Long‐term potentiation in neurogliaform interneurons modulates excitation–inhibition balance in the temporoammonic pathway

Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum‐moleculare (SLM) mediate powerful inhibition of...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 600; no. 17; pp. 4001 - 4017
Main Authors Mercier, Marion S., Magloire, Vincent, Cornford, Jonathan H., Kullmann, Dimitri M.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.09.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum‐moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use‐dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor‐dependent long‐term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta‐burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron‐derived neurotrophic factor (Ndnf)‐Cre mice. Theta‐burst activity of EC afferents led to an increase in disynaptic feed‐forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity‐dependent synaptic plasticity in SLM interneurons thus alters the excitation–inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. Key points Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed‐forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta‐burst activity in afferents from the entorhinal cortex (EC) induces ‘Hebbian’ long‐term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation–inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites. figure legend Hebbian long‐term potentiation (LTP) of excitatory transmission onto interneurons located within hippocampal stratum lacunosum‐moleculare (SLM) can be induced by electrical stimulation protocols involving pairing of pre‐ and postsynaptic activity. Using Ndnf‐Cre mice, we show that hippocampal neurogliaform (NGF) cells express this form of LTP. These cells receive glutamatergic afferents from both the nucleus reuniens of the thalamus and the entorhinal cortex (EC), but selective optogenetic activation of either set of fibres reveals LTP at EC inputs only. Using an optogenetic theta‐burst stimulation (OptoTBS) protocol to stimulate EC fibres in a physiologically relevant way, we show that NGF interneuron LTP translates to an increase in disynaptic inhibition onto CA1 pyramidal cell distal dendrites. Monosynaptic EC–CA1 pyramidal cell inputs do not undergo equivalent potentiation, leading to a net decrease in the excitation/inhibition (E/I) ratio of this pathway.
AbstractList Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum‐moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use‐dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor‐dependent long‐term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta‐burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron‐derived neurotrophic factor (Ndnf)‐Cre mice. Theta‐burst activity of EC afferents led to an increase in disynaptic feed‐forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity‐dependent synaptic plasticity in SLM interneurons thus alters the excitation–inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. Key points Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed‐forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta‐burst activity in afferents from the entorhinal cortex (EC) induces ‘Hebbian’ long‐term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation–inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites. figure legend Hebbian long‐term potentiation (LTP) of excitatory transmission onto interneurons located within hippocampal stratum lacunosum‐moleculare (SLM) can be induced by electrical stimulation protocols involving pairing of pre‐ and postsynaptic activity. Using Ndnf‐Cre mice, we show that hippocampal neurogliaform (NGF) cells express this form of LTP. These cells receive glutamatergic afferents from both the nucleus reuniens of the thalamus and the entorhinal cortex (EC), but selective optogenetic activation of either set of fibres reveals LTP at EC inputs only. Using an optogenetic theta‐burst stimulation (OptoTBS) protocol to stimulate EC fibres in a physiologically relevant way, we show that NGF interneuron LTP translates to an increase in disynaptic inhibition onto CA1 pyramidal cell distal dendrites. Monosynaptic EC–CA1 pyramidal cell inputs do not undergo equivalent potentiation, leading to a net decrease in the excitation/inhibition (E/I) ratio of this pathway.
Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum‐moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use‐dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor‐dependent long‐term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta‐burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron‐derived neurotrophic factor (Ndnf)‐Cre mice. Theta‐burst activity of EC afferents led to an increase in disynaptic feed‐forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity‐dependent synaptic plasticity in SLM interneurons thus alters the excitation–inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations.Key pointsElectrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed‐forward inhibition, mediated in large part by neurogliaform neurons.Here we show that theta‐burst activity in afferents from the entorhinal cortex (EC) induces ‘Hebbian’ long‐term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells.LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation–inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.
Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of EC afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in SLM interneurons thus alters the excitation-inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. KEY POINTS: Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed-forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta-burst activity in afferents from the entorhinal cortex (EC) induces 'Hebbian' long-term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation-inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of EC afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in SLM interneurons thus alters the excitation-inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. KEY POINTS: Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed-forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta-burst activity in afferents from the entorhinal cortex (EC) induces 'Hebbian' long-term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation-inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.
Abstract Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum‐moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use‐dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor‐dependent long‐term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta‐burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron‐derived neurotrophic factor (Ndnf)‐Cre mice. Theta‐burst activity of EC afferents led to an increase in disynaptic feed‐forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity‐dependent synaptic plasticity in SLM interneurons thus alters the excitation–inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. image Key points Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed‐forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta‐burst activity in afferents from the entorhinal cortex (EC) induces ‘Hebbian’ long‐term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation–inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.
Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of EC afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in SLM interneurons thus alters the excitation-inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. KEY POINTS: Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed-forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta-burst activity in afferents from the entorhinal cortex (EC) induces 'Hebbian' long-term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation-inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.
Author Cornford, Jonathan H.
Magloire, Vincent
Kullmann, Dimitri M.
Mercier, Marion S.
Author_xml – sequence: 1
  givenname: Marion S.
  surname: Mercier
  fullname: Mercier, Marion S.
  organization: University College London
– sequence: 2
  givenname: Vincent
  surname: Magloire
  fullname: Magloire, Vincent
  organization: University College London
– sequence: 3
  givenname: Jonathan H.
  surname: Cornford
  fullname: Cornford, Jonathan H.
  organization: University College London
– sequence: 4
  givenname: Dimitri M.
  orcidid: 0000-0001-6696-3545
  surname: Kullmann
  fullname: Kullmann, Dimitri M.
  email: d.kullmann@ucl.ac.uk
  organization: University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35876215$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04795814$$DView record in HAL
BookMark eNp9kc9u1DAQxi1URLcFiSdAkbjAIcV2_PdYVUCpVqKHcrYcZ9J1ldjBcVr2gvoISLxhn4TstlukSnAaaeb3faOZ7wDthRgAodcEHxFCqg9n51RRyatnaEGY0KWUutpDC4wpLSvJyT46GMcrjEmFtX6B9iuupKCEL9DPZQyXd7e_MqS-GGKGkL3NPobChyLAlOJl520b56kPM7RthbHoYzN1NsNYwA_n81Zyd_vbh5Wv_VZf284GBxufvIIiQz_EFG3fx-BdMdi8urHrl-h5a7sRXj3UQ_Tt08eLk9Ny-fXzl5PjZemYYrJUjjGLHeeNkFpSoggFRYhsBLTOtQ003CoimLAaagZ1VbO6sboWVlIGrq4O0ft735XtzJB8b9PaROvN6fHSbHqYSc0VYddkZt_ds0OK3ycYs-n96KCbz4E4jYYKzRgRgqkZffsEvYpTCvMlhkqsBNZcbAzfPFBT3UPzuH-Xwt-NLsVxTNA-IgSbTcBmF_CMHj1Bd9_PyfruP4Ib38H6n8bm4uyccIpl9Qcp3biK
CitedBy_id crossref_primary_10_3389_fncir_2023_1223891
crossref_primary_10_1016_j_cell_2023_08_005
crossref_primary_10_1016_j_neubiorev_2024_105932
crossref_primary_10_1016_j_ibneur_2023_03_013
crossref_primary_10_3390_ijms25147568
crossref_primary_10_3389_fnins_2024_1451740
crossref_primary_10_3389_fncel_2024_1254460
crossref_primary_10_7554_eLife_100268_3
crossref_primary_10_1038_s41583_022_00663_9
crossref_primary_10_1016_j_neuron_2023_06_016
crossref_primary_10_7554_eLife_100268
crossref_primary_10_1016_j_celrep_2024_114212
crossref_primary_10_1093_brain_awac499
crossref_primary_10_1016_j_celrep_2024_114898
Cites_doi 10.1523/JNEUROSCI.1135-05.2005
10.1038/nn1599
10.1016/j.neuron.2016.06.033
10.3389/fncir.2012.00023
10.1016/S0306-4522(98)00712-X
10.1523/JNEUROSCI.1613-18.2018
10.1523/JNEUROSCI.0206-12.2012
10.1523/JNEUROSCI.4848-08.2008
10.1523/JNEUROSCI.16-17-05334.1996
10.1038/nrn3969
10.1093/cercor/bhu054
10.1126/science.1082053
10.1126/science.1137450
10.1113/jphysiol.2007.137380
10.1002/cne.902960202
10.1113/jphysiol.2010.201004
10.1016/j.conb.2018.08.003
10.1098/rstb.2013.0133
10.1016/j.neuron.2011.07.026
10.1016/S0304-3940(99)00935-0
10.1038/nrn2634
10.7554/eLife.22901
10.1523/JNEUROSCI.4199-09.2010
10.1113/JP280397
10.1016/S0896-6273(02)00586-X
10.1152/jn.1999.82.6.3213
10.1186/1471-2202-11-137
10.1038/s41467-018-06004-8
10.1038/416736a
10.1523/JNEUROSCI.3219-12.2013
10.1523/JNEUROSCI.0058-09.2009
10.1038/s41467-017-00218-y
10.1523/JNEUROSCI.17-14-05640.1997
10.1126/science.aac9462
10.1038/76609
10.1101/lm.048389.118
10.1016/j.neuron.2013.11.030
10.1016/j.tins.2010.10.005
10.1016/j.neuron.2007.10.020
10.1101/lm.4.6.510
10.1523/JNEUROSCI.3046-13.2014
10.1007/s00429-016-1350-6
10.1038/nature08503
10.1073/pnas.161493498
10.1016/0304-3940(88)90350-3
10.1113/JP273695
10.1038/s41593-021-00857-x
10.1016/j.neuroscience.2015.01.024
10.1016/j.neuron.2015.08.025
10.1016/j.neuron.2018.07.031
10.1111/j.1469-7793.1998.755bv.x
10.1038/nn.3284
10.1038/nn1486
10.1523/JNEUROSCI.4673-07.2008
10.1016/j.neuron.2018.09.001
10.1152/jn.1998.79.1.13
10.1023/A:1013776130161
10.1523/JNEUROSCI.5123-09.2010
10.1016/j.neuron.2013.07.001
10.1016/j.neuron.2016.01.029
10.1152/jn.1995.73.2.810
10.1016/j.celrep.2018.03.111
10.1016/j.conb.2012.03.003
10.1523/JNEUROSCI.2269-11.2011
10.1111/j.1460-9568.2009.06913.x
10.1002/syn.890110309
10.1523/JNEUROSCI.08-04-01400.1988
10.1038/18686
10.1523/JNEUROSCI.2599-16.2016
10.1523/JNEUROSCI.3251-08.2009
10.1038/s41583-020-0277-3
10.1016/j.neuron.2009.03.007
10.1038/nmeth988
10.1152/physrev.00007.2017
10.1038/nn.4216
10.1002/hipo.22141
10.1073/pnas.1720995115
10.1146/annurev.physiol.64.081501.160008
10.1126/science.1100815
10.1038/nn.4062
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Physiological Society.
2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Physiological Society.
– notice: 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
1XC
DOI 10.1113/JP282753
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 4017
ExternalDocumentID oai_HAL_hal_04795814v1
35876215
10_1113_JP282753
TJP15207
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Epilepsy Research UK
  funderid: F1901
– fundername: Wellcome Trust
– fundername: Medical Research Council
– fundername: Wellcome Trust
  grantid: 209807/Z/17/Z
– fundername: Medical Research Council
  grantid: MR/V034758/1
– fundername: Medical Research Council
  grantid: MR/L01095X/1
– fundername: Wellcome Trust
  grantid: 212285/Z/18/Z
– fundername: Medical Research Council
  grantid: MR/W005204/1
– fundername: Medical Research Council
  grantid: MR/V013556/1
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
18M
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
0YM
31~
3EH
3O-
AASGY
AAYJJ
AAYXX
ADXHL
AEYWJ
AFFNX
AGHNM
AGYGG
C1A
CAG
CHEAL
CITATION
COF
EJD
FA8
H13
HF~
H~9
LW6
MVM
NEJ
OHT
RIG
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
1XC
UMC
ID FETCH-LOGICAL-c4847-8c44a0c55d679721812e8117d6efccfded5a81646a9eb4eb3b4bda9b6a724ecb3
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Fri May 09 12:16:39 EDT 2025
Fri Jul 11 12:01:14 EDT 2025
Fri Jul 25 12:14:24 EDT 2025
Mon Jul 21 06:03:52 EDT 2025
Tue Jul 01 04:29:36 EDT 2025
Thu Apr 24 22:51:47 EDT 2025
Wed Jan 22 16:23:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords hippocampus
neurogliaform cells
interneurons
long-term potentiation
Language English
License Attribution
2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4847-8c44a0c55d679721812e8117d6efccfded5a81646a9eb4eb3b4bda9b6a724ecb3
Notes The peer review history is available in the
https://doi.org/10.1113/JP282753#support‐information‐section
Supporting information
section of this article
Handling Editors: David Wyllie & Tommas Ellender
10.1101/531822
This article was first published as a preprint: Mercier MS, Magloire V, Cornford JH & Kullmann DM (2021). Long‐term potentiation in neurogliaform interneurons modulates excitation‐inhibition balance in the temporoammonic pathway. bioRxiv doi
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6696-3545
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP282753
PMID 35876215
PQID 2708609561
PQPubID 1086388
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_04795814v1
proquest_miscellaneous_2694416648
proquest_journals_2708609561
pubmed_primary_35876215
crossref_primary_10_1113_JP282753
crossref_citationtrail_10_1113_JP282753
wiley_primary_10_1113_JP282753_TJP15207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 September 2022
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 1 September 2022
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 6
2010; 11
2021; 24
1995; 73
2017; 8
2013; 23
2019; 54
2000; 3
1999; 82
2017; 595
1992; 11
2005; 25
2014; 369
2018; 9
2015; 290
2009; 10
2013; 16
2017; 37
2021; 599
2011; 71
2019; 26
2008; 28
2015; 87
1997; 17
2005; 308
2007; 4
1988; 85
2001; 11
1999; 92
2012; 22
2018; 31
2010; 30
1990; 296
2016; 89
2001; 98
2018; 100
2015; 16
2009; 62
2015; 18
2016; 19
2000; 278
2002; 33
2011; 31
2019; 39
2011; 34
2002; 416
2016; 91
2018; 23
1996; 16
2007; 56
2003; 299
2012; 32
2009; 29
2012a; 6
2011; 589
2015; 350
2007a; 584
2017; 97
2015; 25
2009; 30
2014; 81
2013; 33
2002; 64
2013; 79
2005; 8
1988; 8
2018; 115
2007b; 315
1998; 506
1999; 398
2020; 21
2009; 461
2017; 222
2018; 99
1998; 4
2014; 34
2012b; 6
1998; 79
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_69_1
e_1_2_5_29_1
e_1_2_5_80_1
e_1_2_5_82_1
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
Sacramento J. (e_1_2_5_67_1) 2018; 31
e_1_2_5_76_1
e_1_2_5_3_1
e_1_2_5_78_1
e_1_2_5_19_1
e_1_2_5_70_1
e_1_2_5_72_1
e_1_2_5_74_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_68_1
e_1_2_5_81_1
e_1_2_5_60_1
e_1_2_5_83_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_77_1
e_1_2_5_2_1
e_1_2_5_79_1
e_1_2_5_18_1
e_1_2_5_71_1
e_1_2_5_73_1
e_1_2_5_75_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 22
  start-page: 389
  issue: 3
  year: 2012
  end-page: 396
  article-title: Signaling in dendritic spines and spine microdomains
  publication-title: Current Opinion in Neurobiology
– volume: 278
  start-page: 145
  issue: 3
  year: 2000
  end-page: 148
  article-title: Nucleus reuniens thalami innervates γ aminobutyric acid positive cells in hippocampal field CA1 of the rat
  publication-title: Neuroscience Letters
– volume: 82
  start-page: 3213
  issue: 6
  year: 1999
  end-page: 3222
  article-title: Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing
  publication-title: Journal of Neurophysiology
– volume: 81
  start-page: 521
  issue: 3
  year: 2014
  end-page: 528
  article-title: Learning by the dendritic prediction of somatic spiking
  publication-title: Neuron
– volume: 3
  start-page: 653
  issue: 7
  year: 2000
  end-page: 659
  article-title: From form to function: Calcium compartmentalization in dendritic spines
  publication-title: Nature Neuroscience
– volume: 222
  start-page: 2421
  issue: 5
  year: 2017
  end-page: 2438
  article-title: Interaction of nucleus reuniens and entorhinal cortex projections in hippocampal field CA1 of the rat
  publication-title: Brain Structure and Function
– volume: 30
  start-page: 1595
  issue: 5
  year: 2010
  end-page: 1609
  article-title: Expression of COUP‐TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus
  publication-title: Journal of Neuroscience
– volume: 506
  start-page: 755
  issue: 3
  year: 1998
  end-page: 773
  article-title: Unitary IPSPs evoked by interneurons at the stratum radiatum — Stratum lacunosum‐moleculare border in the CA1
  publication-title: Journal of Physiology
– volume: 56
  start-page: 866
  issue: 5
  year: 2007
  end-page: 879
  article-title: A role for synaptic inputs at distal dendrites: Instructive signals for hippocampal long‐term plasticity
  publication-title: Neuron
– volume: 6
  start-page: 1
  year: 2012b
  end-page: 10
  article-title: Neurogliaform and Ivy cells: A major family of nNOS expressing GABAergic neurons
  publication-title: Frontiers in Neural Circuits
– volume: 91
  start-page: 260
  issue: 2
  year: 2016
  end-page: 292
  article-title: GABAergic interneurons in the neocortex: From cellular properties to circuits
  publication-title: Neuron
– volume: 299
  start-page: 1902
  issue: 5614
  year: 2003
  end-page: 1905
  article-title: Identified sources and targets of slow inhibition in the neocortex
  publication-title: Science
– volume: 21
  start-page: 335
  issue: 6
  year: 2020
  end-page: 346
  article-title: Backpropagation and the brain
  publication-title: Nature Reviews. Neuroscience
– volume: 71
  start-page: 995
  issue: 6
  year: 2011
  end-page: 1013
  article-title: A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex
  publication-title: Neuron
– volume: 9
  start-page: 3576
  issue: 1
  year: 2018
  article-title: Dendrite‐targeting interneurons control synaptic NMDA‐receptor activation via nonlinear α5‐GABAA receptors
  publication-title: Nature Communications
– volume: 98
  start-page: 9401
  issue: 16
  year: 2001
  end-page: 9406
  article-title: A hebbian form of long‐term potentiation dependent on mGluR1a in hippocampal inhibitory interneurons
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 398
  start-page: 338
  issue: 6725
  year: 1999
  end-page: 341
  article-title: A new cellular mechanism for coupling inputs arriving at different cortical layers
  publication-title: Nature
– volume: 16
  start-page: 5334
  issue: 17
  year: 1996
  end-page: 5343
  article-title: Long‐term potentiation in distinct subtypes of hippocampal nonpyramidal neurons
  publication-title: Journal of Neuroscience
– volume: 39
  start-page: 125
  issue: 1
  year: 2019
  end-page: 139
  article-title: Four unique interneuron populations reside in neocortical layer 1
  publication-title: Journal of Neuroscience
– volume: 34
  start-page: 1280
  issue: 4
  year: 2014
  end-page: 1292
  article-title: Firing of hippocampal neurogliaform cells induces suppression of synaptic inhibition
  publication-title: Journal of Neuroscience
– volume: 350
  start-page: aac9462
  issue: 6264
  year: 2015
  end-page: aac9462
  article-title: Principles of connectivity among morphologically defined cell types in adult neocortex
  publication-title: Science
– volume: 30
  start-page: 2165
  issue: 6
  year: 2010
  end-page: 2176
  article-title: Common origins of hippocampal Ivy and nitric oxide synthase expressing neurogliaform cells
  publication-title: Journal of Neuroscience
– volume: 87
  start-page: 1274
  issue: 6
  year: 2015
  end-page: 1289
  article-title: Inhibitory gating of input comparison in the CA1 Microcircuit
  publication-title: Neuron
– volume: 4
  start-page: 510
  year: 1998
  end-page: 518
  article-title: Perforant path activation modulates the induction of long‐term potentiation of the schaffer collateral‐hippocampal CA1 response: Theoretical and experimental analyses
  publication-title: Learning and Memory
– volume: 97
  start-page: 1619
  issue: 4
  year: 2017
  end-page: 1747
  article-title: Hippocampal GABAergic inhibitory interneurons
  publication-title: Physiological Reviews
– volume: 416
  start-page: 736
  issue: 6882
  year: 2002
  end-page: 740
  article-title: Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons
  publication-title: Nature
– volume: 92
  start-page: 15
  issue: 1
  year: 1999
  end-page: 26
  article-title: Thalamic excitation of hippocampal CA1 neurons: A comparison with the effects of CA3 stimulation
  publication-title: Neuroscience
– volume: 25
  start-page: 2542
  issue: 9
  year: 2015
  end-page: 2555
  article-title: A differential and timed contribution of identified hippocampal synapses to associative learning in mice
  publication-title: Cerebral Cortex
– volume: 73
  start-page: 810
  year: 1995
  end-page: 819
  article-title: Mechanisms of selective long‐term potentiation of excitatory synapses in stratum oriens /alveus interneurons of rat hippocampal slices
  publication-title: Journal of Neurophysiology
– volume: 595
  start-page: 3449
  issue: 11
  year: 2017
  end-page: 3458
  article-title: T‐type calcium channels contribute to NMDA receptor independent synaptic plasticity in hippocampal regular‐spiking oriens‐alveus interneurons
  publication-title: Journal of Physiology
– volume: 584
  start-page: 885
  issue: 3
  year: 2007a
  end-page: 894
  article-title: NMDA receptor‐dependent long‐term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin‐dependent kinases
  publication-title: Journal of Physiology
– volume: 23
  start-page: 951
  issue: 4
  year: 2018
  end-page: 958
  article-title: Rapid neuromodulation of layer 1 interneurons in human neocortex
  publication-title: Cell Reports
– volume: 315
  start-page: 1262
  issue: 5816
  year: 2007b
  end-page: 1266
  article-title: Anti‐Hebbian long‐term potentiation in the hippocampal feedback inhibitory circuit
  publication-title: Science
– volume: 89
  start-page: 1016
  issue: 5
  year: 2016
  end-page: 1030
  article-title: Structured dendritic inhibition supports branch‐selective integration in CA1 pyramidal cells
  publication-title: Neuron
– volume: 31
  start-page: 14861
  issue: 42
  year: 2011
  end-page: 14870
  article-title: Ivy and neurogliaform interneurons are a major target of ‐opioid receptor modulation
  publication-title: Journal of Neuroscience
– volume: 10
  start-page: 373
  issue: 5
  year: 2009
  end-page: 383
  article-title: The probability of neurotransmitter release: Variability and feedback control at single synapses
  publication-title: Nature Reviews. Neuroscience
– volume: 30
  start-page: 947
  issue: 6
  year: 2009
  end-page: 957
  article-title: GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus
  publication-title: European Journal of Neuroscience
– volume: 115
  start-page: E6329
  issue: 27
  year: 2018
  end-page: E6338
  article-title: Sparse bursts optimize information transmission in a multiplexed neural code
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 26
  start-page: 191
  issue: 7
  year: 2019
  end-page: 205
  article-title: The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior
  publication-title: Learning & Memory
– volume: 29
  start-page: 3642
  issue: 11
  year: 2009
  end-page: 3659
  article-title: Classification of NPY‐expressing neocortical interneurons
  publication-title: Journal of Neuroscience
– volume: 28
  start-page: 6974
  issue: 27
  year: 2008
  end-page: 6982
  article-title: GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells
  publication-title: Journal of Neuroscience
– volume: 62
  start-page: 102
  issue: 1
  year: 2009
  end-page: 111
  article-title: Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons
  publication-title: Neuron
– volume: 18
  start-page: 1133
  issue: 8
  year: 2015
  end-page: 1142
  article-title: Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons
  publication-title: Nature Neuroscience
– volume: 8
  start-page: 1667
  issue: 12
  year: 2005
  end-page: 1676
  article-title: Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons
  publication-title: Nature Neuroscience
– volume: 8
  start-page: 152
  issue: 1
  year: 2017
  article-title: Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells
  publication-title: Nature Communications
– volume: 6
  start-page: 23
  year: 2012a
  article-title: Neurogliaform and Ivy cells: A major family of nNOS expressing GABAergic neurons
  publication-title: Frontiers in Neural Circuits
– volume: 79
  start-page: 1208
  issue: 6
  year: 2013
  end-page: 1221
  article-title: A cortico‐hippocampal learning rule shapes inhibitory microcircuit activity to enhance hippocampal information flow
  publication-title: Neuron
– volume: 23
  start-page: 751
  issue: 9
  year: 2013
  end-page: 785
  article-title: Quantitative assessment of CA1 local circuits: Knowledge base for interneuron‐pyramidal cell connectivity
  publication-title: Hippocampus
– volume: 34
  start-page: 101
  issue: 2
  year: 2011
  end-page: 112
  article-title: GABAA,slow: Causes and consequences
  publication-title: Trends in Neurosciences
– volume: 308
  start-page: 863
  issue: 5723
  year: 2005
  end-page: 866
  article-title: Target cell‐dependent normalization of transmitter release at neocortical synapses
  publication-title: Science
– volume: 11
  start-page: 1
  issue: 1
  year: 2010
  end-page: 11
  article-title: Spatio‐temporal expression of a novel neuron‐derived neurotrophic factor (NDNF) in mouse brains during development
  publication-title: BMC Neuroscience
– volume: 17
  start-page: 5640
  issue: 14
  year: 1997
  end-page: 5650
  article-title: Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms
  publication-title: Journal of Neuroscience
– volume: 296
  start-page: 179
  issue: 2
  year: 1990
  end-page: 203
  article-title: Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris‐leucoagglutinin
  publication-title: Journal of Comparative Neurology
– volume: 19
  start-page: 335
  issue: 2
  year: 2016
  end-page: 346
  article-title: Adult mouse cortical cell taxonomy revealed by single cell transcriptomics
  publication-title: Nature Neuroscience
– volume: 6
  year: 2017
  article-title: Towards deep learning with segregated dendrites
  publication-title: eLife
– volume: 8
  start-page: 1400
  issue: 4
  year: 1988
  end-page: 1410
  article-title: Stratum lacunosum‐moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology
  publication-title: The Journal of Neuroscience
– volume: 8
  start-page: 916
  issue: 7
  year: 2005
  end-page: 924
  article-title: Hebbian LTP in feed‐forward inhibitory interneurons and the temporal fidelity of input discrimination
  publication-title: Nature Neuroscience
– volume: 290
  start-page: 332
  year: 2015
  end-page: 345
  article-title: Synapse‐specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons
  publication-title: Neuroscience
– volume: 11
  start-page: 249
  issue: 3
  year: 1992
  end-page: 258
  article-title: GABAB receptor‐mediated inhibitory postsynaptic potentials evoked by electrical stimulation and by glutamate stimulation of interneurons in stratum lacunosum‐moleculare in hippocampal CA1 pyramidal cells in vitro
  publication-title: Synapse
– volume: 33
  start-page: 325
  issue: 3
  year: 2002
  end-page: 340
  article-title: Theta oscillations in the hippocampus
  publication-title: Neuron
– volume: 16
  start-page: 458
  issue: 8
  year: 2015
  end-page: 468
  article-title: Neurogliaform cells in cortical circuits
  publication-title: Nature Reviews. Neuroscience
– volume: 33
  start-page: 1314
  issue: 4
  year: 2013
  end-page: 1325
  article-title: Distal dendritic inputs control neuronal activity by heterosynaptic potentiation of proximal inputs
  publication-title: Journal of Neuroscience
– volume: 11
  start-page: 207
  issue: 3
  year: 2001
  end-page: 215
  article-title: Supervised and unsupervised learning with two sites of synaptic integration
  publication-title: Journal of Computational Neuroscience
– volume: 369
  issue: 1633
  year: 2014
  article-title: Long‐term potentiation in hippocampal oriens interneurons: Postsynaptic induction, presynaptic expression and evaluation of candidate retrograde factors
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 85
  start-page: 193
  issue: 2
  year: 1988
  end-page: 198
  article-title: Entorhinal projections to the hippocampal CA1 region in the rat: An underestimated pathway
  publication-title: Neuroscience Letters
– volume: 79
  start-page: 13
  issue: 1
  year: 1998
  end-page: 20
  article-title: Long‐term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity
  publication-title: Journal of Neurophysiology
– volume: 64
  start-page: 313
  issue: 1
  year: 2002
  end-page: 353
  article-title: Structure and function of dendritic spines
  publication-title: Annual Review of Physiology
– volume: 31
  start-page: 8721
  year: 2018
  end-page: 8732
  article-title: Dendritic cortical microcircuits approximate the backpropagation algorithm
  publication-title: Advances in Neural Information Processing Systems
– volume: 99
  start-page: 1029
  issue: 5
  year: 2018
  end-page: 1039.e4
  article-title: Inhibitory control of prefrontal cortex by the claustrum
  publication-title: Neuron
– volume: 32
  start-page: 6511
  issue: 19
  year: 2012
  end-page: 6516
  article-title: Calcium‐permeable AMPA receptors provide a common mechanism for LTP in glutamatergic synapses of distinct hippocampal interneuron types
  publication-title: Journal of Neuroscience
– volume: 16
  start-page: 13
  issue: 1
  year: 2013
  end-page: 15
  article-title: Neurogliaform cells dynamically regulate somatosensory integration via synapse‐specific modulation
  publication-title: Nature Neuroscience
– volume: 28
  start-page: 14042
  issue: 52
  year: 2008
  end-page: 14055
  article-title: Bidirectional hebbian plasticity at hippocampal mossy fiber synapses on CA3 interneurons
  publication-title: Journal of Neuroscience
– volume: 589
  start-page: 1875
  issue: 8
  year: 2011
  end-page: 1883
  article-title: Neurogliaform cells and other interneurons of stratum lacunosum‐moleculare gate entorhinal‐hippocampal dialogue
  publication-title: Journal of Physiology
– volume: 25
  start-page: 6775
  issue: 29
  year: 2005
  end-page: 6786
  article-title: Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area
  publication-title: Journal of Neuroscience
– volume: 54
  start-page: 28
  year: 2019
  end-page: 36
  article-title: Dendritic solutions to the credit assignment problem
  publication-title: Current Opinion in Neurobiology
– volume: 24
  start-page: 1010
  issue: 7
  year: 2021
  end-page: 1019
  article-title: Burst‐dependent synaptic plasticity can coordinate learning in hierarchical circuits
  publication-title: Nature Neuroscience
– volume: 599
  start-page: 667
  issue: 2
  year: 2021
  end-page: 676
  article-title: Nicotinic receptor activation induces NMDA receptor independent long‐term potentiation of glutamatergic signalling in hippocampal oriens interneurons
  publication-title: Journal of Physiology
– volume: 461
  start-page: 1278
  issue: 7268
  year: 2009
  end-page: 1281
  article-title: Regulation of cortical microcircuits by unitary GABA‐mediated volume transmission
  publication-title: Nature
– volume: 4
  start-page: 139
  issue: 2
  year: 2007
  end-page: 141
  article-title: Optical induction of synaptic plasticity using a light‐sensitive channel
  publication-title: Nature Methods
– volume: 100
  start-page: 684
  issue: 3
  year: 2018
  end-page: 699.e6
  article-title: Learning‐related plasticity in dendrite‐targeting layer 1 interneurons
  publication-title: Neuron
– volume: 37
  start-page: 23
  issue: 1
  year: 2017
  end-page: 37
  article-title: Endogenously released neuropeptide Y suppresses hippocampal short‐term facilitation and is impaired by stress‐induced anxiety
  publication-title: Journal of Neuroscience
– volume: 29
  start-page: 939
  issue: 4
  year: 2009
  end-page: 950
  article-title: Role of ionotropic glutamate receptors in long‐term potentiation in rat hippocampal CA1 oriens‐lacunosum moleculare interneurons
  publication-title: Journal of Neuroscience
– ident: e_1_2_5_63_1
  doi: 10.1523/JNEUROSCI.1135-05.2005
– ident: e_1_2_5_31_1
  doi: 10.1038/nn1599
– ident: e_1_2_5_75_1
  doi: 10.1016/j.neuron.2016.06.033
– ident: e_1_2_5_4_1
  doi: 10.3389/fncir.2012.00023
– ident: e_1_2_5_6_1
  doi: 10.1016/S0306-4522(98)00712-X
– ident: e_1_2_5_69_1
  doi: 10.1523/JNEUROSCI.1613-18.2018
– ident: e_1_2_5_70_1
  doi: 10.1523/JNEUROSCI.0206-12.2012
– ident: e_1_2_5_25_1
  doi: 10.1523/JNEUROSCI.4848-08.2008
– ident: e_1_2_5_48_1
  doi: 10.1523/JNEUROSCI.16-17-05334.1996
– ident: e_1_2_5_58_1
  doi: 10.1038/nrn3969
– ident: e_1_2_5_27_1
  doi: 10.1093/cercor/bhu054
– ident: e_1_2_5_72_1
  doi: 10.1126/science.1082053
– ident: e_1_2_5_42_1
  doi: 10.1126/science.1137450
– ident: e_1_2_5_41_1
  doi: 10.1113/jphysiol.2007.137380
– ident: e_1_2_5_81_1
  doi: 10.1002/cne.902960202
– ident: e_1_2_5_12_1
  doi: 10.1113/jphysiol.2010.201004
– ident: e_1_2_5_66_1
  doi: 10.1016/j.conb.2018.08.003
– ident: e_1_2_5_51_1
  doi: 10.1098/rstb.2013.0133
– ident: e_1_2_5_73_1
  doi: 10.1016/j.neuron.2011.07.026
– ident: e_1_2_5_21_1
  doi: 10.1016/S0304-3940(99)00935-0
– ident: e_1_2_5_10_1
  doi: 10.1038/nrn2634
– ident: e_1_2_5_28_1
  doi: 10.7554/eLife.22901
– ident: e_1_2_5_24_1
  doi: 10.1523/JNEUROSCI.4199-09.2010
– ident: e_1_2_5_53_1
  doi: 10.1113/JP280397
– ident: e_1_2_5_11_1
  doi: 10.1016/S0896-6273(02)00586-X
– ident: e_1_2_5_23_1
  doi: 10.1152/jn.1999.82.6.3213
– ident: e_1_2_5_38_1
  doi: 10.1186/1471-2202-11-137
– ident: e_1_2_5_68_1
  doi: 10.1038/s41467-018-06004-8
– ident: e_1_2_5_65_1
  doi: 10.1038/416736a
– ident: e_1_2_5_29_1
  doi: 10.1523/JNEUROSCI.3219-12.2013
– ident: e_1_2_5_33_1
  doi: 10.1523/JNEUROSCI.0058-09.2009
– ident: e_1_2_5_16_1
  doi: 10.1038/s41467-017-00218-y
– ident: e_1_2_5_19_1
  doi: 10.1523/JNEUROSCI.17-14-05640.1997
– ident: e_1_2_5_32_1
  doi: 10.1126/science.aac9462
– ident: e_1_2_5_82_1
  doi: 10.1038/76609
– ident: e_1_2_5_18_1
  doi: 10.1101/lm.048389.118
– ident: e_1_2_5_77_1
  doi: 10.1016/j.neuron.2013.11.030
– ident: e_1_2_5_13_1
  doi: 10.1016/j.tins.2010.10.005
– ident: e_1_2_5_22_1
  doi: 10.1016/j.neuron.2007.10.020
– ident: e_1_2_5_44_1
  doi: 10.1101/lm.4.6.510
– ident: e_1_2_5_45_1
  doi: 10.1523/JNEUROSCI.3046-13.2014
– ident: e_1_2_5_20_1
  doi: 10.1007/s00429-016-1350-6
– ident: e_1_2_5_55_1
  doi: 10.1038/nature08503
– ident: e_1_2_5_61_1
  doi: 10.1073/pnas.161493498
– ident: e_1_2_5_80_1
  doi: 10.1016/0304-3940(88)90350-3
– ident: e_1_2_5_52_1
  doi: 10.1113/JP273695
– ident: e_1_2_5_59_1
  doi: 10.1038/s41593-021-00857-x
– ident: e_1_2_5_26_1
  doi: 10.1016/j.neuroscience.2015.01.024
– ident: e_1_2_5_49_1
  doi: 10.1016/j.neuron.2015.08.025
– ident: e_1_2_5_30_1
  doi: 10.1016/j.neuron.2018.07.031
– ident: e_1_2_5_78_1
  doi: 10.1111/j.1469-7793.1998.755bv.x
– ident: e_1_2_5_15_1
  doi: 10.1038/nn.3284
– ident: e_1_2_5_40_1
  doi: 10.1038/nn1486
– ident: e_1_2_5_64_1
  doi: 10.1523/JNEUROSCI.4673-07.2008
– ident: e_1_2_5_2_1
  doi: 10.1016/j.neuron.2018.09.001
– ident: e_1_2_5_3_1
  doi: 10.3389/fncir.2012.00023
– ident: e_1_2_5_17_1
  doi: 10.1152/jn.1998.79.1.13
– ident: e_1_2_5_36_1
  doi: 10.1023/A:1013776130161
– ident: e_1_2_5_76_1
  doi: 10.1523/JNEUROSCI.5123-09.2010
– ident: e_1_2_5_5_1
  doi: 10.1016/j.neuron.2013.07.001
– ident: e_1_2_5_9_1
  doi: 10.1016/j.neuron.2016.01.029
– ident: e_1_2_5_57_1
  doi: 10.1152/jn.1995.73.2.810
– ident: e_1_2_5_62_1
  doi: 10.1016/j.celrep.2018.03.111
– ident: e_1_2_5_14_1
  doi: 10.1016/j.conb.2012.03.003
– ident: e_1_2_5_37_1
  doi: 10.1523/JNEUROSCI.2269-11.2011
– ident: e_1_2_5_34_1
  doi: 10.1111/j.1460-9568.2009.06913.x
– ident: e_1_2_5_79_1
  doi: 10.1002/syn.890110309
– ident: e_1_2_5_39_1
  doi: 10.1523/JNEUROSCI.08-04-01400.1988
– ident: e_1_2_5_43_1
  doi: 10.1038/18686
– ident: e_1_2_5_46_1
  doi: 10.1523/JNEUROSCI.2599-16.2016
– ident: e_1_2_5_56_1
  doi: 10.1523/JNEUROSCI.3251-08.2009
– ident: e_1_2_5_47_1
  doi: 10.1038/s41583-020-0277-3
– ident: e_1_2_5_71_1
  doi: 10.1016/j.neuron.2009.03.007
– ident: e_1_2_5_83_1
  doi: 10.1038/nmeth988
– ident: e_1_2_5_60_1
  doi: 10.1152/physrev.00007.2017
– ident: e_1_2_5_74_1
  doi: 10.1038/nn.4216
– ident: e_1_2_5_7_1
  doi: 10.1002/hipo.22141
– ident: e_1_2_5_50_1
  doi: 10.1073/pnas.1720995115
– ident: e_1_2_5_54_1
  doi: 10.1146/annurev.physiol.64.081501.160008
– ident: e_1_2_5_35_1
  doi: 10.1126/science.1100815
– volume: 31
  start-page: 8721
  year: 2018
  ident: e_1_2_5_67_1
  article-title: Dendritic cortical microcircuits approximate the backpropagation algorithm
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_5_8_1
  doi: 10.1038/nn.4062
SSID ssj0013099
Score 2.463286
Snippet Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In...
Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In...
Abstract Apical dendrites of pyramidal neurons integrate information from higher‐order cortex and thalamus, and gate signalling and plasticity at proximal...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4001
SubjectTerms Animals
Channel gating
Cortex (entorhinal)
Dendrites
Dendrites - physiology
Glutamic acid receptors (ionotropic)
Hippocampal plasticity
Hippocampus
Hippocampus - physiology
Information processing
Interneurons
Interneurons - physiology
Life Sciences
Long-term potentiation
Long-Term Potentiation - physiology
Mice
N-Methyl-D-aspartic acid receptors
Neurobiology
neurogliaform cells
Neurons
Neurons and Cognition
Neurotrophic factors
Pyramidal cells
Pyramidal Cells - physiology
Sensory neurons
Signal transduction
Synapses - physiology
Synaptic plasticity
Thalamus
γ-Aminobutyric acid
Title Long‐term potentiation in neurogliaform interneurons modulates excitation–inhibition balance in the temporoammonic pathway
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP282753
https://www.ncbi.nlm.nih.gov/pubmed/35876215
https://www.proquest.com/docview/2708609561
https://www.proquest.com/docview/2694416648
https://hal.science/hal-04795814
Volume 600
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RnrjwKo-lZeUiBKeUTWI7znGFqFarglaolSpxiGzH20a0TsXuFsoB9Scg8Q_7S5hxHqg8JMQ1dhI7nvF8M558A_CMZyObSqUj9H7yiKfKRipFfUT0SwZeGRlium_eyskBnx6Kwzarkv6Fafgh-oAbaUbYr0nBtWmrkMRENjCdobeAYBu3X0rVIjz0Lvl5gDDK854oPBNxyzuLt77sbrxmidaOKQ_yd5B5HbMGo7N7G953w21yTT7srJZmx375hcnx_-ZzB261WJSNG-G5CzecvwcbY49--OkFe85CdmgIu2_A173aH11dfqOdnJ3VS0oyCovKKs8CKebRSaUJAbMqBBnpkl-w07qkAmFuwdxn2_KBX11-r_xxZUK2GDOUXGkdPQfBKGu4smpN-lFZRhWTP-mL-3Cw-3r_1SRqazdElqPBi5TlXI-sEKXMiCAIcYSjf1pL6ebWzktXCq2I20znznD06A03pc6N1FnCnTXpA1j3tXePgCXS4q5MB6pJzjPDNedirq2MSzu3iSoH8KJbx6KbCNXXOCkaByctuk87gO2-51lD5vGHPk9RFPpmYt-ejPcKukZs_ELF_DwewFYnKUWr84siQekm-j6Jzdt9M2orHcFo7-oV9pE54k8puRrAw0bC-lelgixTLHA-QU7-OsRifzpD2DXKHv9zz024mZAqhOS4LVhffly5J4imlmYIawmfDYP2DEOw6wfjNB1L
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAXXuWxUMBFCE5pN4ntJOK0Aqpl2VYV2ko9IEW2420jWqdid4FyQP0JSPzD_hJmnAcqDwlxjZ3Ejmc834wn3wA84UnfxDJVAXo_WcDj1ARpjPqI6JcMfKqlj-lu78jhHh_ti_0leN7-C1PzQ3QBN9IMv1-TglNAutFyYhsY7aK7gGh7GS5RQW8izn_5Nvp5hNDPso4qPBFhwzyL9262d16wRcuHlAn5O8y8iFq92dm6Bu_aAdfZJu83FnO9Yb78wuX4nzO6DlcbOMoGtfzcgCXrbsLqwKErfnzKnjKfIOoj76vwdVy5g_Ozb7SZs5NqTnlGfl1Z6ZjnxTw4KhWBYFb6OCNdcjN2XBVUI8zOmP1sGkrw87PvpTsstU8YY5ryK42l5yAeZTVdVqVIRUrDqGjyJ3V6C_a2Xk1eDIOmfENgONq8IDWcq74RopAJcQQhlLD0W2sh7dSYaWELoVKiN1OZ1Rydes11oTItVRJxa3R8G1Zc5exdYJE0uDHTmWqU8URzxbmYKiPDwkxNlBY9eNYuZN5OhEpsHOW1jxPn7aftwXrX86Tm8_hDn8coC10zEXAPB-OcrhEhv0hD_jHswVorKnmj9rM8QgEnBj-JzetdMyosncIoZ6sF9pEZQlApedqDO7WIda-KBRmnUOB8vKD8dYj5ZLSLyKuf3Pvnno_g8nCyPc7Hr3fe3IcrEemFz5Vbg5X5h4V9gOBqrh96JfoBKxsfgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZokRAXBBTolgIuQnCK2CS24xxXwGpZlmoPrdRb5FfaSK2zYrevS9WfUIl_2F_CjPNAFSBxje0k9sx4vrHHnwl5x7KhSYVUEUQ_ecRSaSKZgj0C-kUHL7UIa7rfd8Vkn00P-EGbVYlnYRp-iH7BDS0jzNdo4AtbtkaOZAPTOUQLALbXyH3c68N0roTNf-8gDPO8ZwrPeNwSz0Lbj13LO65o7QgTIf9EmXdBa_A648fkUQsX6aiR7xNyz_mnZGPkIVQ-uaTvaUjgDCvjG-RqVvvD2-sbnGzpol5hHlAYd1p5GngrD48rhSCVVmEdEB_5JT2pLd7h5ZbUXZiWsvv2-mfljyodErqoxvxH4_A9gBdpQ2dVK1ThylC81PhcXT4j--Mve58mUXu9QmQY-KRIGsbU0HBuRYYcPuDqHR47tcKVxpTWWa4k0o-p3GkGQbdm2qpcC5UlzBmdPifrvvZuk9BEGJg4cc8zyVmmmWKMl8qI2JrSJNIOyIdupIuuI3gFxnHRxCBp0clkQHb6mouGb-Mvdd6CsPpiJMiejGYFPkPCfC5jdhYPyHYny6I1y2WRgAIiw56A4p2-GAwKd0mUd_Up1BE5QEQhmByQF40O9J9KOTqPmEN_glL88xeLvekckNEw2_rvmm_Ig_nncTH7uvvtJXmYoN6GVLZtsr76cepeAfZZ6ddByX8B6mX-hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+potentiation+in+neurogliaform+interneurons+modulates+excitation-inhibition+balance+in+the+temporoammonic+pathway&rft.jtitle=The+Journal+of+physiology&rft.au=Mercier%2C+Marion+S&rft.au=Magloire%2C+Vincent&rft.au=Cornford%2C+Jonathan+H&rft.au=Kullmann%2C+Dimitri+M&rft.date=2022-09-01&rft.eissn=1469-7793&rft.volume=600&rft.issue=17&rft.spage=4001&rft_id=info:doi/10.1113%2FJP282753&rft_id=info%3Apmid%2F35876215&rft.externalDocID=35876215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon