Redox‐Active Metal Complexes for Anticancer Therapy

The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relativ...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of inorganic chemistry Vol. 2017; no. 12; pp. 1541 - 1548
Main Authors Zhang, Pingyu, Sadler, Peter J.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 27.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes (“prodrugs”) can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three PtIV and two RuIII compounds that have already entered clinical trials. More recently, novel CoIII, FeIII, PtIV, Ru(III/II), OsII, and IrIII complexes have been reported to exhibit redox‐mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells. Redox reactions in the reducing environment of cancer cells can activate metal complexes so as to deliver bioactive ligands or modulate the redox state of cancer cells. Such redox activation strategies can provide novel mechanisms of action that increase drug selectivity and combat resistance.
AbstractList The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes ("prodrugs") can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three PtIV and two RuIII compounds that have already entered clinical trials. More recently, novel CoIII, FeIII, PtIV, Ru(III/II), OsII, and IrIII complexes have been reported to exhibit redox-mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells.
The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes (“prodrugs”) can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three PtIV and two RuIII compounds that have already entered clinical trials. More recently, novel CoIII, FeIII, PtIV, Ru(III/II), OsII, and IrIII complexes have been reported to exhibit redox‐mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells. Redox reactions in the reducing environment of cancer cells can activate metal complexes so as to deliver bioactive ligands or modulate the redox state of cancer cells. Such redox activation strategies can provide novel mechanisms of action that increase drug selectivity and combat resistance.
The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes ("prodrugs") can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three Pt super(IV) and two Ru super(III) compounds that have already entered clinical trials. More recently, novel Co super(III), Fe super(III), Pt super(IV), Ru(III/II), Os super(II), and Ir super(III) complexes have been reported to exhibit redox-mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells. Redox reactions in the reducing environment of cancer cells can activate metal complexes so as to deliver bioactive ligands or modulate the redox state of cancer cells. Such redox activation strategies can provide novel mechanisms of action that increase drug selectivity and combat resistance.
The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes (“prodrugs”) can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three Pt IV and two Ru III compounds that have already entered clinical trials. More recently, novel Co III , Fe III , Pt IV , Ru(III/II), Os II , and Ir III complexes have been reported to exhibit redox‐mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells.
Author Zhang, Pingyu
Sadler, Peter J.
Author_xml – sequence: 1
  givenname: Pingyu
  surname: Zhang
  fullname: Zhang, Pingyu
  organization: University of Warwick
– sequence: 2
  givenname: Peter J.
  orcidid: 0000-0001-9160-1941
  surname: Sadler
  fullname: Sadler, Peter J.
  email: P.J.Sadler@warwick.ac.uk
  organization: University of Warwick
BookMark eNqFkMtOGzEUhq0KpIbLtuuRumEz4djH8WUZRaEFgZAQrC3jnlEdTcapPSlk10foM_IkDAoqUiTK6pzF953Lf8D2utQRY184jDmAOKVFDGMBXAFYMJ_YiIO1NSgj9oZeoqy5leYzOyhlAQAIqEZsckM_0uPTn7_T0MffVF1R79tqlparlh6pVE3K1bTrY_BdoFzd_qTsV5sjtt_4ttDxaz1kd2fz29n3-vL62_lselkHaaSp7zkaNBOFwWrrMagGtUarTWh8g9Igh8A9J2yEVSSCoUZqraRAHeBeeDxkJ9u5q5x-ran0bhlLoLb1HaV1cdxYtFyDEQP6dQddpHXuhuuc0AqH_9Hi_yhuDNdWS6sGarylQk6lZGrcKselzxvHwb1k7V6ydv-yHgS5I4TY-z6mrs8-tu9rdqs9xJY2Hyxx84vz2Zv7DOVZk0s
CitedBy_id crossref_primary_10_1039_C8QI00664D
crossref_primary_10_1021_acs_inorgchem_4c00244
crossref_primary_10_1002_cmdc_202400127
crossref_primary_10_1016_j_molstruc_2024_139048
crossref_primary_10_1039_C9CC04098F
crossref_primary_10_1007_s12011_022_03545_4
crossref_primary_10_1016_j_jinorgbio_2023_112345
crossref_primary_10_1039_D1SC01418H
crossref_primary_10_1016_j_forc_2021_100347
crossref_primary_10_3390_M1770
crossref_primary_10_1021_acs_jmedchem_0c00047
crossref_primary_10_1016_j_molstruc_2022_132426
crossref_primary_10_1016_j_ejmech_2018_08_054
crossref_primary_10_1002_aoc_4779
crossref_primary_10_1039_C9DT04620H
crossref_primary_10_1002_chem_202003486
crossref_primary_10_3390_molecules28041808
crossref_primary_10_1002_anie_202004551
crossref_primary_10_1016_j_ica_2024_122294
crossref_primary_10_1016_j_jinorgbio_2018_01_008
crossref_primary_10_1016_j_ccr_2024_216252
crossref_primary_10_1021_acs_chemrev_8b00493
crossref_primary_10_1039_D1QI00512J
crossref_primary_10_3390_molecules27238565
crossref_primary_10_1016_j_heliyon_2019_e01968
crossref_primary_10_1039_D2RA04813B
crossref_primary_10_1039_D0SC04082G
crossref_primary_10_1002_ejic_201800857
crossref_primary_10_1039_C8NJ04515A
crossref_primary_10_1002_chem_201904699
crossref_primary_10_1021_acsmacrolett_1c00336
crossref_primary_10_1016_j_molstruc_2022_134827
crossref_primary_10_1016_j_ccr_2021_214129
crossref_primary_10_1007_s11172_022_3406_5
crossref_primary_10_1039_C7NJ03999A
crossref_primary_10_1039_D2DT02748H
crossref_primary_10_1007_s00775_024_02084_8
crossref_primary_10_1039_D2DT02332F
crossref_primary_10_1002_ange_202000247
crossref_primary_10_1002_aoc_7389
crossref_primary_10_1039_C7MD00545H
crossref_primary_10_3389_fchbi_2023_1165773
crossref_primary_10_1002_ejic_201900677
crossref_primary_10_3389_fchem_2022_967337
crossref_primary_10_1021_acs_inorgchem_7b01368
crossref_primary_10_1016_j_ica_2018_12_002
crossref_primary_10_1007_s11243_019_00322_6
crossref_primary_10_1039_D2DT01310J
crossref_primary_10_1016_j_jtemb_2023_127245
crossref_primary_10_1039_D3CC05083A
crossref_primary_10_1016_j_bbagen_2021_130078
crossref_primary_10_1039_c9mt00232d
crossref_primary_10_1002_ange_202004551
crossref_primary_10_1039_D4DT01191K
crossref_primary_10_1021_acs_inorgchem_0c01613
crossref_primary_10_1002_aoc_6917
crossref_primary_10_3390_molecules29010105
crossref_primary_10_3389_fchem_2023_1150164
crossref_primary_10_3389_fphar_2022_1035217
crossref_primary_10_1039_D0DT04051G
crossref_primary_10_1016_j_molstruc_2022_132508
crossref_primary_10_1002_aoc_6472
crossref_primary_10_1002_adma_202209529
crossref_primary_10_1007_s11243_018_0234_4
crossref_primary_10_1016_j_ica_2023_121898
crossref_primary_10_1016_j_pharmthera_2025_108805
crossref_primary_10_1016_j_poly_2021_115617
crossref_primary_10_1021_acs_inorgchem_8b02542
crossref_primary_10_1002_slct_202404147
crossref_primary_10_2174_1381612826666201113104633
crossref_primary_10_1016_j_molstruc_2023_135744
crossref_primary_10_1039_D4DT02628D
crossref_primary_10_1021_acs_chemrev_8b00211
crossref_primary_10_1134_S1070328422700105
crossref_primary_10_1016_j_chphi_2023_100424
crossref_primary_10_1016_j_poly_2021_115189
crossref_primary_10_3390_molecules25010024
crossref_primary_10_1016_j_ccr_2020_213339
crossref_primary_10_1016_j_ica_2024_122139
crossref_primary_10_1039_C7NJ03072J
crossref_primary_10_1039_D4CS00101J
crossref_primary_10_1016_j_bioelechem_2020_107682
crossref_primary_10_1016_j_jinorgbio_2019_110907
crossref_primary_10_1246_bcsj_20220218
crossref_primary_10_1021_acs_organomet_0c00728
crossref_primary_10_1080_14786419_2022_2148246
crossref_primary_10_1016_j_dyepig_2025_112710
crossref_primary_10_1080_0144235X_2020_1719699
crossref_primary_10_3390_ijms23137146
crossref_primary_10_1016_j_ijbiomac_2024_137544
crossref_primary_10_1039_C6DT04613D
crossref_primary_10_1021_acs_inorgchem_0c01068
crossref_primary_10_1016_j_poly_2024_116949
crossref_primary_10_1002_anie_202401808
crossref_primary_10_1002_aoc_4128
crossref_primary_10_1002_ejic_202300368
crossref_primary_10_1016_j_jinorgbio_2019_110816
crossref_primary_10_1016_j_jinorgbio_2021_111408
crossref_primary_10_1080_00958972_2024_2381630
crossref_primary_10_1007_s12039_024_02274_6
crossref_primary_10_1002_chem_201801090
crossref_primary_10_3390_inorganics11020056
crossref_primary_10_1002_anie_202000247
crossref_primary_10_1021_acs_inorgchem_8b00053
crossref_primary_10_1021_acs_inorgchem_8b03447
crossref_primary_10_2174_0122127968314625241015155536
crossref_primary_10_1039_D0CS00630K
crossref_primary_10_1016_j_poly_2020_114829
crossref_primary_10_1039_C8DT03432J
crossref_primary_10_1039_D3DT01696J
crossref_primary_10_1016_j_ica_2018_10_021
crossref_primary_10_1002_slct_202101663
crossref_primary_10_3390_chemistry2040056
crossref_primary_10_1002_hlca_202300064
crossref_primary_10_1021_acsami_3c06394
crossref_primary_10_3390_inorganics12060158
crossref_primary_10_1021_acs_chemrev_8b00209
crossref_primary_10_1021_acs_inorgchem_3c03801
crossref_primary_10_1021_acs_inorgchem_2c03279
crossref_primary_10_1002_ejic_202100379
crossref_primary_10_3389_fcimb_2023_1340135
crossref_primary_10_1002_ejic_201900734
crossref_primary_10_1515_revic_2020_0030
crossref_primary_10_1039_C9NR03313K
crossref_primary_10_1002_aoc_5593
crossref_primary_10_1002_ejic_201801426
crossref_primary_10_1016_j_poly_2020_114614
crossref_primary_10_3390_ijms20020341
crossref_primary_10_1021_acs_inorgchem_7b03118
crossref_primary_10_3390_molecules27010148
crossref_primary_10_1016_j_jinorgbio_2022_111913
crossref_primary_10_1055_s_0041_1741035
crossref_primary_10_1002_ejic_201801550
crossref_primary_10_3390_inorganics11100391
crossref_primary_10_1002_ejic_201800225
crossref_primary_10_1016_j_jinorgbio_2020_111041
crossref_primary_10_1039_C7DT04615D
crossref_primary_10_1016_j_ejmech_2023_115536
crossref_primary_10_2174_0929867326666181203141122
crossref_primary_10_1016_j_jorganchem_2018_10_008
crossref_primary_10_1002_slct_201800015
crossref_primary_10_1016_j_ijbiomac_2025_139885
crossref_primary_10_1016_j_poly_2021_115563
crossref_primary_10_1002_cplu_201900394
crossref_primary_10_1021_acs_organomet_2c00553
crossref_primary_10_31857_S0132344X22700037
crossref_primary_10_1002_asia_202200270
crossref_primary_10_1016_j_jinorgbio_2021_111453
crossref_primary_10_1016_j_jinorgbio_2020_111211
crossref_primary_10_1016_j_ica_2017_09_056
crossref_primary_10_1016_j_jinorgbio_2022_111975
crossref_primary_10_1039_D0DT01343A
crossref_primary_10_1021_jacs_8b08249
crossref_primary_10_1007_s12013_021_00984_z
crossref_primary_10_1016_j_ccr_2023_215230
crossref_primary_10_1080_02603594_2024_2313139
crossref_primary_10_1155_2018_4560757
crossref_primary_10_1016_j_ccr_2024_216026
crossref_primary_10_1039_C7DT03917D
crossref_primary_10_1016_j_pharmthera_2020_107579
crossref_primary_10_1021_acs_inorgchem_0c01442
crossref_primary_10_1002_cmdc_202200652
crossref_primary_10_1016_j_drudis_2019_02_012
crossref_primary_10_1002_ange_202401808
crossref_primary_10_1016_j_ica_2018_11_050
crossref_primary_10_1039_C7DT03265J
crossref_primary_10_1007_s12039_018_1584_3
crossref_primary_10_1016_j_ica_2021_120701
crossref_primary_10_54167_tecnociencia_v15i3_855
crossref_primary_10_1016_j_ejmech_2021_113770
crossref_primary_10_1093_intbio_zyac008
crossref_primary_10_1039_c8mt00352a
crossref_primary_10_1002_cbdv_202300061
crossref_primary_10_1039_D1QI00233C
crossref_primary_10_1002_slct_202303130
crossref_primary_10_3389_fphar_2022_1060827
crossref_primary_10_1016_j_inoche_2023_111101
crossref_primary_10_1039_D3DT04045C
crossref_primary_10_1002_ejic_201701251
crossref_primary_10_1107_S2053229619004029
crossref_primary_10_1098_rsos_171340
crossref_primary_10_1039_D0DT01721C
crossref_primary_10_1155_2018_8395374
crossref_primary_10_1021_acs_langmuir_4c02043
crossref_primary_10_1016_j_dyepig_2024_112134
crossref_primary_10_1007_s00775_020_01758_3
crossref_primary_10_3897_pharmacia_70_e105845
crossref_primary_10_1016_j_ccr_2025_216582
crossref_primary_10_1080_00958972_2023_2208260
crossref_primary_10_26565_2075_5457_2020_34_4
crossref_primary_10_1021_acsomega_0c00360
crossref_primary_10_3390_ijms21218355
crossref_primary_10_3390_pharmaceutics13111788
crossref_primary_10_1039_D0DT01389G
crossref_primary_10_1016_j_jinorgbio_2019_110756
crossref_primary_10_1039_C8CC05223A
crossref_primary_10_1016_j_poly_2023_116485
crossref_primary_10_1016_j_bbagen_2021_129963
crossref_primary_10_1016_j_inoche_2024_112724
crossref_primary_10_1016_j_ica_2020_119542
Cites_doi 10.1089/ars.2012.4827
10.1002/chem.201502702
10.1021/om500644f
10.1039/a909447d
10.1016/0162-0134(86)80006-X
10.1039/C6DT02456D
10.1002/ange.201108175
10.1021/jm3017442
10.1039/b512322d
10.1002/ange.201311161
10.4161/cbt.1.5.157
10.1038/nrc2167
10.1002/ange.201610290
10.1007/s00280-004-0901-3
10.1097/MAJ.0b013e31812dfe1e
10.1164/ajrccm/140.2.531
10.1016/j.addr.2012.01.007
10.1039/c1dt10937e
10.1089/ars.2012.4650
10.1016/S0891-5849(01)00724-9
10.1039/C5CC03180J
10.1002/chem.201502373
10.1016/S0891-5849(01)00480-4
10.1021/jm3007245
10.2174/092986712803341520
10.1021/jacs.5b10182
10.1002/chem.201000148
10.1007/s13361-012-0539-z
10.3389/fphar.2014.00181
10.1021/jm050015d
10.1002/anie.201311161
10.1021/jm00065a006
10.1002/chem.200601137
10.1089/ars.2010.3663
10.1021/jm3014713
10.1039/b805358h
10.1021/om2005468
10.1021/jm010051m
10.1021/jm100560f
10.1016/j.ica.2006.12.005
10.1073/pnas.0800076105
10.1177/1087057110385227
10.1152/physrev.00040.2012
10.1021/jm049866w
10.1016/S0305-7372(03)00003-3
10.1016/j.drudis.2014.06.016
10.1021/acs.jmedchem.5b00655
10.1039/C6DT01382A
10.1089/ars.2007.1936
10.1021/jm2000932
10.1016/j.jinorgbio.2006.11.003
10.1016/j.cellsig.2007.04.009
10.2174/0929867054637626
10.1002/anie.201003399
10.1021/ic200607j
10.3109/01480545.2014.974107
10.1039/C5DT02101D
10.1007/s10637-014-0179-1
10.1039/C0NJ00478B
10.1073/pnas.0707742105
10.1007/978-3-642-13185-1_2
10.1039/C5DT03919C
10.1039/C6SC00268D
10.1016/j.leukres.2010.12.027
10.1039/b311091e
10.1039/c3sc51530c
10.1002/chem.201605911
10.1038/nature07733
10.1002/cbdv.200890195
10.1039/c1md00075f
10.1089/ars.2008.2425
10.1016/S0010-8545(02)00026-7
10.1021/ic400835n
10.1002/ange.201003399
10.1021/jm500455p
10.1021/ar400266c
10.1002/anie.201108175
10.1021/ic302175t
10.1021/acs.chemrev.5b00597
10.1002/anie.201610290
10.1021/ja053387k
10.1093/acprof:oso/9780198717478.001.0001
10.1039/c2sc20220d
10.1016/j.ica.2012.06.046
ContentType Journal Article
Copyright 2017 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2017. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ejic.201600908
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

Materials Research Database
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0682
EndPage 1548
ExternalDocumentID 4321263729
10_1002_ejic_201600908
EJIC201600908
Genre reviewArticle
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: EP/F034210/1
– fundername: Royal Society
  funderid: Newton Fellowship
– fundername: European Research Council
  funderid: 247450
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACNCT
ACPOU
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
1OB
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4848-b13838563c979a3c6f3773978cfaf348310c1a1e3f296e2c8ef47764237c0b2a3
IEDL.DBID DR2
ISSN 1434-1948
IngestDate Fri Jul 11 06:34:52 EDT 2025
Wed Aug 13 07:38:51 EDT 2025
Wed Aug 13 09:03:31 EDT 2025
Tue Jul 01 03:57:39 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Wed Jan 22 17:06:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4848-b13838563c979a3c6f3773978cfaf348310c1a1e3f296e2c8ef47764237c0b2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9160-1941
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.201600908
PQID 1881797496
PQPubID 2030176
PageCount 8
ParticipantIDs proquest_miscellaneous_1893917082
proquest_journals_2763143393
proquest_journals_1881797496
crossref_primary_10_1002_ejic_201600908
crossref_citationtrail_10_1002_ejic_201600908
wiley_primary_10_1002_ejic_201600908_EJIC201600908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 27, 2017
PublicationDateYYYYMMDD 2017-03-27
PublicationDate_xml – month: 03
  year: 2017
  text: March 27, 2017
  day: 27
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of inorganic chemistry
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2014 2014; 53 126
2007; 104
2007; 101
2010; 53
2010; 16
2015; 38
2013; 4
2013; 24
2002; 232
2015; 33
2012; 19
2011; 54
2008; 5
2008; 105
2011; 15
2001; 44
2011; 16
1989; 49
2012; 55
2007; 334
2013; 18
1993; 36
2014; 5
2015; 137
2000
2013; 56
2012 2012; 51 124
2015; 44
2013; 52
2007; 7
2016; 116
2014; 19
2014; 94
2012; 64
2016; 45
2007; 19
2010; 32
2015; 58
2011; 2
2015; 51
2004; 47
2011; 40
2002; 1
2008
2014 2016; 57 7
2011; 30
2014; 47
1989; 140
2006
2008; 10
2011; 35
2010 2010; 49 122
2004
2017 2017; 56 129
2005; 48
2007; 13
2008; 361
2009; 458
2012; 393
2012; 3
2005; 127
2015; 21
1986; 26
2011; 50
2017
2003; 29
2015
2009; 3
2012; 7
2005; 55
2005; 12
2001; 30
2014; 33
2001; 31
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_51_2
e_1_2_11_72_2
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_81_2
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
Gibbons G. R. (e_1_2_11_45_1) 1989; 49
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_73_2
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Lange T. S. (e_1_2_11_37_1) 2009; 3
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_65_2
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_39_1
References_xml – volume: 50
  start-page: 5777
  year: 2011
  end-page: 5783
  publication-title: Inorg. Chem.
– volume: 16
  start-page: 26
  year: 2011
  end-page: 35
  publication-title: J. Biomol. Screening
– volume: 35
  start-page: 571
  year: 2011
  end-page: 572
  publication-title: Leuk. Res.
– volume: 31
  start-page: 1287
  year: 2001
  end-page: 1312
  publication-title: Free Radical Biol. Med.
– start-page: 925
  year: 2000
  end-page: 932
  publication-title: J. Chem. Soc., Dalton Trans.
– volume: 47
  start-page: 5683
  year: 2004
  end-page: 5689
  publication-title: J. Med. Chem.
– volume: 3
  start-page: 17
  year: 2009
  end-page: 26
  publication-title: Drug Des. Dev. Ther.
– volume: 19
  start-page: 1640
  year: 2014
  end-page: 1648
  publication-title: Drug Discovery Today
– volume: 5
  start-page: 2140
  year: 2008
  end-page: 2155
  publication-title: Chem. Biodiversity
– volume: 10
  start-page: 769
  year: 2008
  end-page: 783
  publication-title: Antioxid. Redox Signaling
– volume: 32
  start-page: 21
  year: 2010
  end-page: 56
  publication-title: Top. Organomet. Chem.
– volume: 44
  start-page: 3616
  year: 2001
  end-page: 3621
  publication-title: J. Med. Chem.
– volume: 36
  start-page: 1839
  year: 1993
  end-page: 1846
  publication-title: J. Med. Chem.
– volume: 30
  start-page: 1191
  year: 2001
  end-page: 1212
  publication-title: Free Radical Biol. Med.
– volume: 7
  start-page: 1738
  year: 2012
  end-page: 1747
  publication-title: Antioxid. Redox Signaling
– volume: 58
  start-page: 7874
  year: 2015
  end-page: 7880
  publication-title: J. Med. Chem.
– volume: 7
  start-page: 573
  year: 2007
  end-page: 584
  publication-title: Nat. Rev. Cancer
– volume: 52
  start-page: 1167
  year: 2013
  end-page: 1169
  publication-title: Inorg. Chem.
– volume: 116
  start-page: 3436
  year: 2016
  end-page: 3486
  publication-title: Chem. Rev.
– volume: 137
  start-page: 14854
  year: 2015
  end-page: 14857
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3731
  year: 2013
  end-page: 3739
  publication-title: Chem. Sci.
– volume: 2
  start-page: 666
  year: 2011
  end-page: 668
  publication-title: MedChemComm
– volume: 56
  start-page: 1291
  year: 2013
  end-page: 1300
  publication-title: J. Med. Chem.
– volume: 16
  start-page: 7064
  year: 2010
  end-page: 7077
  publication-title: Chem. Eur. J.
– volume: 38
  start-page: 375
  year: 2015
  end-page: 382
  publication-title: Drug Chem. Toxicol.
– volume: 127
  start-page: 17734
  year: 2005
  end-page: 17743
  publication-title: J. Am. Chem. Soc.
– volume: 393
  start-page: 84
  year: 2012
  end-page: 102
  publication-title: Inorg. Chim. Acta
– volume: 1
  start-page: 453
  year: 2002
  end-page: 458
  publication-title: Cancer Biol. Ther.
– volume: 105
  start-page: 11628
  year: 2008
  end-page: 11633
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 40
  start-page: 10553
  year: 2011
  end-page: 10562
  publication-title: Dalton Trans.
– volume: 458
  start-page: 780
  year: 2009
  end-page: 783
  publication-title: Nature
– volume: 51 124
  start-page: 3897 3963
  year: 2012 2012
  end-page: 3900
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 8192
  year: 2010
  end-page: 8196
  publication-title: J. Med. Chem.
– volume: 44
  start-page: 13796
  year: 2015
  end-page: 13808
  publication-title: Dalton Trans.
– volume: 53 126
  start-page: 3941 4022
  year: 2014 2014
  end-page: 3946
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47
  start-page: 1174
  year: 2014
  end-page: 1185
  publication-title: Acc. Chem. Res.
– year: 2015
– volume: 140
  start-page: 531
  year: 1989
  end-page: 554
  publication-title: Am. Rev. Respir. Dis.
– volume: 48
  start-page: 4161
  year: 2005
  end-page: 4171
  publication-title: J. Med. Chem.
– start-page: 4413
  year: 2008
  end-page: 4415
  publication-title: Chem. Commun.
– volume: 57 7
  start-page: 6043 4117
  year: 2014 2016
  end-page: 6059 4124
  publication-title: J. Med. Chem. Chem. Sci.
– volume: 33
  start-page: 201
  year: 2015
  end-page: 214
  publication-title: Invest. New Drugs
– volume: 21
  start-page: 15224
  year: 2015
  end-page: 15234
  publication-title: Chem. Eur. J.
– volume: 55
  start-page: 333
  year: 2005
  end-page: 342
  publication-title: Cancer Chemother. Pharmacol.
– volume: 334
  start-page: 115
  year: 2007
  end-page: 124
  publication-title: Am. J. Med. Sci.
– volume: 51
  start-page: 9169
  year: 2015
  end-page: 9172
  publication-title: Chem. Commun.
– volume: 19
  start-page: 4850
  year: 2012
  end-page: 4860
  publication-title: Curr. Med. Chem.
– volume: 232
  start-page: 49
  year: 2002
  end-page: 67
  publication-title: Coord. Chem. Rev.
– volume: 12
  start-page: 2075
  year: 2005
  end-page: 2094
  publication-title: Curr. Med. Chem.
– volume: 35
  start-page: 265
  year: 2011
  end-page: 287
  publication-title: New J. Chem.
– volume: 29
  start-page: 297
  year: 2003
  end-page: 307
  publication-title: Cancer Treat. Rev.
– volume: 54
  start-page: 3011
  year: 2011
  end-page: 3026
  publication-title: J. Med. Chem.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 16
  publication-title: Front. Pharmacol.
– volume: 3
  start-page: 2485
  year: 2012
  end-page: 2494
  publication-title: Chem. Sci.
– volume: 26
  start-page: 137
  year: 1986
  end-page: 142
  publication-title: J. Inorg. Biochem.
– volume: 12
  start-page: 93
  year: 2010
  end-page: 124
  publication-title: Antioxid. Redox Signaling
– volume: 45
  start-page: 13671
  year: 2016
  end-page: 13674
  publication-title: Dalton Trans.
– volume: 49
  start-page: 1402
  year: 1989
  end-page: 1407
  publication-title: Cancer Res.
– volume: 55
  start-page: 7208
  year: 2012
  end-page: 7218
  publication-title: J. Med. Chem.
– volume: 30
  start-page: 4702
  year: 2011
  end-page: 4710
  publication-title: Organometallics
– start-page: 611
  year: 2004
  end-page: 618
  publication-title: Dalton Trans.
– volume: 49 122
  start-page: 8905 9089
  year: 2010 2010
  end-page: 8908 9092
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 18474
  year: 2015
  end-page: 18486
  publication-title: Chem. Eur. J.
– volume: 101
  start-page: 396
  year: 2007
  end-page: 403
  publication-title: J. Inorg. Biochem.
– volume: 45
  start-page: 3201
  year: 2016
  end-page: 3209
  publication-title: Dalton Trans.
– volume: 55
  start-page: 11013
  year: 2012
  end-page: 11021
  publication-title: J. Med. Chem.
– volume: 45
  start-page: 13034
  year: 2016
  end-page: 13037
  publication-title: Dalton Trans.
– volume: 94
  start-page: 329
  year: 2014
  end-page: 354
  publication-title: Physiol. Rev.
– volume: 33
  start-page: 5324
  year: 2014
  end-page: 5333
  publication-title: Organometallics
– volume: 52
  start-page: 12276
  year: 2013
  end-page: 12291
  publication-title: Inorg. Chem.
– volume: 19
  start-page: 1807
  year: 2007
  end-page: 1819
  publication-title: Cell Signal
– volume: 361
  start-page: 1569
  year: 2008
  end-page: 1583
  publication-title: Inorg. Chim. Acta
– volume: 104
  start-page: 20743
  year: 2007
  end-page: 20748
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 56 129
  start-page: 1017 1037
  year: 2017 2017
  end-page: 1020 1040
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2017
– start-page: 1895
  year: 2006
  end-page: 1901
  publication-title: Dalton Trans.
– volume: 24
  start-page: 410
  year: 2013
  end-page: 420
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 15
  start-page: 1085
  year: 2011
  end-page: 1127
  publication-title: Antioxid. Redox Signaling
– volume: 13
  start-page: 2974
  year: 2007
  end-page: 2982
  publication-title: Chem. Eur. J.
– volume: 64
  start-page: 993
  year: 2012
  end-page: 1004
  publication-title: Adv. Drug Delivery Rev.
– volume: 18
  start-page: 642
  year: 2013
  end-page: 660
  publication-title: Antioxid. Redox Signaling
– ident: e_1_2_11_14_1
  doi: 10.1089/ars.2012.4827
– ident: e_1_2_11_33_1
  doi: 10.1002/chem.201502702
– ident: e_1_2_11_71_1
  doi: 10.1021/om500644f
– ident: e_1_2_11_29_1
  doi: 10.1039/a909447d
– ident: e_1_2_11_46_1
  doi: 10.1016/0162-0134(86)80006-X
– ident: e_1_2_11_25_1
  doi: 10.1039/C6DT02456D
– ident: e_1_2_11_72_2
  doi: 10.1002/ange.201108175
– ident: e_1_2_11_80_1
  doi: 10.1021/jm3017442
– ident: e_1_2_11_32_1
  doi: 10.1039/b512322d
– ident: e_1_2_11_73_2
  doi: 10.1002/ange.201311161
– ident: e_1_2_11_2_1
  doi: 10.4161/cbt.1.5.157
– ident: e_1_2_11_43_1
  doi: 10.1038/nrc2167
– ident: e_1_2_11_81_2
  doi: 10.1002/ange.201610290
– ident: e_1_2_11_17_1
  doi: 10.1007/s00280-004-0901-3
– ident: e_1_2_11_42_1
  doi: 10.1097/MAJ.0b013e31812dfe1e
– ident: e_1_2_11_19_1
  doi: 10.1164/ajrccm/140.2.531
– ident: e_1_2_11_47_1
  doi: 10.1016/j.addr.2012.01.007
– ident: e_1_2_11_78_1
  doi: 10.1039/c1dt10937e
– ident: e_1_2_11_74_1
  doi: 10.1089/ars.2012.4650
– ident: e_1_2_11_23_1
  doi: 10.1016/S0891-5849(01)00724-9
– ident: e_1_2_11_52_1
  doi: 10.1039/C5CC03180J
– ident: e_1_2_11_53_1
  doi: 10.1002/chem.201502373
– ident: e_1_2_11_16_1
  doi: 10.1016/S0891-5849(01)00480-4
– ident: e_1_2_11_10_1
  doi: 10.1021/jm3007245
– ident: e_1_2_11_11_1
  doi: 10.2174/092986712803341520
– ident: e_1_2_11_49_1
  doi: 10.1021/jacs.5b10182
– ident: e_1_2_11_41_1
  doi: 10.1002/chem.201000148
– ident: e_1_2_11_63_1
  doi: 10.1007/s13361-012-0539-z
– ident: e_1_2_11_18_1
  doi: 10.3389/fphar.2014.00181
– volume: 49
  start-page: 1402
  year: 1989
  ident: e_1_2_11_45_1
  publication-title: Cancer Res.
– ident: e_1_2_11_61_1
  doi: 10.1021/jm050015d
– ident: e_1_2_11_73_1
  doi: 10.1002/anie.201311161
– ident: e_1_2_11_35_1
  doi: 10.1021/jm00065a006
– ident: e_1_2_11_39_1
  doi: 10.1002/chem.200601137
– ident: e_1_2_11_15_1
  doi: 10.1089/ars.2010.3663
– ident: e_1_2_11_26_1
  doi: 10.1021/jm3014713
– ident: e_1_2_11_21_1
  doi: 10.1039/b805358h
– ident: e_1_2_11_70_1
  doi: 10.1021/om2005468
– ident: e_1_2_11_60_1
  doi: 10.1021/jm010051m
– ident: e_1_2_11_76_1
  doi: 10.1021/jm100560f
– ident: e_1_2_11_58_1
  doi: 10.1016/j.ica.2006.12.005
– ident: e_1_2_11_64_1
  doi: 10.1073/pnas.0800076105
– ident: e_1_2_11_36_1
  doi: 10.1177/1087057110385227
– ident: e_1_2_11_9_1
  doi: 10.1152/physrev.00040.2012
– ident: e_1_2_11_30_1
  doi: 10.1021/jm049866w
– ident: e_1_2_11_3_1
  doi: 10.1016/S0305-7372(03)00003-3
– ident: e_1_2_11_75_1
  doi: 10.1016/j.drudis.2014.06.016
– ident: e_1_2_11_4_1
  doi: 10.1021/acs.jmedchem.5b00655
– ident: e_1_2_11_54_1
  doi: 10.1039/C6DT01382A
– ident: e_1_2_11_22_1
  doi: 10.1089/ars.2007.1936
– ident: e_1_2_11_68_1
  doi: 10.1021/jm2000932
– ident: e_1_2_11_40_1
  doi: 10.1016/j.jinorgbio.2006.11.003
– ident: e_1_2_11_24_1
  doi: 10.1016/j.cellsig.2007.04.009
– ident: e_1_2_11_5_1
  doi: 10.2174/0929867054637626
– ident: e_1_2_11_51_1
  doi: 10.1002/anie.201003399
– ident: e_1_2_11_69_1
  doi: 10.1021/ic200607j
– ident: e_1_2_11_13_1
  doi: 10.3109/01480545.2014.974107
– ident: e_1_2_11_34_1
  doi: 10.1039/C5DT02101D
– ident: e_1_2_11_56_1
  doi: 10.1007/s10637-014-0179-1
– ident: e_1_2_11_66_1
  doi: 10.1039/C0NJ00478B
– ident: e_1_2_11_50_1
  doi: 10.1073/pnas.0707742105
– ident: e_1_2_11_59_1
  doi: 10.1007/978-3-642-13185-1_2
– ident: e_1_2_11_57_1
  doi: 10.1039/C5DT03919C
– ident: e_1_2_11_65_2
  doi: 10.1039/C6SC00268D
– ident: e_1_2_11_38_1
  doi: 10.1016/j.leukres.2010.12.027
– ident: e_1_2_11_31_1
  doi: 10.1039/b311091e
– ident: e_1_2_11_27_1
  doi: 10.1039/c3sc51530c
– ident: e_1_2_11_82_1
  doi: 10.1002/chem.201605911
– ident: e_1_2_11_8_1
  doi: 10.1038/nature07733
– ident: e_1_2_11_55_1
  doi: 10.1002/cbdv.200890195
– ident: e_1_2_11_77_1
  doi: 10.1039/c1md00075f
– ident: e_1_2_11_20_1
  doi: 10.1089/ars.2008.2425
– ident: e_1_2_11_44_1
  doi: 10.1016/S0010-8545(02)00026-7
– ident: e_1_2_11_6_1
  doi: 10.1021/ic400835n
– ident: e_1_2_11_51_2
  doi: 10.1002/ange.201003399
– ident: e_1_2_11_65_1
  doi: 10.1021/jm500455p
– ident: e_1_2_11_7_1
  doi: 10.1021/ar400266c
– ident: e_1_2_11_72_1
  doi: 10.1002/anie.201108175
– ident: e_1_2_11_28_1
  doi: 10.1021/ic302175t
– ident: e_1_2_11_48_1
  doi: 10.1021/acs.chemrev.5b00597
– ident: e_1_2_11_81_1
  doi: 10.1002/anie.201610290
– ident: e_1_2_11_62_1
  doi: 10.1021/ja053387k
– ident: e_1_2_11_12_1
  doi: 10.1093/acprof:oso/9780198717478.001.0001
– ident: e_1_2_11_79_1
  doi: 10.1039/c2sc20220d
– volume: 3
  start-page: 17
  year: 2009
  ident: e_1_2_11_37_1
  publication-title: Drug Des. Dev. Ther.
– ident: e_1_2_11_67_1
  doi: 10.1016/j.ica.2012.06.046
SSID ssj0003036
Score 2.584923
SecondaryResourceType review_article
Snippet The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1541
SubjectTerms Activation
Anticancer compounds
Anticancer properties
Aquatic plants
Bioinorganic chemistry
Cancer
Coordination compounds
Drugs
Inorganic chemistry
Ligands
Metal complexes
Modulators
Prodrugs
Redox chemistry
Selectivity
Strategy
Therapy
Transition metal compounds
Title Redox‐Active Metal Complexes for Anticancer Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.201600908
https://www.proquest.com/docview/1881797496
https://www.proquest.com/docview/2763143393
https://www.proquest.com/docview/1893917082
Volume 2017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9BeRgvsDEQBVZlEtKeDInt-M9jW6gY0hBCIPEWOa4tAVWKaCshnvgI-4z7JJyTJoVp0yT2GDmO7Lvz-XfO-XcA-1qjVUhlCDcY6XBqODEilSQ1JvGoc-NNmeV7Jk6u-Ol1ev3qFn_FD9EcuIWVUfrrsMBNPjlckIa625tAQZjgjq3L274hYSugoosFf1Twz-X1IsYJRuuqZm2M6eHb7m93pQXUfA1Yyx1nsA6mHmuVaHJ3MJvmB_bpNxrH_5nMR1ibw9GoW9nPJ1hyxQZ86NdV4D5DeuGG48dfzz-7pWOMfjhE61HwIiP36CYRYt6oW4QDcbSeh-iyIinYhKvB8WX_hMxLLRDLFVckTzBSValgVkttmBWeSYlQRVlvPOOhGplNTOKYp1o4apXzXEoRcmpsnFPDtqBVjAu3DdFQaRdbo1Hbng9xNmKYKuoSbwWqXsRtILWoMzvnIQ_lMEZZxaBMsyCMrBFGG741799XDBx_fXOv1lw2X4mTLFEKfY7kWvyxmaJ_RfNgmrXha9OMMg7_TUzhxrPwCc0wqkWw1AZaavEfA8mOT7_3m6ed93TahVUaAETMCJV70Jo-zNwXhD_TvAPLlJ93YKXbO-oNOqXBvwDvAvwq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5V9EAv9IcittA2lSpxMiS245_jagVaKHBAi9Rb5HhtCVhlEexKiBOPwDP2STqTbLKlaoXUHiPHkT0zHn_jjL8B-GotWoU2jkmHkY7kTjKncs1y57KIOnfR1Vm-p2p4Lo--5202Id2FafghugM3Whm1v6YFTgfSe0vW0HB5QRyEGW7Zlq77vqSy3nVUdbZkkCIPXV8wEpJhvG5a3saU7z3t_3RfWoLNXyFrveccvIayHW2TanK1O5-Vu_7-NyLH_5rOG1hbINKk35jQW3gRqnewOmgLwa1DfhbG07sfD4_92jcmJwEBe0KOZBLuwm2CsDfpV3QmjgZ0k4wanoL3cH6wPxoM2aLaAvPSSMPKDINVkyvhrbZOeBWF1ohWjI8uCkkFyXzmsiAitypwb0KUWitKq_FpyZ3YgJVqWoVNSMbGhtQ7iwqPcoyzUePc8JBFr1D7Ku0Ba2Vd-AUVOVXEmBQNiTIvSBhFJ4we7HTvXzckHH99c7tVXbFYjLdFZgy6HS2t-mMzRxeL9iGs6MGXrhllTL9OXBWmc_qEFRjYIl7qAa_V-MxAiv2jw0H39OFfOn2G1eHo5Lg4Pjz9tgWvOOGJVDCut2FldjMPHxENzcpPtb3_BODS_fw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC4WBXcvuu4DR11tYcFTtDtJ53EcRgd1V1lEwVuTSSegDj3izMDgyZ_gb_SXWOme7tFFEXaPTZImqapUvsrjK4CfWqNVSGUINxjpcGo4MSKVJDUm8ahz4015y_dEHJzzo4v04tkr_oofotlwCzOj9Ndhgt_kfndGGuquLgMFYYIrtg6vfee5iFWw673TGYFUcNDl-yLGCYbrqqZtjOnuy_Yvl6UZ1nyOWMslp7sEpu5sddPkemc86u3Yu794HP9nNJ9hcYpHo3ZlQMvwwRVf4GOnTgP3FdJTlw8mj_cP7dIzRscO4XoU3EjfTdwwQtAbtYuwI47mcxudVSwF3-C8u3_WOSDTXAvEcsUV6SUYqqpUMKulNswKz6RErKKsN57xkI7MJiZxzFMtHLXKeS6lCJdqbNyjhn2HuWJQuBWIcqVdbI1GdXue42hEnirqEm8F6l7ELSC1qDM7JSIP-TD6WUWhTLMgjKwRRgu2m_o3FQXHmzXXa81l06k4zBKl0OlIrsWrxRQdLJoH06wFW00xyjgcnJjCDcbhF5phWItoqQW01OI7Hcn2jw47zdfqvzTahIU_e93s9-HJrzX4RAOYiBmhch3mRrdj9wOh0Ki3UVr7E_d8_LQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox%E2%80%90Active+Metal+Complexes+for+Anticancer+Therapy&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Zhang%2C+Pingyu&rft.au=Sadler%2C+Peter+J&rft.date=2017-03-27&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=2017&rft.issue=12&rft.spage=1541&rft.epage=1548&rft_id=info:doi/10.1002%2Fejic.201600908&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon