Long‐term potentiation in neurogliaform interneurons modulates excitation–inhibition balance in the temporoammonic pathway
Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum‐moleculare (SLM) mediate powerful inhibition of...
Saved in:
Published in | The Journal of physiology Vol. 600; no. 17; pp. 4001 - 4017 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.09.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum‐moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use‐dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor‐dependent long‐term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta‐burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron‐derived neurotrophic factor (Ndnf)‐Cre mice. Theta‐burst activity of EC afferents led to an increase in disynaptic feed‐forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity‐dependent synaptic plasticity in SLM interneurons thus alters the excitation–inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations.
Key points
Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed‐forward inhibition, mediated in large part by neurogliaform neurons.
Here we show that theta‐burst activity in afferents from the entorhinal cortex (EC) induces ‘Hebbian’ long‐term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells.
LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation–inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.
figure legend Hebbian long‐term potentiation (LTP) of excitatory transmission onto interneurons located within hippocampal stratum lacunosum‐moleculare (SLM) can be induced by electrical stimulation protocols involving pairing of pre‐ and postsynaptic activity. Using Ndnf‐Cre mice, we show that hippocampal neurogliaform (NGF) cells express this form of LTP. These cells receive glutamatergic afferents from both the nucleus reuniens of the thalamus and the entorhinal cortex (EC), but selective optogenetic activation of either set of fibres reveals LTP at EC inputs only. Using an optogenetic theta‐burst stimulation (OptoTBS) protocol to stimulate EC fibres in a physiologically relevant way, we show that NGF interneuron LTP translates to an increase in disynaptic inhibition onto CA1 pyramidal cell distal dendrites. Monosynaptic EC–CA1 pyramidal cell inputs do not undergo equivalent potentiation, leading to a net decrease in the excitation/inhibition (E/I) ratio of this pathway. |
---|---|
AbstractList | Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum‐moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use‐dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor‐dependent long‐term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta‐burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron‐derived neurotrophic factor (Ndnf)‐Cre mice. Theta‐burst activity of EC afferents led to an increase in disynaptic feed‐forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity‐dependent synaptic plasticity in SLM interneurons thus alters the excitation–inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations.
Key points
Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed‐forward inhibition, mediated in large part by neurogliaform neurons.
Here we show that theta‐burst activity in afferents from the entorhinal cortex (EC) induces ‘Hebbian’ long‐term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells.
LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation–inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.
figure legend Hebbian long‐term potentiation (LTP) of excitatory transmission onto interneurons located within hippocampal stratum lacunosum‐moleculare (SLM) can be induced by electrical stimulation protocols involving pairing of pre‐ and postsynaptic activity. Using Ndnf‐Cre mice, we show that hippocampal neurogliaform (NGF) cells express this form of LTP. These cells receive glutamatergic afferents from both the nucleus reuniens of the thalamus and the entorhinal cortex (EC), but selective optogenetic activation of either set of fibres reveals LTP at EC inputs only. Using an optogenetic theta‐burst stimulation (OptoTBS) protocol to stimulate EC fibres in a physiologically relevant way, we show that NGF interneuron LTP translates to an increase in disynaptic inhibition onto CA1 pyramidal cell distal dendrites. Monosynaptic EC–CA1 pyramidal cell inputs do not undergo equivalent potentiation, leading to a net decrease in the excitation/inhibition (E/I) ratio of this pathway. Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum‐moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use‐dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor‐dependent long‐term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta‐burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron‐derived neurotrophic factor (Ndnf)‐Cre mice. Theta‐burst activity of EC afferents led to an increase in disynaptic feed‐forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity‐dependent synaptic plasticity in SLM interneurons thus alters the excitation–inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations.Key pointsElectrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed‐forward inhibition, mediated in large part by neurogliaform neurons.Here we show that theta‐burst activity in afferents from the entorhinal cortex (EC) induces ‘Hebbian’ long‐term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells.LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation–inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites. Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of EC afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in SLM interneurons thus alters the excitation-inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. KEY POINTS: Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed-forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta-burst activity in afferents from the entorhinal cortex (EC) induces 'Hebbian' long-term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation-inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of EC afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in SLM interneurons thus alters the excitation-inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. KEY POINTS: Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed-forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta-burst activity in afferents from the entorhinal cortex (EC) induces 'Hebbian' long-term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation-inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites. Abstract Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum‐moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use‐dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor‐dependent long‐term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta‐burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron‐derived neurotrophic factor (Ndnf)‐Cre mice. Theta‐burst activity of EC afferents led to an increase in disynaptic feed‐forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity‐dependent synaptic plasticity in SLM interneurons thus alters the excitation–inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. image Key points Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed‐forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta‐burst activity in afferents from the entorhinal cortex (EC) induces ‘Hebbian’ long‐term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation–inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites. Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of EC afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in SLM interneurons thus alters the excitation-inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. KEY POINTS: Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed-forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta-burst activity in afferents from the entorhinal cortex (EC) induces 'Hebbian' long-term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation-inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites. |
Author | Cornford, Jonathan H. Magloire, Vincent Kullmann, Dimitri M. Mercier, Marion S. |
Author_xml | – sequence: 1 givenname: Marion S. surname: Mercier fullname: Mercier, Marion S. organization: University College London – sequence: 2 givenname: Vincent surname: Magloire fullname: Magloire, Vincent organization: University College London – sequence: 3 givenname: Jonathan H. surname: Cornford fullname: Cornford, Jonathan H. organization: University College London – sequence: 4 givenname: Dimitri M. orcidid: 0000-0001-6696-3545 surname: Kullmann fullname: Kullmann, Dimitri M. email: d.kullmann@ucl.ac.uk organization: University College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35876215$$D View this record in MEDLINE/PubMed https://hal.science/hal-04795814$$DView record in HAL |
BookMark | eNp9kc9u1DAQxi1URLcFiSdAkbjAIcV2_PdYVUCpVqKHcrYcZ9J1ldjBcVr2gvoISLxhn4TstlukSnAaaeb3faOZ7wDthRgAodcEHxFCqg9n51RRyatnaEGY0KWUutpDC4wpLSvJyT46GMcrjEmFtX6B9iuupKCEL9DPZQyXd7e_MqS-GGKGkL3NPobChyLAlOJl520b56kPM7RthbHoYzN1NsNYwA_n81Zyd_vbh5Wv_VZf284GBxufvIIiQz_EFG3fx-BdMdi8urHrl-h5a7sRXj3UQ_Tt08eLk9Ny-fXzl5PjZemYYrJUjjGLHeeNkFpSoggFRYhsBLTOtQ003CoimLAaagZ1VbO6sboWVlIGrq4O0ft735XtzJB8b9PaROvN6fHSbHqYSc0VYddkZt_ds0OK3ycYs-n96KCbz4E4jYYKzRgRgqkZffsEvYpTCvMlhkqsBNZcbAzfPFBT3UPzuH-Xwt-NLsVxTNA-IgSbTcBmF_CMHj1Bd9_PyfruP4Ib38H6n8bm4uyccIpl9Qcp3biK |
CitedBy_id | crossref_primary_10_3389_fncir_2023_1223891 crossref_primary_10_1016_j_cell_2023_08_005 crossref_primary_10_1016_j_neubiorev_2024_105932 crossref_primary_10_1016_j_ibneur_2023_03_013 crossref_primary_10_3390_ijms25147568 crossref_primary_10_3389_fnins_2024_1451740 crossref_primary_10_3389_fncel_2024_1254460 crossref_primary_10_7554_eLife_100268_3 crossref_primary_10_1038_s41583_022_00663_9 crossref_primary_10_1016_j_neuron_2023_06_016 crossref_primary_10_7554_eLife_100268 crossref_primary_10_1016_j_celrep_2024_114212 crossref_primary_10_1093_brain_awac499 crossref_primary_10_1016_j_celrep_2024_114898 |
Cites_doi | 10.1523/JNEUROSCI.1135-05.2005 10.1038/nn1599 10.1016/j.neuron.2016.06.033 10.3389/fncir.2012.00023 10.1016/S0306-4522(98)00712-X 10.1523/JNEUROSCI.1613-18.2018 10.1523/JNEUROSCI.0206-12.2012 10.1523/JNEUROSCI.4848-08.2008 10.1523/JNEUROSCI.16-17-05334.1996 10.1038/nrn3969 10.1093/cercor/bhu054 10.1126/science.1082053 10.1126/science.1137450 10.1113/jphysiol.2007.137380 10.1002/cne.902960202 10.1113/jphysiol.2010.201004 10.1016/j.conb.2018.08.003 10.1098/rstb.2013.0133 10.1016/j.neuron.2011.07.026 10.1016/S0304-3940(99)00935-0 10.1038/nrn2634 10.7554/eLife.22901 10.1523/JNEUROSCI.4199-09.2010 10.1113/JP280397 10.1016/S0896-6273(02)00586-X 10.1152/jn.1999.82.6.3213 10.1186/1471-2202-11-137 10.1038/s41467-018-06004-8 10.1038/416736a 10.1523/JNEUROSCI.3219-12.2013 10.1523/JNEUROSCI.0058-09.2009 10.1038/s41467-017-00218-y 10.1523/JNEUROSCI.17-14-05640.1997 10.1126/science.aac9462 10.1038/76609 10.1101/lm.048389.118 10.1016/j.neuron.2013.11.030 10.1016/j.tins.2010.10.005 10.1016/j.neuron.2007.10.020 10.1101/lm.4.6.510 10.1523/JNEUROSCI.3046-13.2014 10.1007/s00429-016-1350-6 10.1038/nature08503 10.1073/pnas.161493498 10.1016/0304-3940(88)90350-3 10.1113/JP273695 10.1038/s41593-021-00857-x 10.1016/j.neuroscience.2015.01.024 10.1016/j.neuron.2015.08.025 10.1016/j.neuron.2018.07.031 10.1111/j.1469-7793.1998.755bv.x 10.1038/nn.3284 10.1038/nn1486 10.1523/JNEUROSCI.4673-07.2008 10.1016/j.neuron.2018.09.001 10.1152/jn.1998.79.1.13 10.1023/A:1013776130161 10.1523/JNEUROSCI.5123-09.2010 10.1016/j.neuron.2013.07.001 10.1016/j.neuron.2016.01.029 10.1152/jn.1995.73.2.810 10.1016/j.celrep.2018.03.111 10.1016/j.conb.2012.03.003 10.1523/JNEUROSCI.2269-11.2011 10.1111/j.1460-9568.2009.06913.x 10.1002/syn.890110309 10.1523/JNEUROSCI.08-04-01400.1988 10.1038/18686 10.1523/JNEUROSCI.2599-16.2016 10.1523/JNEUROSCI.3251-08.2009 10.1038/s41583-020-0277-3 10.1016/j.neuron.2009.03.007 10.1038/nmeth988 10.1152/physrev.00007.2017 10.1038/nn.4216 10.1002/hipo.22141 10.1073/pnas.1720995115 10.1146/annurev.physiol.64.081501.160008 10.1126/science.1100815 10.1038/nn.4062 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Physiological Society. 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Physiological Society. – notice: 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 1XC |
DOI | 10.1113/JP282753 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 4017 |
ExternalDocumentID | oai_HAL_hal_04795814v1 35876215 10_1113_JP282753 TJP15207 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Epilepsy Research UK funderid: F1901 – fundername: Wellcome Trust – fundername: Medical Research Council – fundername: Wellcome Trust grantid: 209807/Z/17/Z – fundername: Medical Research Council grantid: MR/V034758/1 – fundername: Medical Research Council grantid: MR/L01095X/1 – fundername: Wellcome Trust grantid: 212285/Z/18/Z – fundername: Medical Research Council grantid: MR/W005204/1 – fundername: Medical Research Council grantid: MR/V013556/1 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 123 18M 1OC 24P 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT .55 .GJ .Y3 0YM 31~ 3EH 3O- AASGY AAYJJ AAYXX ADXHL AEYWJ AFFNX AGHNM AGYGG C1A CAG CHEAL CITATION COF EJD FA8 H13 HF~ H~9 LW6 MVM NEJ OHT RIG UKR WHG X7M XOL YXB YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 1XC UMC |
ID | FETCH-LOGICAL-c4847-8c44a0c55d679721812e8117d6efccfded5a81646a9eb4eb3b4bda9b6a724ecb3 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Fri May 09 12:16:39 EDT 2025 Fri Jul 11 12:01:14 EDT 2025 Fri Jul 25 12:14:24 EDT 2025 Mon Jul 21 06:03:52 EDT 2025 Tue Jul 01 04:29:36 EDT 2025 Thu Apr 24 22:51:47 EDT 2025 Wed Jan 22 16:23:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | hippocampus neurogliaform cells interneurons long-term potentiation |
Language | English |
License | Attribution 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4847-8c44a0c55d679721812e8117d6efccfded5a81646a9eb4eb3b4bda9b6a724ecb3 |
Notes | The peer review history is available in the https://doi.org/10.1113/JP282753#support‐information‐section Supporting information section of this article Handling Editors: David Wyllie & Tommas Ellender 10.1101/531822 This article was first published as a preprint: Mercier MS, Magloire V, Cornford JH & Kullmann DM (2021). Long‐term potentiation in neurogliaform interneurons modulates excitation‐inhibition balance in the temporoammonic pathway. bioRxiv doi . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6696-3545 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP282753 |
PMID | 35876215 |
PQID | 2708609561 |
PQPubID | 1086388 |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_04795814v1 proquest_miscellaneous_2694416648 proquest_journals_2708609561 pubmed_primary_35876215 crossref_primary_10_1113_JP282753 crossref_citationtrail_10_1113_JP282753 wiley_primary_10_1113_JP282753_TJP15207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 September 2022 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 1 September 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 6 2010; 11 2021; 24 1995; 73 2017; 8 2013; 23 2019; 54 2000; 3 1999; 82 2017; 595 1992; 11 2005; 25 2014; 369 2018; 9 2015; 290 2009; 10 2013; 16 2017; 37 2021; 599 2011; 71 2019; 26 2008; 28 2015; 87 1997; 17 2005; 308 2007; 4 1988; 85 2001; 11 1999; 92 2012; 22 2018; 31 2010; 30 1990; 296 2016; 89 2001; 98 2018; 100 2015; 16 2009; 62 2015; 18 2016; 19 2000; 278 2002; 33 2011; 31 2019; 39 2011; 34 2002; 416 2016; 91 2018; 23 1996; 16 2007; 56 2003; 299 2012; 32 2009; 29 2012a; 6 2011; 589 2015; 350 2007a; 584 2017; 97 2015; 25 2009; 30 2014; 81 2013; 33 2002; 64 2013; 79 2005; 8 1988; 8 2018; 115 2007b; 315 1998; 506 1999; 398 2020; 21 2009; 461 2017; 222 2018; 99 1998; 4 2014; 34 2012b; 6 1998; 79 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_65_1 e_1_2_5_69_1 e_1_2_5_29_1 e_1_2_5_80_1 e_1_2_5_82_1 e_1_2_5_61_1 e_1_2_5_63_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 Sacramento J. (e_1_2_5_67_1) 2018; 31 e_1_2_5_76_1 e_1_2_5_3_1 e_1_2_5_78_1 e_1_2_5_19_1 e_1_2_5_70_1 e_1_2_5_72_1 e_1_2_5_74_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_66_1 e_1_2_5_68_1 e_1_2_5_81_1 e_1_2_5_60_1 e_1_2_5_83_1 e_1_2_5_62_1 e_1_2_5_64_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_77_1 e_1_2_5_2_1 e_1_2_5_79_1 e_1_2_5_18_1 e_1_2_5_71_1 e_1_2_5_73_1 e_1_2_5_75_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 22 start-page: 389 issue: 3 year: 2012 end-page: 396 article-title: Signaling in dendritic spines and spine microdomains publication-title: Current Opinion in Neurobiology – volume: 278 start-page: 145 issue: 3 year: 2000 end-page: 148 article-title: Nucleus reuniens thalami innervates γ aminobutyric acid positive cells in hippocampal field CA1 of the rat publication-title: Neuroscience Letters – volume: 82 start-page: 3213 issue: 6 year: 1999 end-page: 3222 article-title: Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing publication-title: Journal of Neurophysiology – volume: 81 start-page: 521 issue: 3 year: 2014 end-page: 528 article-title: Learning by the dendritic prediction of somatic spiking publication-title: Neuron – volume: 3 start-page: 653 issue: 7 year: 2000 end-page: 659 article-title: From form to function: Calcium compartmentalization in dendritic spines publication-title: Nature Neuroscience – volume: 222 start-page: 2421 issue: 5 year: 2017 end-page: 2438 article-title: Interaction of nucleus reuniens and entorhinal cortex projections in hippocampal field CA1 of the rat publication-title: Brain Structure and Function – volume: 30 start-page: 1595 issue: 5 year: 2010 end-page: 1609 article-title: Expression of COUP‐TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus publication-title: Journal of Neuroscience – volume: 506 start-page: 755 issue: 3 year: 1998 end-page: 773 article-title: Unitary IPSPs evoked by interneurons at the stratum radiatum — Stratum lacunosum‐moleculare border in the CA1 publication-title: Journal of Physiology – volume: 56 start-page: 866 issue: 5 year: 2007 end-page: 879 article-title: A role for synaptic inputs at distal dendrites: Instructive signals for hippocampal long‐term plasticity publication-title: Neuron – volume: 6 start-page: 1 year: 2012b end-page: 10 article-title: Neurogliaform and Ivy cells: A major family of nNOS expressing GABAergic neurons publication-title: Frontiers in Neural Circuits – volume: 91 start-page: 260 issue: 2 year: 2016 end-page: 292 article-title: GABAergic interneurons in the neocortex: From cellular properties to circuits publication-title: Neuron – volume: 299 start-page: 1902 issue: 5614 year: 2003 end-page: 1905 article-title: Identified sources and targets of slow inhibition in the neocortex publication-title: Science – volume: 21 start-page: 335 issue: 6 year: 2020 end-page: 346 article-title: Backpropagation and the brain publication-title: Nature Reviews. Neuroscience – volume: 71 start-page: 995 issue: 6 year: 2011 end-page: 1013 article-title: A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex publication-title: Neuron – volume: 9 start-page: 3576 issue: 1 year: 2018 article-title: Dendrite‐targeting interneurons control synaptic NMDA‐receptor activation via nonlinear α5‐GABAA receptors publication-title: Nature Communications – volume: 98 start-page: 9401 issue: 16 year: 2001 end-page: 9406 article-title: A hebbian form of long‐term potentiation dependent on mGluR1a in hippocampal inhibitory interneurons publication-title: Proceedings of the National Academy of Sciences, USA – volume: 398 start-page: 338 issue: 6725 year: 1999 end-page: 341 article-title: A new cellular mechanism for coupling inputs arriving at different cortical layers publication-title: Nature – volume: 16 start-page: 5334 issue: 17 year: 1996 end-page: 5343 article-title: Long‐term potentiation in distinct subtypes of hippocampal nonpyramidal neurons publication-title: Journal of Neuroscience – volume: 39 start-page: 125 issue: 1 year: 2019 end-page: 139 article-title: Four unique interneuron populations reside in neocortical layer 1 publication-title: Journal of Neuroscience – volume: 34 start-page: 1280 issue: 4 year: 2014 end-page: 1292 article-title: Firing of hippocampal neurogliaform cells induces suppression of synaptic inhibition publication-title: Journal of Neuroscience – volume: 350 start-page: aac9462 issue: 6264 year: 2015 end-page: aac9462 article-title: Principles of connectivity among morphologically defined cell types in adult neocortex publication-title: Science – volume: 30 start-page: 2165 issue: 6 year: 2010 end-page: 2176 article-title: Common origins of hippocampal Ivy and nitric oxide synthase expressing neurogliaform cells publication-title: Journal of Neuroscience – volume: 87 start-page: 1274 issue: 6 year: 2015 end-page: 1289 article-title: Inhibitory gating of input comparison in the CA1 Microcircuit publication-title: Neuron – volume: 4 start-page: 510 year: 1998 end-page: 518 article-title: Perforant path activation modulates the induction of long‐term potentiation of the schaffer collateral‐hippocampal CA1 response: Theoretical and experimental analyses publication-title: Learning and Memory – volume: 97 start-page: 1619 issue: 4 year: 2017 end-page: 1747 article-title: Hippocampal GABAergic inhibitory interneurons publication-title: Physiological Reviews – volume: 416 start-page: 736 issue: 6882 year: 2002 end-page: 740 article-title: Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons publication-title: Nature – volume: 92 start-page: 15 issue: 1 year: 1999 end-page: 26 article-title: Thalamic excitation of hippocampal CA1 neurons: A comparison with the effects of CA3 stimulation publication-title: Neuroscience – volume: 25 start-page: 2542 issue: 9 year: 2015 end-page: 2555 article-title: A differential and timed contribution of identified hippocampal synapses to associative learning in mice publication-title: Cerebral Cortex – volume: 73 start-page: 810 year: 1995 end-page: 819 article-title: Mechanisms of selective long‐term potentiation of excitatory synapses in stratum oriens /alveus interneurons of rat hippocampal slices publication-title: Journal of Neurophysiology – volume: 595 start-page: 3449 issue: 11 year: 2017 end-page: 3458 article-title: T‐type calcium channels contribute to NMDA receptor independent synaptic plasticity in hippocampal regular‐spiking oriens‐alveus interneurons publication-title: Journal of Physiology – volume: 584 start-page: 885 issue: 3 year: 2007a end-page: 894 article-title: NMDA receptor‐dependent long‐term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin‐dependent kinases publication-title: Journal of Physiology – volume: 23 start-page: 951 issue: 4 year: 2018 end-page: 958 article-title: Rapid neuromodulation of layer 1 interneurons in human neocortex publication-title: Cell Reports – volume: 315 start-page: 1262 issue: 5816 year: 2007b end-page: 1266 article-title: Anti‐Hebbian long‐term potentiation in the hippocampal feedback inhibitory circuit publication-title: Science – volume: 89 start-page: 1016 issue: 5 year: 2016 end-page: 1030 article-title: Structured dendritic inhibition supports branch‐selective integration in CA1 pyramidal cells publication-title: Neuron – volume: 31 start-page: 14861 issue: 42 year: 2011 end-page: 14870 article-title: Ivy and neurogliaform interneurons are a major target of ‐opioid receptor modulation publication-title: Journal of Neuroscience – volume: 10 start-page: 373 issue: 5 year: 2009 end-page: 383 article-title: The probability of neurotransmitter release: Variability and feedback control at single synapses publication-title: Nature Reviews. Neuroscience – volume: 30 start-page: 947 issue: 6 year: 2009 end-page: 957 article-title: GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus publication-title: European Journal of Neuroscience – volume: 115 start-page: E6329 issue: 27 year: 2018 end-page: E6338 article-title: Sparse bursts optimize information transmission in a multiplexed neural code publication-title: Proceedings of the National Academy of Sciences, USA – volume: 26 start-page: 191 issue: 7 year: 2019 end-page: 205 article-title: The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior publication-title: Learning & Memory – volume: 29 start-page: 3642 issue: 11 year: 2009 end-page: 3659 article-title: Classification of NPY‐expressing neocortical interneurons publication-title: Journal of Neuroscience – volume: 28 start-page: 6974 issue: 27 year: 2008 end-page: 6982 article-title: GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells publication-title: Journal of Neuroscience – volume: 62 start-page: 102 issue: 1 year: 2009 end-page: 111 article-title: Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons publication-title: Neuron – volume: 18 start-page: 1133 issue: 8 year: 2015 end-page: 1142 article-title: Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons publication-title: Nature Neuroscience – volume: 8 start-page: 1667 issue: 12 year: 2005 end-page: 1676 article-title: Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons publication-title: Nature Neuroscience – volume: 8 start-page: 152 issue: 1 year: 2017 article-title: Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells publication-title: Nature Communications – volume: 6 start-page: 23 year: 2012a article-title: Neurogliaform and Ivy cells: A major family of nNOS expressing GABAergic neurons publication-title: Frontiers in Neural Circuits – volume: 79 start-page: 1208 issue: 6 year: 2013 end-page: 1221 article-title: A cortico‐hippocampal learning rule shapes inhibitory microcircuit activity to enhance hippocampal information flow publication-title: Neuron – volume: 23 start-page: 751 issue: 9 year: 2013 end-page: 785 article-title: Quantitative assessment of CA1 local circuits: Knowledge base for interneuron‐pyramidal cell connectivity publication-title: Hippocampus – volume: 34 start-page: 101 issue: 2 year: 2011 end-page: 112 article-title: GABAA,slow: Causes and consequences publication-title: Trends in Neurosciences – volume: 308 start-page: 863 issue: 5723 year: 2005 end-page: 866 article-title: Target cell‐dependent normalization of transmitter release at neocortical synapses publication-title: Science – volume: 11 start-page: 1 issue: 1 year: 2010 end-page: 11 article-title: Spatio‐temporal expression of a novel neuron‐derived neurotrophic factor (NDNF) in mouse brains during development publication-title: BMC Neuroscience – volume: 17 start-page: 5640 issue: 14 year: 1997 end-page: 5650 article-title: Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms publication-title: Journal of Neuroscience – volume: 296 start-page: 179 issue: 2 year: 1990 end-page: 203 article-title: Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris‐leucoagglutinin publication-title: Journal of Comparative Neurology – volume: 19 start-page: 335 issue: 2 year: 2016 end-page: 346 article-title: Adult mouse cortical cell taxonomy revealed by single cell transcriptomics publication-title: Nature Neuroscience – volume: 6 year: 2017 article-title: Towards deep learning with segregated dendrites publication-title: eLife – volume: 8 start-page: 1400 issue: 4 year: 1988 end-page: 1410 article-title: Stratum lacunosum‐moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology publication-title: The Journal of Neuroscience – volume: 8 start-page: 916 issue: 7 year: 2005 end-page: 924 article-title: Hebbian LTP in feed‐forward inhibitory interneurons and the temporal fidelity of input discrimination publication-title: Nature Neuroscience – volume: 290 start-page: 332 year: 2015 end-page: 345 article-title: Synapse‐specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons publication-title: Neuroscience – volume: 11 start-page: 249 issue: 3 year: 1992 end-page: 258 article-title: GABAB receptor‐mediated inhibitory postsynaptic potentials evoked by electrical stimulation and by glutamate stimulation of interneurons in stratum lacunosum‐moleculare in hippocampal CA1 pyramidal cells in vitro publication-title: Synapse – volume: 33 start-page: 325 issue: 3 year: 2002 end-page: 340 article-title: Theta oscillations in the hippocampus publication-title: Neuron – volume: 16 start-page: 458 issue: 8 year: 2015 end-page: 468 article-title: Neurogliaform cells in cortical circuits publication-title: Nature Reviews. Neuroscience – volume: 33 start-page: 1314 issue: 4 year: 2013 end-page: 1325 article-title: Distal dendritic inputs control neuronal activity by heterosynaptic potentiation of proximal inputs publication-title: Journal of Neuroscience – volume: 11 start-page: 207 issue: 3 year: 2001 end-page: 215 article-title: Supervised and unsupervised learning with two sites of synaptic integration publication-title: Journal of Computational Neuroscience – volume: 369 issue: 1633 year: 2014 article-title: Long‐term potentiation in hippocampal oriens interneurons: Postsynaptic induction, presynaptic expression and evaluation of candidate retrograde factors publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 85 start-page: 193 issue: 2 year: 1988 end-page: 198 article-title: Entorhinal projections to the hippocampal CA1 region in the rat: An underestimated pathway publication-title: Neuroscience Letters – volume: 79 start-page: 13 issue: 1 year: 1998 end-page: 20 article-title: Long‐term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity publication-title: Journal of Neurophysiology – volume: 64 start-page: 313 issue: 1 year: 2002 end-page: 353 article-title: Structure and function of dendritic spines publication-title: Annual Review of Physiology – volume: 31 start-page: 8721 year: 2018 end-page: 8732 article-title: Dendritic cortical microcircuits approximate the backpropagation algorithm publication-title: Advances in Neural Information Processing Systems – volume: 99 start-page: 1029 issue: 5 year: 2018 end-page: 1039.e4 article-title: Inhibitory control of prefrontal cortex by the claustrum publication-title: Neuron – volume: 32 start-page: 6511 issue: 19 year: 2012 end-page: 6516 article-title: Calcium‐permeable AMPA receptors provide a common mechanism for LTP in glutamatergic synapses of distinct hippocampal interneuron types publication-title: Journal of Neuroscience – volume: 16 start-page: 13 issue: 1 year: 2013 end-page: 15 article-title: Neurogliaform cells dynamically regulate somatosensory integration via synapse‐specific modulation publication-title: Nature Neuroscience – volume: 28 start-page: 14042 issue: 52 year: 2008 end-page: 14055 article-title: Bidirectional hebbian plasticity at hippocampal mossy fiber synapses on CA3 interneurons publication-title: Journal of Neuroscience – volume: 589 start-page: 1875 issue: 8 year: 2011 end-page: 1883 article-title: Neurogliaform cells and other interneurons of stratum lacunosum‐moleculare gate entorhinal‐hippocampal dialogue publication-title: Journal of Physiology – volume: 25 start-page: 6775 issue: 29 year: 2005 end-page: 6786 article-title: Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area publication-title: Journal of Neuroscience – volume: 54 start-page: 28 year: 2019 end-page: 36 article-title: Dendritic solutions to the credit assignment problem publication-title: Current Opinion in Neurobiology – volume: 24 start-page: 1010 issue: 7 year: 2021 end-page: 1019 article-title: Burst‐dependent synaptic plasticity can coordinate learning in hierarchical circuits publication-title: Nature Neuroscience – volume: 599 start-page: 667 issue: 2 year: 2021 end-page: 676 article-title: Nicotinic receptor activation induces NMDA receptor independent long‐term potentiation of glutamatergic signalling in hippocampal oriens interneurons publication-title: Journal of Physiology – volume: 461 start-page: 1278 issue: 7268 year: 2009 end-page: 1281 article-title: Regulation of cortical microcircuits by unitary GABA‐mediated volume transmission publication-title: Nature – volume: 4 start-page: 139 issue: 2 year: 2007 end-page: 141 article-title: Optical induction of synaptic plasticity using a light‐sensitive channel publication-title: Nature Methods – volume: 100 start-page: 684 issue: 3 year: 2018 end-page: 699.e6 article-title: Learning‐related plasticity in dendrite‐targeting layer 1 interneurons publication-title: Neuron – volume: 37 start-page: 23 issue: 1 year: 2017 end-page: 37 article-title: Endogenously released neuropeptide Y suppresses hippocampal short‐term facilitation and is impaired by stress‐induced anxiety publication-title: Journal of Neuroscience – volume: 29 start-page: 939 issue: 4 year: 2009 end-page: 950 article-title: Role of ionotropic glutamate receptors in long‐term potentiation in rat hippocampal CA1 oriens‐lacunosum moleculare interneurons publication-title: Journal of Neuroscience – ident: e_1_2_5_63_1 doi: 10.1523/JNEUROSCI.1135-05.2005 – ident: e_1_2_5_31_1 doi: 10.1038/nn1599 – ident: e_1_2_5_75_1 doi: 10.1016/j.neuron.2016.06.033 – ident: e_1_2_5_4_1 doi: 10.3389/fncir.2012.00023 – ident: e_1_2_5_6_1 doi: 10.1016/S0306-4522(98)00712-X – ident: e_1_2_5_69_1 doi: 10.1523/JNEUROSCI.1613-18.2018 – ident: e_1_2_5_70_1 doi: 10.1523/JNEUROSCI.0206-12.2012 – ident: e_1_2_5_25_1 doi: 10.1523/JNEUROSCI.4848-08.2008 – ident: e_1_2_5_48_1 doi: 10.1523/JNEUROSCI.16-17-05334.1996 – ident: e_1_2_5_58_1 doi: 10.1038/nrn3969 – ident: e_1_2_5_27_1 doi: 10.1093/cercor/bhu054 – ident: e_1_2_5_72_1 doi: 10.1126/science.1082053 – ident: e_1_2_5_42_1 doi: 10.1126/science.1137450 – ident: e_1_2_5_41_1 doi: 10.1113/jphysiol.2007.137380 – ident: e_1_2_5_81_1 doi: 10.1002/cne.902960202 – ident: e_1_2_5_12_1 doi: 10.1113/jphysiol.2010.201004 – ident: e_1_2_5_66_1 doi: 10.1016/j.conb.2018.08.003 – ident: e_1_2_5_51_1 doi: 10.1098/rstb.2013.0133 – ident: e_1_2_5_73_1 doi: 10.1016/j.neuron.2011.07.026 – ident: e_1_2_5_21_1 doi: 10.1016/S0304-3940(99)00935-0 – ident: e_1_2_5_10_1 doi: 10.1038/nrn2634 – ident: e_1_2_5_28_1 doi: 10.7554/eLife.22901 – ident: e_1_2_5_24_1 doi: 10.1523/JNEUROSCI.4199-09.2010 – ident: e_1_2_5_53_1 doi: 10.1113/JP280397 – ident: e_1_2_5_11_1 doi: 10.1016/S0896-6273(02)00586-X – ident: e_1_2_5_23_1 doi: 10.1152/jn.1999.82.6.3213 – ident: e_1_2_5_38_1 doi: 10.1186/1471-2202-11-137 – ident: e_1_2_5_68_1 doi: 10.1038/s41467-018-06004-8 – ident: e_1_2_5_65_1 doi: 10.1038/416736a – ident: e_1_2_5_29_1 doi: 10.1523/JNEUROSCI.3219-12.2013 – ident: e_1_2_5_33_1 doi: 10.1523/JNEUROSCI.0058-09.2009 – ident: e_1_2_5_16_1 doi: 10.1038/s41467-017-00218-y – ident: e_1_2_5_19_1 doi: 10.1523/JNEUROSCI.17-14-05640.1997 – ident: e_1_2_5_32_1 doi: 10.1126/science.aac9462 – ident: e_1_2_5_82_1 doi: 10.1038/76609 – ident: e_1_2_5_18_1 doi: 10.1101/lm.048389.118 – ident: e_1_2_5_77_1 doi: 10.1016/j.neuron.2013.11.030 – ident: e_1_2_5_13_1 doi: 10.1016/j.tins.2010.10.005 – ident: e_1_2_5_22_1 doi: 10.1016/j.neuron.2007.10.020 – ident: e_1_2_5_44_1 doi: 10.1101/lm.4.6.510 – ident: e_1_2_5_45_1 doi: 10.1523/JNEUROSCI.3046-13.2014 – ident: e_1_2_5_20_1 doi: 10.1007/s00429-016-1350-6 – ident: e_1_2_5_55_1 doi: 10.1038/nature08503 – ident: e_1_2_5_61_1 doi: 10.1073/pnas.161493498 – ident: e_1_2_5_80_1 doi: 10.1016/0304-3940(88)90350-3 – ident: e_1_2_5_52_1 doi: 10.1113/JP273695 – ident: e_1_2_5_59_1 doi: 10.1038/s41593-021-00857-x – ident: e_1_2_5_26_1 doi: 10.1016/j.neuroscience.2015.01.024 – ident: e_1_2_5_49_1 doi: 10.1016/j.neuron.2015.08.025 – ident: e_1_2_5_30_1 doi: 10.1016/j.neuron.2018.07.031 – ident: e_1_2_5_78_1 doi: 10.1111/j.1469-7793.1998.755bv.x – ident: e_1_2_5_15_1 doi: 10.1038/nn.3284 – ident: e_1_2_5_40_1 doi: 10.1038/nn1486 – ident: e_1_2_5_64_1 doi: 10.1523/JNEUROSCI.4673-07.2008 – ident: e_1_2_5_2_1 doi: 10.1016/j.neuron.2018.09.001 – ident: e_1_2_5_3_1 doi: 10.3389/fncir.2012.00023 – ident: e_1_2_5_17_1 doi: 10.1152/jn.1998.79.1.13 – ident: e_1_2_5_36_1 doi: 10.1023/A:1013776130161 – ident: e_1_2_5_76_1 doi: 10.1523/JNEUROSCI.5123-09.2010 – ident: e_1_2_5_5_1 doi: 10.1016/j.neuron.2013.07.001 – ident: e_1_2_5_9_1 doi: 10.1016/j.neuron.2016.01.029 – ident: e_1_2_5_57_1 doi: 10.1152/jn.1995.73.2.810 – ident: e_1_2_5_62_1 doi: 10.1016/j.celrep.2018.03.111 – ident: e_1_2_5_14_1 doi: 10.1016/j.conb.2012.03.003 – ident: e_1_2_5_37_1 doi: 10.1523/JNEUROSCI.2269-11.2011 – ident: e_1_2_5_34_1 doi: 10.1111/j.1460-9568.2009.06913.x – ident: e_1_2_5_79_1 doi: 10.1002/syn.890110309 – ident: e_1_2_5_39_1 doi: 10.1523/JNEUROSCI.08-04-01400.1988 – ident: e_1_2_5_43_1 doi: 10.1038/18686 – ident: e_1_2_5_46_1 doi: 10.1523/JNEUROSCI.2599-16.2016 – ident: e_1_2_5_56_1 doi: 10.1523/JNEUROSCI.3251-08.2009 – ident: e_1_2_5_47_1 doi: 10.1038/s41583-020-0277-3 – ident: e_1_2_5_71_1 doi: 10.1016/j.neuron.2009.03.007 – ident: e_1_2_5_83_1 doi: 10.1038/nmeth988 – ident: e_1_2_5_60_1 doi: 10.1152/physrev.00007.2017 – ident: e_1_2_5_74_1 doi: 10.1038/nn.4216 – ident: e_1_2_5_7_1 doi: 10.1002/hipo.22141 – ident: e_1_2_5_50_1 doi: 10.1073/pnas.1720995115 – ident: e_1_2_5_54_1 doi: 10.1146/annurev.physiol.64.081501.160008 – ident: e_1_2_5_35_1 doi: 10.1126/science.1100815 – volume: 31 start-page: 8721 year: 2018 ident: e_1_2_5_67_1 article-title: Dendritic cortical microcircuits approximate the backpropagation algorithm publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_5_8_1 doi: 10.1038/nn.4062 |
SSID | ssj0013099 |
Score | 2.463286 |
Snippet | Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In... Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In... Abstract Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal... |
SourceID | hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4001 |
SubjectTerms | Animals Channel gating Cortex (entorhinal) Dendrites Dendrites - physiology Glutamic acid receptors (ionotropic) Hippocampal plasticity Hippocampus Hippocampus - physiology Information processing Interneurons Interneurons - physiology Life Sciences Long-term potentiation Long-Term Potentiation - physiology Mice N-Methyl-D-aspartic acid receptors Neurobiology neurogliaform cells Neurons Neurons and Cognition Neurotrophic factors Pyramidal cells Pyramidal Cells - physiology Sensory neurons Signal transduction Synapses - physiology Synaptic plasticity Thalamus γ-Aminobutyric acid |
Title | Long‐term potentiation in neurogliaform interneurons modulates excitation–inhibition balance in the temporoammonic pathway |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP282753 https://www.ncbi.nlm.nih.gov/pubmed/35876215 https://www.proquest.com/docview/2708609561 https://www.proquest.com/docview/2694416648 https://hal.science/hal-04795814 |
Volume | 600 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RnrjwKo-lZeUiBKeUTWI7znGFqFarglaolSpxiGzH20a0TsXuFsoB9Scg8Q_7S5hxHqg8JMQ1dhI7nvF8M558A_CMZyObSqUj9H7yiKfKRipFfUT0SwZeGRlium_eyskBnx6Kwzarkv6Fafgh-oAbaUbYr0nBtWmrkMRENjCdobeAYBu3X0rVIjz0Lvl5gDDK854oPBNxyzuLt77sbrxmidaOKQ_yd5B5HbMGo7N7G953w21yTT7srJZmx375hcnx_-ZzB261WJSNG-G5CzecvwcbY49--OkFe85CdmgIu2_A173aH11dfqOdnJ3VS0oyCovKKs8CKebRSaUJAbMqBBnpkl-w07qkAmFuwdxn2_KBX11-r_xxZUK2GDOUXGkdPQfBKGu4smpN-lFZRhWTP-mL-3Cw-3r_1SRqazdElqPBi5TlXI-sEKXMiCAIcYSjf1pL6ebWzktXCq2I20znznD06A03pc6N1FnCnTXpA1j3tXePgCXS4q5MB6pJzjPDNedirq2MSzu3iSoH8KJbx6KbCNXXOCkaByctuk87gO2-51lD5vGHPk9RFPpmYt-ejPcKukZs_ELF_DwewFYnKUWr84siQekm-j6Jzdt9M2orHcFo7-oV9pE54k8puRrAw0bC-lelgixTLHA-QU7-OsRifzpD2DXKHv9zz024mZAqhOS4LVhffly5J4imlmYIawmfDYP2DEOw6wfjNB1L |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAXXuWxUMBFCE5pN4ntJOK0Aqpl2VYV2ko9IEW2420jWqdid4FyQP0JSPzD_hJmnAcqDwlxjZ3Ejmc834wn3wA84UnfxDJVAXo_WcDj1ARpjPqI6JcMfKqlj-lu78jhHh_ti_0leN7-C1PzQ3QBN9IMv1-TglNAutFyYhsY7aK7gGh7GS5RQW8izn_5Nvp5hNDPso4qPBFhwzyL9262d16wRcuHlAn5O8y8iFq92dm6Bu_aAdfZJu83FnO9Yb78wuX4nzO6DlcbOMoGtfzcgCXrbsLqwKErfnzKnjKfIOoj76vwdVy5g_Ozb7SZs5NqTnlGfl1Z6ZjnxTw4KhWBYFb6OCNdcjN2XBVUI8zOmP1sGkrw87PvpTsstU8YY5ryK42l5yAeZTVdVqVIRUrDqGjyJ3V6C_a2Xk1eDIOmfENgONq8IDWcq74RopAJcQQhlLD0W2sh7dSYaWELoVKiN1OZ1Rydes11oTItVRJxa3R8G1Zc5exdYJE0uDHTmWqU8URzxbmYKiPDwkxNlBY9eNYuZN5OhEpsHOW1jxPn7aftwXrX86Tm8_hDn8coC10zEXAPB-OcrhEhv0hD_jHswVorKnmj9rM8QgEnBj-JzetdMyosncIoZ6sF9pEZQlApedqDO7WIda-KBRmnUOB8vKD8dYj5ZLSLyKuf3Pvnno_g8nCyPc7Hr3fe3IcrEemFz5Vbg5X5h4V9gOBqrh96JfoBKxsfgA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZokRAXBBTolgIuQnCK2CS24xxXwGpZlmoPrdRb5FfaSK2zYrevS9WfUIl_2F_CjPNAFSBxje0k9sx4vrHHnwl5x7KhSYVUEUQ_ecRSaSKZgj0C-kUHL7UIa7rfd8Vkn00P-EGbVYlnYRp-iH7BDS0jzNdo4AtbtkaOZAPTOUQLALbXyH3c68N0roTNf-8gDPO8ZwrPeNwSz0Lbj13LO65o7QgTIf9EmXdBa_A648fkUQsX6aiR7xNyz_mnZGPkIVQ-uaTvaUjgDCvjG-RqVvvD2-sbnGzpol5hHlAYd1p5GngrD48rhSCVVmEdEB_5JT2pLd7h5ZbUXZiWsvv2-mfljyodErqoxvxH4_A9gBdpQ2dVK1ThylC81PhcXT4j--Mve58mUXu9QmQY-KRIGsbU0HBuRYYcPuDqHR47tcKVxpTWWa4k0o-p3GkGQbdm2qpcC5UlzBmdPifrvvZuk9BEGJg4cc8zyVmmmWKMl8qI2JrSJNIOyIdupIuuI3gFxnHRxCBp0clkQHb6mouGb-Mvdd6CsPpiJMiejGYFPkPCfC5jdhYPyHYny6I1y2WRgAIiw56A4p2-GAwKd0mUd_Up1BE5QEQhmByQF40O9J9KOTqPmEN_glL88xeLvekckNEw2_rvmm_Ig_nncTH7uvvtJXmYoN6GVLZtsr76cepeAfZZ6ddByX8B6mX-hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+potentiation+in+neurogliaform+interneurons+modulates+excitation-inhibition+balance+in+the+temporoammonic+pathway&rft.jtitle=The+Journal+of+physiology&rft.au=Mercier%2C+Marion+S&rft.au=Magloire%2C+Vincent&rft.au=Cornford%2C+Jonathan+H&rft.au=Kullmann%2C+Dimitri+M&rft.date=2022-09-01&rft.eissn=1469-7793&rft.volume=600&rft.issue=17&rft.spage=4001&rft_id=info:doi/10.1113%2FJP282753&rft_id=info%3Apmid%2F35876215&rft.externalDocID=35876215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |