Human miR‐1228 as a stable endogenous control for the quantification of circulating microRNAs in cancer patients

Circulating microRNAs are promising biomarkers for non‐invasive testing and dynamic monitoring in cancer patients. However, no consensus exists regarding the normalization of circulating microRNAs in the quantification, making the results incomparable. We investigated global circulating microRNA pro...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cancer Vol. 135; no. 5; pp. 1187 - 1194
Main Authors Hu, Jie, Wang, Zheng, Liao, Bo‐Yi, Yu, Lei, Gao, Xue, Lu, Shaohua, Wang, Shuyang, Dai, Zhi, Zhang, Xin, Chen, Qing, Qiu, Shuang‐Jian, Wu, Ying, Zhu, Hongguang, Fan, Jia, Zhou, Jian, Wang, Jiping
Format Journal Article
LanguageEnglish
Published Hoboken, NJ Wiley-Blackwell 01.09.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Circulating microRNAs are promising biomarkers for non‐invasive testing and dynamic monitoring in cancer patients. However, no consensus exists regarding the normalization of circulating microRNAs in the quantification, making the results incomparable. We investigated global circulating microRNA profiles to identify a stable endogenous control for quantifying circulating microRNAs using three cohorts (n = 544), including 168 control individuals (healthy subjects and those with chronic hepatitis B and cirrhosis) and 376 cancer patients (hepatocellular, colorectal, lung, esophageal, gastric, renal, prostate, and breast cancer patients). GeNorm, NormFinder, and coefficient of variability (CV) were used to select the most stable endogenous control, whereas Ingenuity Pathway Analysis (IPA) was adopted to explore its signaling pathways. Seven candidates (miR‐1225‐3p, miR‐1228, miR‐30d, miR‐939, miR‐940, miR‐188‐5p, and miR‐134) from microarray analysis and four commonly used controls (miR‐16, miR‐223, let‐7a, and RNU6B) from literature were subjected to real‐time quantitative reverse transcription‐polymerase chain reaction validation using independent cohorts. MiR‐1228 (CV = 5.4%) with minimum M value and S value presented as the most stable endogenous control across eight cancer types and three controls. IPA showed miR‐1228 to be involved extensively in metabolism‐related signal pathways and organ morphology, implying that miR‐1228 functions as a housekeeping gene. Functional network analysis found that “hematological system development” was on the list of the top networks that associate with miR‐1228, implying that miR‐1228 plays an important role in the hematological system. The results explained the steady expression of miR‐1228 in the blood. In conclusion, miR‐1228 is a promising stable endogenous control for quantifying circulating microRNAs in cancer patients. What's new? While circulating microRNAs (miRNAs) are promising cancer biomarkers, a standard control for the normalization of serum/plasma miRNA levels is yet to be established. Without such a control, data from different studies and different cancers remains incomparable. Here, analysis of global circulating microRNA profiles in healthy individuals and cancer patients suggests that miR‐1228, one of seven candidates identified from microarray analysis, is a stable endogenous control for the quantification of circulating miRNAs in cancer patients. MiR‐1228 allows for the comparison of circulating miRNA expressions in the same cancer across different studies and in different cancers of the same study.
AbstractList Circulating microRNAs are promising biomarkers for non‐invasive testing and dynamic monitoring in cancer patients. However, no consensus exists regarding the normalization of circulating microRNAs in the quantification, making the results incomparable. We investigated global circulating microRNA profiles to identify a stable endogenous control for quantifying circulating microRNAs using three cohorts ( n  = 544), including 168 control individuals (healthy subjects and those with chronic hepatitis B and cirrhosis) and 376 cancer patients (hepatocellular, colorectal, lung, esophageal, gastric, renal, prostate, and breast cancer patients). GeNorm, NormFinder, and coefficient of variability (CV) were used to select the most stable endogenous control, whereas Ingenuity Pathway Analysis (IPA) was adopted to explore its signaling pathways. Seven candidates (miR‐1225‐3p, miR‐1228, miR‐30d, miR‐939, miR‐940, miR‐188‐5p, and miR‐134) from microarray analysis and four commonly used controls (miR‐16, miR‐223, let‐7a, and RNU6B) from literature were subjected to real‐time quantitative reverse transcription‐polymerase chain reaction validation using independent cohorts. MiR‐1228 (CV = 5.4%) with minimum M value and S value presented as the most stable endogenous control across eight cancer types and three controls. IPA showed miR‐1228 to be involved extensively in metabolism‐related signal pathways and organ morphology, implying that miR‐1228 functions as a housekeeping gene. Functional network analysis found that “hematological system development” was on the list of the top networks that associate with miR‐1228, implying that miR‐1228 plays an important role in the hematological system. The results explained the steady expression of miR‐1228 in the blood. In conclusion, miR‐1228 is a promising stable endogenous control for quantifying circulating microRNAs in cancer patients. What's new? While circulating microRNAs (miRNAs) are promising cancer biomarkers, a standard control for the normalization of serum/plasma miRNA levels is yet to be established. Without such a control, data from different studies and different cancers remains incomparable. Here, analysis of global circulating microRNA profiles in healthy individuals and cancer patients suggests that miR‐1228, one of seven candidates identified from microarray analysis, is a stable endogenous control for the quantification of circulating miRNAs in cancer patients. MiR‐1228 allows for the comparison of circulating miRNA expressions in the same cancer across different studies and in different cancers of the same study.
Circulating microRNAs are promising biomarkers for non-invasive testing and dynamic monitoring in cancer patients. However, no consensus exists regarding the normalization of circulating microRNAs in the quantification, making the results incomparable. We investigated global circulating microRNA profiles to identify a stable endogenous control for quantifying circulating microRNAs using three cohorts (n = 544), including 168 control individuals (healthy subjects and those with chronic hepatitis B and cirrhosis) and 376 cancer patients (hepatocellular, colorectal, lung, esophageal, gastric, renal, prostate, and breast cancer patients). GeNorm, NormFinder, and coefficient of variability (CV) were used to select the most stable endogenous control, whereas Ingenuity Pathway Analysis (IPA) was adopted to explore its signaling pathways. Seven candidates (miR-1225-3p, miR-1228, miR-30d, miR-939, miR-940, miR-188-5p, and miR-134) from microarray analysis and four commonly used controls (miR-16, miR-223, let-7a, and RNU6B) from literature were subjected to real-time quantitative reverse transcription-polymerase chain reaction validation using independent cohorts. MiR-1228 (CV = 5.4%) with minimum M value and S value presented as the most stable endogenous control across eight cancer types and three controls. IPA showed miR-1228 to be involved extensively in metabolism-related signal pathways and organ morphology, implying that miR-1228 functions as a housekeeping gene. Functional network analysis found that "hematological system development" was on the list of the top networks that associate with miR-1228, implying that miR-1228 plays an important role in the hematological system. The results explained the steady expression of miR-1228 in the blood. In conclusion, miR-1228 is a promising stable endogenous control for quantifying circulating microRNAs in cancer patients.Circulating microRNAs are promising biomarkers for non-invasive testing and dynamic monitoring in cancer patients. However, no consensus exists regarding the normalization of circulating microRNAs in the quantification, making the results incomparable. We investigated global circulating microRNA profiles to identify a stable endogenous control for quantifying circulating microRNAs using three cohorts (n = 544), including 168 control individuals (healthy subjects and those with chronic hepatitis B and cirrhosis) and 376 cancer patients (hepatocellular, colorectal, lung, esophageal, gastric, renal, prostate, and breast cancer patients). GeNorm, NormFinder, and coefficient of variability (CV) were used to select the most stable endogenous control, whereas Ingenuity Pathway Analysis (IPA) was adopted to explore its signaling pathways. Seven candidates (miR-1225-3p, miR-1228, miR-30d, miR-939, miR-940, miR-188-5p, and miR-134) from microarray analysis and four commonly used controls (miR-16, miR-223, let-7a, and RNU6B) from literature were subjected to real-time quantitative reverse transcription-polymerase chain reaction validation using independent cohorts. MiR-1228 (CV = 5.4%) with minimum M value and S value presented as the most stable endogenous control across eight cancer types and three controls. IPA showed miR-1228 to be involved extensively in metabolism-related signal pathways and organ morphology, implying that miR-1228 functions as a housekeeping gene. Functional network analysis found that "hematological system development" was on the list of the top networks that associate with miR-1228, implying that miR-1228 plays an important role in the hematological system. The results explained the steady expression of miR-1228 in the blood. In conclusion, miR-1228 is a promising stable endogenous control for quantifying circulating microRNAs in cancer patients.
Circulating microRNAs are promising biomarkers for non‐invasive testing and dynamic monitoring in cancer patients. However, no consensus exists regarding the normalization of circulating microRNAs in the quantification, making the results incomparable. We investigated global circulating microRNA profiles to identify a stable endogenous control for quantifying circulating microRNAs using three cohorts (n = 544), including 168 control individuals (healthy subjects and those with chronic hepatitis B and cirrhosis) and 376 cancer patients (hepatocellular, colorectal, lung, esophageal, gastric, renal, prostate, and breast cancer patients). GeNorm, NormFinder, and coefficient of variability (CV) were used to select the most stable endogenous control, whereas Ingenuity Pathway Analysis (IPA) was adopted to explore its signaling pathways. Seven candidates (miR‐1225‐3p, miR‐1228, miR‐30d, miR‐939, miR‐940, miR‐188‐5p, and miR‐134) from microarray analysis and four commonly used controls (miR‐16, miR‐223, let‐7a, and RNU6B) from literature were subjected to real‐time quantitative reverse transcription‐polymerase chain reaction validation using independent cohorts. MiR‐1228 (CV = 5.4%) with minimum M value and S value presented as the most stable endogenous control across eight cancer types and three controls. IPA showed miR‐1228 to be involved extensively in metabolism‐related signal pathways and organ morphology, implying that miR‐1228 functions as a housekeeping gene. Functional network analysis found that “hematological system development” was on the list of the top networks that associate with miR‐1228, implying that miR‐1228 plays an important role in the hematological system. The results explained the steady expression of miR‐1228 in the blood. In conclusion, miR‐1228 is a promising stable endogenous control for quantifying circulating microRNAs in cancer patients. What's new? While circulating microRNAs (miRNAs) are promising cancer biomarkers, a standard control for the normalization of serum/plasma miRNA levels is yet to be established. Without such a control, data from different studies and different cancers remains incomparable. Here, analysis of global circulating microRNA profiles in healthy individuals and cancer patients suggests that miR‐1228, one of seven candidates identified from microarray analysis, is a stable endogenous control for the quantification of circulating miRNAs in cancer patients. MiR‐1228 allows for the comparison of circulating miRNA expressions in the same cancer across different studies and in different cancers of the same study.
Circulating microRNAs are promising biomarkers for non-invasive testing and dynamic monitoring in cancer patients. However, no consensus exists regarding the normalization of circulating microRNAs in the quantification, making the results incomparable. We investigated global circulating microRNA profiles to identify a stable endogenous control for quantifying circulating microRNAs using three cohorts (n=544), including 168 control individuals (healthy subjects and those with chronic hepatitis B and cirrhosis) and 376 cancer patients (hepatocellular, colorectal, lung, esophageal, gastric, renal, prostate, and breast cancer patients). GeNorm, NormFinder, and coefficient of variability (CV) were used to select the most stable endogenous control, whereas Ingenuity Pathway Analysis (IPA) was adopted to explore its signaling pathways. Seven candidates (miR-1225-3p, miR-1228, miR-30d, miR-939, miR-940, miR-188-5p, and miR-134) from microarray analysis and four commonly used controls (miR-16, miR-223, let-7a, and RNU6B) from literature were subjected to real-time quantitative reverse transcription-polymerase chain reaction validation using independent cohorts. MiR-1228 (CV=5.4%) with minimum M value and S value presented as the most stable endogenous control across eight cancer types and three controls. IPA showed miR-1228 to be involved extensively in metabolism-related signal pathways and organ morphology, implying that miR-1228 functions as a housekeeping gene. Functional network analysis found that "hematological system development" was on the list of the top networks that associate with miR-1228, implying that miR-1228 plays an important role in the hematological system. The results explained the steady expression of miR-1228 in the blood. In conclusion, miR-1228 is a promising stable endogenous control for quantifying circulating microRNAs in cancer patients. What's new? While circulating microRNAs (miRNAs) are promising cancer biomarkers, a standard control for the normalization of serum/plasma miRNA levels is yet to be established. Without such a control, data from different studies and different cancers remains incomparable. Here, analysis of global circulating microRNA profiles in healthy individuals and cancer patients suggests that miR-1228, one of seven candidates identified from microarray analysis, is a stable endogenous control for the quantification of circulating miRNAs in cancer patients. MiR-1228 allows for the comparison of circulating miRNA expressions in the same cancer across different studies and in different cancers of the same study. [PUBLICATION ABSTRACT]
Circulating microRNAs are promising biomarkers for non-invasive testing and dynamic monitoring in cancer patients. However, no consensus exists regarding the normalization of circulating microRNAs in the quantification, making the results incomparable. We investigated global circulating microRNA profiles to identify a stable endogenous control for quantifying circulating microRNAs using three cohorts (n = 544), including 168 control individuals (healthy subjects and those with chronic hepatitis B and cirrhosis) and 376 cancer patients (hepatocellular, colorectal, lung, esophageal, gastric, renal, prostate, and breast cancer patients). GeNorm, NormFinder, and coefficient of variability (CV) were used to select the most stable endogenous control, whereas Ingenuity Pathway Analysis (IPA) was adopted to explore its signaling pathways. Seven candidates (miR-1225-3p, miR-1228, miR-30d, miR-939, miR-940, miR-188-5p, and miR-134) from microarray analysis and four commonly used controls (miR-16, miR-223, let-7a, and RNU6B) from literature were subjected to real-time quantitative reverse transcription-polymerase chain reaction validation using independent cohorts. MiR-1228 (CV = 5.4%) with minimum M value and S value presented as the most stable endogenous control across eight cancer types and three controls. IPA showed miR-1228 to be involved extensively in metabolism-related signal pathways and organ morphology, implying that miR-1228 functions as a housekeeping gene. Functional network analysis found that "hematological system development" was on the list of the top networks that associate with miR-1228, implying that miR-1228 plays an important role in the hematological system. The results explained the steady expression of miR-1228 in the blood. In conclusion, miR-1228 is a promising stable endogenous control for quantifying circulating microRNAs in cancer patients.
Author Zhang, Xin
Zhou, Jian
Zhu, Hongguang
Fan, Jia
Hu, Jie
Wang, Zheng
Qiu, Shuang‐Jian
Gao, Xue
Yu, Lei
Dai, Zhi
Lu, Shaohua
Wang, Jiping
Wu, Ying
Liao, Bo‐Yi
Chen, Qing
Wang, Shuyang
Author_xml – sequence: 1
  givenname: Jie
  surname: Hu
  fullname: Hu, Jie
  organization: Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University
– sequence: 2
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  organization: Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University
– sequence: 3
  givenname: Bo‐Yi
  surname: Liao
  fullname: Liao, Bo‐Yi
  organization: Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University
– sequence: 4
  givenname: Lei
  surname: Yu
  fullname: Yu, Lei
  organization: Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University
– sequence: 5
  givenname: Xue
  surname: Gao
  fullname: Gao, Xue
  organization: Huashan Hospital, Fudan University
– sequence: 6
  givenname: Shaohua
  surname: Lu
  fullname: Lu, Shaohua
  organization: Zhongshan Hospital, Fudan University
– sequence: 7
  givenname: Shuyang
  surname: Wang
  fullname: Wang, Shuyang
  organization: Shanghai Medical College, Fudan University
– sequence: 8
  givenname: Zhi
  surname: Dai
  fullname: Dai, Zhi
  organization: Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University
– sequence: 9
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University
– sequence: 10
  givenname: Qing
  surname: Chen
  fullname: Chen, Qing
  organization: Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University
– sequence: 11
  givenname: Shuang‐Jian
  surname: Qiu
  fullname: Qiu, Shuang‐Jian
  organization: Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University
– sequence: 12
  givenname: Ying
  surname: Wu
  fullname: Wu, Ying
  organization: Shanghai Medical College, Fudan University
– sequence: 13
  givenname: Hongguang
  surname: Zhu
  fullname: Zhu, Hongguang
  organization: Fudan University
– sequence: 14
  givenname: Jia
  surname: Fan
  fullname: Fan, Jia
  organization: Fudan University
– sequence: 15
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: Fudan University
– sequence: 16
  givenname: Jiping
  surname: Wang
  fullname: Wang, Jiping
  organization: Harvard Medical School
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28676341$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24488924$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9qFDEYxYNU7Hb1wheQgAh6MW3-zEwyl2VR21IqFL0eMsk3NUsm2SYZpHc-gs_ok5jtrhUK9iqE8_tO8p1zhA588IDQa0qOKSHsxK71MZOiEc_QgpJOVITR5gAtikYqQXl7iI5SWhNCaUPqF-iQ1bWUHasXKJ7Nk_J4ste_f_6ijEmsElY4ZTU4wOBNuAEf5oR18DkGh8cQcf4O-HZWPtvRapVt8DiMWNuoZ1eu_qb46Riur04Tth5r5TVEvCkS-Jxeouejcgle7c8l-vbp49fVWXX55fP56vSy0rWsRSWNkqaFZpDKdLUG0shRcsI5lzUIqbqREkmIYYYLQY0SsggDExxabQbW8SV6v_PdxHA7Q8r9ZJMG55SHslFPG9625aViuURvH6HrMEdffrelmqYTJdFCvdlT8zCB6TfRTire9X_TLMC7PaCSVm6MZXGb_nGyFS2vt0YfdlwJKaUI4wNCSb9ttC-N9veNFvbkEattvs88R2XdUxM_rIO7_1v35xer3cQfCO2wkg
CODEN IJCNAW
CitedBy_id crossref_primary_10_1109_JSEN_2023_3343819
crossref_primary_10_3389_fonc_2021_739111
crossref_primary_10_1038_srep21084
crossref_primary_10_1016_j_ab_2015_03_028
crossref_primary_10_1016_j_drudis_2017_07_008
crossref_primary_10_1080_17425247_2016_1178236
crossref_primary_10_1016_j_ncrna_2022_10_003
crossref_primary_10_1016_j_cancergen_2017_07_006
crossref_primary_10_1016_j_addr_2014_09_001
crossref_primary_10_1002_jcb_28264
crossref_primary_10_1007_s13277_015_3278_5
crossref_primary_10_1134_S0026893321050137
crossref_primary_10_3390_ijms20184353
crossref_primary_10_3748_wjg_v21_i27_8284
crossref_primary_10_1021_acs_analchem_2c03367
crossref_primary_10_1186_s12885_017_3784_5
crossref_primary_10_18632_oncotarget_14311
crossref_primary_10_1016_j_heliyon_2023_e14515
crossref_primary_10_1089_dna_2015_3186
crossref_primary_10_1007_s10549_018_4757_3
crossref_primary_10_3389_fdgth_2023_1187578
crossref_primary_10_3389_fonc_2021_626104
crossref_primary_10_3390_ijms21197288
crossref_primary_10_1016_j_omtn_2020_07_026
crossref_primary_10_2217_fon_15_83
crossref_primary_10_1097_CAD_0000000000000623
crossref_primary_10_1177_11769351241307163
crossref_primary_10_3390_diagnostics11040610
crossref_primary_10_1038_bjc_2017_266
crossref_primary_10_3390_ijms21082783
crossref_primary_10_1002_iub_1733
crossref_primary_10_1002_jcp_29367
crossref_primary_10_1371_journal_pone_0153046
crossref_primary_10_3233_CBM_210223
crossref_primary_10_18632_oncotarget_24540
crossref_primary_10_2217_BMM_15_45
crossref_primary_10_1016_j_spinee_2018_10_008
crossref_primary_10_1038_s41598_018_33310_4
crossref_primary_10_1038_s41598_018_19458_z
crossref_primary_10_3390_biom10010016
crossref_primary_10_1016_j_bbadis_2020_165847
crossref_primary_10_5812_hepatmon_28315v2
crossref_primary_10_3390_biom14080928
crossref_primary_10_1016_j_wneu_2019_02_009
crossref_primary_10_1007_s11033_021_06493_9
crossref_primary_10_1186_s12935_016_0285_6
crossref_primary_10_3390_ijms161025377
crossref_primary_10_3389_fonc_2022_956167
crossref_primary_10_1155_2015_731479
crossref_primary_10_1186_s12864_018_4862_z
crossref_primary_10_1186_s12938_021_00963_8
crossref_primary_10_4103_tcmj_tcmj_240_21
crossref_primary_10_1111_jcmm_12625
crossref_primary_10_1111_jcmm_13714
crossref_primary_10_18632_oncotarget_4456
crossref_primary_10_1371_journal_pone_0177346
crossref_primary_10_1007_s12029_016_9801_0
crossref_primary_10_1111_cas_15703
crossref_primary_10_18632_oncotarget_16519
crossref_primary_10_3390_ncrna11020026
crossref_primary_10_1016_j_mrrev_2019_05_005
crossref_primary_10_1002_jcp_26850
crossref_primary_10_1021_acssensors_3c02183
crossref_primary_10_1007_s00018_019_03136_y
crossref_primary_10_3390_cancers11081181
crossref_primary_10_1186_s13104_017_2636_3
crossref_primary_10_1016_j_lungcan_2018_06_027
crossref_primary_10_1158_1055_9965_EPI_18_1199
crossref_primary_10_1373_clinchem_2015_239459
crossref_primary_10_1155_2018_7329195
crossref_primary_10_1158_1940_6207_CAPR_15_0094
crossref_primary_10_3390_diagnostics11030425
crossref_primary_10_1152_physiolgenomics_00126_2018
crossref_primary_10_3892_ol_2015_3642
crossref_primary_10_1016_j_ijgo_2015_01_010
crossref_primary_10_1038_s41598_019_38505_x
crossref_primary_10_1096_fj_15_271312
crossref_primary_10_1155_2020_9601876
crossref_primary_10_1373_clinchem_2018_301150
crossref_primary_10_3390_diagnostics12061413
crossref_primary_10_1038_s41598_017_08784_3
crossref_primary_10_1016_j_gene_2019_144104
Cites_doi 10.1186/1471-2407-10-173
10.1016/j.molonc.2011.08.004
10.1261/rna.1688110
10.1038/nrc1840
10.1186/1471-2164-8-166
10.1186/gb-2002-3-7-research0034
10.1101/gr.2845604
10.1158/0008-5472.CAN-05-1783
10.1016/j.ymeth.2010.01.032
10.3748/wjg.v17.i28.3353
10.1093/nar/gkr1278
10.1186/bcr2766
10.1007/s10620-011-1981-7
10.1002/jcb.22762
10.1073/pnas.0804549105
10.1371/journal.pone.0013735
10.1186/1471-2199-9-76
10.3858/emm.2010.42.11.076
10.1007/s10495-012-0710-9
10.1182/blood-2011-01-330704
10.1093/nar/gkn725
10.1158/0008-5472.CAN-04-0496
10.1093/nar/gkt222
10.1007/978-1-61779-427-8_3
10.1002/pros.22495
10.1016/S0168-1656(99)00163-7
10.1007/s00432-012-1154-x
10.1200/JCO.2011.38.2697
10.1097/SLA.0b013e3181cc939f
10.1007/s12033-011-9414-6
10.1038/bjc.2011.509
10.1002/jso.21847
10.1056/NEJMoa0901282
ContentType Journal Article
Copyright 2014 UICC
2015 INIST-CNRS
2014 UICC.
Copyright_xml – notice: 2014 UICC
– notice: 2015 INIST-CNRS
– notice: 2014 UICC.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
H94
K9.
7X8
DOI 10.1002/ijc.28757
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0215
EndPage 1194
ExternalDocumentID 3334521341
24488924
28676341
10_1002_ijc_28757
IJC28757
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The National Key Sci‐Tech Special Project of China
  funderid: 2012ZX10002‐016
– fundername: National Science Foundation of China
  funderid: 81172277
– fundername: National Science Foundation for Distinguished Young Scholars of China
  funderid: 81225019
– fundername: Program of Shanghai Excellent Subject Leaders
  funderid: 10XD1401200
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
F00
F01
F04
F5P
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
UDS
V2E
V8K
V9Y
W2D
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWO
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
.55
.GJ
31~
3O-
53G
8WZ
A6W
AANHP
AAYXX
ABEFU
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
AHEFC
AI.
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EX3
FEDTE
GLUZI
HF~
HVGLF
M6P
PALCI
SAMSI
VH1
WOW
X7M
Y6R
ZGI
ZXP
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H94
K9.
7X8
ID FETCH-LOGICAL-c4847-8da8d6e5b8ad94ce058f83033384e78a9f10800d2d3771da78384b273e6cdb293
IEDL.DBID DR2
ISSN 0020-7136
1097-0215
IngestDate Fri Jul 11 17:04:17 EDT 2025
Mon Jul 14 09:30:12 EDT 2025
Thu Apr 03 07:01:05 EDT 2025
Wed Apr 02 07:15:03 EDT 2025
Tue Jul 01 02:27:46 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Wed Jan 22 16:38:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Human
RNA interference
Micro RNA
qRT-PCR
Quantization
Malignant tumor
endogenous control
Gene silencing
Cancerology
Endogenous
normalization
circulating microRNA
Cancer
Real time polymerase chain reaction
cancer
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2014 UICC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4847-8da8d6e5b8ad94ce058f83033384e78a9f10800d2d3771da78384b273e6cdb293
Notes J.H., Z.W., B.‐Y.L. and L.Y. contributed equally to this work
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.28757
PMID 24488924
PQID 1535597021
PQPubID 105430
PageCount 8
ParticipantIDs proquest_miscellaneous_1536684703
proquest_journals_1535597021
pubmed_primary_24488924
pascalfrancis_primary_28676341
crossref_primary_10_1002_ijc_28757
crossref_citationtrail_10_1002_ijc_28757
wiley_primary_10_1002_ijc_28757_IJC28757
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 01 September 2014
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 01 September 2014
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: United States
– name: Hoboken
PublicationTitle International journal of cancer
PublicationTitleAlternate Int J Cancer
PublicationYear 2014
Publisher Wiley-Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley-Blackwell
– name: Wiley Subscription Services, Inc
References 2010; 12
2010; 10
2004; 64
2010; 16
2011; 118
2013; 41
2008; 36
2008; 9
2002; 3
2006; 6
2005; 65
2008; 105
2011; 57
2012; 17
2011; 17
2012; 106
2011; 5
2012; 822
2012; 72
2012; 50
2011; 103
2010; 42
2004; 14
2007; 8
2010; 111
2010; 251
1999; 75
2009; 361
2013
2012; 138
2010; 5
2011; 29
2010; 50
2012; 40
Wang S (e_1_2_6_35_1) 2013
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 361
  start-page: 1437
  year: 2009
  end-page: 47
  article-title: MicroRNA expression, survival, and response to interferon in liver cancer
  publication-title: N Engl J Med
– volume: 8
  start-page: 166
  year: 2007
  article-title: Characterization of microRNA expression profiles in normal human tissues
  publication-title: BMC Genomics
– volume: 17
  start-page: 3353
  year: 2011
  end-page: 8
  article-title: Hepatitis B virus and hepatocellular carcinoma at the miRNA level
  publication-title: World J Gastroenterol
– volume: 105
  start-page: 10513
  year: 2008
  end-page: 18
  article-title: Circulating microRNAs as stable blood‐based markers for cancer detection
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 2486
  year: 2004
  end-page: 94
  article-title: MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues
  publication-title: Genome Res
– volume: 6
  start-page: 259
  year: 2006
  end-page: 69
  article-title: Oncomirs—microRNAs with a role in cancer
  publication-title: Nat Rev Cancer
– volume: 36
  start-page: e143
  year: 2008
  article-title: High‐throughput stem‐loop RT‐qPCR miRNA expression profiling using minute amounts of input RNA
  publication-title: Nucleic Acids Res
– volume: 29
  start-page: 4781
  year: 2011
  end-page: 8
  article-title: Plasma microRNA panel to diagnose hepatitis B virus‐related hepatocellular carcinoma
  publication-title: J Clin Oncol
– volume: 5
  start-page: e13735
  year: 2010
  article-title: A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer
  publication-title: PLoS One
– volume: 57
  start-page: 897
  year: 2011
  end-page: 904
  article-title: Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients
  publication-title: Dig Dis Sci
– volume: 251
  start-page: 499
  year: 2010
  end-page: 505
  article-title: Circulating microRNAs as novel minimally invasive biomarkers for breast cancer
  publication-title: Ann Surg
– volume: 42
  start-page: 749
  year: 2010
  end-page: 58
  article-title: Suitable reference genes for relative quantification of miRNA expression in prostate cancer
  publication-title: Exp Mol Med
– volume: 64
  start-page: 5245
  year: 2004
  end-page: 50
  article-title: Normalization of real‐time quantitative reverse transcription‐PCR data: a model‐based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets
  publication-title: Cancer Res
– volume: 41
  start-page: 5614
  year: 2013
  end-page: 25
  article-title: Tumor suppressor p53 plays a key role in induction of both tristetraprolin and let‐7 in human cancer cells
  publication-title: Nucleic Acids Res
– volume: 111
  start-page: 727
  year: 2010
  end-page: 34
  article-title: Loss of repression of HuR translation by miR‐16 may be responsible for the elevation of HuR in human breast carcinoma
  publication-title: J Cell Biochem
– year: 2013
  article-title: A plasma microRNA panel for early detection of colorectal cancer
  publication-title: Int J Cancer
– volume: 75
  start-page: 291
  year: 1999
  end-page: 5
  article-title: Housekeeping genes as internal standards: use and limits
  publication-title: J Biotechnol
– volume: 40
  start-page: 4615
  year: 2012
  end-page: 25
  article-title: MicroRNA‐26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 173
  year: 2010
  article-title: MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer
  publication-title: BMC Cancer
– volume: 50
  start-page: 49
  year: 2012
  end-page: 56
  article-title: Identification of suitable reference genes for qRT‐PCR analysis of circulating microRNAs in hepatitis B virus‐infected patients
  publication-title: Mol Biotechnol
– volume: 16
  start-page: 16
  year: 2010
  end-page: 25
  article-title: Consensus miRNA expression profiles derived from interplatform normalization of microarray data
  publication-title: RNA
– volume: 118
  start-page: 413
  year: 2011
  end-page: 15
  article-title: Circulating microRNAs let‐7a and miR‐16 predict progression‐free survival and overall survival in patients with myelodysplastic syndrome
  publication-title: Blood
– volume: 103
  start-page: 411
  year: 2011
  end-page: 15
  article-title: Prognostic implications of miR‐16 expression levels in resected non‐small‐cell lung cancer
  publication-title: J Surg Oncol
– volume: 50
  start-page: 298
  year: 2010
  end-page: 301
  article-title: Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription‐PCR (qRT‐PCR)
  publication-title: Methods
– volume: 12
  start-page: R90
  year: 2010
  article-title: Circulating microRNAs as blood‐based markers for patients with primary and metastatic breast cancer
  publication-title: Breast Cancer Res
– volume: 5
  start-page: 564
  year: 2011
  end-page: 76
  article-title: Ischemia caused by time to freezing induces systematic microRNA and mRNA responses in cancer tissue
  publication-title: Mol Oncol
– volume: 65
  start-page: 7065
  year: 2005
  end-page: 70
  article-title: MicroRNA Gene Expression Deregulation in Human Breast Cancer
  publication-title: Cancer Res
– volume: 822
  start-page: 33
  year: 2012
  end-page: 52
  article-title: Stem‐loop RT‐qPCR for microRNA expression profiling
  publication-title: Methods Mol Biol
– volume: 9
  start-page: 76
  year: 2008
  article-title: Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer
  publication-title: BMC Mol Biol
– volume: 106
  start-page: 182
  year: 2012
  end-page: 8
  article-title: Overexpression of microRNA‐223 regulates the ubiquitin ligase FBXW7 in oesophageal squamous cell carcinoma
  publication-title: Br J Cancer
– volume: 3
  start-page: RESEARCH0034
  year: 2002
  article-title: Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes
  publication-title: Genome Biol
– volume: 72
  start-page: 1443
  year: 2012
  end-page: 52
  article-title: A panel of five circulating microRNAs as potential biomarkers for prostate cancer
  publication-title: Prostate
– volume: 17
  start-page: 717
  year: 2012
  end-page: 24
  article-title: miR‐1228 prevents cellular apoptosis through targeting of MOAP1 protein
  publication-title: Apoptosis
– volume: 138
  start-page: 763
  year: 2012
  end-page: 74
  article-title: MicroRNA‐223 functions as an oncogene in human gastric cancer by targeting FBXW7/hCdc4
  publication-title: J Cancer Res Clin Oncol
– ident: e_1_2_6_8_1
  doi: 10.1186/1471-2407-10-173
– ident: e_1_2_6_34_1
  doi: 10.1016/j.molonc.2011.08.004
– ident: e_1_2_6_11_1
  doi: 10.1261/rna.1688110
– ident: e_1_2_6_2_1
  doi: 10.1038/nrc1840
– ident: e_1_2_6_9_1
  doi: 10.1186/1471-2164-8-166
– ident: e_1_2_6_21_1
  doi: 10.1186/gb-2002-3-7-research0034
– ident: e_1_2_6_4_1
  doi: 10.1101/gr.2845604
– ident: e_1_2_6_15_1
  doi: 10.1158/0008-5472.CAN-05-1783
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ymeth.2010.01.032
– year: 2013
  ident: e_1_2_6_35_1
  article-title: A plasma microRNA panel for early detection of colorectal cancer
  publication-title: Int J Cancer
– ident: e_1_2_6_30_1
  doi: 10.3748/wjg.v17.i28.3353
– ident: e_1_2_6_32_1
  doi: 10.1093/nar/gkr1278
– ident: e_1_2_6_27_1
  doi: 10.1186/bcr2766
– ident: e_1_2_6_12_1
  doi: 10.1007/s10620-011-1981-7
– ident: e_1_2_6_18_1
  doi: 10.1002/jcb.22762
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.0804549105
– ident: e_1_2_6_25_1
  doi: 10.1371/journal.pone.0013735
– ident: e_1_2_6_7_1
  doi: 10.1186/1471-2199-9-76
– ident: e_1_2_6_10_1
  doi: 10.3858/emm.2010.42.11.076
– ident: e_1_2_6_33_1
  doi: 10.1007/s10495-012-0710-9
– ident: e_1_2_6_13_1
  doi: 10.1182/blood-2011-01-330704
– ident: e_1_2_6_5_1
  doi: 10.1093/nar/gkn725
– ident: e_1_2_6_20_1
  doi: 10.1158/0008-5472.CAN-04-0496
– ident: e_1_2_6_29_1
  doi: 10.1093/nar/gkt222
– ident: e_1_2_6_22_1
  doi: 10.1007/978-1-61779-427-8_3
– ident: e_1_2_6_24_1
  doi: 10.1002/pros.22495
– ident: e_1_2_6_6_1
  doi: 10.1016/S0168-1656(99)00163-7
– ident: e_1_2_6_17_1
  doi: 10.1007/s00432-012-1154-x
– ident: e_1_2_6_19_1
  doi: 10.1200/JCO.2011.38.2697
– ident: e_1_2_6_26_1
  doi: 10.1097/SLA.0b013e3181cc939f
– ident: e_1_2_6_28_1
  doi: 10.1007/s12033-011-9414-6
– ident: e_1_2_6_16_1
  doi: 10.1038/bjc.2011.509
– ident: e_1_2_6_14_1
  doi: 10.1002/jso.21847
– ident: e_1_2_6_31_1
  doi: 10.1056/NEJMoa0901282
SSID ssj0011504
Score 2.462451
Snippet Circulating microRNAs are promising biomarkers for non‐invasive testing and dynamic monitoring in cancer patients. However, no consensus exists regarding the...
Circulating microRNAs are promising biomarkers for non-invasive testing and dynamic monitoring in cancer patients. However, no consensus exists regarding the...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1187
SubjectTerms Adult
Biological and medical sciences
Biomarkers
Biomarkers, Tumor - blood
Biomarkers, Tumor - genetics
Breast cancer
Cancer
circulating microRNA
Cohort Studies
Control Groups
endogenous control
Female
Gene Expression Profiling
Genes, Essential
Hematology
Hepatitis B, Chronic - blood
Hepatitis B, Chronic - genetics
Humans
Male
Medical research
Medical sciences
MicroRNAs
MicroRNAs - blood
MicroRNAs - genetics
MicroRNAs - metabolism
Middle Aged
Multiple tumors. Solid tumors. Tumors in childhood (general aspects)
Neoplasms - blood
normalization
Oligonucleotide Array Sequence Analysis
qRT‐PCR
Real-Time Polymerase Chain Reaction
Signal Transduction
Tumors
Title Human miR‐1228 as a stable endogenous control for the quantification of circulating microRNAs in cancer patients
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.28757
https://www.ncbi.nlm.nih.gov/pubmed/24488924
https://www.proquest.com/docview/1535597021
https://www.proquest.com/docview/1536684703
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CDqVQ0t-kTtOglh568caWZVlLTyE0pIHksDSQQ8HoN2yaepP17iWnPEKfsU_SkWQ7bEmh9GbQWNijGc038vgbgA-lcbREHJQyWdiUuTFPZVEWaU6Vdf6PPRGItE9O-dEZOz4vz9fgU_8vTOSHGA7cvGeE_do7uFTt3j1p6PRSj6inY8f919dqeUA0GaijPNDpGJizFBMx3rMKZXRvuHMlFj25li2qxcV-Fg8BzlX8GgLQ4VP41j96rDv5Plou1Ejf_sHq-J_v9gw2OmBK9qMlPYc127yARyfdp_eXMA_H_eTHdPLr7mdOqSCyJZIguFRXltjGzCLdK-mK3wmiYYLoktwsZSxICjZAZo7o6VyHrmHNBc6Hupmc7rdk2hDtTXBOOq7X9hWcHX7-enCUdg0bUo1ritHOSGG4LZWQZsy0zUrhBMZITIOZrYQcO1_RmBlqiqrKjawEDigEUJZroxB4bMJ6M2vsayC5s9wbEfMN2llBhXSZK1imaalsVegEPvZLV-uOzdw31biqIw8zrVGHddBhAu8H0etI4fGQ0O7K-g-SVHDcglmewE5vEHXn5m2N4cJnZIiTEng3DKOD-q8usrGodS_DOWonKxLYioZ0PzkmxwIzYHybYA5_f776y_FBuNj-d9E38BjhHYsVcTuwvpgv7VuEUAu1G3zlN5KZFeU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRQIkxH9pSikGgcQl28RxEu-BQ9VS7bbdPaxaqbfgODZa2mbbza4qOPEIPAivwkvwJIztJNWiInHpgVukjPLj-fvGmXwD8CYuNI0RB_lMRMpnupv4IoojP6S50uaPPW6JtAfDpHfE9o7j4yX40fwL4_gh2g034xk2XhsHNxvSm1esoePPskMNH3vdUrmvvlxiwVa97--gdt9SuvvhcLvn1zMFfIm3xYBcCF4kKs65KLpMqiDmmmMYx0qNqZSLrjZNd0FBiyhNw0KkHE_kmONVIoucGuolDPi3zARxw9S_M2rJqgy0qjmfAx9Lv6ThMQroZvuoC9nv3rmoUBHaTdC4DuIuImab8nYfwM9msVyny0lnPss78usfPJL_y2o-hPs19iZbzlkewZIqH8PtQd1d8ASm9osGORuPfn37HlLKiaiIIIif81NFVFlMHKMtqfv7CQJ-ggCaXMyF67myZk4mmsjxVNrBaOUnvB4qYzTcqsi4JNJ42ZTUdLbVUzi6kTdegeVyUqpVIKFWifETZmbQs4hyoQMdsUDSOFdpJD1419hKJmvCdjM35DRzVNM0Q51lVmcevG5Fzx1LyXVCGwsG10pSnmCWYaEH640FZnUkqzLMiKboRCjowav2NMYg82FJlApX3cgkCa5OEHnwzFnu1cWx_udY5OPbWPv7-_Nl_b1te7D276Iv4U7vcHCQHfSH-8_hLqJZ5hoA12F5Np2rF4gYZ_mGdVQCH2_aln8DdXByUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qilQhId4PQykDAomNU3s8diYLFlVD1LQ0QhGVujPjeaC0xQlxIgQrPoH_4Ff4Cr6EOzO2q6AisemCnSVf-TH3da7n-lyA56kyNEUcFDKR6JCZXhaKJE3CmBba2D_2uCPSPhxle0ds_zg9XoMfzb8wnh-i_eBmPcPFa-vgM2W2z0lDJyeyQy0de91ReaC_fMZ6rXo17KNyX1A6eP1udy-sRwqEEu-K8VgJrjKdFlyoHpM6SrnhGMWxUGO6y0XP2J67SFGVdLuxEl2OJwpM8TqTqqCWeQnj_RWWRT07J6I_brmqLLKqKZ-jECu_rKExiuh2-6grye_aTFSoB-MHaFyEcFcBs8t4gxvws1kr3-hy2lkuio78-geN5H-ymDfheo28yY53lVuwpsvbsHFY9xbcgbnbzyAfJ-Nf377HlHIiKiIIoufiTBNdqqnnsyV1dz9BuE8QPpNPS-E7rpyRk6khcjKXbixa-QGvh7oYj3YqMimJtD42JzWZbXUXji7lje_Bejkt9QMgsdGZ9RJmJ9CzhHJhIpOwSNK00N1EBvCyMZVc1nTtdmrIWe6JpmmOOsudzgJ41orOPEfJRUJbK_bWSlKeYY5hcQCbjQHmdRyrcsyHtuREIBjA0_Y0RiC7rSRKjatuZbIMVydKArjvDff84lj9cyzx8W2c-f39-fLh_q47ePjvok9g421_kL8Zjg4ewVWEssx3_23C-mK-1I8RLi6KLeemBN5ftin_BpN0cQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+miR-1228+as+a+stable+endogenous+control+for+the+quantification+of+circulating+microRNAs+in+cancer+patients&rft.jtitle=International+journal+of+cancer&rft.au=JIE+HU&rft.au=ZHENG+WANG&rft.au=QIU%2C+Shuang-Jian&rft.au=YING+WU&rft.date=2014-09-01&rft.pub=Wiley-Blackwell&rft.issn=0020-7136&rft.volume=135&rft.issue=5&rft.spage=1187&rft.epage=1194&rft_id=info:doi/10.1002%2Fijc.28757&rft.externalDBID=n%2Fa&rft.externalDocID=28676341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon