crossref_primary_10_3390_pharmaceutics13111788 crossref_primary_10_1039_D0DT01389G crossref_primary_10_1016_j_jinorgbio_2019_110756 crossref_primary_10_1039_C8CC05223A crossref_primary_10_1016_j_poly_2023_116485 crossref_primary_10_1016_j_bbagen_2021_129963 crossref_primary_10_1016_j_inoche_2024_112724 crossref_primary_10_1016_j_ica_2020_119542 |
Cites_doi | 10.1089/ars.2012.4827 10.1002/chem.201502702 10.1021/om500644f 10.1039/a909447d 10.1016/0162-0134(86)80006-X 10.1039/C6DT02456D 10.1002/ange.201108175 10.1021/jm3017442 10.1039/b512322d 10.1002/ange.201311161 10.4161/cbt.1.5.157 10.1038/nrc2167 10.1002/ange.201610290 10.1007/s00280-004-0901-3 10.1097/MAJ.0b013e31812dfe1e 10.1164/ajrccm/140.2.531 10.1016/j.addr.2012.01.007 10.1039/c1dt10937e 10.1089/ars.2012.4650 10.1016/S0891-5849(01)00724-9 10.1039/C5CC03180J 10.1002/chem.201502373 10.1016/S0891-5849(01)00480-4 10.1021/jm3007245 10.2174/092986712803341520 10.1021/jacs.5b10182 10.1002/chem.201000148 10.1007/s13361-012-0539-z 10.3389/fphar.2014.00181 10.1021/jm050015d 10.1002/anie.201311161 10.1021/jm00065a006 10.1002/chem.200601137 10.1089/ars.2010.3663 10.1021/jm3014713 10.1039/b805358h 10.1021/om2005468 10.1021/jm010051m 10.1021/jm100560f 10.1016/j.ica.2006.12.005 10.1073/pnas.0800076105 10.1177/1087057110385227 10.1152/physrev.00040.2012 10.1021/jm049866w 10.1016/S0305-7372(03)00003-3 10.1016/j.drudis.2014.06.016 10.1021/acs.jmedchem.5b00655 10.1039/C6DT01382A 10.1089/ars.2007.1936 10.1021/jm2000932 10.1016/j.jinorgbio.2006.11.003 10.1016/j.cellsig.2007.04.009 10.2174/0929867054637626 10.1002/anie.201003399 10.1021/ic200607j 10.3109/01480545.2014.974107 10.1039/C5DT02101D 10.1007/s10637-014-0179-1 10.1039/C0NJ00478B 10.1073/pnas.0707742105 10.1007/978-3-642-13185-1_2 10.1039/C5DT03919C 10.1039/C6SC00268D 10.1016/j.leukres.2010.12.027 10.1039/b311091e 10.1039/c3sc51530c 10.1002/chem.201605911 10.1038/nature07733 10.1002/cbdv.200890195 10.1039/c1md00075f 10.1089/ars.2008.2425 10.1016/S0010-8545(02)00026-7 10.1021/ic400835n 10.1002/ange.201003399 10.1021/jm500455p 10.1021/ar400266c 10.1002/anie.201108175 10.1021/ic302175t 10.1021/acs.chemrev.5b00597 10.1002/anie.201610290 10.1021/ja053387k 10.1093/acprof:oso/9780198717478.001.0001 10.1039/c2sc20220d 10.1016/j.ica.2012.06.046 |
ContentType | Journal Article |
Copyright | 2017 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2017. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2017 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ejic.201600908 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-0682 |
EndPage | 1548 |
ExternalDocumentID | 4321263729 10_1002_ejic_201600908 EJIC201600908 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council funderid: EP/F034210/1 – fundername: Royal Society funderid: Newton Fellowship – fundername: European Research Council funderid: 247450 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACNCT ACPOU ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA HBH HGLYW HHY HHZ HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 1OB 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4848-b13838563c979a3c6f3773978cfaf348310c1a1e3f296e2c8ef47764237c0b2a3 |
IEDL.DBID | DR2 |
ISSN | 1434-1948 |
IngestDate | Fri Jul 11 06:34:52 EDT 2025 Wed Aug 13 07:38:51 EDT 2025 Wed Aug 13 09:03:31 EDT 2025 Tue Jul 01 03:57:39 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Wed Jan 22 17:06:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4848-b13838563c979a3c6f3773978cfaf348310c1a1e3f296e2c8ef47764237c0b2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9160-1941 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.201600908 |
PQID | 1881797496 |
PQPubID | 2030176 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1893917082 proquest_journals_2763143393 proquest_journals_1881797496 crossref_primary_10_1002_ejic_201600908 crossref_citationtrail_10_1002_ejic_201600908 wiley_primary_10_1002_ejic_201600908_EJIC201600908 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 27, 2017 |
PublicationDateYYYYMMDD | 2017-03-27 |
PublicationDate_xml | – month: 03 year: 2017 text: March 27, 2017 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | European journal of inorganic chemistry |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2014 2014; 53 126 2007; 104 2007; 101 2010; 53 2010; 16 2015; 38 2013; 4 2013; 24 2002; 232 2015; 33 2012; 19 2011; 54 2008; 5 2008; 105 2011; 15 2001; 44 2011; 16 1989; 49 2012; 55 2007; 334 2013; 18 1993; 36 2014; 5 2015; 137 2000 2013; 56 2012 2012; 51 124 2015; 44 2013; 52 2007; 7 2016; 116 2014; 19 2014; 94 2012; 64 2016; 45 2007; 19 2010; 32 2015; 58 2011; 2 2015; 51 2004; 47 2011; 40 2002; 1 2008 2014 2016; 57 7 2011; 30 2014; 47 1989; 140 2006 2008; 10 2011; 35 2010 2010; 49 122 2004 2017 2017; 56 129 2005; 48 2007; 13 2008; 361 2009; 458 2012; 393 2012; 3 2005; 127 2015; 21 1986; 26 2011; 50 2017 2003; 29 2015 2009; 3 2012; 7 2005; 55 2005; 12 2001; 30 2014; 33 2001; 31 e_1_2_11_70_1 e_1_2_11_72_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_51_2 e_1_2_11_72_2 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_81_2 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_71_1 Gibbons G. R. (e_1_2_11_45_1) 1989; 49 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_73_2 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Lange T. S. (e_1_2_11_37_1) 2009; 3 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_65_2 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_39_1 |
References_xml | – volume: 50 start-page: 5777 year: 2011 end-page: 5783 publication-title: Inorg. Chem. – volume: 16 start-page: 26 year: 2011 end-page: 35 publication-title: J. Biomol. Screening – volume: 35 start-page: 571 year: 2011 end-page: 572 publication-title: Leuk. Res. – volume: 31 start-page: 1287 year: 2001 end-page: 1312 publication-title: Free Radical Biol. Med. – start-page: 925 year: 2000 end-page: 932 publication-title: J. Chem. Soc., Dalton Trans. – volume: 47 start-page: 5683 year: 2004 end-page: 5689 publication-title: J. Med. Chem. – volume: 3 start-page: 17 year: 2009 end-page: 26 publication-title: Drug Des. Dev. Ther. – volume: 19 start-page: 1640 year: 2014 end-page: 1648 publication-title: Drug Discovery Today – volume: 5 start-page: 2140 year: 2008 end-page: 2155 publication-title: Chem. Biodiversity – volume: 10 start-page: 769 year: 2008 end-page: 783 publication-title: Antioxid. Redox Signaling – volume: 32 start-page: 21 year: 2010 end-page: 56 publication-title: Top. Organomet. Chem. – volume: 44 start-page: 3616 year: 2001 end-page: 3621 publication-title: J. Med. Chem. – volume: 36 start-page: 1839 year: 1993 end-page: 1846 publication-title: J. Med. Chem. – volume: 30 start-page: 1191 year: 2001 end-page: 1212 publication-title: Free Radical Biol. Med. – volume: 7 start-page: 1738 year: 2012 end-page: 1747 publication-title: Antioxid. Redox Signaling – volume: 58 start-page: 7874 year: 2015 end-page: 7880 publication-title: J. Med. Chem. – volume: 7 start-page: 573 year: 2007 end-page: 584 publication-title: Nat. Rev. Cancer – volume: 52 start-page: 1167 year: 2013 end-page: 1169 publication-title: Inorg. Chem. – volume: 116 start-page: 3436 year: 2016 end-page: 3486 publication-title: Chem. Rev. – volume: 137 start-page: 14854 year: 2015 end-page: 14857 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3731 year: 2013 end-page: 3739 publication-title: Chem. Sci. – volume: 2 start-page: 666 year: 2011 end-page: 668 publication-title: MedChemComm – volume: 56 start-page: 1291 year: 2013 end-page: 1300 publication-title: J. Med. Chem. – volume: 16 start-page: 7064 year: 2010 end-page: 7077 publication-title: Chem. Eur. J. – volume: 38 start-page: 375 year: 2015 end-page: 382 publication-title: Drug Chem. Toxicol. – volume: 127 start-page: 17734 year: 2005 end-page: 17743 publication-title: J. Am. Chem. Soc. – volume: 393 start-page: 84 year: 2012 end-page: 102 publication-title: Inorg. Chim. Acta – volume: 1 start-page: 453 year: 2002 end-page: 458 publication-title: Cancer Biol. Ther. – volume: 105 start-page: 11628 year: 2008 end-page: 11633 publication-title: Proc. Natl. Acad. Sci. USA – volume: 40 start-page: 10553 year: 2011 end-page: 10562 publication-title: Dalton Trans. – volume: 458 start-page: 780 year: 2009 end-page: 783 publication-title: Nature – volume: 51 124 start-page: 3897 3963 year: 2012 2012 end-page: 3900 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 8192 year: 2010 end-page: 8196 publication-title: J. Med. Chem. – volume: 44 start-page: 13796 year: 2015 end-page: 13808 publication-title: Dalton Trans. – volume: 53 126 start-page: 3941 4022 year: 2014 2014 end-page: 3946 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 1174 year: 2014 end-page: 1185 publication-title: Acc. Chem. Res. – year: 2015 – volume: 140 start-page: 531 year: 1989 end-page: 554 publication-title: Am. Rev. Respir. Dis. – volume: 48 start-page: 4161 year: 2005 end-page: 4171 publication-title: J. Med. Chem. – start-page: 4413 year: 2008 end-page: 4415 publication-title: Chem. Commun. – volume: 57 7 start-page: 6043 4117 year: 2014 2016 end-page: 6059 4124 publication-title: J. Med. Chem. Chem. Sci. – volume: 33 start-page: 201 year: 2015 end-page: 214 publication-title: Invest. New Drugs – volume: 21 start-page: 15224 year: 2015 end-page: 15234 publication-title: Chem. Eur. J. – volume: 55 start-page: 333 year: 2005 end-page: 342 publication-title: Cancer Chemother. Pharmacol. – volume: 334 start-page: 115 year: 2007 end-page: 124 publication-title: Am. J. Med. Sci. – volume: 51 start-page: 9169 year: 2015 end-page: 9172 publication-title: Chem. Commun. – volume: 19 start-page: 4850 year: 2012 end-page: 4860 publication-title: Curr. Med. Chem. – volume: 232 start-page: 49 year: 2002 end-page: 67 publication-title: Coord. Chem. Rev. – volume: 12 start-page: 2075 year: 2005 end-page: 2094 publication-title: Curr. Med. Chem. – volume: 35 start-page: 265 year: 2011 end-page: 287 publication-title: New J. Chem. – volume: 29 start-page: 297 year: 2003 end-page: 307 publication-title: Cancer Treat. Rev. – volume: 54 start-page: 3011 year: 2011 end-page: 3026 publication-title: J. Med. Chem. – volume: 5 start-page: 1 year: 2014 end-page: 16 publication-title: Front. Pharmacol. – volume: 3 start-page: 2485 year: 2012 end-page: 2494 publication-title: Chem. Sci. – volume: 26 start-page: 137 year: 1986 end-page: 142 publication-title: J. Inorg. Biochem. – volume: 12 start-page: 93 year: 2010 end-page: 124 publication-title: Antioxid. Redox Signaling – volume: 45 start-page: 13671 year: 2016 end-page: 13674 publication-title: Dalton Trans. – volume: 49 start-page: 1402 year: 1989 end-page: 1407 publication-title: Cancer Res. – volume: 55 start-page: 7208 year: 2012 end-page: 7218 publication-title: J. Med. Chem. – volume: 30 start-page: 4702 year: 2011 end-page: 4710 publication-title: Organometallics – start-page: 611 year: 2004 end-page: 618 publication-title: Dalton Trans. – volume: 49 122 start-page: 8905 9089 year: 2010 2010 end-page: 8908 9092 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 18474 year: 2015 end-page: 18486 publication-title: Chem. Eur. J. – volume: 101 start-page: 396 year: 2007 end-page: 403 publication-title: J. Inorg. Biochem. – volume: 45 start-page: 3201 year: 2016 end-page: 3209 publication-title: Dalton Trans. – volume: 55 start-page: 11013 year: 2012 end-page: 11021 publication-title: J. Med. Chem. – volume: 45 start-page: 13034 year: 2016 end-page: 13037 publication-title: Dalton Trans. – volume: 94 start-page: 329 year: 2014 end-page: 354 publication-title: Physiol. Rev. – volume: 33 start-page: 5324 year: 2014 end-page: 5333 publication-title: Organometallics – volume: 52 start-page: 12276 year: 2013 end-page: 12291 publication-title: Inorg. Chem. – volume: 19 start-page: 1807 year: 2007 end-page: 1819 publication-title: Cell Signal – volume: 361 start-page: 1569 year: 2008 end-page: 1583 publication-title: Inorg. Chim. Acta – volume: 104 start-page: 20743 year: 2007 end-page: 20748 publication-title: Proc. Natl. Acad. Sci. USA – volume: 56 129 start-page: 1017 1037 year: 2017 2017 end-page: 1020 1040 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2017 – start-page: 1895 year: 2006 end-page: 1901 publication-title: Dalton Trans. – volume: 24 start-page: 410 year: 2013 end-page: 420 publication-title: J. Am. Soc. Mass Spectrom. – volume: 15 start-page: 1085 year: 2011 end-page: 1127 publication-title: Antioxid. Redox Signaling – volume: 13 start-page: 2974 year: 2007 end-page: 2982 publication-title: Chem. Eur. J. – volume: 64 start-page: 993 year: 2012 end-page: 1004 publication-title: Adv. Drug Delivery Rev. – volume: 18 start-page: 642 year: 2013 end-page: 660 publication-title: Antioxid. Redox Signaling – ident: e_1_2_11_14_1 doi: 10.1089/ars.2012.4827 – ident: e_1_2_11_33_1 doi: 10.1002/chem.201502702 – ident: e_1_2_11_71_1 doi: 10.1021/om500644f – ident: e_1_2_11_29_1 doi: 10.1039/a909447d – ident: e_1_2_11_46_1 doi: 10.1016/0162-0134(86)80006-X – ident: e_1_2_11_25_1 doi: 10.1039/C6DT02456D – ident: e_1_2_11_72_2 doi: 10.1002/ange.201108175 – ident: e_1_2_11_80_1 doi: 10.1021/jm3017442 – ident: e_1_2_11_32_1 doi: 10.1039/b512322d – ident: e_1_2_11_73_2 doi: 10.1002/ange.201311161 – ident: e_1_2_11_2_1 doi: 10.4161/cbt.1.5.157 – ident: e_1_2_11_43_1 doi: 10.1038/nrc2167 – ident: e_1_2_11_81_2 doi: 10.1002/ange.201610290 – ident: e_1_2_11_17_1 doi: 10.1007/s00280-004-0901-3 – ident: e_1_2_11_42_1 doi: 10.1097/MAJ.0b013e31812dfe1e – ident: e_1_2_11_19_1 doi: 10.1164/ajrccm/140.2.531 – ident: e_1_2_11_47_1 doi: 10.1016/j.addr.2012.01.007 – ident: e_1_2_11_78_1 doi: 10.1039/c1dt10937e – ident: e_1_2_11_74_1 doi: 10.1089/ars.2012.4650 – ident: e_1_2_11_23_1 doi: 10.1016/S0891-5849(01)00724-9 – ident: e_1_2_11_52_1 doi: 10.1039/C5CC03180J – ident: e_1_2_11_53_1 doi: 10.1002/chem.201502373 – ident: e_1_2_11_16_1 doi: 10.1016/S0891-5849(01)00480-4 – ident: e_1_2_11_10_1 doi: 10.1021/jm3007245 – ident: e_1_2_11_11_1 doi: 10.2174/092986712803341520 – ident: e_1_2_11_49_1 doi: 10.1021/jacs.5b10182 – ident: e_1_2_11_41_1 doi: 10.1002/chem.201000148 – ident: e_1_2_11_63_1 doi: 10.1007/s13361-012-0539-z – ident: e_1_2_11_18_1 doi: 10.3389/fphar.2014.00181 – volume: 49 start-page: 1402 year: 1989 ident: e_1_2_11_45_1 publication-title: Cancer Res. – ident: e_1_2_11_61_1 doi: 10.1021/jm050015d – ident: e_1_2_11_73_1 doi: 10.1002/anie.201311161 – ident: e_1_2_11_35_1 doi: 10.1021/jm00065a006 – ident: e_1_2_11_39_1 doi: 10.1002/chem.200601137 – ident: e_1_2_11_15_1 doi: 10.1089/ars.2010.3663 – ident: e_1_2_11_26_1 doi: 10.1021/jm3014713 – ident: e_1_2_11_21_1 doi: 10.1039/b805358h – ident: e_1_2_11_70_1 doi: 10.1021/om2005468 – ident: e_1_2_11_60_1 doi: 10.1021/jm010051m – ident: e_1_2_11_76_1 doi: 10.1021/jm100560f – ident: e_1_2_11_58_1 doi: 10.1016/j.ica.2006.12.005 – ident: e_1_2_11_64_1 doi: 10.1073/pnas.0800076105 – ident: e_1_2_11_36_1 doi: 10.1177/1087057110385227 – ident: e_1_2_11_9_1 doi: 10.1152/physrev.00040.2012 – ident: e_1_2_11_30_1 doi: 10.1021/jm049866w – ident: e_1_2_11_3_1 doi: 10.1016/S0305-7372(03)00003-3 – ident: e_1_2_11_75_1 doi: 10.1016/j.drudis.2014.06.016 – ident: e_1_2_11_4_1 doi: 10.1021/acs.jmedchem.5b00655 – ident: e_1_2_11_54_1 doi: 10.1039/C6DT01382A – ident: e_1_2_11_22_1 doi: 10.1089/ars.2007.1936 – ident: e_1_2_11_68_1 doi: 10.1021/jm2000932 – ident: e_1_2_11_40_1 doi: 10.1016/j.jinorgbio.2006.11.003 – ident: e_1_2_11_24_1 doi: 10.1016/j.cellsig.2007.04.009 – ident: e_1_2_11_5_1 doi: 10.2174/0929867054637626 – ident: e_1_2_11_51_1 doi: 10.1002/anie.201003399 – ident: e_1_2_11_69_1 doi: 10.1021/ic200607j – ident: e_1_2_11_13_1 doi: 10.3109/01480545.2014.974107 – ident: e_1_2_11_34_1 doi: 10.1039/C5DT02101D – ident: e_1_2_11_56_1 doi: 10.1007/s10637-014-0179-1 – ident: e_1_2_11_66_1 doi: 10.1039/C0NJ00478B – ident: e_1_2_11_50_1 doi: 10.1073/pnas.0707742105 – ident: e_1_2_11_59_1 doi: 10.1007/978-3-642-13185-1_2 – ident: e_1_2_11_57_1 doi: 10.1039/C5DT03919C – ident: e_1_2_11_65_2 doi: 10.1039/C6SC00268D – ident: e_1_2_11_38_1 doi: 10.1016/j.leukres.2010.12.027 – ident: e_1_2_11_31_1 doi: 10.1039/b311091e – ident: e_1_2_11_27_1 doi: 10.1039/c3sc51530c – ident: e_1_2_11_82_1 doi: 10.1002/chem.201605911 – ident: e_1_2_11_8_1 doi: 10.1038/nature07733 – ident: e_1_2_11_55_1 doi: 10.1002/cbdv.200890195 – ident: e_1_2_11_77_1 doi: 10.1039/c1md00075f – ident: e_1_2_11_20_1 doi: 10.1089/ars.2008.2425 – ident: e_1_2_11_44_1 doi: 10.1016/S0010-8545(02)00026-7 – ident: e_1_2_11_6_1 doi: 10.1021/ic400835n – ident: e_1_2_11_51_2 doi: 10.1002/ange.201003399 – ident: e_1_2_11_65_1 doi: 10.1021/jm500455p – ident: e_1_2_11_7_1 doi: 10.1021/ar400266c – ident: e_1_2_11_72_1 doi: 10.1002/anie.201108175 – ident: e_1_2_11_28_1 doi: 10.1021/ic302175t – ident: e_1_2_11_48_1 doi: 10.1021/acs.chemrev.5b00597 – ident: e_1_2_11_81_1 doi: 10.1002/anie.201610290 – ident: e_1_2_11_62_1 doi: 10.1021/ja053387k – ident: e_1_2_11_12_1 doi: 10.1093/acprof:oso/9780198717478.001.0001 – ident: e_1_2_11_79_1 doi: 10.1039/c2sc20220d – volume: 3 start-page: 17 year: 2009 ident: e_1_2_11_37_1 publication-title: Drug Des. Dev. Ther. – ident: e_1_2_11_67_1 doi: 10.1016/j.ica.2012.06.046 |
SSID | ssj0003036 |
Score | 2.584923 |
SecondaryResourceType | review_article |
Snippet | The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1541 |
SubjectTerms | Activation Anticancer compounds Anticancer properties Aquatic plants Bioinorganic chemistry Cancer Coordination compounds Drugs Inorganic chemistry Ligands Metal complexes Modulators Prodrugs Redox chemistry Selectivity Strategy Therapy Transition metal compounds |
Title | Redox‐Active Metal Complexes for Anticancer Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.201600908 https://www.proquest.com/docview/1881797496 https://www.proquest.com/docview/2763143393 https://www.proquest.com/docview/1893917082 |
Volume | 2017 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9BeRgvsDEQBVZlEtKeDInt-M9jW6gY0hBCIPEWOa4tAVWKaCshnvgI-4z7JJyTJoVp0yT2GDmO7Lvz-XfO-XcA-1qjVUhlCDcY6XBqODEilSQ1JvGoc-NNmeV7Jk6u-Ol1ev3qFn_FD9EcuIWVUfrrsMBNPjlckIa625tAQZjgjq3L274hYSugoosFf1Twz-X1IsYJRuuqZm2M6eHb7m93pQXUfA1Yyx1nsA6mHmuVaHJ3MJvmB_bpNxrH_5nMR1ibw9GoW9nPJ1hyxQZ86NdV4D5DeuGG48dfzz-7pWOMfjhE61HwIiP36CYRYt6oW4QDcbSeh-iyIinYhKvB8WX_hMxLLRDLFVckTzBSValgVkttmBWeSYlQRVlvPOOhGplNTOKYp1o4apXzXEoRcmpsnFPDtqBVjAu3DdFQaRdbo1Hbng9xNmKYKuoSbwWqXsRtILWoMzvnIQ_lMEZZxaBMsyCMrBFGG741799XDBx_fXOv1lw2X4mTLFEKfY7kWvyxmaJ_RfNgmrXha9OMMg7_TUzhxrPwCc0wqkWw1AZaavEfA8mOT7_3m6ed93TahVUaAETMCJV70Jo-zNwXhD_TvAPLlJ93YKXbO-oNOqXBvwDvAvwq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5V9EAv9IcittA2lSpxMiS245_jagVaKHBAi9Rb5HhtCVhlEexKiBOPwDP2STqTbLKlaoXUHiPHkT0zHn_jjL8B-GotWoU2jkmHkY7kTjKncs1y57KIOnfR1Vm-p2p4Lo--5202Id2FafghugM3Whm1v6YFTgfSe0vW0HB5QRyEGW7Zlq77vqSy3nVUdbZkkCIPXV8wEpJhvG5a3saU7z3t_3RfWoLNXyFrveccvIayHW2TanK1O5-Vu_7-NyLH_5rOG1hbINKk35jQW3gRqnewOmgLwa1DfhbG07sfD4_92jcmJwEBe0KOZBLuwm2CsDfpV3QmjgZ0k4wanoL3cH6wPxoM2aLaAvPSSMPKDINVkyvhrbZOeBWF1ohWjI8uCkkFyXzmsiAitypwb0KUWitKq_FpyZ3YgJVqWoVNSMbGhtQ7iwqPcoyzUePc8JBFr1D7Ku0Ba2Vd-AUVOVXEmBQNiTIvSBhFJ4we7HTvXzckHH99c7tVXbFYjLdFZgy6HS2t-mMzRxeL9iGs6MGXrhllTL9OXBWmc_qEFRjYIl7qAa_V-MxAiv2jw0H39OFfOn2G1eHo5Lg4Pjz9tgWvOOGJVDCut2FldjMPHxENzcpPtb3_BODS_fw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC4WBXcvuu4DR11tYcFTtDtJ53EcRgd1V1lEwVuTSSegDj3izMDgyZ_gb_SXWOme7tFFEXaPTZImqapUvsrjK4CfWqNVSGUINxjpcGo4MSKVJDUm8ahz4015y_dEHJzzo4v04tkr_oofotlwCzOj9Ndhgt_kfndGGuquLgMFYYIrtg6vfee5iFWw673TGYFUcNDl-yLGCYbrqqZtjOnuy_Yvl6UZ1nyOWMslp7sEpu5sddPkemc86u3Yu794HP9nNJ9hcYpHo3ZlQMvwwRVf4GOnTgP3FdJTlw8mj_cP7dIzRscO4XoU3EjfTdwwQtAbtYuwI47mcxudVSwF3-C8u3_WOSDTXAvEcsUV6SUYqqpUMKulNswKz6RErKKsN57xkI7MJiZxzFMtHLXKeS6lCJdqbNyjhn2HuWJQuBWIcqVdbI1GdXue42hEnirqEm8F6l7ELSC1qDM7JSIP-TD6WUWhTLMgjKwRRgu2m_o3FQXHmzXXa81l06k4zBKl0OlIrsWrxRQdLJoH06wFW00xyjgcnJjCDcbhF5phWItoqQW01OI7Hcn2jw47zdfqvzTahIU_e93s9-HJrzX4RAOYiBmhch3mRrdj9wOh0Ki3UVr7E_d8_LQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox%E2%80%90Active+Metal+Complexes+for+Anticancer+Therapy&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Zhang%2C+Pingyu&rft.au=Sadler%2C+Peter+J&rft.date=2017-03-27&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=2017&rft.issue=12&rft.spage=1541&rft.epage=1548&rft_id=info:doi/10.1002%2Fejic.201600908&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon |