Mitochondrial dysfunction and cell senescence: deciphering a complex relationship

Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset o...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 593; no. 13; pp. 1566 - 1579
Main Authors Chapman, James, Fielder, Edward, Passos, João F.
Format Journal Article
LanguageEnglish
Published England 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age‐related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro‐inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial‐mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues.
AbstractList Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age‐related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro‐inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial‐mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues.
Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age-related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro-inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial-mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues.Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age-related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro-inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial-mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues.
Author Chapman, James
Passos, João F.
Fielder, Edward
Author_xml – sequence: 1
  givenname: James
  surname: Chapman
  fullname: Chapman, James
  organization: Newcastle University Institute for Ageing, Newcastle University
– sequence: 2
  givenname: Edward
  surname: Fielder
  fullname: Fielder, Edward
  organization: Newcastle University Institute for Ageing, Newcastle University
– sequence: 3
  givenname: João F.
  surname: Passos
  fullname: Passos, João F.
  email: passos.joao@mayo.edu
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31211858$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LwzAYh4NM3JyevUmPXury0TaJNx1-wUQEPYc0eesiXVqTDt1_b-vUgyCewhue5yX5_fbRyDceEDoi-JRgTGdEcJayrBCnhGVS7KDJz80ITTAmWZpzycZoP8YX3M-CyD00ZoQSInIxQQ93rmvMsvE2OF0ndhOrtTeda3yivU0M1HUSwUM04A2cJRaMa5cQnH9OdGKaVVvDexKg1oMTl649QLuVriMcfp1T9HR1-Ti_SRf317fz80VqMpGJtMCaa1naikoDhaioLnguCl3SDAzjVWb6sZSWM54bkluhARecagBhixJrNkUn271taF7XEDu1cnF4r_bQrKOinAjGJJbsf5RmfXpY9klN0fEXui5XYFUb3EqHjfpOrAfyLWBCE2OAShnXfX6-C9rVimA1NKOGHtTQg_pspvdmv7zv1X8bxdZ4czVs_sPV1eUF3YofgFSejw
CitedBy_id crossref_primary_10_14336_AD_2021_0927
crossref_primary_10_3390_biom11020235
crossref_primary_10_1016_j_lfs_2023_121434
crossref_primary_10_1080_14728222_2021_1992385
crossref_primary_10_1016_j_freeradbiomed_2021_10_026
crossref_primary_10_3389_fendo_2024_1417007
crossref_primary_10_3389_fncel_2022_939830
crossref_primary_10_1002_jcb_29311
crossref_primary_10_1016_j_freeradbiomed_2023_09_019
crossref_primary_10_3390_ijms24043436
crossref_primary_10_1371_journal_pone_0226862
crossref_primary_10_3390_ijms26051803
crossref_primary_10_3390_medicina58060817
crossref_primary_10_3389_fphys_2023_1284410
crossref_primary_10_3390_ijms21124484
crossref_primary_10_1016_j_arr_2022_101833
crossref_primary_10_1093_jb_mvab115
crossref_primary_10_3390_ijms222212545
crossref_primary_10_1111_febs_16361
crossref_primary_10_1155_2022_9127074
crossref_primary_10_3389_fnins_2021_666881
crossref_primary_10_1016_j_tins_2021_06_007
crossref_primary_10_1186_s13148_023_01556_z
crossref_primary_10_1051_e3sconf_202124503051
crossref_primary_10_3389_fimmu_2021_669893
crossref_primary_10_1080_0886022X_2024_2398712
crossref_primary_10_3390_life10090164
crossref_primary_10_1038_s41580_020_00314_w
crossref_primary_10_1016_j_biocel_2023_106419
crossref_primary_10_3390_ijms232415551
crossref_primary_10_31857_S0869813924040029
crossref_primary_10_3390_proteomes11020012
crossref_primary_10_3389_fcell_2023_1323678
crossref_primary_10_2174_0115680266273698231107110956
crossref_primary_10_1016_j_ijcard_2022_05_004
crossref_primary_10_1007_s10522_022_09973_y
crossref_primary_10_1111_imcb_12727
crossref_primary_10_1126_sciadv_abq1475
crossref_primary_10_1016_j_heliyon_2023_e13451
crossref_primary_10_1159_000531422
crossref_primary_10_1016_j_coesh_2022_100387
crossref_primary_10_1002_tox_24127
crossref_primary_10_1093_stcltm_szac004
crossref_primary_10_3390_ijms231911963
crossref_primary_10_1111_joim_13141
crossref_primary_10_3389_fragi_2024_1351860
crossref_primary_10_1007_s10047_022_01356_x
crossref_primary_10_1186_s13287_021_02209_9
crossref_primary_10_3390_molecules28030924
crossref_primary_10_1021_acsbiomaterials_0c01120
crossref_primary_10_1016_j_bbalip_2024_159453
crossref_primary_10_3390_genes13091651
crossref_primary_10_3390_biom12101456
crossref_primary_10_3389_fcimb_2021_703413
crossref_primary_10_3390_cells10061278
crossref_primary_10_3389_fonc_2022_858479
crossref_primary_10_1016_j_biomaterials_2021_121156
crossref_primary_10_1016_j_biopha_2023_114616
crossref_primary_10_2478_jtim_2021_0049
crossref_primary_10_3390_biomedicines12112540
crossref_primary_10_1093_lifemedi_lnac030
crossref_primary_10_1038_s41417_022_00434_9
crossref_primary_10_3390_life13020559
crossref_primary_10_1007_s11010_020_03901_9
crossref_primary_10_32604_or_2023_028104
crossref_primary_10_3389_fphar_2021_601438
crossref_primary_10_1016_j_jid_2023_05_002
crossref_primary_10_3390_antiox12071374
crossref_primary_10_1016_j_molmed_2020_03_005
crossref_primary_10_32948_ajsep_2024_11_22
crossref_primary_10_3390_biom14060730
crossref_primary_10_7554_eLife_63728
crossref_primary_10_1080_17474124_2024_2432480
crossref_primary_10_3390_cells9102146
crossref_primary_10_3390_molecules27238625
crossref_primary_10_1016_j_biopha_2023_115937
crossref_primary_10_1016_j_mad_2021_111587
crossref_primary_10_3389_fendo_2024_1400462
crossref_primary_10_3390_antiox12061269
crossref_primary_10_3390_ijms23094843
crossref_primary_10_18632_aging_206207
crossref_primary_10_3390_cells9112498
crossref_primary_10_1016_j_cell_2021_09_034
crossref_primary_10_1080_27694127_2024_2306086
crossref_primary_10_3389_fphar_2021_703847
crossref_primary_10_1016_j_reprotox_2024_108700
crossref_primary_10_1016_j_mad_2021_111598
crossref_primary_10_1155_2022_9663354
crossref_primary_10_1038_s42255_021_00483_8
crossref_primary_10_1016_j_scitotenv_2024_174502
crossref_primary_10_1093_jnci_djab064
crossref_primary_10_3390_antiox12061250
crossref_primary_10_1016_j_envpol_2024_123674
crossref_primary_10_1007_s40610_021_00143_6
crossref_primary_10_1134_S0026893320060096
crossref_primary_10_1111_cas_15143
crossref_primary_10_1111_gtc_13011
crossref_primary_10_4132_jptm_2023_10_09
crossref_primary_10_3390_ijms25084443
crossref_primary_10_3389_fphys_2021_734976
crossref_primary_10_37349_edd_2023_00028
crossref_primary_10_3389_fcell_2022_895433
crossref_primary_10_14336_AD_2021_0110
crossref_primary_10_3390_ijms23052543
crossref_primary_10_1186_s11658_023_00489_y
crossref_primary_10_3389_fnagi_2022_827900
crossref_primary_10_3390_antiox12010169
crossref_primary_10_1152_ajplung_00146_2022
crossref_primary_10_1007_s12016_021_08899_6
crossref_primary_10_1097_CCO_0000000000001020
crossref_primary_10_3390_antiox11071224
crossref_primary_10_3390_ijms21113883
crossref_primary_10_1016_j_arr_2021_101280
crossref_primary_10_1080_21655979_2022_2036913
crossref_primary_10_1007_s12015_022_10370_8
crossref_primary_10_1186_s12964_023_01138_9
crossref_primary_10_3390_cells11111763
crossref_primary_10_1016_j_mcn_2021_103683
crossref_primary_10_3390_cells13151281
crossref_primary_10_3390_bioengineering11060524
crossref_primary_10_1016_j_phrs_2025_107591
crossref_primary_10_1186_s12979_023_00352_w
crossref_primary_10_1186_s13046_021_02035_0
crossref_primary_10_3389_fphys_2024_1384966
crossref_primary_10_3390_cells11091489
crossref_primary_10_1007_s11064_022_03592_2
crossref_primary_10_1093_toxres_tfae136
crossref_primary_10_2139_ssrn_4137695
crossref_primary_10_3390_ijms22105209
crossref_primary_10_1093_gerona_glac121
crossref_primary_10_3390_antiox11030480
crossref_primary_10_3390_ijms24032040
crossref_primary_10_1007_s00441_020_03272_z
crossref_primary_10_1016_j_lfs_2024_122862
crossref_primary_10_1007_s43188_024_00251_2
crossref_primary_10_3389_fphar_2022_836496
crossref_primary_10_1016_j_brainres_2023_148693
crossref_primary_10_3390_cells9040954
crossref_primary_10_1016_j_mtbio_2024_101175
crossref_primary_10_1038_s41580_020_0210_7
crossref_primary_10_1038_s41368_022_00180_6
crossref_primary_10_1038_s41419_024_06797_1
crossref_primary_10_3389_fphar_2021_739510
crossref_primary_10_3390_antiox10081170
crossref_primary_10_3389_fendo_2022_915139
crossref_primary_10_1159_000514305
crossref_primary_10_1007_s10522_023_10031_4
crossref_primary_10_59368_agingbio_20240022
crossref_primary_10_1186_s12931_023_02634_9
crossref_primary_10_1016_j_molcel_2021_08_023
crossref_primary_10_1016_j_bbrc_2022_05_009
crossref_primary_10_1371_journal_pone_0254710
crossref_primary_10_3390_ijms241411676
crossref_primary_10_1007_s00772_021_00794_w
crossref_primary_10_1038_s41583_020_0325_z
crossref_primary_10_3389_fphar_2024_1486717
crossref_primary_10_1016_j_nbd_2023_106090
crossref_primary_10_1007_s11357_023_00843_0
crossref_primary_10_1016_j_expneurol_2023_114429
crossref_primary_10_1007_s00223_023_01100_4
crossref_primary_10_1134_S0022093024020285
crossref_primary_10_3389_fnagi_2021_763110
crossref_primary_10_3389_fncel_2022_906270
crossref_primary_10_3390_antiox11050975
crossref_primary_10_1016_j_atherosclerosis_2025_119176
crossref_primary_10_1016_j_cej_2024_158540
crossref_primary_10_3892_etm_2023_12086
crossref_primary_10_3390_ijms23042339
crossref_primary_10_1021_acs_chemrestox_2c00248
crossref_primary_10_1002_hep_31067
crossref_primary_10_1186_s40643_024_00824_x
crossref_primary_10_3390_ijms22010406
crossref_primary_10_3390_antiox13121515
crossref_primary_10_1186_s12979_024_00412_9
crossref_primary_10_1038_s42255_023_00928_2
crossref_primary_10_12737_1024_6177_2021_66_5_59_65
crossref_primary_10_3389_fphar_2023_1172920
crossref_primary_10_1080_14737140_2022_2139242
crossref_primary_10_1016_j_bbadis_2023_166795
crossref_primary_10_1016_j_bbabio_2022_148949
crossref_primary_10_3390_genes15091153
crossref_primary_10_3389_fphys_2021_693067
crossref_primary_10_1016_j_arr_2019_100940
crossref_primary_10_1016_j_arr_2020_101072
crossref_primary_10_3390_antiox14010099
crossref_primary_10_1016_j_neurobiolaging_2022_08_014
crossref_primary_10_3390_nu14173636
crossref_primary_10_1016_j_bj_2023_02_005
crossref_primary_10_1038_s41598_024_64441_6
crossref_primary_10_3390_cells11244026
crossref_primary_10_1016_j_exger_2022_111866
crossref_primary_10_3390_cells13040353
crossref_primary_10_3389_fgene_2022_1056691
crossref_primary_10_1186_s41232_024_00342_5
crossref_primary_10_1038_s42003_024_06052_5
crossref_primary_10_1007_s13105_024_01062_7
crossref_primary_10_1016_j_devcel_2024_04_020
crossref_primary_10_1089_ten_teb_2023_0136
crossref_primary_10_1096_fj_202100868R
crossref_primary_10_1111_febs_17087
crossref_primary_10_1096_fj_202002678R
crossref_primary_10_1002_1873_3468_13503
crossref_primary_10_3390_ijms232416219
crossref_primary_10_1002_jcsm_13513
crossref_primary_10_3389_fncel_2024_1335849
crossref_primary_10_3390_ijms23116064
crossref_primary_10_1038_s41569_021_00624_2
crossref_primary_10_1016_j_freeradbiomed_2021_05_003
crossref_primary_10_3389_fimmu_2020_01346
Cites_doi 10.1016/j.molmed.2017.02.005
10.1038/ncomms15691
10.1111/acel.12945
10.1038/nprot.2016.159
10.1038/srep22579
10.15252/emmm.201809355
10.1016/j.mad.2017.07.001
10.15252/embj.201592862
10.1111/acel.12950
10.1038/nature05529
10.1038/nm.4324
10.1126/science.1122446
10.1038/nrm2233
10.1172/JCI22475
10.1016/j.atherosclerosis.2014.05.913
10.1016/j.cell.2008.03.038
10.1111/acel.12458
10.1128/MCB.23.23.8576-8585.2003
10.1111/acel.12811
10.1038/nature10599
10.1016/S0962-8924(01)82148-6
10.1083/jcb.201212110
10.1042/bj3480607
10.1186/1741-7007-12-34
10.1038/msb.2010.5
10.1016/j.cmet.2019.01.013
10.1007/s10522-017-9685-9
10.1371/journal.pone.0023367
10.1074/jbc.274.12.7936
10.1111/j.1474-9726.2009.00481.x
10.1038/s41586-018-0543-y
10.1038/ncomms1708
10.1111/j.1474-9726.2006.00234.x
10.1111/acel.12882
10.1073/pnas.92.10.4337
10.1016/j.bbabio.2013.11.002
10.18632/aging.101463
10.1111/acel.12344
10.1093/emboj/21.9.2180
10.1111/j.1474-9726.2012.00837.x
10.1038/ncomms5172
10.1016/0014-4827(65)90211-9
10.1046/j.1474-9728.2003.00040.x
10.1038/ncomms3308
10.1073/pnas.1722452115
10.1038/ncb1491
10.1016/j.cell.2014.11.036
10.7554/eLife.12997
10.1038/nature12154
10.1016/j.molcel.2015.01.018
10.1038/ncb2784
10.1038/nm.4010
10.1016/j.cmet.2019.03.001
10.1101/gad.8.21.2540
10.1242/jcs.059246
10.1038/267423a0
10.1371/journal.pbio.0060301
10.1038/s41556-019-0287-4
10.1126/science.aaa5612
10.1002/bies.20634
10.1007/s10522-012-9397-0
10.1073/pnas.85.14.5112
10.1038/nature08221
10.1038/s41591-018-0092-9
10.1016/j.mad.2006.11.008
10.1038/nature16932
10.1371/journal.pcbi.1003728
10.1126/science.1205407
10.1016/j.cmet.2015.11.011
10.1038/s41418-018-0118-3
10.1101/gad.12.19.3008
10.1073/pnas.211053698
10.1111/j.1474-9726.2012.00795.x
10.1126/science.aaf6659
10.1038/s41593-019-0372-9
10.1073/pnas.92.20.9363
10.1111/acel.12840
10.1038/ni.1980
10.1038/ncomms14532
10.1006/excr.1997.3893
10.1073/pnas.1515386112
10.1038/nature24050
10.1172/jci.insight.87732
10.1038/ncb3195
10.1111/jgs.14969
10.1038/ncomms11190
10.1038/nature14156
10.1038/nature10600
10.18632/aging.100807
10.1038/nm.4385
10.1096/fj.14-268276
10.1016/j.devcel.2014.11.012
10.1038/nature12437
10.1093/gerona/glw186
10.1146/annurev-pathol-121808-102144
10.1016/j.molmed.2010.03.003
10.1016/j.cell.2013.05.039
10.1016/j.bbrc.2004.08.177
10.1158/0008-5472.CAN-09-4224
10.1074/jbc.M700679200
10.1016/j.cmet.2018.03.016
10.1038/ncb3586
10.1002/bies.201600235
10.1111/acel.12445
10.1016/j.cell.2012.02.035
10.1101/gad.1971610
10.1016/j.cell.2013.10.019
10.1111/acel.12075
10.1016/j.cmet.2016.10.023
10.1016/j.bbrc.2019.03.199
10.1038/345458a0
10.1016/j.ebiom.2018.12.052
10.15252/embj.2018100492
10.1158/1940-6207.CAPR-11-0536
10.1016/j.cmet.2013.09.010
10.1016/j.cmet.2019.01.021
10.1128/MCB.01868-08
10.1371/journal.pbio.0050110
10.1038/nature11776
10.1074/jbc.C700018200
10.1016/j.biocel.2017.01.001
10.1016/j.jmb.2016.02.004
10.1002/eji.201343921
ContentType Journal Article
Copyright 2019 Federation of European Biochemical Societies
2019 Federation of European Biochemical Societies.
Copyright_xml – notice: 2019 Federation of European Biochemical Societies
– notice: 2019 Federation of European Biochemical Societies.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1002/1873-3468.13498
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 1579
ExternalDocumentID 31211858
10_1002_1873_3468_13498
FEB213498
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/H022384/1 ; BB/K017314/1
– fundername: Medical Research Council
– fundername: Barbour Foundation
– fundername: Ted Nash Foundation
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H022384/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/K017314/1
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAHQN
AAIKJ
AAIPD
AALRI
AAMNL
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABWVN
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
AKBMS
AKYEP
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c4848-60a7a9bdf29ce68f2a67586ab24ec37f4c758b9d7375c15d8ae0672aee8d6b0a3
ISSN 0014-5793
1873-3468
IngestDate Fri Jul 11 18:23:48 EDT 2025
Fri Jul 11 04:25:22 EDT 2025
Mon Jul 21 06:02:54 EDT 2025
Tue Jul 01 02:46:49 EDT 2025
Thu Apr 24 23:00:55 EDT 2025
Wed Jan 22 16:39:39 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords senescence
senolytics
ageing
mitochondria
senostatics
Language English
License 2019 Federation of European Biochemical Societies.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4848-60a7a9bdf29ce68f2a67586ab24ec37f4c758b9d7375c15d8ae0672aee8d6b0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1873-3468.13498
PMID 31211858
PQID 2243490979
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2718339093
proquest_miscellaneous_2243490979
pubmed_primary_31211858
crossref_citationtrail_10_1002_1873_3468_13498
crossref_primary_10_1002_1873_3468_13498
wiley_primary_10_1002_1873_3468_13498_FEB213498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2019
References 2011; 479
2017; 84
2018; 562
2010; 16
2013; 4
1990; 345
2004; 323
2016; 428
2019; 18
2017; 550
2012; 13
2012; 11
2016; 35
2017; 72
2014; 1837
2018; 170
2010; 24
2019; 22
2019; 21
2019; 26
2007; 8
2019; 29
2007; 5
1988; 85
2010; 5
1998; 12
2014; 12
2010; 6
2014; 10
2015; 57
2007; 445
2007; 282
2015; 520
2013; 501
2017; 65
2019; 38
1965; 37
2011; 6
2016; 15
2018; 27
2014; 44
2014; 159
2018; 24
2016; 6
2018; 17
2016; 7
2016; 1
2019; 40
2000; 348
2015; 112
2018; 115
2009; 460
2008; 133
2018; 10
2016; 23
2014; 31
2016; 22
2003; 23
2017; 8
1998; 239
2013; 202
2008; 6
2011; 12
2015; 349
2007; 29
2013; 18
2013; 15
2014; 2
2017; 39
2013; 12
2003; 2
2013; 155
2016; 354
2019; 513
2013; 153
2001; 11
2010; 70
2001; 98
2015; 14
2015; 17
1995; 92
2015; 4
2007; 128
2017; 25
2010; 123
2017; 23
2006; 8
2006; 5
2012; 148
1977; 267
2015; 7
2011; 332
2014; 235
2009; 29
2006; 311
1994; 8
2012; 3
2004; 114
2015; 29
2002; 21
2017; 12
1999; 274
2016; 530
2009; 8
2013; 498
2013; 493
2017; 19
2017; 18
2012; 5
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 22
  start-page: 719
  year: 2019
  end-page: 728
  article-title: Senolytic therapy alleviates Abeta‐associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model
  publication-title: Nat Neurosci
– volume: 17
  start-page: e12811
  year: 2018
  article-title: Monoamine oxidase‐A is a novel driver of stress‐induced premature senescence through inhibition of parkin‐mediated mitophagy
  publication-title: Aging Cell
– volume: 153
  start-page: 1194
  year: 2013
  end-page: 1217
  article-title: The hallmarks of aging
  publication-title: Cell
– volume: 27
  start-page: 1081
  year: 2018
  end-page: 1095
  article-title: A potent and specific CD38 inhibitor ameliorates age‐related metabolic dysfunction by reversing tissue NAD(+) decline
  publication-title: Cell Metab
– volume: 114
  start-page: 1299
  year: 2004
  end-page: 1307
  article-title: Ink4a/Arf expression is a biomarker of aging
  publication-title: J Clin Invest
– volume: 29
  start-page: 4495
  year: 2009
  end-page: 4507
  article-title: Mitochondrial dysfunction contributes to oncogene‐induced senescence
  publication-title: Mol Cell Biol
– volume: 12
  start-page: 34
  year: 2014
  article-title: Mitochondria as signaling organelles
  publication-title: BMC Biol
– volume: 530
  start-page: 184
  year: 2016
  end-page: 189
  article-title: Naturally occurring p16(Ink4a)‐positive cells shorten healthy lifespan
  publication-title: Nature
– volume: 11
  start-page: 345
  year: 2012
  end-page: 349
  article-title: A senescent cell bystander effect: senescence‐induced senescence
  publication-title: Aging Cell
– volume: 520
  start-page: 553
  year: 2015
  end-page: 557
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature
– volume: 513
  start-page: 486
  year: 2019
  end-page: 493
  article-title: The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age‐related cellular NAD(+) decline
  publication-title: Biochem Biophys Res Commun
– volume: 235
  start-page: 592
  year: 2014
  end-page: 598
  article-title: Oxidized but not native cardiolipin has pro‐inflammatory effects, which are inhibited by Annexin A5
  publication-title: Atherosclerosis
– volume: 323
  start-page: 739
  year: 2004
  end-page: 742
  article-title: Cardiolipin induces premature senescence in normal human fibroblasts
  publication-title: Biochem Biophys Res Commun
– volume: 26
  start-page: 276
  year: 2019
  end-page: 290
  article-title: Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2
  publication-title: Cell Death Differ
– volume: 6
  start-page: e23367
  year: 2011
  article-title: Autophagy impairment induces premature senescence in primary human fibroblasts
  publication-title: PLoS ONE
– volume: 8
  start-page: 311
  year: 2009
  end-page: 323
  article-title: DNA damage response and cellular senescence in tissues of aging mice
  publication-title: Aging Cell
– volume: 202
  start-page: 129
  year: 2013
  end-page: 143
  article-title: Lysosome‐mediated processing of chromatin in senescence
  publication-title: J Cell Biol.
– volume: 5
  start-page: 99
  year: 2010
  end-page: 118
  article-title: The senescence‐associated secretory phenotype: the dark side of tumor suppression
  publication-title: Annu Rev Pathol
– volume: 8
  start-page: 2540
  year: 1994
  end-page: 2551
  article-title: DNA damage triggers a prolonged p53‐dependent G1 arrest and long‐term induction of Cip1 in normal human fibroblasts
  publication-title: Genes Dev
– volume: 35
  start-page: 724
  year: 2016
  end-page: 742
  article-title: Mitochondria are required for pro‐ageing features of the senescent phenotype
  publication-title: EMBO J
– volume: 13
  start-page: 525
  year: 2012
  end-page: 536
  article-title: Cytosolic malate dehydrogenase regulates senescence in human fibroblasts
  publication-title: Biogerontology
– volume: 128
  start-page: 36
  year: 2007
  end-page: 44
  article-title: Accumulation of senescent cells in mitotic tissue of aging primates
  publication-title: Mech Ageing Dev
– volume: 18
  start-page: e12945
  year: 2019
  article-title: Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction
  publication-title: Aging Cell
– volume: 12
  start-page: 183
  year: 2017
  end-page: 194
  article-title: Depletion of mitochondria in mammalian cells through enforced mitophagy
  publication-title: Nat Protoc
– volume: 2
  start-page: 141
  year: 2003
  end-page: 143
  article-title: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress
  publication-title: Aging Cell
– volume: 29
  start-page: 1274
  year: 2019
  end-page: 1290
  article-title: Telomere dysfunction induces sirtuin repression that drives telomere‐dependent disease
  publication-title: Cell Metab
– volume: 65
  start-page: 2297
  year: 2017
  end-page: 2301
  article-title: The clinical potential of senolytic drugs
  publication-title: J Am Geriatr Soc
– volume: 31
  start-page: 722
  year: 2014
  end-page: 733
  article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF‐AA
  publication-title: Dev Cell
– volume: 8
  start-page: 15691
  year: 2017
  article-title: Cellular senescence drives age‐dependent hepatic steatosis
  publication-title: Nat Commun
– volume: 57
  start-page: 860
  year: 2015
  end-page: 872
  article-title: Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death
  publication-title: Mol Cell
– volume: 282
  start-page: 10841
  year: 2007
  end-page: 10855
  article-title: Extension of human cell lifespan by nicotinamide phosphoribosyltransferase
  publication-title: J Biol Chem
– volume: 562
  start-page: 578
  year: 2018
  end-page: 582
  article-title: Clearance of senescent glial cells prevents tau‐dependent pathology and cognitive decline
  publication-title: Nature
– volume: 23
  start-page: 320
  year: 2017
  end-page: 331
  article-title: Mitochondrial sirtuins and molecular mechanisms of aging
  publication-title: Trends Mol Med
– volume: 23
  start-page: 775
  year: 2017
  end-page: 781
  article-title: Local clearance of senescent cells attenuates the development of post‐traumatic osteoarthritis and creates a pro‐regenerative environment
  publication-title: Nat Med
– volume: 17
  start-page: 1049
  year: 2015
  end-page: 1061
  article-title: MTOR regulates the pro‐tumorigenic senescence‐associated secretory phenotype by promoting IL1A translation
  publication-title: Nat Cell Biol
– volume: 18
  start-page: e12950
  year: 2019
  article-title: Targeting senescent cells alleviates obesity‐induced metabolic dysfunction
  publication-title: Aging Cell
– volume: 148
  start-page: 1145
  year: 2012
  end-page: 1159
  article-title: Mitochondria: in sickness and in health
  publication-title: Cell
– volume: 24
  start-page: 1246
  year: 2018
  end-page: 1256
  article-title: Senolytics improve physical function and increase lifespan in old age
  publication-title: Nat Med.
– volume: 5
  start-page: 536
  year: 2012
  end-page: 543
  article-title: Metformin reduces endogenous reactive oxygen species and associated DNA damage
  publication-title: Cancer Prev Res (Phila)
– volume: 37
  start-page: 614
  year: 1965
  end-page: 636
  article-title: The limited lifetime of human diploid cell strains
  publication-title: Exp Cell Res
– volume: 21
  start-page: 397
  year: 2019
  end-page: 407
  article-title: NAD(+) metabolism governs the proinflammatory senescence‐associated secretome
  publication-title: Nat Cell Biol
– volume: 7
  start-page: 664
  year: 2015
  end-page: 672
  article-title: Cellular senescence‐like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients
  publication-title: Aging
– volume: 7
  start-page: 11190
  year: 2016
  article-title: Directed elimination of senescent cells by inhibition of BCL‐W and BCL‐XL
  publication-title: Nat Commun.
– volume: 70
  start-page: 6277
  year: 2010
  end-page: 6282
  article-title: Poly(ADP‐ribose) polymerase inhibitor induces accelerated senescence in irradiated breast cancer cells and tumors
  publication-title: Can Res
– volume: 550
  start-page: 402
  year: 2017
  end-page: 406
  article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer
  publication-title: Nature
– volume: 493
  start-page: 689
  year: 2013
  end-page: 693
  article-title: Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence
  publication-title: Nature
– volume: 345
  start-page: 458
  year: 1990
  end-page: 460
  article-title: Telomeres shorten during ageing of human fibroblasts
  publication-title: Nature
– volume: 6
  start-page: 347
  year: 2010
  article-title: Feedback between p21 and reactive oxygen production is necessary for cell senescence
  publication-title: Mol Syst Biol
– volume: 123
  start-page: 917
  year: 2010
  end-page: 926
  article-title: Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1
  publication-title: J Cell Sci
– volume: 29
  start-page: 908
  year: 2007
  end-page: 917
  article-title: Mitochondria and ageing: winning and losing in the numbers game
  publication-title: BioEssays
– volume: 29
  start-page: 1233
  year: 2019
  article-title: Obesity‐induced cellular senescence drives anxiety and impairs neurogenesis
  publication-title: Cell Metab
– volume: 14
  start-page: 644
  year: 2015
  end-page: 658
  article-title: The Achilles' heel of senescent cells: from transcriptome to senolytic drugs
  publication-title: Aging Cell
– volume: 92
  start-page: 4337
  year: 1995
  end-page: 4341
  article-title: Oxidative DNA damage and senescence of human diploid fibroblast cells
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: e12997
  year: 2015
  article-title: Targeting senescent cells enhances adipogenesis and metabolic function in old age
  publication-title: eLife
– volume: 5
  start-page: 423
  year: 2006
  end-page: 436
  article-title: Nicotinamide extends replicative lifespan of human cells
  publication-title: Aging Cell
– volume: 2
  start-page: 4172
  year: 2014
  article-title: Chronic inflammation induces telomere dysfunction and accelerates ageing in mice
  publication-title: Nat Commun
– volume: 498
  start-page: 109
  year: 2013
  end-page: 112
  article-title: A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene‐induced senescence
  publication-title: Nature
– volume: 115
  start-page: E3388
  year: 2018
  end-page: E3397
  article-title: S‐nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 238
  year: 2010
  end-page: 246
  article-title: Inflammatory networks during cellular senescence: causes and consequences
  publication-title: Trends Mol Med
– volume: 155
  start-page: 1104
  year: 2013
  end-page: 1118
  article-title: Programmed cell senescence during mammalian embryonic development
  publication-title: Cell
– volume: 12
  start-page: 3008
  year: 1998
  end-page: 3019
  article-title: Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling
  publication-title: Genes Dev
– volume: 12
  start-page: 489
  year: 2013
  end-page: 498
  article-title: Metformin inhibits the senescence‐associated secretory phenotype by interfering with IKK/NF‐kappaB activation
  publication-title: Aging Cell
– volume: 274
  start-page: 7936
  year: 1999
  end-page: 7940
  article-title: Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species
  publication-title: J Biol Chem
– volume: 332
  start-page: 966
  year: 2011
  end-page: 970
  article-title: Spatial coupling of mTOR and autophagy augments secretory phenotypes
  publication-title: Science (New York, NY)
– volume: 267
  start-page: 423
  year: 1977
  end-page: 425
  article-title: Low oxygen concentration extends the lifespan of cultured human diploid cells
  publication-title: Nature
– volume: 15
  start-page: 428
  year: 2016
  end-page: 435
  article-title: Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors
  publication-title: Aging Cell
– volume: 22
  start-page: 78
  year: 2016
  end-page: 83
  article-title: Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice
  publication-title: Nat Med
– volume: 6
  start-page: 2853
  year: 2008
  end-page: 2868
  article-title: Senescence‐associated secretory phenotypes reveal cell‐nonautonomous functions of oncogenic RAS and the p53 tumor suppressor
  publication-title: PLoS Biol
– volume: 24
  start-page: 2463
  year: 2010
  end-page: 2479
  article-title: The essence of senescence
  publication-title: Genes Dev
– volume: 98
  start-page: 12072
  year: 2001
  end-page: 12077
  article-title: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 1239
  year: 2018
  end-page: 1256
  article-title: Mitochondrial peptides modulate mitochondrial function during cellular senescence
  publication-title: Aging
– volume: 18
  start-page: 519
  year: 2013
  end-page: 532
  article-title: Canonical Nlrp3 inflammasome links systemic low‐grade inflammation to functional decline in aging
  publication-title: Cell Metab
– volume: 354
  start-page: 472
  year: 2016
  end-page: 477
  article-title: Senescent intimal foam cells are deleterious at all stages of atherosclerosis
  publication-title: Science (New York, NY)
– volume: 11
  start-page: S27
  year: 2001
  end-page: S31
  article-title: Cellular senescence as a tumor‐suppressor mechanism
  publication-title: Trends Cell Biol
– volume: 5
  start-page: e110
  year: 2007
  article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence
  publication-title: PLoS Biol
– volume: 460
  start-page: 392
  year: 2009
  end-page: 395
  article-title: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
  publication-title: Nature
– volume: 18
  start-page: 447
  year: 2017
  end-page: 476
  article-title: Sirtuins, a promising target in slowing down the ageing process
  publication-title: Biogerontology
– volume: 6
  start-page: 22579
  year: 2016
  article-title: Toll‐like receptor 9 can be activated by endogenous mitochondrial DNA to induce podocyte apoptosis
  publication-title: Sci Rep
– volume: 92
  start-page: 9363
  year: 1995
  end-page: 9367
  article-title: A biomarker that identifies senescent human cells in culture and in aging skin
  publication-title: Proc Natl Acad Sci USA
– volume: 428
  start-page: 1714
  year: 2016
  end-page: 1724
  article-title: Mechanisms of selective autophagy
  publication-title: J Mol Biol
– volume: 282
  start-page: 22977
  year: 2007
  end-page: 22983
  article-title: Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence
  publication-title: J Biol Chem
– volume: 1
  start-page: e87732
  year: 2016
  article-title: Elimination of p19(ARF)‐expressing cells enhances pulmonary function in mice
  publication-title: JCI Insight
– volume: 10
  start-page: e1003728
  year: 2014
  article-title: Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions
  publication-title: PLoS Comput Biol
– volume: 39
  start-page: 1600235
  year: 2017
  article-title: Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies?
  publication-title: BioEssays
– volume: 159
  start-page: 1549
  year: 2014
  end-page: 1562
  article-title: Apoptotic caspases suppress mtDNA‐induced STING‐mediated type I IFN production
  publication-title: Cell
– volume: 311
  start-page: 1257
  year: 2006
  article-title: Cellular senescence in aging primates
  publication-title: Science (New York, NY)
– volume: 349
  start-page: aaa5612
  year: 2015
  article-title: The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4
  publication-title: Science (New York, NY)
– volume: 133
  start-page: 1006
  year: 2008
  end-page: 1018
  article-title: Chemokine signaling via the CXCR16 receptor reinforces senescence
  publication-title: Cell
– volume: 8
  start-page: 1291
  year: 2006
  end-page: 1297
  article-title: Mitogenic signalling and the p16INK4a‐Rb pathway cooperate to enforce irreversible cellular senescence
  publication-title: Nat Cell Biol
– volume: 29
  start-page: 1045
  year: 2019
  end-page: 1060
  article-title: Targeted elimination of senescent beta cells prevents type 1 diabetes
  publication-title: Cell Metab
– volume: 25
  start-page: 166
  year: 2017
  end-page: 181
  article-title: Cellular aging contributes to failure of cold‐induced beige adipocyte formation in old mice and humans
  publication-title: Cell Metab
– volume: 18
  start-page: e12882
  year: 2019
  article-title: Rapamycin improves healthspan but not inflammaging in nfkappab1(‐/‐) mice
  publication-title: Aging Cell
– volume: 29
  start-page: 2912
  year: 2015
  end-page: 2929
  article-title: Impaired mitophagy leads to cigarette smoke stress‐induced cellular senescence: implications for chronic obstructive pulmonary disease
  publication-title: FASEB J
– volume: 501
  start-page: 421
  year: 2013
  end-page: 425
  article-title: Synthetic lethal metabolic targeting of cellular senescence in cancer therapy
  publication-title: Nature
– volume: 11
  start-page: 722
  year: 2012
  end-page: 725
  article-title: The number of p16INK4a positive cells in human skin reflects biological age
  publication-title: Aging Cell
– volume: 4
  start-page: 2308
  year: 2013
  article-title: Cytosolic p53 inhibits Parkin‐mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart
  publication-title: Nat Commun
– volume: 17
  start-page: e12840
  year: 2018
  article-title: Tau protein aggregation is associated with cellular senescence in the brain
  publication-title: Aging Cell
– volume: 84
  start-page: 22
  year: 2017
  end-page: 34
  article-title: Vascular endothelial cells senescence is associated with NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasome activation via reactive oxygen species (ROS)/thioredoxin‐interacting protein (TXNIP) pathway
  publication-title: Int J Biochem Cell Biol
– volume: 10
  start-page: e9355
  year: 2018
  article-title: A versatile drug delivery system targeting senescent cells
  publication-title: EMBO Mol Med
– volume: 3
  start-page: 708
  year: 2012
  article-title: Telomeres are favoured targets of a persistent DNA damage response in ageing and stress‐induced senescence
  publication-title: Nat Commun.
– volume: 170
  start-page: 2
  year: 2018
  end-page: 9
  article-title: Stress, cell senescence and organismal ageing
  publication-title: Mech Ageing Dev
– volume: 38
  start-page: e100492
  year: 2019
  article-title: Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence
  publication-title: EMBO J
– volume: 23
  start-page: 1072
  year: 2017
  end-page: 1079
  article-title: Targeting cellular senescence prevents age‐related bone loss in mice
  publication-title: Nat Med
– volume: 348
  start-page: 607
  issue: Pt 3
  year: 2000
  end-page: 614
  article-title: Evidence that metformin exerts its anti‐diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
  publication-title: Biochem J
– volume: 479
  start-page: 547
  year: 2011
  end-page: 551
  article-title: Senescence surveillance of pre‐malignant hepatocytes limits liver cancer development
  publication-title: Nature
– volume: 479
  start-page: 232
  year: 2011
  end-page: 236
  article-title: Clearance of p16Ink4a‐positive senescent cells delays ageing‐associated disorders
  publication-title: Nature
– volume: 85
  start-page: 5112
  year: 1988
  end-page: 5116
  article-title: Human skin fibroblasts differentiate along a terminal cell lineage
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 8576
  year: 2003
  end-page: 8585
  article-title: Influence of induced reactive oxygen species in p53‐mediated cell fate decisions
  publication-title: Mol Cell Biol
– volume: 8
  start-page: 14532
  year: 2017
  article-title: Cellular senescence mediates fibrotic pulmonary disease
  publication-title: Nat Commun
– volume: 15
  start-page: 973
  year: 2016
  end-page: 977
  article-title: Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice
  publication-title: Aging Cell
– volume: 21
  start-page: 2180
  year: 2002
  end-page: 2188
  article-title: Inhibition of p21‐mediated ROS accumulation can rescue p21‐induced senescence
  publication-title: EMBO J
– volume: 12
  start-page: 222
  year: 2011
  end-page: 230
  article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
  publication-title: Nat Immunol
– volume: 19
  start-page: 1061
  year: 2017
  end-page: 1070
  article-title: Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence
  publication-title: Nat Cell Biol
– volume: 445
  start-page: 656
  year: 2007
  end-page: 660
  article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
  publication-title: Nature
– volume: 1837
  start-page: 427
  year: 2014
  end-page: 443
  article-title: Functional role of mitochondrial respiratory supercomplexes
  publication-title: Biochem Biophys Acta
– volume: 40
  start-page: 554
  year: 2019
  end-page: 563
  article-title: Senolytics in idiopathic pulmonary fibrosis: Results from a first‐in‐human, open‐label, pilot study
  publication-title: EBioMedicine
– volume: 239
  start-page: 152
  year: 1998
  end-page: 160
  article-title: Preferential accumulation of single‐stranded regions in telomeres of human fibroblasts
  publication-title: Exp Cell Res
– volume: 72
  start-page: 780
  year: 2017
  end-page: 785
  article-title: Transplanted senescent cells induce an osteoarthritis‐like condition in mice
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 23
  start-page: 303
  year: 2016
  end-page: 314
  article-title: Mitochondrial dysfunction induces senescence with a distinct secretory phenotype
  publication-title: Cell Metab
– volume: 112
  start-page: E6301
  year: 2015
  end-page: E6310
  article-title: JAK inhibition alleviates the cellular senescence‐associated secretory phenotype and frailty in old age
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: 978
  year: 2013
  end-page: 990
  article-title: A complex secretory program orchestrated by the inflammasome controls paracrine senescence
  publication-title: Nat Cell Biol
– volume: 44
  start-page: 1552
  year: 2014
  end-page: 1562
  article-title: Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for "inflamm‐aging"
  publication-title: Eur J Immunol
– volume: 8
  start-page: 729
  year: 2007
  end-page: 740
  article-title: Cellular senescence: when bad things happen to good cells
  publication-title: Nat Rev Mol Cell Biol
– ident: e_1_2_8_101_1
  doi: 10.1016/j.molmed.2017.02.005
– ident: e_1_2_8_37_1
  doi: 10.1038/ncomms15691
– ident: e_1_2_8_38_1
  doi: 10.1111/acel.12945
– ident: e_1_2_8_93_1
  doi: 10.1038/nprot.2016.159
– ident: e_1_2_8_112_1
  doi: 10.1038/srep22579
– ident: e_1_2_8_42_1
  doi: 10.15252/emmm.201809355
– ident: e_1_2_8_62_1
  doi: 10.1016/j.mad.2017.07.001
– ident: e_1_2_8_72_1
  doi: 10.15252/embj.201592862
– ident: e_1_2_8_39_1
  doi: 10.1111/acel.12950
– ident: e_1_2_8_52_1
  doi: 10.1038/nature05529
– ident: e_1_2_8_33_1
  doi: 10.1038/nm.4324
– ident: e_1_2_8_21_1
  doi: 10.1126/science.1122446
– ident: e_1_2_8_11_1
  doi: 10.1038/nrm2233
– ident: e_1_2_8_22_1
  doi: 10.1172/JCI22475
– ident: e_1_2_8_106_1
  doi: 10.1016/j.atherosclerosis.2014.05.913
– ident: e_1_2_8_17_1
  doi: 10.1016/j.cell.2008.03.038
– ident: e_1_2_8_35_1
  doi: 10.1111/acel.12458
– ident: e_1_2_8_86_1
  doi: 10.1128/MCB.23.23.8576-8585.2003
– ident: e_1_2_8_75_1
  doi: 10.1111/acel.12811
– ident: e_1_2_8_53_1
  doi: 10.1038/nature10599
– ident: e_1_2_8_5_1
  doi: 10.1016/S0962-8924(01)82148-6
– ident: e_1_2_8_115_1
  doi: 10.1083/jcb.201212110
– ident: e_1_2_8_123_1
  doi: 10.1042/bj3480607
– ident: e_1_2_8_90_1
  doi: 10.1186/1741-7007-12-34
– ident: e_1_2_8_16_1
  doi: 10.1038/msb.2010.5
– ident: e_1_2_8_44_1
  doi: 10.1016/j.cmet.2019.01.013
– ident: e_1_2_8_102_1
  doi: 10.1007/s10522-017-9685-9
– ident: e_1_2_8_79_1
  doi: 10.1371/journal.pone.0023367
– ident: e_1_2_8_85_1
  doi: 10.1074/jbc.274.12.7936
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1474-9726.2009.00481.x
– ident: e_1_2_8_29_1
  doi: 10.1038/s41586-018-0543-y
– ident: e_1_2_8_20_1
  doi: 10.1038/ncomms1708
– ident: e_1_2_8_84_1
  doi: 10.1111/j.1474-9726.2006.00234.x
– ident: e_1_2_8_58_1
  doi: 10.1111/acel.12882
– ident: e_1_2_8_82_1
  doi: 10.1073/pnas.92.10.4337
– ident: e_1_2_8_95_1
  doi: 10.1016/j.bbabio.2013.11.002
– ident: e_1_2_8_118_1
  doi: 10.18632/aging.101463
– ident: e_1_2_8_46_1
  doi: 10.1111/acel.12344
– ident: e_1_2_8_87_1
  doi: 10.1093/emboj/21.9.2180
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1474-9726.2012.00837.x
– ident: e_1_2_8_57_1
  doi: 10.1038/ncomms5172
– ident: e_1_2_8_2_1
  doi: 10.1016/0014-4827(65)90211-9
– ident: e_1_2_8_81_1
  doi: 10.1046/j.1474-9728.2003.00040.x
– ident: e_1_2_8_74_1
  doi: 10.1038/ncomms3308
– ident: e_1_2_8_76_1
  doi: 10.1073/pnas.1722452115
– ident: e_1_2_8_88_1
  doi: 10.1038/ncb1491
– ident: e_1_2_8_111_1
  doi: 10.1016/j.cell.2014.11.036
– ident: e_1_2_8_27_1
  doi: 10.7554/eLife.12997
– ident: e_1_2_8_67_1
  doi: 10.1038/nature12154
– ident: e_1_2_8_121_1
  doi: 10.1016/j.molcel.2015.01.018
– ident: e_1_2_8_18_1
  doi: 10.1038/ncb2784
– ident: e_1_2_8_49_1
  doi: 10.1038/nm.4010
– ident: e_1_2_8_105_1
  doi: 10.1016/j.cmet.2019.03.001
– ident: e_1_2_8_9_1
  doi: 10.1101/gad.8.21.2540
– ident: e_1_2_8_69_1
  doi: 10.1242/jcs.059246
– ident: e_1_2_8_80_1
  doi: 10.1038/267423a0
– ident: e_1_2_8_14_1
  doi: 10.1371/journal.pbio.0060301
– ident: e_1_2_8_98_1
  doi: 10.1038/s41556-019-0287-4
– ident: e_1_2_8_78_1
  doi: 10.1126/science.aaa5612
– ident: e_1_2_8_89_1
  doi: 10.1002/bies.20634
– ident: e_1_2_8_96_1
  doi: 10.1007/s10522-012-9397-0
– ident: e_1_2_8_13_1
  doi: 10.1073/pnas.85.14.5112
– ident: e_1_2_8_59_1
  doi: 10.1038/nature08221
– ident: e_1_2_8_48_1
  doi: 10.1038/s41591-018-0092-9
– ident: e_1_2_8_24_1
  doi: 10.1016/j.mad.2006.11.008
– ident: e_1_2_8_26_1
  doi: 10.1038/nature16932
– ident: e_1_2_8_70_1
  doi: 10.1371/journal.pcbi.1003728
– ident: e_1_2_8_77_1
  doi: 10.1126/science.1205407
– ident: e_1_2_8_92_1
  doi: 10.1016/j.cmet.2015.11.011
– ident: e_1_2_8_120_1
  doi: 10.1038/s41418-018-0118-3
– ident: e_1_2_8_10_1
  doi: 10.1101/gad.12.19.3008
– ident: e_1_2_8_55_1
  doi: 10.1073/pnas.211053698
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1474-9726.2012.00795.x
– ident: e_1_2_8_36_1
  doi: 10.1126/science.aaf6659
– ident: e_1_2_8_31_1
  doi: 10.1038/s41593-019-0372-9
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.92.20.9363
– ident: e_1_2_8_30_1
  doi: 10.1111/acel.12840
– ident: e_1_2_8_110_1
  doi: 10.1038/ni.1980
– ident: e_1_2_8_41_1
  doi: 10.1038/ncomms14532
– ident: e_1_2_8_83_1
  doi: 10.1006/excr.1997.3893
– ident: e_1_2_8_60_1
  doi: 10.1073/pnas.1515386112
– ident: e_1_2_8_116_1
  doi: 10.1038/nature24050
– ident: e_1_2_8_50_1
  doi: 10.1172/jci.insight.87732
– ident: e_1_2_8_56_1
  doi: 10.1038/ncb3195
– ident: e_1_2_8_63_1
  doi: 10.1111/jgs.14969
– ident: e_1_2_8_45_1
  doi: 10.1038/ncomms11190
– ident: e_1_2_8_109_1
  doi: 10.1038/nature14156
– ident: e_1_2_8_8_1
  doi: 10.1038/nature10600
– ident: e_1_2_8_43_1
  doi: 10.18632/aging.100807
– ident: e_1_2_8_34_1
  doi: 10.1038/nm.4385
– ident: e_1_2_8_73_1
  doi: 10.1096/fj.14-268276
– ident: e_1_2_8_7_1
  doi: 10.1016/j.devcel.2014.11.012
– ident: e_1_2_8_122_1
  doi: 10.1038/nature12437
– ident: e_1_2_8_32_1
  doi: 10.1093/gerona/glw186
– ident: e_1_2_8_54_1
  doi: 10.1146/annurev-pathol-121808-102144
– ident: e_1_2_8_51_1
  doi: 10.1016/j.molmed.2010.03.003
– ident: e_1_2_8_66_1
  doi: 10.1016/j.cell.2013.05.039
– ident: e_1_2_8_107_1
  doi: 10.1016/j.bbrc.2004.08.177
– ident: e_1_2_8_100_1
  doi: 10.1158/0008-5472.CAN-09-4224
– ident: e_1_2_8_91_1
  doi: 10.1074/jbc.M700679200
– ident: e_1_2_8_103_1
  doi: 10.1016/j.cmet.2018.03.016
– ident: e_1_2_8_117_1
  doi: 10.1038/ncb3586
– ident: e_1_2_8_94_1
  doi: 10.1002/bies.201600235
– ident: e_1_2_8_119_1
  doi: 10.1111/acel.12445
– ident: e_1_2_8_65_1
  doi: 10.1016/j.cell.2012.02.035
– ident: e_1_2_8_4_1
  doi: 10.1101/gad.1971610
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cell.2013.10.019
– ident: e_1_2_8_61_1
  doi: 10.1111/acel.12075
– ident: e_1_2_8_47_1
  doi: 10.1016/j.cmet.2016.10.023
– ident: e_1_2_8_104_1
  doi: 10.1016/j.bbrc.2019.03.199
– ident: e_1_2_8_3_1
  doi: 10.1038/345458a0
– ident: e_1_2_8_64_1
  doi: 10.1016/j.ebiom.2018.12.052
– ident: e_1_2_8_28_1
  doi: 10.15252/embj.2018100492
– ident: e_1_2_8_124_1
  doi: 10.1158/1940-6207.CAPR-11-0536
– ident: e_1_2_8_113_1
  doi: 10.1016/j.cmet.2013.09.010
– ident: e_1_2_8_40_1
  doi: 10.1016/j.cmet.2019.01.021
– ident: e_1_2_8_68_1
  doi: 10.1128/MCB.01868-08
– ident: e_1_2_8_15_1
  doi: 10.1371/journal.pbio.0050110
– ident: e_1_2_8_99_1
  doi: 10.1038/nature11776
– ident: e_1_2_8_97_1
  doi: 10.1074/jbc.C700018200
– ident: e_1_2_8_114_1
  doi: 10.1016/j.biocel.2017.01.001
– ident: e_1_2_8_71_1
  doi: 10.1016/j.jmb.2016.02.004
– ident: e_1_2_8_108_1
  doi: 10.1002/eji.201343921
SSID ssj0001819
Score 2.6528485
SecondaryResourceType review_article
Snippet Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1566
SubjectTerms ageing
Aging - pathology
Animals
cell senescence
Cellular Senescence
Humans
metabolites
mitochondria
Mitochondria - pathology
Phenotype
reactive oxygen species
senescence
senolytics
senostatics
therapeutics
Title Mitochondrial dysfunction and cell senescence: deciphering a complex relationship
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.13498
https://www.ncbi.nlm.nih.gov/pubmed/31211858
https://www.proquest.com/docview/2243490979
https://www.proquest.com/docview/2718339093
Volume 593
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1rb9Mw0IJNiH1BsPEoLxkJIaQpXRo7icO3bmo1sQcCWtFvlmM7CGlLJ9pJjF_PneM8CgUGXyLXce3o7ny-870IeQlEpFloeJAwkwR8AGSsijwMwqzgObK_WOPVwMlpcjjlb2fxrK3i6KJLlnlff18bV_I_WIU-wCtGyf4DZptJoQPagF94AobheS0cn8B2BPZVGld6w1wt8JRa1g7GeCe_u0BepnH7ou5vrP5y4SL-PmNUJLqT228-nqVy3OoKq-PR_sfdMxfv00jenXgF52Db4B894XzsjKsD3dqmAAje2OCs8mzuvYn9XYMLb6rvGir2KFIWMF4VwunbNX2ep8ZV2cOaeFiHRaLCuJZ3V7lgm-n6mDhRtMdUbZo_fSfH0-NjORnNJjfJZgTqAfC3zeHRh09HzRkMcgsqPs1kdVKnMNr7aYFVeeQXJWNVZ3FCx-QuueO1BTqsUH-P3LDlNtkZlmo5P7-ir6jz33WGkW1ya79u3T6oq_jtkPcrNEI7NEKBRijSCG1p5A3tUAhV1FMI7VLIfTIdjyYHh4EvoxFoLrgIklClKstNEWXaJqKIFCqJicojbjVLC67hZ56ZlKWxHsRGKIv2eWWtMEkeKvaAbJTz0j4ilGkRh_A6yzSo7Qx2czHgqWB2kBTchKZH-jUwpfY55rHUyZmssmNHEqEvEfrSQb9HXjd_uKjSq_x-6IsaOxJgiPBRpZ1fLiRIoTAgzNLsD2NABmMMBrEeeVihtlmQYZpDEcMKew7Xf_sSCdsvcq3H1_imJ2Sr3UpPycby66V9BoLsMn_uqfYHhpWXTQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+dysfunction+and+cell+senescence%3A+deciphering+a+complex+relationship&rft.jtitle=FEBS+letters&rft.au=Chapman%2C+James&rft.au=Fielder%2C+Edward&rft.au=Passos%2C+Jo%C3%A3o+F&rft.date=2019-07-01&rft.issn=1873-3468&rft.eissn=1873-3468&rft.volume=593&rft.issue=13&rft.spage=1566&rft_id=info:doi/10.1002%2F1873-3468.13498&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon