Mitochondrial dysfunction and cell senescence: deciphering a complex relationship
Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset o...
Saved in:
Published in | FEBS letters Vol. 593; no. 13; pp. 1566 - 1579 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age‐related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro‐inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial‐mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues. |
---|---|
AbstractList | Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age‐related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro‐inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial‐mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues. Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age-related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro-inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial-mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues.Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age-related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro-inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial-mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues. |
Author | Chapman, James Passos, João F. Fielder, Edward |
Author_xml | – sequence: 1 givenname: James surname: Chapman fullname: Chapman, James organization: Newcastle University Institute for Ageing, Newcastle University – sequence: 2 givenname: Edward surname: Fielder fullname: Fielder, Edward organization: Newcastle University Institute for Ageing, Newcastle University – sequence: 3 givenname: João F. surname: Passos fullname: Passos, João F. email: passos.joao@mayo.edu organization: Mayo Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31211858$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LwzAYh4NM3JyevUmPXury0TaJNx1-wUQEPYc0eesiXVqTDt1_b-vUgyCewhue5yX5_fbRyDceEDoi-JRgTGdEcJayrBCnhGVS7KDJz80ITTAmWZpzycZoP8YX3M-CyD00ZoQSInIxQQ93rmvMsvE2OF0ndhOrtTeda3yivU0M1HUSwUM04A2cJRaMa5cQnH9OdGKaVVvDexKg1oMTl649QLuVriMcfp1T9HR1-Ti_SRf317fz80VqMpGJtMCaa1naikoDhaioLnguCl3SDAzjVWb6sZSWM54bkluhARecagBhixJrNkUn271taF7XEDu1cnF4r_bQrKOinAjGJJbsf5RmfXpY9klN0fEXui5XYFUb3EqHjfpOrAfyLWBCE2OAShnXfX6-C9rVimA1NKOGHtTQg_pspvdmv7zv1X8bxdZ4czVs_sPV1eUF3YofgFSejw |
CitedBy_id | crossref_primary_10_14336_AD_2021_0927 crossref_primary_10_3390_biom11020235 crossref_primary_10_1016_j_lfs_2023_121434 crossref_primary_10_1080_14728222_2021_1992385 crossref_primary_10_1016_j_freeradbiomed_2021_10_026 crossref_primary_10_3389_fendo_2024_1417007 crossref_primary_10_3389_fncel_2022_939830 crossref_primary_10_1002_jcb_29311 crossref_primary_10_1016_j_freeradbiomed_2023_09_019 crossref_primary_10_3390_ijms24043436 crossref_primary_10_1371_journal_pone_0226862 crossref_primary_10_3390_ijms26051803 crossref_primary_10_3390_medicina58060817 crossref_primary_10_3389_fphys_2023_1284410 crossref_primary_10_3390_ijms21124484 crossref_primary_10_1016_j_arr_2022_101833 crossref_primary_10_1093_jb_mvab115 crossref_primary_10_3390_ijms222212545 crossref_primary_10_1111_febs_16361 crossref_primary_10_1155_2022_9127074 crossref_primary_10_3389_fnins_2021_666881 crossref_primary_10_1016_j_tins_2021_06_007 crossref_primary_10_1186_s13148_023_01556_z crossref_primary_10_1051_e3sconf_202124503051 crossref_primary_10_3389_fimmu_2021_669893 crossref_primary_10_1080_0886022X_2024_2398712 crossref_primary_10_3390_life10090164 crossref_primary_10_1038_s41580_020_00314_w crossref_primary_10_1016_j_biocel_2023_106419 crossref_primary_10_3390_ijms232415551 crossref_primary_10_31857_S0869813924040029 crossref_primary_10_3390_proteomes11020012 crossref_primary_10_3389_fcell_2023_1323678 crossref_primary_10_2174_0115680266273698231107110956 crossref_primary_10_1016_j_ijcard_2022_05_004 crossref_primary_10_1007_s10522_022_09973_y crossref_primary_10_1111_imcb_12727 crossref_primary_10_1126_sciadv_abq1475 crossref_primary_10_1016_j_heliyon_2023_e13451 crossref_primary_10_1159_000531422 crossref_primary_10_1016_j_coesh_2022_100387 crossref_primary_10_1002_tox_24127 crossref_primary_10_1093_stcltm_szac004 crossref_primary_10_3390_ijms231911963 crossref_primary_10_1111_joim_13141 crossref_primary_10_3389_fragi_2024_1351860 crossref_primary_10_1007_s10047_022_01356_x crossref_primary_10_1186_s13287_021_02209_9 crossref_primary_10_3390_molecules28030924 crossref_primary_10_1021_acsbiomaterials_0c01120 crossref_primary_10_1016_j_bbalip_2024_159453 crossref_primary_10_3390_genes13091651 crossref_primary_10_3390_biom12101456 crossref_primary_10_3389_fcimb_2021_703413 crossref_primary_10_3390_cells10061278 crossref_primary_10_3389_fonc_2022_858479 crossref_primary_10_1016_j_biomaterials_2021_121156 crossref_primary_10_1016_j_biopha_2023_114616 crossref_primary_10_2478_jtim_2021_0049 crossref_primary_10_3390_biomedicines12112540 crossref_primary_10_1093_lifemedi_lnac030 crossref_primary_10_1038_s41417_022_00434_9 crossref_primary_10_3390_life13020559 crossref_primary_10_1007_s11010_020_03901_9 crossref_primary_10_32604_or_2023_028104 crossref_primary_10_3389_fphar_2021_601438 crossref_primary_10_1016_j_jid_2023_05_002 crossref_primary_10_3390_antiox12071374 crossref_primary_10_1016_j_molmed_2020_03_005 crossref_primary_10_32948_ajsep_2024_11_22 crossref_primary_10_3390_biom14060730 crossref_primary_10_7554_eLife_63728 crossref_primary_10_1080_17474124_2024_2432480 crossref_primary_10_3390_cells9102146 crossref_primary_10_3390_molecules27238625 crossref_primary_10_1016_j_biopha_2023_115937 crossref_primary_10_1016_j_mad_2021_111587 crossref_primary_10_3389_fendo_2024_1400462 crossref_primary_10_3390_antiox12061269 crossref_primary_10_3390_ijms23094843 crossref_primary_10_18632_aging_206207 crossref_primary_10_3390_cells9112498 crossref_primary_10_1016_j_cell_2021_09_034 crossref_primary_10_1080_27694127_2024_2306086 crossref_primary_10_3389_fphar_2021_703847 crossref_primary_10_1016_j_reprotox_2024_108700 crossref_primary_10_1016_j_mad_2021_111598 crossref_primary_10_1155_2022_9663354 crossref_primary_10_1038_s42255_021_00483_8 crossref_primary_10_1016_j_scitotenv_2024_174502 crossref_primary_10_1093_jnci_djab064 crossref_primary_10_3390_antiox12061250 crossref_primary_10_1016_j_envpol_2024_123674 crossref_primary_10_1007_s40610_021_00143_6 crossref_primary_10_1134_S0026893320060096 crossref_primary_10_1111_cas_15143 crossref_primary_10_1111_gtc_13011 crossref_primary_10_4132_jptm_2023_10_09 crossref_primary_10_3390_ijms25084443 crossref_primary_10_3389_fphys_2021_734976 crossref_primary_10_37349_edd_2023_00028 crossref_primary_10_3389_fcell_2022_895433 crossref_primary_10_14336_AD_2021_0110 crossref_primary_10_3390_ijms23052543 crossref_primary_10_1186_s11658_023_00489_y crossref_primary_10_3389_fnagi_2022_827900 crossref_primary_10_3390_antiox12010169 crossref_primary_10_1152_ajplung_00146_2022 crossref_primary_10_1007_s12016_021_08899_6 crossref_primary_10_1097_CCO_0000000000001020 crossref_primary_10_3390_antiox11071224 crossref_primary_10_3390_ijms21113883 crossref_primary_10_1016_j_arr_2021_101280 crossref_primary_10_1080_21655979_2022_2036913 crossref_primary_10_1007_s12015_022_10370_8 crossref_primary_10_1186_s12964_023_01138_9 crossref_primary_10_3390_cells11111763 crossref_primary_10_1016_j_mcn_2021_103683 crossref_primary_10_3390_cells13151281 crossref_primary_10_3390_bioengineering11060524 crossref_primary_10_1016_j_phrs_2025_107591 crossref_primary_10_1186_s12979_023_00352_w crossref_primary_10_1186_s13046_021_02035_0 crossref_primary_10_3389_fphys_2024_1384966 crossref_primary_10_3390_cells11091489 crossref_primary_10_1007_s11064_022_03592_2 crossref_primary_10_1093_toxres_tfae136 crossref_primary_10_2139_ssrn_4137695 crossref_primary_10_3390_ijms22105209 crossref_primary_10_1093_gerona_glac121 crossref_primary_10_3390_antiox11030480 crossref_primary_10_3390_ijms24032040 crossref_primary_10_1007_s00441_020_03272_z crossref_primary_10_1016_j_lfs_2024_122862 crossref_primary_10_1007_s43188_024_00251_2 crossref_primary_10_3389_fphar_2022_836496 crossref_primary_10_1016_j_brainres_2023_148693 crossref_primary_10_3390_cells9040954 crossref_primary_10_1016_j_mtbio_2024_101175 crossref_primary_10_1038_s41580_020_0210_7 crossref_primary_10_1038_s41368_022_00180_6 crossref_primary_10_1038_s41419_024_06797_1 crossref_primary_10_3389_fphar_2021_739510 crossref_primary_10_3390_antiox10081170 crossref_primary_10_3389_fendo_2022_915139 crossref_primary_10_1159_000514305 crossref_primary_10_1007_s10522_023_10031_4 crossref_primary_10_59368_agingbio_20240022 crossref_primary_10_1186_s12931_023_02634_9 crossref_primary_10_1016_j_molcel_2021_08_023 crossref_primary_10_1016_j_bbrc_2022_05_009 crossref_primary_10_1371_journal_pone_0254710 crossref_primary_10_3390_ijms241411676 crossref_primary_10_1007_s00772_021_00794_w crossref_primary_10_1038_s41583_020_0325_z crossref_primary_10_3389_fphar_2024_1486717 crossref_primary_10_1016_j_nbd_2023_106090 crossref_primary_10_1007_s11357_023_00843_0 crossref_primary_10_1016_j_expneurol_2023_114429 crossref_primary_10_1007_s00223_023_01100_4 crossref_primary_10_1134_S0022093024020285 crossref_primary_10_3389_fnagi_2021_763110 crossref_primary_10_3389_fncel_2022_906270 crossref_primary_10_3390_antiox11050975 crossref_primary_10_1016_j_atherosclerosis_2025_119176 crossref_primary_10_1016_j_cej_2024_158540 crossref_primary_10_3892_etm_2023_12086 crossref_primary_10_3390_ijms23042339 crossref_primary_10_1021_acs_chemrestox_2c00248 crossref_primary_10_1002_hep_31067 crossref_primary_10_1186_s40643_024_00824_x crossref_primary_10_3390_ijms22010406 crossref_primary_10_3390_antiox13121515 crossref_primary_10_1186_s12979_024_00412_9 crossref_primary_10_1038_s42255_023_00928_2 crossref_primary_10_12737_1024_6177_2021_66_5_59_65 crossref_primary_10_3389_fphar_2023_1172920 crossref_primary_10_1080_14737140_2022_2139242 crossref_primary_10_1016_j_bbadis_2023_166795 crossref_primary_10_1016_j_bbabio_2022_148949 crossref_primary_10_3390_genes15091153 crossref_primary_10_3389_fphys_2021_693067 crossref_primary_10_1016_j_arr_2019_100940 crossref_primary_10_1016_j_arr_2020_101072 crossref_primary_10_3390_antiox14010099 crossref_primary_10_1016_j_neurobiolaging_2022_08_014 crossref_primary_10_3390_nu14173636 crossref_primary_10_1016_j_bj_2023_02_005 crossref_primary_10_1038_s41598_024_64441_6 crossref_primary_10_3390_cells11244026 crossref_primary_10_1016_j_exger_2022_111866 crossref_primary_10_3390_cells13040353 crossref_primary_10_3389_fgene_2022_1056691 crossref_primary_10_1186_s41232_024_00342_5 crossref_primary_10_1038_s42003_024_06052_5 crossref_primary_10_1007_s13105_024_01062_7 crossref_primary_10_1016_j_devcel_2024_04_020 crossref_primary_10_1089_ten_teb_2023_0136 crossref_primary_10_1096_fj_202100868R crossref_primary_10_1111_febs_17087 crossref_primary_10_1096_fj_202002678R crossref_primary_10_1002_1873_3468_13503 crossref_primary_10_3390_ijms232416219 crossref_primary_10_1002_jcsm_13513 crossref_primary_10_3389_fncel_2024_1335849 crossref_primary_10_3390_ijms23116064 crossref_primary_10_1038_s41569_021_00624_2 crossref_primary_10_1016_j_freeradbiomed_2021_05_003 crossref_primary_10_3389_fimmu_2020_01346 |
Cites_doi | 10.1016/j.molmed.2017.02.005 10.1038/ncomms15691 10.1111/acel.12945 10.1038/nprot.2016.159 10.1038/srep22579 10.15252/emmm.201809355 10.1016/j.mad.2017.07.001 10.15252/embj.201592862 10.1111/acel.12950 10.1038/nature05529 10.1038/nm.4324 10.1126/science.1122446 10.1038/nrm2233 10.1172/JCI22475 10.1016/j.atherosclerosis.2014.05.913 10.1016/j.cell.2008.03.038 10.1111/acel.12458 10.1128/MCB.23.23.8576-8585.2003 10.1111/acel.12811 10.1038/nature10599 10.1016/S0962-8924(01)82148-6 10.1083/jcb.201212110 10.1042/bj3480607 10.1186/1741-7007-12-34 10.1038/msb.2010.5 10.1016/j.cmet.2019.01.013 10.1007/s10522-017-9685-9 10.1371/journal.pone.0023367 10.1074/jbc.274.12.7936 10.1111/j.1474-9726.2009.00481.x 10.1038/s41586-018-0543-y 10.1038/ncomms1708 10.1111/j.1474-9726.2006.00234.x 10.1111/acel.12882 10.1073/pnas.92.10.4337 10.1016/j.bbabio.2013.11.002 10.18632/aging.101463 10.1111/acel.12344 10.1093/emboj/21.9.2180 10.1111/j.1474-9726.2012.00837.x 10.1038/ncomms5172 10.1016/0014-4827(65)90211-9 10.1046/j.1474-9728.2003.00040.x 10.1038/ncomms3308 10.1073/pnas.1722452115 10.1038/ncb1491 10.1016/j.cell.2014.11.036 10.7554/eLife.12997 10.1038/nature12154 10.1016/j.molcel.2015.01.018 10.1038/ncb2784 10.1038/nm.4010 10.1016/j.cmet.2019.03.001 10.1101/gad.8.21.2540 10.1242/jcs.059246 10.1038/267423a0 10.1371/journal.pbio.0060301 10.1038/s41556-019-0287-4 10.1126/science.aaa5612 10.1002/bies.20634 10.1007/s10522-012-9397-0 10.1073/pnas.85.14.5112 10.1038/nature08221 10.1038/s41591-018-0092-9 10.1016/j.mad.2006.11.008 10.1038/nature16932 10.1371/journal.pcbi.1003728 10.1126/science.1205407 10.1016/j.cmet.2015.11.011 10.1038/s41418-018-0118-3 10.1101/gad.12.19.3008 10.1073/pnas.211053698 10.1111/j.1474-9726.2012.00795.x 10.1126/science.aaf6659 10.1038/s41593-019-0372-9 10.1073/pnas.92.20.9363 10.1111/acel.12840 10.1038/ni.1980 10.1038/ncomms14532 10.1006/excr.1997.3893 10.1073/pnas.1515386112 10.1038/nature24050 10.1172/jci.insight.87732 10.1038/ncb3195 10.1111/jgs.14969 10.1038/ncomms11190 10.1038/nature14156 10.1038/nature10600 10.18632/aging.100807 10.1038/nm.4385 10.1096/fj.14-268276 10.1016/j.devcel.2014.11.012 10.1038/nature12437 10.1093/gerona/glw186 10.1146/annurev-pathol-121808-102144 10.1016/j.molmed.2010.03.003 10.1016/j.cell.2013.05.039 10.1016/j.bbrc.2004.08.177 10.1158/0008-5472.CAN-09-4224 10.1074/jbc.M700679200 10.1016/j.cmet.2018.03.016 10.1038/ncb3586 10.1002/bies.201600235 10.1111/acel.12445 10.1016/j.cell.2012.02.035 10.1101/gad.1971610 10.1016/j.cell.2013.10.019 10.1111/acel.12075 10.1016/j.cmet.2016.10.023 10.1016/j.bbrc.2019.03.199 10.1038/345458a0 10.1016/j.ebiom.2018.12.052 10.15252/embj.2018100492 10.1158/1940-6207.CAPR-11-0536 10.1016/j.cmet.2013.09.010 10.1016/j.cmet.2019.01.021 10.1128/MCB.01868-08 10.1371/journal.pbio.0050110 10.1038/nature11776 10.1074/jbc.C700018200 10.1016/j.biocel.2017.01.001 10.1016/j.jmb.2016.02.004 10.1002/eji.201343921 |
ContentType | Journal Article |
Copyright | 2019 Federation of European Biochemical Societies 2019 Federation of European Biochemical Societies. |
Copyright_xml | – notice: 2019 Federation of European Biochemical Societies – notice: 2019 Federation of European Biochemical Societies. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1002/1873-3468.13498 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1873-3468 |
EndPage | 1579 |
ExternalDocumentID | 31211858 10_1002_1873_3468_13498 FEB213498 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/H022384/1 ; BB/K017314/1 – fundername: Medical Research Council – fundername: Barbour Foundation – fundername: Ted Nash Foundation – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H022384/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/K017314/1 |
GroupedDBID | --- --K -~X .55 .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 29H 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHBH AAHHS AAHQN AAIKJ AAIPD AALRI AAMNL AANLZ AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABBQC ABCUV ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABQWH ABVKL ABWVN ABXDB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACRPL ACXBN ACXQS ADBBV ADBTR ADEOM ADEZE ADIYS ADKYN ADMGS ADMUD ADNMO ADOZA ADQTV ADUVX ADVLN ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AGHFR AGYEJ AHBTC AI. AIACR AIAGR AITUG AITYG AIURR AIWBW AJBDE AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FUBAC G-Q GBLVA GI5 GX1 HGLYW HVGLF HZ~ IHE IXB J1W KBYEO L7B LATKE LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R2- R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SEW SFE SSZ SUPJJ SV3 TEORI TR2 UHB UNMZH VH1 WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR X7M Y6R YK3 ZGI ZZTAW ~02 AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AEYWJ AFPUW AGHNM AGQPQ AGYGG AIGII AKBMS AKYEP CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4848-60a7a9bdf29ce68f2a67586ab24ec37f4c758b9d7375c15d8ae0672aee8d6b0a3 |
ISSN | 0014-5793 1873-3468 |
IngestDate | Fri Jul 11 18:23:48 EDT 2025 Fri Jul 11 04:25:22 EDT 2025 Mon Jul 21 06:02:54 EDT 2025 Tue Jul 01 02:46:49 EDT 2025 Thu Apr 24 23:00:55 EDT 2025 Wed Jan 22 16:39:39 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | senescence senolytics ageing mitochondria senostatics |
Language | English |
License | 2019 Federation of European Biochemical Societies. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4848-60a7a9bdf29ce68f2a67586ab24ec37f4c758b9d7375c15d8ae0672aee8d6b0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1873-3468.13498 |
PMID | 31211858 |
PQID | 2243490979 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2718339093 proquest_miscellaneous_2243490979 pubmed_primary_31211858 crossref_citationtrail_10_1002_1873_3468_13498 crossref_primary_10_1002_1873_3468_13498 wiley_primary_10_1002_1873_3468_13498_FEB213498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2019 |
References | 2011; 479 2017; 84 2018; 562 2010; 16 2013; 4 1990; 345 2004; 323 2016; 428 2019; 18 2017; 550 2012; 13 2012; 11 2016; 35 2017; 72 2014; 1837 2018; 170 2010; 24 2019; 22 2019; 21 2019; 26 2007; 8 2019; 29 2007; 5 1988; 85 2010; 5 1998; 12 2014; 12 2010; 6 2014; 10 2015; 57 2007; 445 2007; 282 2015; 520 2013; 501 2017; 65 2019; 38 1965; 37 2011; 6 2016; 15 2018; 27 2014; 44 2014; 159 2018; 24 2016; 6 2018; 17 2016; 7 2016; 1 2019; 40 2000; 348 2015; 112 2018; 115 2009; 460 2008; 133 2018; 10 2016; 23 2014; 31 2016; 22 2003; 23 2017; 8 1998; 239 2013; 202 2008; 6 2011; 12 2015; 349 2007; 29 2013; 18 2013; 15 2014; 2 2017; 39 2013; 12 2003; 2 2013; 155 2016; 354 2019; 513 2013; 153 2001; 11 2010; 70 2001; 98 2015; 14 2015; 17 1995; 92 2015; 4 2007; 128 2017; 25 2010; 123 2017; 23 2006; 8 2006; 5 2012; 148 1977; 267 2015; 7 2011; 332 2014; 235 2009; 29 2006; 311 1994; 8 2012; 3 2004; 114 2015; 29 2002; 21 2017; 12 1999; 274 2016; 530 2009; 8 2013; 498 2013; 493 2017; 19 2017; 18 2012; 5 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 22 start-page: 719 year: 2019 end-page: 728 article-title: Senolytic therapy alleviates Abeta‐associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model publication-title: Nat Neurosci – volume: 17 start-page: e12811 year: 2018 article-title: Monoamine oxidase‐A is a novel driver of stress‐induced premature senescence through inhibition of parkin‐mediated mitophagy publication-title: Aging Cell – volume: 153 start-page: 1194 year: 2013 end-page: 1217 article-title: The hallmarks of aging publication-title: Cell – volume: 27 start-page: 1081 year: 2018 end-page: 1095 article-title: A potent and specific CD38 inhibitor ameliorates age‐related metabolic dysfunction by reversing tissue NAD(+) decline publication-title: Cell Metab – volume: 114 start-page: 1299 year: 2004 end-page: 1307 article-title: Ink4a/Arf expression is a biomarker of aging publication-title: J Clin Invest – volume: 29 start-page: 4495 year: 2009 end-page: 4507 article-title: Mitochondrial dysfunction contributes to oncogene‐induced senescence publication-title: Mol Cell Biol – volume: 12 start-page: 34 year: 2014 article-title: Mitochondria as signaling organelles publication-title: BMC Biol – volume: 530 start-page: 184 year: 2016 end-page: 189 article-title: Naturally occurring p16(Ink4a)‐positive cells shorten healthy lifespan publication-title: Nature – volume: 11 start-page: 345 year: 2012 end-page: 349 article-title: A senescent cell bystander effect: senescence‐induced senescence publication-title: Aging Cell – volume: 520 start-page: 553 year: 2015 end-page: 557 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature – volume: 513 start-page: 486 year: 2019 end-page: 493 article-title: The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age‐related cellular NAD(+) decline publication-title: Biochem Biophys Res Commun – volume: 235 start-page: 592 year: 2014 end-page: 598 article-title: Oxidized but not native cardiolipin has pro‐inflammatory effects, which are inhibited by Annexin A5 publication-title: Atherosclerosis – volume: 323 start-page: 739 year: 2004 end-page: 742 article-title: Cardiolipin induces premature senescence in normal human fibroblasts publication-title: Biochem Biophys Res Commun – volume: 26 start-page: 276 year: 2019 end-page: 290 article-title: Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2 publication-title: Cell Death Differ – volume: 6 start-page: e23367 year: 2011 article-title: Autophagy impairment induces premature senescence in primary human fibroblasts publication-title: PLoS ONE – volume: 8 start-page: 311 year: 2009 end-page: 323 article-title: DNA damage response and cellular senescence in tissues of aging mice publication-title: Aging Cell – volume: 202 start-page: 129 year: 2013 end-page: 143 article-title: Lysosome‐mediated processing of chromatin in senescence publication-title: J Cell Biol. – volume: 5 start-page: 99 year: 2010 end-page: 118 article-title: The senescence‐associated secretory phenotype: the dark side of tumor suppression publication-title: Annu Rev Pathol – volume: 8 start-page: 2540 year: 1994 end-page: 2551 article-title: DNA damage triggers a prolonged p53‐dependent G1 arrest and long‐term induction of Cip1 in normal human fibroblasts publication-title: Genes Dev – volume: 35 start-page: 724 year: 2016 end-page: 742 article-title: Mitochondria are required for pro‐ageing features of the senescent phenotype publication-title: EMBO J – volume: 13 start-page: 525 year: 2012 end-page: 536 article-title: Cytosolic malate dehydrogenase regulates senescence in human fibroblasts publication-title: Biogerontology – volume: 128 start-page: 36 year: 2007 end-page: 44 article-title: Accumulation of senescent cells in mitotic tissue of aging primates publication-title: Mech Ageing Dev – volume: 18 start-page: e12945 year: 2019 article-title: Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction publication-title: Aging Cell – volume: 12 start-page: 183 year: 2017 end-page: 194 article-title: Depletion of mitochondria in mammalian cells through enforced mitophagy publication-title: Nat Protoc – volume: 2 start-page: 141 year: 2003 end-page: 143 article-title: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress publication-title: Aging Cell – volume: 29 start-page: 1274 year: 2019 end-page: 1290 article-title: Telomere dysfunction induces sirtuin repression that drives telomere‐dependent disease publication-title: Cell Metab – volume: 65 start-page: 2297 year: 2017 end-page: 2301 article-title: The clinical potential of senolytic drugs publication-title: J Am Geriatr Soc – volume: 31 start-page: 722 year: 2014 end-page: 733 article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF‐AA publication-title: Dev Cell – volume: 8 start-page: 15691 year: 2017 article-title: Cellular senescence drives age‐dependent hepatic steatosis publication-title: Nat Commun – volume: 57 start-page: 860 year: 2015 end-page: 872 article-title: Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death publication-title: Mol Cell – volume: 282 start-page: 10841 year: 2007 end-page: 10855 article-title: Extension of human cell lifespan by nicotinamide phosphoribosyltransferase publication-title: J Biol Chem – volume: 562 start-page: 578 year: 2018 end-page: 582 article-title: Clearance of senescent glial cells prevents tau‐dependent pathology and cognitive decline publication-title: Nature – volume: 23 start-page: 320 year: 2017 end-page: 331 article-title: Mitochondrial sirtuins and molecular mechanisms of aging publication-title: Trends Mol Med – volume: 23 start-page: 775 year: 2017 end-page: 781 article-title: Local clearance of senescent cells attenuates the development of post‐traumatic osteoarthritis and creates a pro‐regenerative environment publication-title: Nat Med – volume: 17 start-page: 1049 year: 2015 end-page: 1061 article-title: MTOR regulates the pro‐tumorigenic senescence‐associated secretory phenotype by promoting IL1A translation publication-title: Nat Cell Biol – volume: 18 start-page: e12950 year: 2019 article-title: Targeting senescent cells alleviates obesity‐induced metabolic dysfunction publication-title: Aging Cell – volume: 148 start-page: 1145 year: 2012 end-page: 1159 article-title: Mitochondria: in sickness and in health publication-title: Cell – volume: 24 start-page: 1246 year: 2018 end-page: 1256 article-title: Senolytics improve physical function and increase lifespan in old age publication-title: Nat Med. – volume: 5 start-page: 536 year: 2012 end-page: 543 article-title: Metformin reduces endogenous reactive oxygen species and associated DNA damage publication-title: Cancer Prev Res (Phila) – volume: 37 start-page: 614 year: 1965 end-page: 636 article-title: The limited lifetime of human diploid cell strains publication-title: Exp Cell Res – volume: 21 start-page: 397 year: 2019 end-page: 407 article-title: NAD(+) metabolism governs the proinflammatory senescence‐associated secretome publication-title: Nat Cell Biol – volume: 7 start-page: 664 year: 2015 end-page: 672 article-title: Cellular senescence‐like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients publication-title: Aging – volume: 7 start-page: 11190 year: 2016 article-title: Directed elimination of senescent cells by inhibition of BCL‐W and BCL‐XL publication-title: Nat Commun. – volume: 70 start-page: 6277 year: 2010 end-page: 6282 article-title: Poly(ADP‐ribose) polymerase inhibitor induces accelerated senescence in irradiated breast cancer cells and tumors publication-title: Can Res – volume: 550 start-page: 402 year: 2017 end-page: 406 article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer publication-title: Nature – volume: 493 start-page: 689 year: 2013 end-page: 693 article-title: Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence publication-title: Nature – volume: 345 start-page: 458 year: 1990 end-page: 460 article-title: Telomeres shorten during ageing of human fibroblasts publication-title: Nature – volume: 6 start-page: 347 year: 2010 article-title: Feedback between p21 and reactive oxygen production is necessary for cell senescence publication-title: Mol Syst Biol – volume: 123 start-page: 917 year: 2010 end-page: 926 article-title: Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1 publication-title: J Cell Sci – volume: 29 start-page: 908 year: 2007 end-page: 917 article-title: Mitochondria and ageing: winning and losing in the numbers game publication-title: BioEssays – volume: 29 start-page: 1233 year: 2019 article-title: Obesity‐induced cellular senescence drives anxiety and impairs neurogenesis publication-title: Cell Metab – volume: 14 start-page: 644 year: 2015 end-page: 658 article-title: The Achilles' heel of senescent cells: from transcriptome to senolytic drugs publication-title: Aging Cell – volume: 92 start-page: 4337 year: 1995 end-page: 4341 article-title: Oxidative DNA damage and senescence of human diploid fibroblast cells publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: e12997 year: 2015 article-title: Targeting senescent cells enhances adipogenesis and metabolic function in old age publication-title: eLife – volume: 5 start-page: 423 year: 2006 end-page: 436 article-title: Nicotinamide extends replicative lifespan of human cells publication-title: Aging Cell – volume: 2 start-page: 4172 year: 2014 article-title: Chronic inflammation induces telomere dysfunction and accelerates ageing in mice publication-title: Nat Commun – volume: 498 start-page: 109 year: 2013 end-page: 112 article-title: A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene‐induced senescence publication-title: Nature – volume: 115 start-page: E3388 year: 2018 end-page: E3397 article-title: S‐nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 238 year: 2010 end-page: 246 article-title: Inflammatory networks during cellular senescence: causes and consequences publication-title: Trends Mol Med – volume: 155 start-page: 1104 year: 2013 end-page: 1118 article-title: Programmed cell senescence during mammalian embryonic development publication-title: Cell – volume: 12 start-page: 3008 year: 1998 end-page: 3019 article-title: Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling publication-title: Genes Dev – volume: 12 start-page: 489 year: 2013 end-page: 498 article-title: Metformin inhibits the senescence‐associated secretory phenotype by interfering with IKK/NF‐kappaB activation publication-title: Aging Cell – volume: 274 start-page: 7936 year: 1999 end-page: 7940 article-title: Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species publication-title: J Biol Chem – volume: 332 start-page: 966 year: 2011 end-page: 970 article-title: Spatial coupling of mTOR and autophagy augments secretory phenotypes publication-title: Science (New York, NY) – volume: 267 start-page: 423 year: 1977 end-page: 425 article-title: Low oxygen concentration extends the lifespan of cultured human diploid cells publication-title: Nature – volume: 15 start-page: 428 year: 2016 end-page: 435 article-title: Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors publication-title: Aging Cell – volume: 22 start-page: 78 year: 2016 end-page: 83 article-title: Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice publication-title: Nat Med – volume: 6 start-page: 2853 year: 2008 end-page: 2868 article-title: Senescence‐associated secretory phenotypes reveal cell‐nonautonomous functions of oncogenic RAS and the p53 tumor suppressor publication-title: PLoS Biol – volume: 24 start-page: 2463 year: 2010 end-page: 2479 article-title: The essence of senescence publication-title: Genes Dev – volume: 98 start-page: 12072 year: 2001 end-page: 12077 article-title: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 1239 year: 2018 end-page: 1256 article-title: Mitochondrial peptides modulate mitochondrial function during cellular senescence publication-title: Aging – volume: 18 start-page: 519 year: 2013 end-page: 532 article-title: Canonical Nlrp3 inflammasome links systemic low‐grade inflammation to functional decline in aging publication-title: Cell Metab – volume: 354 start-page: 472 year: 2016 end-page: 477 article-title: Senescent intimal foam cells are deleterious at all stages of atherosclerosis publication-title: Science (New York, NY) – volume: 11 start-page: S27 year: 2001 end-page: S31 article-title: Cellular senescence as a tumor‐suppressor mechanism publication-title: Trends Cell Biol – volume: 5 start-page: e110 year: 2007 article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence publication-title: PLoS Biol – volume: 460 start-page: 392 year: 2009 end-page: 395 article-title: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice publication-title: Nature – volume: 18 start-page: 447 year: 2017 end-page: 476 article-title: Sirtuins, a promising target in slowing down the ageing process publication-title: Biogerontology – volume: 6 start-page: 22579 year: 2016 article-title: Toll‐like receptor 9 can be activated by endogenous mitochondrial DNA to induce podocyte apoptosis publication-title: Sci Rep – volume: 92 start-page: 9363 year: 1995 end-page: 9367 article-title: A biomarker that identifies senescent human cells in culture and in aging skin publication-title: Proc Natl Acad Sci USA – volume: 428 start-page: 1714 year: 2016 end-page: 1724 article-title: Mechanisms of selective autophagy publication-title: J Mol Biol – volume: 282 start-page: 22977 year: 2007 end-page: 22983 article-title: Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence publication-title: J Biol Chem – volume: 1 start-page: e87732 year: 2016 article-title: Elimination of p19(ARF)‐expressing cells enhances pulmonary function in mice publication-title: JCI Insight – volume: 10 start-page: e1003728 year: 2014 article-title: Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions publication-title: PLoS Comput Biol – volume: 39 start-page: 1600235 year: 2017 article-title: Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? publication-title: BioEssays – volume: 159 start-page: 1549 year: 2014 end-page: 1562 article-title: Apoptotic caspases suppress mtDNA‐induced STING‐mediated type I IFN production publication-title: Cell – volume: 311 start-page: 1257 year: 2006 article-title: Cellular senescence in aging primates publication-title: Science (New York, NY) – volume: 349 start-page: aaa5612 year: 2015 article-title: The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4 publication-title: Science (New York, NY) – volume: 133 start-page: 1006 year: 2008 end-page: 1018 article-title: Chemokine signaling via the CXCR16 receptor reinforces senescence publication-title: Cell – volume: 8 start-page: 1291 year: 2006 end-page: 1297 article-title: Mitogenic signalling and the p16INK4a‐Rb pathway cooperate to enforce irreversible cellular senescence publication-title: Nat Cell Biol – volume: 29 start-page: 1045 year: 2019 end-page: 1060 article-title: Targeted elimination of senescent beta cells prevents type 1 diabetes publication-title: Cell Metab – volume: 25 start-page: 166 year: 2017 end-page: 181 article-title: Cellular aging contributes to failure of cold‐induced beige adipocyte formation in old mice and humans publication-title: Cell Metab – volume: 18 start-page: e12882 year: 2019 article-title: Rapamycin improves healthspan but not inflammaging in nfkappab1(‐/‐) mice publication-title: Aging Cell – volume: 29 start-page: 2912 year: 2015 end-page: 2929 article-title: Impaired mitophagy leads to cigarette smoke stress‐induced cellular senescence: implications for chronic obstructive pulmonary disease publication-title: FASEB J – volume: 501 start-page: 421 year: 2013 end-page: 425 article-title: Synthetic lethal metabolic targeting of cellular senescence in cancer therapy publication-title: Nature – volume: 11 start-page: 722 year: 2012 end-page: 725 article-title: The number of p16INK4a positive cells in human skin reflects biological age publication-title: Aging Cell – volume: 4 start-page: 2308 year: 2013 article-title: Cytosolic p53 inhibits Parkin‐mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart publication-title: Nat Commun – volume: 17 start-page: e12840 year: 2018 article-title: Tau protein aggregation is associated with cellular senescence in the brain publication-title: Aging Cell – volume: 84 start-page: 22 year: 2017 end-page: 34 article-title: Vascular endothelial cells senescence is associated with NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasome activation via reactive oxygen species (ROS)/thioredoxin‐interacting protein (TXNIP) pathway publication-title: Int J Biochem Cell Biol – volume: 10 start-page: e9355 year: 2018 article-title: A versatile drug delivery system targeting senescent cells publication-title: EMBO Mol Med – volume: 3 start-page: 708 year: 2012 article-title: Telomeres are favoured targets of a persistent DNA damage response in ageing and stress‐induced senescence publication-title: Nat Commun. – volume: 170 start-page: 2 year: 2018 end-page: 9 article-title: Stress, cell senescence and organismal ageing publication-title: Mech Ageing Dev – volume: 38 start-page: e100492 year: 2019 article-title: Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence publication-title: EMBO J – volume: 23 start-page: 1072 year: 2017 end-page: 1079 article-title: Targeting cellular senescence prevents age‐related bone loss in mice publication-title: Nat Med – volume: 348 start-page: 607 issue: Pt 3 year: 2000 end-page: 614 article-title: Evidence that metformin exerts its anti‐diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain publication-title: Biochem J – volume: 479 start-page: 547 year: 2011 end-page: 551 article-title: Senescence surveillance of pre‐malignant hepatocytes limits liver cancer development publication-title: Nature – volume: 479 start-page: 232 year: 2011 end-page: 236 article-title: Clearance of p16Ink4a‐positive senescent cells delays ageing‐associated disorders publication-title: Nature – volume: 85 start-page: 5112 year: 1988 end-page: 5116 article-title: Human skin fibroblasts differentiate along a terminal cell lineage publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 8576 year: 2003 end-page: 8585 article-title: Influence of induced reactive oxygen species in p53‐mediated cell fate decisions publication-title: Mol Cell Biol – volume: 8 start-page: 14532 year: 2017 article-title: Cellular senescence mediates fibrotic pulmonary disease publication-title: Nat Commun – volume: 15 start-page: 973 year: 2016 end-page: 977 article-title: Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice publication-title: Aging Cell – volume: 21 start-page: 2180 year: 2002 end-page: 2188 article-title: Inhibition of p21‐mediated ROS accumulation can rescue p21‐induced senescence publication-title: EMBO J – volume: 12 start-page: 222 year: 2011 end-page: 230 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat Immunol – volume: 19 start-page: 1061 year: 2017 end-page: 1070 article-title: Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence publication-title: Nat Cell Biol – volume: 445 start-page: 656 year: 2007 end-page: 660 article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas publication-title: Nature – volume: 1837 start-page: 427 year: 2014 end-page: 443 article-title: Functional role of mitochondrial respiratory supercomplexes publication-title: Biochem Biophys Acta – volume: 40 start-page: 554 year: 2019 end-page: 563 article-title: Senolytics in idiopathic pulmonary fibrosis: Results from a first‐in‐human, open‐label, pilot study publication-title: EBioMedicine – volume: 239 start-page: 152 year: 1998 end-page: 160 article-title: Preferential accumulation of single‐stranded regions in telomeres of human fibroblasts publication-title: Exp Cell Res – volume: 72 start-page: 780 year: 2017 end-page: 785 article-title: Transplanted senescent cells induce an osteoarthritis‐like condition in mice publication-title: J Gerontol A Biol Sci Med Sci – volume: 23 start-page: 303 year: 2016 end-page: 314 article-title: Mitochondrial dysfunction induces senescence with a distinct secretory phenotype publication-title: Cell Metab – volume: 112 start-page: E6301 year: 2015 end-page: E6310 article-title: JAK inhibition alleviates the cellular senescence‐associated secretory phenotype and frailty in old age publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: 978 year: 2013 end-page: 990 article-title: A complex secretory program orchestrated by the inflammasome controls paracrine senescence publication-title: Nat Cell Biol – volume: 44 start-page: 1552 year: 2014 end-page: 1562 article-title: Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for "inflamm‐aging" publication-title: Eur J Immunol – volume: 8 start-page: 729 year: 2007 end-page: 740 article-title: Cellular senescence: when bad things happen to good cells publication-title: Nat Rev Mol Cell Biol – ident: e_1_2_8_101_1 doi: 10.1016/j.molmed.2017.02.005 – ident: e_1_2_8_37_1 doi: 10.1038/ncomms15691 – ident: e_1_2_8_38_1 doi: 10.1111/acel.12945 – ident: e_1_2_8_93_1 doi: 10.1038/nprot.2016.159 – ident: e_1_2_8_112_1 doi: 10.1038/srep22579 – ident: e_1_2_8_42_1 doi: 10.15252/emmm.201809355 – ident: e_1_2_8_62_1 doi: 10.1016/j.mad.2017.07.001 – ident: e_1_2_8_72_1 doi: 10.15252/embj.201592862 – ident: e_1_2_8_39_1 doi: 10.1111/acel.12950 – ident: e_1_2_8_52_1 doi: 10.1038/nature05529 – ident: e_1_2_8_33_1 doi: 10.1038/nm.4324 – ident: e_1_2_8_21_1 doi: 10.1126/science.1122446 – ident: e_1_2_8_11_1 doi: 10.1038/nrm2233 – ident: e_1_2_8_22_1 doi: 10.1172/JCI22475 – ident: e_1_2_8_106_1 doi: 10.1016/j.atherosclerosis.2014.05.913 – ident: e_1_2_8_17_1 doi: 10.1016/j.cell.2008.03.038 – ident: e_1_2_8_35_1 doi: 10.1111/acel.12458 – ident: e_1_2_8_86_1 doi: 10.1128/MCB.23.23.8576-8585.2003 – ident: e_1_2_8_75_1 doi: 10.1111/acel.12811 – ident: e_1_2_8_53_1 doi: 10.1038/nature10599 – ident: e_1_2_8_5_1 doi: 10.1016/S0962-8924(01)82148-6 – ident: e_1_2_8_115_1 doi: 10.1083/jcb.201212110 – ident: e_1_2_8_123_1 doi: 10.1042/bj3480607 – ident: e_1_2_8_90_1 doi: 10.1186/1741-7007-12-34 – ident: e_1_2_8_16_1 doi: 10.1038/msb.2010.5 – ident: e_1_2_8_44_1 doi: 10.1016/j.cmet.2019.01.013 – ident: e_1_2_8_102_1 doi: 10.1007/s10522-017-9685-9 – ident: e_1_2_8_79_1 doi: 10.1371/journal.pone.0023367 – ident: e_1_2_8_85_1 doi: 10.1074/jbc.274.12.7936 – ident: e_1_2_8_25_1 doi: 10.1111/j.1474-9726.2009.00481.x – ident: e_1_2_8_29_1 doi: 10.1038/s41586-018-0543-y – ident: e_1_2_8_20_1 doi: 10.1038/ncomms1708 – ident: e_1_2_8_84_1 doi: 10.1111/j.1474-9726.2006.00234.x – ident: e_1_2_8_58_1 doi: 10.1111/acel.12882 – ident: e_1_2_8_82_1 doi: 10.1073/pnas.92.10.4337 – ident: e_1_2_8_95_1 doi: 10.1016/j.bbabio.2013.11.002 – ident: e_1_2_8_118_1 doi: 10.18632/aging.101463 – ident: e_1_2_8_46_1 doi: 10.1111/acel.12344 – ident: e_1_2_8_87_1 doi: 10.1093/emboj/21.9.2180 – ident: e_1_2_8_23_1 doi: 10.1111/j.1474-9726.2012.00837.x – ident: e_1_2_8_57_1 doi: 10.1038/ncomms5172 – ident: e_1_2_8_2_1 doi: 10.1016/0014-4827(65)90211-9 – ident: e_1_2_8_81_1 doi: 10.1046/j.1474-9728.2003.00040.x – ident: e_1_2_8_74_1 doi: 10.1038/ncomms3308 – ident: e_1_2_8_76_1 doi: 10.1073/pnas.1722452115 – ident: e_1_2_8_88_1 doi: 10.1038/ncb1491 – ident: e_1_2_8_111_1 doi: 10.1016/j.cell.2014.11.036 – ident: e_1_2_8_27_1 doi: 10.7554/eLife.12997 – ident: e_1_2_8_67_1 doi: 10.1038/nature12154 – ident: e_1_2_8_121_1 doi: 10.1016/j.molcel.2015.01.018 – ident: e_1_2_8_18_1 doi: 10.1038/ncb2784 – ident: e_1_2_8_49_1 doi: 10.1038/nm.4010 – ident: e_1_2_8_105_1 doi: 10.1016/j.cmet.2019.03.001 – ident: e_1_2_8_9_1 doi: 10.1101/gad.8.21.2540 – ident: e_1_2_8_69_1 doi: 10.1242/jcs.059246 – ident: e_1_2_8_80_1 doi: 10.1038/267423a0 – ident: e_1_2_8_14_1 doi: 10.1371/journal.pbio.0060301 – ident: e_1_2_8_98_1 doi: 10.1038/s41556-019-0287-4 – ident: e_1_2_8_78_1 doi: 10.1126/science.aaa5612 – ident: e_1_2_8_89_1 doi: 10.1002/bies.20634 – ident: e_1_2_8_96_1 doi: 10.1007/s10522-012-9397-0 – ident: e_1_2_8_13_1 doi: 10.1073/pnas.85.14.5112 – ident: e_1_2_8_59_1 doi: 10.1038/nature08221 – ident: e_1_2_8_48_1 doi: 10.1038/s41591-018-0092-9 – ident: e_1_2_8_24_1 doi: 10.1016/j.mad.2006.11.008 – ident: e_1_2_8_26_1 doi: 10.1038/nature16932 – ident: e_1_2_8_70_1 doi: 10.1371/journal.pcbi.1003728 – ident: e_1_2_8_77_1 doi: 10.1126/science.1205407 – ident: e_1_2_8_92_1 doi: 10.1016/j.cmet.2015.11.011 – ident: e_1_2_8_120_1 doi: 10.1038/s41418-018-0118-3 – ident: e_1_2_8_10_1 doi: 10.1101/gad.12.19.3008 – ident: e_1_2_8_55_1 doi: 10.1073/pnas.211053698 – ident: e_1_2_8_19_1 doi: 10.1111/j.1474-9726.2012.00795.x – ident: e_1_2_8_36_1 doi: 10.1126/science.aaf6659 – ident: e_1_2_8_31_1 doi: 10.1038/s41593-019-0372-9 – ident: e_1_2_8_12_1 doi: 10.1073/pnas.92.20.9363 – ident: e_1_2_8_30_1 doi: 10.1111/acel.12840 – ident: e_1_2_8_110_1 doi: 10.1038/ni.1980 – ident: e_1_2_8_41_1 doi: 10.1038/ncomms14532 – ident: e_1_2_8_83_1 doi: 10.1006/excr.1997.3893 – ident: e_1_2_8_60_1 doi: 10.1073/pnas.1515386112 – ident: e_1_2_8_116_1 doi: 10.1038/nature24050 – ident: e_1_2_8_50_1 doi: 10.1172/jci.insight.87732 – ident: e_1_2_8_56_1 doi: 10.1038/ncb3195 – ident: e_1_2_8_63_1 doi: 10.1111/jgs.14969 – ident: e_1_2_8_45_1 doi: 10.1038/ncomms11190 – ident: e_1_2_8_109_1 doi: 10.1038/nature14156 – ident: e_1_2_8_8_1 doi: 10.1038/nature10600 – ident: e_1_2_8_43_1 doi: 10.18632/aging.100807 – ident: e_1_2_8_34_1 doi: 10.1038/nm.4385 – ident: e_1_2_8_73_1 doi: 10.1096/fj.14-268276 – ident: e_1_2_8_7_1 doi: 10.1016/j.devcel.2014.11.012 – ident: e_1_2_8_122_1 doi: 10.1038/nature12437 – ident: e_1_2_8_32_1 doi: 10.1093/gerona/glw186 – ident: e_1_2_8_54_1 doi: 10.1146/annurev-pathol-121808-102144 – ident: e_1_2_8_51_1 doi: 10.1016/j.molmed.2010.03.003 – ident: e_1_2_8_66_1 doi: 10.1016/j.cell.2013.05.039 – ident: e_1_2_8_107_1 doi: 10.1016/j.bbrc.2004.08.177 – ident: e_1_2_8_100_1 doi: 10.1158/0008-5472.CAN-09-4224 – ident: e_1_2_8_91_1 doi: 10.1074/jbc.M700679200 – ident: e_1_2_8_103_1 doi: 10.1016/j.cmet.2018.03.016 – ident: e_1_2_8_117_1 doi: 10.1038/ncb3586 – ident: e_1_2_8_94_1 doi: 10.1002/bies.201600235 – ident: e_1_2_8_119_1 doi: 10.1111/acel.12445 – ident: e_1_2_8_65_1 doi: 10.1016/j.cell.2012.02.035 – ident: e_1_2_8_4_1 doi: 10.1101/gad.1971610 – ident: e_1_2_8_6_1 doi: 10.1016/j.cell.2013.10.019 – ident: e_1_2_8_61_1 doi: 10.1111/acel.12075 – ident: e_1_2_8_47_1 doi: 10.1016/j.cmet.2016.10.023 – ident: e_1_2_8_104_1 doi: 10.1016/j.bbrc.2019.03.199 – ident: e_1_2_8_3_1 doi: 10.1038/345458a0 – ident: e_1_2_8_64_1 doi: 10.1016/j.ebiom.2018.12.052 – ident: e_1_2_8_28_1 doi: 10.15252/embj.2018100492 – ident: e_1_2_8_124_1 doi: 10.1158/1940-6207.CAPR-11-0536 – ident: e_1_2_8_113_1 doi: 10.1016/j.cmet.2013.09.010 – ident: e_1_2_8_40_1 doi: 10.1016/j.cmet.2019.01.021 – ident: e_1_2_8_68_1 doi: 10.1128/MCB.01868-08 – ident: e_1_2_8_15_1 doi: 10.1371/journal.pbio.0050110 – ident: e_1_2_8_99_1 doi: 10.1038/nature11776 – ident: e_1_2_8_97_1 doi: 10.1074/jbc.C700018200 – ident: e_1_2_8_114_1 doi: 10.1016/j.biocel.2017.01.001 – ident: e_1_2_8_71_1 doi: 10.1016/j.jmb.2016.02.004 – ident: e_1_2_8_108_1 doi: 10.1002/eji.201343921 |
SSID | ssj0001819 |
Score | 2.6528485 |
SecondaryResourceType | review_article |
Snippet | Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1566 |
SubjectTerms | ageing Aging - pathology Animals cell senescence Cellular Senescence Humans metabolites mitochondria Mitochondria - pathology Phenotype reactive oxygen species senescence senolytics senostatics therapeutics |
Title | Mitochondrial dysfunction and cell senescence: deciphering a complex relationship |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.13498 https://www.ncbi.nlm.nih.gov/pubmed/31211858 https://www.proquest.com/docview/2243490979 https://www.proquest.com/docview/2718339093 |
Volume | 593 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1rb9Mw0IJNiH1BsPEoLxkJIaQpXRo7icO3bmo1sQcCWtFvlmM7CGlLJ9pJjF_PneM8CgUGXyLXce3o7ny-870IeQlEpFloeJAwkwR8AGSsijwMwqzgObK_WOPVwMlpcjjlb2fxrK3i6KJLlnlff18bV_I_WIU-wCtGyf4DZptJoQPagF94AobheS0cn8B2BPZVGld6w1wt8JRa1g7GeCe_u0BepnH7ou5vrP5y4SL-PmNUJLqT228-nqVy3OoKq-PR_sfdMxfv00jenXgF52Db4B894XzsjKsD3dqmAAje2OCs8mzuvYn9XYMLb6rvGir2KFIWMF4VwunbNX2ep8ZV2cOaeFiHRaLCuJZ3V7lgm-n6mDhRtMdUbZo_fSfH0-NjORnNJjfJZgTqAfC3zeHRh09HzRkMcgsqPs1kdVKnMNr7aYFVeeQXJWNVZ3FCx-QuueO1BTqsUH-P3LDlNtkZlmo5P7-ir6jz33WGkW1ya79u3T6oq_jtkPcrNEI7NEKBRijSCG1p5A3tUAhV1FMI7VLIfTIdjyYHh4EvoxFoLrgIklClKstNEWXaJqKIFCqJicojbjVLC67hZ56ZlKWxHsRGKIv2eWWtMEkeKvaAbJTz0j4ilGkRh_A6yzSo7Qx2czHgqWB2kBTchKZH-jUwpfY55rHUyZmssmNHEqEvEfrSQb9HXjd_uKjSq_x-6IsaOxJgiPBRpZ1fLiRIoTAgzNLsD2NABmMMBrEeeVihtlmQYZpDEcMKew7Xf_sSCdsvcq3H1_imJ2Sr3UpPycby66V9BoLsMn_uqfYHhpWXTQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+dysfunction+and+cell+senescence%3A+deciphering+a+complex+relationship&rft.jtitle=FEBS+letters&rft.au=Chapman%2C+James&rft.au=Fielder%2C+Edward&rft.au=Passos%2C+Jo%C3%A3o+F&rft.date=2019-07-01&rft.issn=1873-3468&rft.eissn=1873-3468&rft.volume=593&rft.issue=13&rft.spage=1566&rft_id=info:doi/10.1002%2F1873-3468.13498&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |