The role of nonbilayer phospholipids in mitochondrial structure and function

Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer‐forming phospholipids phosphatidylethanolamine (PE) and car...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 592; no. 8; pp. 1273 - 1290
Main Authors Basu Ball, Writoban, Neff, John K., Gohil, Vishal M.
Format Journal Article
LanguageEnglish
Published England 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer‐forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone‐shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE‐ and CL‐trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.
AbstractList Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone-shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE- and CL-trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone-shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE- and CL-trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.
Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer‐forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone‐shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE‐ and CL‐trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.
Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer‐forming phospholipids phosphatidylethanolamine ( PE ) and cardiolipin ( CL ) in the assembly and activity of mitochondrial respiratory chain ( MRC ) complexes. The nonbilayer phospholipids are cone‐shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE ‐ and CL ‐trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo . Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.
Author Basu Ball, Writoban
Gohil, Vishal M.
Neff, John K.
Author_xml – sequence: 1
  givenname: Writoban
  surname: Basu Ball
  fullname: Basu Ball, Writoban
  organization: Texas A&M University
– sequence: 2
  givenname: John K.
  surname: Neff
  fullname: Neff, John K.
  organization: Texas A&M University
– sequence: 3
  givenname: Vishal M.
  surname: Gohil
  fullname: Gohil, Vishal M.
  email: vgohil@tamu.edu
  organization: Texas A&M University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29067684$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1PwyAchomZcR969mY4eukGBVp61GVTkyVe5plQSjMMLRXamP33tnbu4EEPhECe94U8vzmY1K7WANxitMQIxSvMUxIRmvAljjlPL8DsfDMBM4QwjViakSmYh_CO-jPH2RWYxhlK0oTTGdjtDxp6ZzV0JezLc2PlUXvYHFzolzWNKQI0NaxM69TB1YU30sLQ-k61nddQ1gUsu1q1xtXX4LKUNuib074Ab9vNfv0c7V6fXtYPu0hRTtOISsryBPH-k4UqpUyxZERmSmUSFZQnUnPKUEkyyXOcFZqmRGte5FgxRlWMyALcj72Ndx-dDq2oTFDaWllr1wURp5gT0osg_6I4YyzBGNOh9e6EdnmlC9F4U0l_FD-yemA1Asq7ELwuzwhGYhiHGOSLQb74HkefYL8SyrRyUNV6aewfuWTMfRqrj_89I7abx3gMfgF09ZyJ
CitedBy_id crossref_primary_10_1073_pnas_2000640117
crossref_primary_10_1016_j_bbalip_2023_159379
crossref_primary_10_1083_jcb_202302069
crossref_primary_10_1371_journal_pbio_3001899
crossref_primary_10_1021_acschemneuro_1c00608
crossref_primary_10_1021_acs_molpharmaceut_2c00707
crossref_primary_10_1039_D2CB00158F
crossref_primary_10_1039_D4RA08032G
crossref_primary_10_1016_j_addr_2024_115355
crossref_primary_10_1016_j_bbalip_2021_158963
crossref_primary_10_1016_j_addr_2024_115475
crossref_primary_10_1016_j_jlr_2024_100643
crossref_primary_10_1038_s41589_021_00772_z
crossref_primary_10_1016_j_kint_2021_10_039
crossref_primary_10_1016_j_tibs_2021_06_003
crossref_primary_10_1039_D0MD00122H
crossref_primary_10_3390_cells11060997
crossref_primary_10_18097_pbmc20236903174
crossref_primary_10_5650_oleoscience_24_507
crossref_primary_10_1083_jcb_202206008
crossref_primary_10_1002_acn3_51639
crossref_primary_10_1016_j_molcel_2023_02_020
crossref_primary_10_1042_BCJ20220100
crossref_primary_10_1371_journal_ppat_1008810
crossref_primary_10_1073_pnas_1918216117
crossref_primary_10_3389_fphys_2022_921942
crossref_primary_10_1016_j_theriogenology_2022_03_035
crossref_primary_10_1016_j_jhazmat_2023_132013
crossref_primary_10_1016_j_bcp_2023_115621
crossref_primary_10_1038_s42003_025_07610_1
crossref_primary_10_1038_s41419_018_0815_3
crossref_primary_10_3390_cells8070728
crossref_primary_10_1016_j_jciso_2021_100022
crossref_primary_10_1096_fj_201901184RR
crossref_primary_10_4103_2045_9912_344973
crossref_primary_10_1016_j_plipres_2024_101268
crossref_primary_10_1093_bbb_zbae161
crossref_primary_10_3390_ani14172476
crossref_primary_10_1038_s41598_023_33757_0
crossref_primary_10_1038_s42003_021_02492_5
crossref_primary_10_1093_hmg_ddad153
crossref_primary_10_3390_nu12113348
crossref_primary_10_1038_s41380_023_02372_w
crossref_primary_10_3389_fendo_2020_00374
crossref_primary_10_1007_s00344_024_11258_2
crossref_primary_10_1002_acn3_51367
crossref_primary_10_1016_j_jbc_2021_101462
crossref_primary_10_1016_j_jbc_2022_101824
crossref_primary_10_3390_antiox10091483
crossref_primary_10_1016_j_plipres_2022_101195
crossref_primary_10_1016_j_ijbiomac_2022_07_032
crossref_primary_10_1016_j_jbc_2021_100539
crossref_primary_10_1016_j_celrep_2023_112121
crossref_primary_10_3389_fcell_2022_988014
crossref_primary_10_1186_s13195_019_0558_0
crossref_primary_10_1242_jcs_260857
crossref_primary_10_1038_s41467_024_50222_2
crossref_primary_10_1038_s42003_023_05657_6
crossref_primary_10_1016_j_mito_2019_07_010
crossref_primary_10_1080_15376516_2022_2062271
crossref_primary_10_15252_embj_2020106837
crossref_primary_10_1016_j_ceca_2020_102287
crossref_primary_10_1002_1873_3468_15060
crossref_primary_10_1134_S1068162021050253
crossref_primary_10_1002_1873_3468_14089
crossref_primary_10_1016_j_jciso_2021_100004
crossref_primary_10_1007_s12551_025_01270_5
crossref_primary_10_1016_j_bbamem_2021_183663
crossref_primary_10_1126_sciadv_adh0066
crossref_primary_10_1055_a_2192_3167
crossref_primary_10_1002_iub_2018
crossref_primary_10_3390_ijms23095274
crossref_primary_10_1021_acssynbio_4c00499
crossref_primary_10_1111_joim_13031
crossref_primary_10_1098_rsob_210238
crossref_primary_10_3389_fonc_2023_1081253
crossref_primary_10_3390_ijms26031279
crossref_primary_10_1016_j_jlr_2024_100563
crossref_primary_10_1155_2021_9986299
crossref_primary_10_1038_s12276_023_01071_4
crossref_primary_10_1007_s11011_024_01376_x
crossref_primary_10_1016_j_mitoco_2022_10_002
crossref_primary_10_1016_j_bbamem_2019_02_011
crossref_primary_10_3390_cells11121928
crossref_primary_10_1039_D2NR00882C
crossref_primary_10_1002_ana_27208
crossref_primary_10_32615_ps_2023_035
crossref_primary_10_1016_j_aquatox_2025_107252
crossref_primary_10_3390_ijms22042138
crossref_primary_10_3389_fendo_2020_00600
crossref_primary_10_3390_antiox11122314
crossref_primary_10_1016_j_bpj_2024_12_015
crossref_primary_10_1111_febs_16323
crossref_primary_10_1152_ajpcell_00502_2020
crossref_primary_10_1152_ajpheart_00028_2018
crossref_primary_10_1093_brain_awac025
crossref_primary_10_1002_slct_202403174
crossref_primary_10_1007_s00249_021_01501_z
crossref_primary_10_1021_jacs_2c08602
crossref_primary_10_3390_biom12070969
crossref_primary_10_1128_mbio_01718_23
crossref_primary_10_1515_hsz_2020_0121
crossref_primary_10_3389_fcell_2019_00291
crossref_primary_10_3310_JDBC7982
crossref_primary_10_3390_livers3020014
crossref_primary_10_1039_D4LC00283K
crossref_primary_10_3934_molsci_2020010
crossref_primary_10_1080_15548627_2022_2062111
crossref_primary_10_3390_nano12173051
crossref_primary_10_1042_ETLS20220029
crossref_primary_10_1128_mbio_00328_25
crossref_primary_10_3390_ijms23073738
crossref_primary_10_1016_j_jbc_2021_100691
crossref_primary_10_1002_ange_202404328
crossref_primary_10_1016_j_celrep_2024_113772
crossref_primary_10_1093_plphys_kiac123
crossref_primary_10_1172_JCI162836
crossref_primary_10_1038_s44319_024_00336_x
crossref_primary_10_3390_biom13081225
crossref_primary_10_3892_etm_2021_10886
crossref_primary_10_1002_EXP_20230063
crossref_primary_10_1016_j_freeradbiomed_2022_06_226
crossref_primary_10_3390_ijms21103506
crossref_primary_10_3390_hydrobiology1010007
crossref_primary_10_1016_j_bpj_2024_10_009
crossref_primary_10_1038_s41570_022_00433_2
crossref_primary_10_1016_j_bbadis_2018_07_022
crossref_primary_10_7555_JBR_33_20180104
crossref_primary_10_3390_membranes11070465
crossref_primary_10_1111_jnc_16213
crossref_primary_10_3390_cells10071721
crossref_primary_10_3390_cells10092363
crossref_primary_10_1016_j_plipres_2022_101163
crossref_primary_10_1002_anie_202404328
crossref_primary_10_3390_biom13071138
crossref_primary_10_1016_j_tibs_2020_03_009
crossref_primary_10_3389_fimmu_2021_670338
crossref_primary_10_1038_s41467_025_57439_9
crossref_primary_10_3390_antiox12081517
Cites_doi 10.1083/jcb.201601082
10.1074/jbc.M308366200
10.1038/nrm2330
10.1074/jbc.M112.367888
10.1038/srep18344
10.1016/j.bbalip.2016.08.006
10.1021/bi701962c
10.1093/emboj/19.8.1777
10.1093/pcp/pct104
10.1074/jbc.M403275200
10.1074/jbc.M505478200
10.1016/j.molcel.2016.08.013
10.1152/ajpheart.00084.2013
10.1074/jbc.M111.330167
10.1111/j.1600-0854.2012.01352.x
10.1371/journal.pone.0102738
10.1074/jbc.M103689200
10.1021/bi00578a041
10.1046/j.1365-2958.1997.5841950.x
10.1016/bs.ircmb.2015.10.001
10.1016/0003-9861(81)90153-3
10.1074/jbc.M109043200
10.1016/S0163-7827(02)00050-4
10.1007/s10863-015-9599-7
10.1074/jbc.273.16.9829
10.1038/srep01263
10.1016/0005-2736(88)90397-5
10.1074/jbc.M402545200
10.1091/mbc.e05-04-0344
10.1186/1750-1172-8-23
10.1073/pnas.0603242103
10.1016/j.cmet.2013.03.018
10.1074/jbc.M405479200
10.1038/nature13474
10.1038/s41598-017-11008-3
10.1016/j.jmb.2006.06.057
10.1016/j.bbalip.2004.09.007
10.1128/jb.179.18.5843-5848.1997
10.1038/nature19774
10.1074/jbc.M112.442392
10.1016/S0021-9258(19)61957-5
10.1091/mbc.E13-03-0121
10.1074/jbc.M112.425876
10.1074/jbc.C200551200
10.1074/jbc.M116.753574
10.1016/j.bbamem.2004.05.012
10.1016/j.bbabio.2007.01.016
10.1016/j.jmb.2012.09.001
10.1016/j.devcel.2014.06.007
10.1016/j.devcel.2014.06.006
10.1016/j.chemphyslip.2013.10.008
10.1083/jcb.201107053
10.1038/ncb3560
10.1007/BF01799418
10.1074/jbc.M112.404103
10.1074/jbc.M307382200
10.1074/jbc.M703786200
10.2337/db13-0993
10.1083/jcb.201602007
10.1111/j.1365-2958.2004.04202.x
10.1016/j.bbamem.2004.06.010
10.1038/emboj.2010.98
10.4161/auto.27191
10.1016/j.bbabio.2013.12.009
10.1080/15548627.2015.1023984
10.1016/j.cell.2016.11.012
10.1074/jbc.M110.171439
10.1021/ja310577u
10.1016/j.devcel.2011.08.026
10.1074/jbc.M116.722694
10.1083/jcb.200906098
10.1126/science.1225625
10.1016/j.bbabio.2012.04.015
10.1074/jbc.M805511200
10.1016/j.bbamem.2017.03.013
10.1371/journal.pone.0113664
10.1038/nchembio.2113
10.1002/(SICI)1097-0061(199910)15:14<1555::AID-YEA479>3.0.CO;2-Z
10.1074/jbc.M112.398107
10.1038/emboj.2011.379
10.7554/eLife.07739
10.1074/jbc.273.4.2402
10.1042/bj3640317
10.1074/jbc.M112.434183
10.1074/jbc.M112.399428
10.1016/0304-4157(85)90002-4
10.1091/mbc.E15-12-0865
10.1091/mbc.E09-06-0519
10.1083/jcb.200605043
10.1038/emboj.2011.324
10.1128/JB.182.4.1172-1175.2000
10.1128/MCB.01527-06
10.1038/ncb2837
10.1042/0264-6021:3470687
10.1074/jbc.M116.753624
10.1091/mbc.E05-03-0256
10.1074/jbc.M909868199
10.1074/jbc.M506510200
10.1111/bph.12461
10.1074/jbc.M705256200
10.1074/jbc.M113.525733
10.1083/jcb.200801152
10.1038/sj.emboj.7601618
10.1126/science.1175088
10.1091/mbc.12.4.997
10.1016/j.plipres.2013.07.002
10.1038/cdd.2015.160
10.1146/annurev.biochem.66.1.199
10.1016/0014-5793(93)80922-H
10.1111/j.1742-4658.2007.06138.x
10.1016/j.bbalip.2016.09.007
10.1091/mbc.E15-06-0330
10.1046/j.1365-2958.1999.01181.x
10.1016/S0021-9258(19)36940-6
10.1128/jb.173.6.2026-2034.1991
10.1016/j.cub.2009.10.074
10.1074/jbc.270.11.6062
10.1038/labinvest.3700274
10.1016/j.bbamem.2009.06.007
10.1016/S0021-9258(19)50785-2
10.1083/jcb.200810189
10.1083/jcb.200812018
ContentType Journal Article
Copyright 2017 Federation of European Biochemical Societies
2017 Federation of European Biochemical Societies.
Copyright_xml – notice: 2017 Federation of European Biochemical Societies
– notice: 2017 Federation of European Biochemical Societies.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1002/1873-3468.12887
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 1290
ExternalDocumentID 29067684
10_1002_1873_3468_12887
FEB212887
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01GM111672
– fundername: Welch Foundation
  funderid: A‐1810
– fundername: American Heart Association
  funderid: 16GRNT31020028
– fundername: NIGMS NIH HHS
  grantid: R01 GM111672
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAHQN
AAIKJ
AAIPD
AALRI
AAMNL
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABWVN
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
AKBMS
AKYEP
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c4847-4a45b608468dcfaa71a53a9cc9a0d486ae8450f39a8b19de473ee8db1c554c203
ISSN 0014-5793
1873-3468
IngestDate Fri Jul 11 18:33:42 EDT 2025
Fri Jul 11 08:44:07 EDT 2025
Mon Jul 21 05:48:02 EDT 2025
Tue Jul 01 02:46:47 EDT 2025
Thu Apr 24 22:57:02 EDT 2025
Wed Jan 22 16:32:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords cardiolipin
mitochondria
phosphatidylethanolamine
Language English
License 2017 Federation of European Biochemical Societies.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4847-4a45b608468dcfaa71a53a9cc9a0d486ae8450f39a8b19de473ee8db1c554c203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5918238
PMID 29067684
PQID 1955611140
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2718338733
proquest_miscellaneous_1955611140
pubmed_primary_29067684
crossref_primary_10_1002_1873_3468_12887
crossref_citationtrail_10_1002_1873_3468_12887
wiley_primary_10_1002_1873_3468_12887_FEB212887
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2018
References 2013; 3
2002; 277
2006; 174
2011; 195
2012; 13
2013; 8
2003; 278
2016; 36
2004; 1666
1998; 273
2008; 182
2010; 21
2014; 1837
2000; 19
1994; 269
2013; 54
2010; 29
2013; 52
2012; 1817
2009; 19
2016; 48
2003; 42
1956; 222
2014; 10
1997; 179
1991; 173
1979; 18
1996; 19
2007; 282
1997; 26
1981; 208
2016; 321
2005; 85
2016; 167
2007; 1767
1985; 822
2004; 1686
1995; 270
2016; 12
2001; 276
2004; 53
2004; 279
2000; 347
2002; 364
2007; 274
2008; 47
2000; 182
1999; 31
2009; 184
2016; 214
2009; 185
2016; 213
2009; 186
2014; 30
2016; 27
2005; 11
2006; 103
2016; 23
2017; 7
2012; 287
2012; 288
2017; 1862
2013; 24
2008; 9
2013; 288
2014; 171
2014; 63
1988; 946
2014; 179
2013; 15
2013; 17
1999; 15
2006; 361
2011; 21
2017; 9084
2009; 284
2014; 9
2001; 12
1993; 330
2012; 338
2009; 325
2011; 286
2007; 26
2007; 27
2014; 289
2009; 1788
2015; 5
2015; 4
1997; 66
2013; 305
2015; 11
2011; 30
2017; 292
2000; 275
2006; 2
1993; 268
2012; 423
2014; 510
2005; 280
2015; 26
2016; 537
2017; 1859
2016; 63
2013; 135
2017; 19
e_1_2_10_21_1
e_1_2_10_44_1
Musatov A (e_1_2_10_97_1) 2017; 9084
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 1666
  start-page: 275
  year: 2004
  end-page: 288
  article-title: Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile
  publication-title: Biochim Biophys Acta
– volume: 19
  start-page: 1777
  year: 2000
  end-page: 1783
  article-title: Supercomplexes in the respiratory chains of yeast and mammalian mitochondria
  publication-title: EMBO J
– volume: 2
  start-page: 1006
  year: 2006
  end-page: 1017
  article-title: Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote
  publication-title: Mol Biol Cell
– volume: 19
  start-page: 856
  year: 2017
  end-page: 863
  article-title: Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin
  publication-title: Nat Cell Biol
– volume: 4
  start-page: e07739
  year: 2015
  article-title: MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture
  publication-title: Elife
– volume: 31
  start-page: 373
  year: 1999
  end-page: 379
  article-title: Cardiolipin synthase expression is essential for growth at elevated temperature and is regulated by factors affecting mitochondrial development
  publication-title: Mol Microbiol
– volume: 270
  start-page: 6062
  year: 1995
  end-page: 6070
  article-title: Identification of a non‐mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast
  publication-title: J Biol Chem
– volume: 167
  start-page: 1598
  year: 2016
  end-page: 1609
  article-title: Structure of mammalian respiratory supercomplex I III IV
  publication-title: Cell
– volume: 277
  start-page: 43553
  year: 2002
  end-page: 43556
  article-title: Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane
  publication-title: J Biol Chem
– volume: 26
  start-page: 481
  year: 1997
  end-page: 491
  article-title: Cardiolipin is not essential for the growth of on fermentable or non‐fermentable carbon sources
  publication-title: Mol Microbiol
– volume: 9
  start-page: e102738
  year: 2014
  article-title: Specific interaction with cardiolipin triggers functional activation of Dynamin‐Related Protein 1
  publication-title: PLoS ONE
– volume: 325
  start-page: 477
  year: 2009
  end-page: 481
  article-title: An ER‐mitochondria tethering complex revealed by a synthetic biology screen
  publication-title: Science
– volume: 171
  start-page: 2029
  year: 2014
  end-page: 2050
  article-title: First‐in‐class cardiolipin‐protective compound as a therapeutic agent to restore mitochondrial bioenergetics
  publication-title: Br J Pharmacol
– volume: 1666
  start-page: 62
  year: 2004
  end-page: 87
  article-title: How lipids affect the activities of integral membrane proteins
  publication-title: Biochim Biophys Acta
– volume: 287
  start-page: 36744
  year: 2012
  end-page: 36755
  article-title: Processing and topology of the yeast mitochondrial phosphatidylserine decarboxylase 1
  publication-title: J Biol Chem
– volume: 1837
  start-page: 444
  year: 2014
  end-page: 450
  article-title: The function of the respiratory supercomplexes: the plasticity model
  publication-title: Biochim Biophys Acta
– volume: 287
  start-page: 40131
  year: 2012
  end-page: 40139
  article-title: Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1)
  publication-title: J Biol Chem
– volume: 9
  start-page: e113664
  year: 2014
  article-title: An assessment of growth media enrichment on lipid metabolome and the concurrent phenotypic properties of
  publication-title: PLoS ONE
– volume: 9
  start-page: 112
  year: 2008
  end-page: 124
  article-title: Membrane lipids: where they are and how they behave
  publication-title: Nat Rev Mol Cell Biol
– volume: 184
  start-page: 583
  year: 2009
  end-page: 596
  article-title: The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria
  publication-title: J Cell Biol
– volume: 222
  start-page: 193
  year: 1956
  end-page: 214
  article-title: The function of cytidine coenzymes in the biosynthesis of phospholipides
  publication-title: J Biol Chem
– volume: 288
  start-page: 401
  year: 2012
  end-page: 411
  article-title: Cardiolipin‐dependent reconstitution of respiratory supercomplexes from purified complexes III and IV
  publication-title: J Biol Chem
– volume: 280
  start-page: 35410
  year: 2005
  end-page: 35416
  article-title: Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in
  publication-title: J Biol Chem
– volume: 361
  start-page: 462
  year: 2006
  end-page: 469
  article-title: Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients
  publication-title: J Mol Biol
– volume: 15
  start-page: 1555
  year: 1999
  end-page: 1564
  article-title: Lipid composition of subcellular membranes of an FY1679‐derived haploid yeast wild‐type strain grown on different carbon sources
  publication-title: Yeast
– volume: 284
  start-page: 11572
  year: 2009
  end-page: 11578
  article-title: Identification of a cardiolipin‐specific phospholipase encoded by the gene CLD1 (YGR110W) in yeast
  publication-title: J Biol Chem
– volume: 282
  start-page: 28362
  year: 2007
  end-page: 28372
  article-title: The CDP‐ethanolamine pathway and phosphatidylserine decarboxylation generate different phosphatidylethanolamine molecular species
  publication-title: J Biol Chem
– volume: 279
  start-page: 32294
  year: 2004
  end-page: 32300
  article-title: Absence of cardiolipin results in temperature sensitivity, respiratory defects, and mitochondrial DNA instability independent of pet56
  publication-title: J Biol Chem
– volume: 537
  start-page: 644
  year: 2016
  end-page: 648
  article-title: The architecture of respiratory supercomplexes
  publication-title: Nature
– volume: 17
  start-page: 709
  year: 2013
  end-page: 718
  article-title: Tam41 is a CDP‐diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria
  publication-title: Cell Metab
– volume: 1862
  start-page: 25
  year: 2017
  end-page: 38
  article-title: Cell biology, physiology and enzymology of phosphatidylserine decarboxylase
  publication-title: Biochim Biophys Acta
– volume: 36
  start-page: 18718
  year: 2016
  end-page: 18729
  article-title: Phosphatidylcholine affects inner membrane protein translocases of mitochondria
  publication-title: J Biol Chem
– volume: 287
  start-page: 17589
  year: 2012
  end-page: 17597
  article-title: Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in
  publication-title: J Biol Chem
– volume: 1767
  start-page: 204
  year: 2007
  end-page: 221
  article-title: Redox‐linked protonation state changes in cytochrome bc1 identified by Poisson‐Boltzmann electrostatics calculations
  publication-title: Biochim Biophys Acta
– volume: 276
  start-page: 48539
  year: 2001
  end-page: 48548
  article-title: Phosphatidylethanolamine has an essential role in that is independent of its ability to form hexagonal phase structures
  publication-title: J Biol Chem
– volume: 1859
  start-page: 1156
  year: 2017
  end-page: 1163
  article-title: Cardiolipin and mitochondrial cristae organization
  publication-title: Biochim Biophys Acta
– volume: 186
  start-page: 793
  year: 2009
  end-page: 803
  article-title: Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion
  publication-title: J Cell Biol
– volume: 10
  start-page: 376
  year: 2014
  end-page: 378
  article-title: LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease
  publication-title: Autophagy
– volume: 19
  start-page: 2133
  year: 2009
  end-page: 2139
  article-title: Mitochondrial cardiolipin involved in outer‐membrane protein biogenesis: implications for Barth syndrome
  publication-title: Curr Biol
– volume: 21
  start-page: 694
  year: 2011
  end-page: 707
  article-title: Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis
  publication-title: Dev Cell
– volume: 29
  start-page: 1976
  year: 2010
  end-page: 1987
  article-title: A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4
  publication-title: EMBO J
– volume: 822
  start-page: 1
  year: 1985
  end-page: 42
  article-title: Lipids of mitochondria
  publication-title: Biochim Biophys Acta
– volume: 1862
  start-page: 81
  year: 2017
  end-page: 89
  article-title: Intramitochondrial phospholipid trafficking
  publication-title: Biochim Biophys Acta
– volume: 12
  start-page: 997
  year: 2001
  end-page: 1007
  article-title: Roles of phosphatidylethanolamine and of its several biosynthetic pathways in
  publication-title: Mol Biol Cell
– volume: 292
  start-page: 1092
  year: 2017
  end-page: 1102
  article-title: Loss of cardiolipin leads to perturbation of acetyl‐CoA synthesis
  publication-title: J Biol Chem
– volume: 364
  start-page: 317
  year: 2002
  end-page: 322
  article-title: Cardiolipin prevents rate‐dependent uncoupling and provides osmotic stability in yeast mitochondria
  publication-title: Biochem J
– volume: 11
  start-page: 643
  year: 2015
  end-page: 652
  article-title: Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy
  publication-title: Autophagy
– volume: 3
  start-page: 1263
  year: 2013
  article-title: Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels
  publication-title: Sci Rep
– volume: 275
  start-page: 22387
  year: 2000
  end-page: 22394
  article-title: Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function
  publication-title: J Biol Chem
– volume: 273
  start-page: 2402
  year: 1998
  end-page: 2408
  article-title: Cardiolipin synthase is associated with a large complex in yeast mitochondria
  publication-title: J Biol Chem
– volume: 27
  start-page: 3327
  year: 2007
  end-page: 3336
  article-title: Developmental and metabolic effects of disruption of the mouse CTP:phosphoethanolamine cytidylyltransferase gene (Pcyt2)
  publication-title: Mol Cell Biol
– volume: 278
  start-page: 51380
  year: 2003
  end-page: 51385
  article-title: Remodeling of cardiolipin by phospholipid transacylation
  publication-title: J Biol Chem
– volume: 269
  start-page: 28670
  year: 1994
  end-page: 28675
  article-title: Regulation of lipid polymorphism is essential for the viability of phosphatidylethanolamine‐deficient cells
  publication-title: J Biol Chem
– volume: 182
  start-page: 1172
  year: 2000
  end-page: 1175
  article-title: Visualization of phospholipid domains in by using the cardiolipin‐specific fluorescent dye 10‐N‐nonyl acridine orange
  publication-title: J Bacteriol
– volume: 946
  start-page: 227
  year: 1988
  end-page: 234
  article-title: Lipid topology and physical properties of the outer mitochondrial membrane of the yeast,
  publication-title: Biochim Biophys Acta
– volume: 11
  start-page: 5202
  year: 2005
  end-page: 5214
  article-title: Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth syndrome
  publication-title: Mol Biol Cell
– volume: 1788
  start-page: 2048
  year: 2009
  end-page: 2058
  article-title: Cardiolipin and mitochondrial carriers
  publication-title: Biochim Biophys Acta
– volume: 30
  start-page: 4652
  year: 2011
  end-page: 4664
  article-title: Arrangement of electron transport chain components in bovine mitochondrial supercomplex I III IV
  publication-title: EMBO J
– volume: 330
  start-page: 71
  year: 1993
  end-page: 76
  article-title: Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane
  publication-title: FEBS Lett
– volume: 52
  start-page: 590
  year: 2013
  end-page: 614
  article-title: Lipids of mitochondria
  publication-title: Prog Lipid Res
– volume: 27
  start-page: 2161
  year: 2016
  end-page: 2171
  article-title: Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation
  publication-title: Mol Biol Cell
– volume: 182
  start-page: 937
  year: 2008
  end-page: 950
  article-title: Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane
  publication-title: J Cell Biol
– volume: 63
  start-page: 1034
  year: 2016
  end-page: 1043
  article-title: Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division
  publication-title: Mol Cell
– volume: 21
  start-page: 443
  year: 2010
  end-page: 455
  article-title: Compartment‐specific synthesis of phosphatidylethanolamine is required for normal heavy metal resistance
  publication-title: Mol Biol Cell
– volume: 423
  start-page: 677
  year: 2012
  end-page: 686
  article-title: Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes
  publication-title: J Mol Biol
– volume: 66
  start-page: 199
  year: 1997
  end-page: 232
  article-title: Molecular basis for membrane phospholipid diversity: why are there so many lipids?
  publication-title: Annu Rev Biochem
– volume: 279
  start-page: 42612
  year: 2004
  end-page: 42618
  article-title: Cardiolipin biosynthesis and mitochondrial respiratory chain function are interdependent
  publication-title: J Biol Chem
– volume: 1817
  start-page: 1588
  year: 2012
  end-page: 1596
  article-title: The stability and activity of respiratory Complex II is cardiolipin‐dependent
  publication-title: Biochim Biophys Acta
– volume: 1686
  start-page: 161
  year: 2004
  end-page: 168
  article-title: Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast
  publication-title: Biochim Biophys Acta
– volume: 174
  start-page: 379
  year: 2006
  end-page: 390
  article-title: Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins
  publication-title: J Cell Biol
– volume: 23
  start-page: 1140
  year: 2016
  end-page: 1151
  article-title: NDPK‐D (NM23‐H4)‐mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy
  publication-title: Cell Death Differ
– volume: 208
  start-page: 305
  year: 1981
  end-page: 318
  article-title: Asymmetrical orientation of phospholipids and their interactions with marker enzymes in pig heart mitochondrial inner membrane
  publication-title: Arch Biochem Biophys
– volume: 185
  start-page: 1029
  year: 2009
  end-page: 1045
  article-title: Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria
  publication-title: J Cell Biol
– volume: 214
  start-page: 77
  year: 2016
  end-page: 88
  article-title: Phosphatidylserine transport by Ups2‐Mdm35 in respiration‐active mitochondria
  publication-title: J Cell Biol
– volume: 287
  start-page: 23095
  year: 2012
  end-page: 23103
  article-title: Arrangement of the respiratory chain complexes in supercomplex III IV revealed by single particle cryo‐electron microscopy
  publication-title: J Biol Chem
– volume: 278
  start-page: 52873
  year: 2003
  end-page: 52880
  article-title: Cardiolipin stabilizes respiratory chain supercomplexes
  publication-title: J Biol Chem
– volume: 7
  start-page: 10744
  year: 2017
  article-title: Cryo‐EM Studies of Drp1 Reveal cardiolipin interactions that activate the helical oligomer
  publication-title: Sci Rep
– volume: 305
  start-page: H1332
  year: 2013
  end-page: H1343
  article-title: Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 292
  start-page: 2916
  year: 2017
  end-page: 2923
  article-title: Cardiolipin regulates mitophagy through the protein kinase C pathway
  publication-title: J Biol Chem
– volume: 42
  start-page: 115
  year: 2003
  end-page: 162
  article-title: Biosynthesis of phosphatidylcholine in bacteria
  publication-title: Prog Lipid Res
– volume: 280
  start-page: 40032
  year: 2005
  end-page: 40040
  article-title: Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects
  publication-title: J Biol Chem
– volume: 179
  start-page: 5843
  year: 1997
  end-page: 5848
  article-title: Regulation of yeast phospholipid biosynthetic genes in phosphatidylserine decarboxylase mutants
  publication-title: J Bacteriol
– volume: 288
  start-page: 16451
  year: 2013
  end-page: 16459
  article-title: Role of phosphatidylethanolamine in the biogenesis of mitochondrial outer membrane proteins
  publication-title: J Biol Chem
– volume: 26
  start-page: 1713
  year: 2007
  end-page: 1725
  article-title: Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase
  publication-title: EMBO J
– volume: 321
  start-page: 29
  year: 2016
  end-page: 88
  article-title: Phosphatidylethanolamine metabolism in health and disease
  publication-title: Int Rev Cell Mol Biol
– volume: 8
  start-page: 23
  year: 2013
  article-title: Barth syndrome
  publication-title: Orphanet J Rare Dis
– volume: 279
  start-page: 44394
  year: 2004
  end-page: 44399
  article-title: The human TAZ gene complements mitochondrial dysfunction in the yeast taz1Delta mutant. Implications for Barth syndrome
  publication-title: J Biol Chem
– volume: 15
  start-page: 1197
  year: 2013
  end-page: 1205
  article-title: Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells
  publication-title: Nat Cell Biol
– volume: 287
  start-page: 37939
  year: 2012
  end-page: 37948
  article-title: Lipid‐dependent generation of dual topology for a membrane protein
  publication-title: J Biol Chem
– volume: 268
  start-page: 21416
  year: 1993
  end-page: 21424
  article-title: Phosphatidylserine decarboxylase from . Isolation of mutants, cloning of the gene, and creation of a null allele
  publication-title: J Biol Chem
– volume: 173
  start-page: 2026
  year: 1991
  end-page: 2034
  article-title: Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote
  publication-title: J Bacteriol
– volume: 274
  start-page: 6180
  year: 2007
  end-page: 6190
  article-title: The phosphatidylethanolamine level of yeast mitochondria is affected by the mitochondrial components Oxa1p and Yme1p
  publication-title: FEBS J
– volume: 273
  start-page: 9829
  year: 1998
  end-page: 9836
  article-title: The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero‐phosphate synthase of
  publication-title: J Biol Chem
– volume: 213
  start-page: 525
  year: 2016
  end-page: 534
  article-title: MICOS and phospholipid transfer by Ups2‐Mdm35 organize membrane lipid synthesis in mitochondria
  publication-title: J Cell Biol
– volume: 338
  start-page: 815
  year: 2012
  end-page: 818
  article-title: Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein
  publication-title: Science
– volume: 54
  start-page: 1612
  year: 2013
  end-page: 1619
  article-title: Mitochondrial phosphatidylethanolamine level modulates Cyt c oxidase activity to maintain respiration capacity in rosette leaves
  publication-title: Plant Cell Physiol
– volume: 19
  start-page: 157
  year: 1996
  end-page: 160
  article-title: X‐linked cardioskeletal myopathy and neutropenia (Barth syndrome): respiratory‐chain abnormalities in cultured fibroblasts
  publication-title: J Inherit Metab Dis
– volume: 85
  start-page: 823
  year: 2005
  end-page: 830
  article-title: Characterization of lymphoblast mitochondria from patients with Barth syndrome
  publication-title: Lab Invest
– volume: 286
  start-page: 899
  year: 2011
  end-page: 908
  article-title: Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome
  publication-title: J Biol Chem
– volume: 289
  start-page: 1768
  year: 2014
  end-page: 1778
  article-title: Unremodeled and remodeled cardiolipin are functionally indistinguishable in yeast
  publication-title: J Biol Chem
– volume: 103
  start-page: 11584
  year: 2006
  end-page: 11588
  article-title: A model of Barth syndrome
  publication-title: Proc Natl Acad Sci U S A
– volume: 179
  start-page: 25
  year: 2014
  end-page: 31
  article-title: The topology and regulation of cardiolipin biosynthesis and remodeling in yeast
  publication-title: Chem Phys Lipids
– volume: 9084
  start-page: 30222
  year: 2017
  end-page: 30225
  article-title: Role of cardiolipin in stability of integral membrane proteins
  publication-title: Biochimie
– volume: 24
  start-page: 2008
  year: 2013
  end-page: 2020
  article-title: Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling
  publication-title: Mol Biol Cell
– volume: 48
  start-page: 125
  year: 2016
  end-page: 135
  article-title: How lipids modulate mitochondrial protein import
  publication-title: J Bioenerg Biomembr
– volume: 26
  start-page: 3104
  year: 2015
  end-page: 3116
  article-title: Cardiolipin's propensity for phase transition and its reorganization by dynamin‐related protein 1 form a basis for mitochondrial membrane fission
  publication-title: Mol Biol Cell
– volume: 347
  start-page: 687
  year: 2000
  end-page: 691
  article-title: Oxidative phosphorylation in cardiolipin‐lacking yeast mitochondria
  publication-title: Biochem J
– volume: 510
  start-page: 48
  year: 2014
  end-page: 57
  article-title: Lipid landscapes and pipelines in membrane homeostasis
  publication-title: Nature
– volume: 13
  start-page: 880
  year: 2012
  end-page: 890
  article-title: Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance
  publication-title: Traffic
– volume: 18
  start-page: 2407
  year: 1979
  end-page: 2414
  article-title: Phospholipid topology of the inner mitochondrial membrane of rat liver
  publication-title: Biochemistry
– volume: 30
  start-page: 95
  year: 2014
  end-page: 102
  article-title: A dynamic interface between vacuoles and mitochondria in yeast
  publication-title: Dev Cell
– volume: 135
  start-page: 3112
  year: 2013
  end-page: 3120
  article-title: Evidence for cardiolipin binding sites on the membrane‐exposed surface of the cytochrome bc1
  publication-title: J Am Chem Soc
– volume: 63
  start-page: 2620
  year: 2014
  end-page: 2630
  article-title: The concentration of phosphatidylethanolamine in mitochondria can modulate ATP production and glucose metabolism in mice
  publication-title: Diabetes
– volume: 30
  start-page: 4356
  year: 2011
  end-page: 4370
  article-title: The mitochondrial contact site complex, a determinant of mitochondrial architecture
  publication-title: EMBO J
– volume: 276
  start-page: 25262
  year: 2001
  end-page: 25272
  article-title: Lack of mitochondrial anionic phospholipids causes an inhibition of translation of protein components of the electron transport chain. A yeast genetic model system for the study of anionic phospholipid function in mitochondria
  publication-title: J Biol Chem
– volume: 47
  start-page: 4518
  year: 2008
  end-page: 4529
  article-title: Role of phospholipid scramblase 3 in the regulation of tumor necrosis factor‐alpha‐induced apoptosis
  publication-title: Biochemistry
– volume: 5
  start-page: 18344
  year: 2015
  article-title: Interaction of MDM33 with mitochondrial inner membrane homeostasis pathways in yeast
  publication-title: Sci Rep
– volume: 282
  start-page: 28344
  year: 2007
  end-page: 28352
  article-title: Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in
  publication-title: J Biol Chem
– volume: 195
  start-page: 323
  year: 2011
  end-page: 340
  article-title: A mitochondrial‐focused genetic interaction map reveals a scaffold‐like complex required for inner membrane organization in mitochondria
  publication-title: J Cell Biol
– volume: 30
  start-page: 86
  year: 2014
  end-page: 94
  article-title: Cellular metabolism regulates contact sites between vacuoles and mitochondria
  publication-title: Dev Cell
– volume: 288
  start-page: 4158
  year: 2013
  end-page: 4173
  article-title: Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology
  publication-title: J Biol Chem
– volume: 53
  start-page: 1243
  year: 2004
  end-page: 1249
  article-title: Post‐translational regulation of phosphatidylglycerolphosphate synthase in response to inositol
  publication-title: Mol Microbiol
– volume: 12
  start-page: 641
  year: 2016
  end-page: 647
  article-title: Loss of protein association causes cardiolipin degradation in Barth syndrome
  publication-title: Nat Chem Biol
– ident: e_1_2_10_39_1
  doi: 10.1083/jcb.201601082
– ident: e_1_2_10_80_1
  doi: 10.1074/jbc.M308366200
– ident: e_1_2_10_5_1
  doi: 10.1038/nrm2330
– ident: e_1_2_10_83_1
  doi: 10.1074/jbc.M112.367888
– ident: e_1_2_10_114_1
  doi: 10.1038/srep18344
– ident: e_1_2_10_33_1
  doi: 10.1016/j.bbalip.2016.08.006
– ident: e_1_2_10_29_1
  doi: 10.1021/bi701962c
– ident: e_1_2_10_77_1
  doi: 10.1093/emboj/19.8.1777
– ident: e_1_2_10_116_1
  doi: 10.1093/pcp/pct104
– ident: e_1_2_10_15_1
  doi: 10.1074/jbc.M403275200
– ident: e_1_2_10_61_1
  doi: 10.1074/jbc.M505478200
– ident: e_1_2_10_75_1
  doi: 10.1016/j.molcel.2016.08.013
– ident: e_1_2_10_95_1
  doi: 10.1152/ajpheart.00084.2013
– ident: e_1_2_10_69_1
  doi: 10.1074/jbc.M111.330167
– ident: e_1_2_10_50_1
  doi: 10.1111/j.1600-0854.2012.01352.x
– ident: e_1_2_10_73_1
  doi: 10.1371/journal.pone.0102738
– ident: e_1_2_10_87_1
  doi: 10.1074/jbc.M103689200
– ident: e_1_2_10_13_1
  doi: 10.1021/bi00578a041
– ident: e_1_2_10_22_1
  doi: 10.1046/j.1365-2958.1997.5841950.x
– ident: e_1_2_10_59_1
  doi: 10.1016/bs.ircmb.2015.10.001
– ident: e_1_2_10_14_1
  doi: 10.1016/0003-9861(81)90153-3
– ident: e_1_2_10_111_1
  doi: 10.1074/jbc.M109043200
– ident: e_1_2_10_122_1
  doi: 10.1016/S0163-7827(02)00050-4
– ident: e_1_2_10_103_1
  doi: 10.1007/s10863-015-9599-7
– ident: e_1_2_10_20_1
  doi: 10.1074/jbc.273.16.9829
– ident: e_1_2_10_90_1
  doi: 10.1038/srep01263
– ident: e_1_2_10_11_1
  doi: 10.1016/0005-2736(88)90397-5
– ident: e_1_2_10_53_1
  doi: 10.1074/jbc.M402545200
– ident: e_1_2_10_113_1
  doi: 10.1091/mbc.e05-04-0344
– ident: e_1_2_10_67_1
  doi: 10.1186/1750-1172-8-23
– ident: e_1_2_10_62_1
  doi: 10.1073/pnas.0603242103
– ident: e_1_2_10_19_1
  doi: 10.1016/j.cmet.2013.03.018
– volume: 9084
  start-page: 30222
  year: 2017
  ident: e_1_2_10_97_1
  article-title: Role of cardiolipin in stability of integral membrane proteins
  publication-title: Biochimie
– ident: e_1_2_10_94_1
  doi: 10.1074/jbc.M405479200
– ident: e_1_2_10_2_1
  doi: 10.1038/nature13474
– ident: e_1_2_10_72_1
  doi: 10.1038/s41598-017-11008-3
– ident: e_1_2_10_82_1
  doi: 10.1016/j.jmb.2006.06.057
– ident: e_1_2_10_110_1
  doi: 10.1016/j.bbalip.2004.09.007
– ident: e_1_2_10_58_1
  doi: 10.1128/jb.179.18.5843-5848.1997
– ident: e_1_2_10_78_1
  doi: 10.1038/nature19774
– ident: e_1_2_10_120_1
  doi: 10.1074/jbc.M112.442392
– ident: e_1_2_10_123_1
  doi: 10.1016/S0021-9258(19)61957-5
– ident: e_1_2_10_26_1
  doi: 10.1091/mbc.E13-03-0121
– ident: e_1_2_10_85_1
  doi: 10.1074/jbc.M112.425876
– ident: e_1_2_10_81_1
  doi: 10.1074/jbc.C200551200
– ident: e_1_2_10_108_1
  doi: 10.1074/jbc.M116.753574
– ident: e_1_2_10_7_1
  doi: 10.1016/j.bbamem.2004.05.012
– ident: e_1_2_10_88_1
  doi: 10.1016/j.bbabio.2007.01.016
– ident: e_1_2_10_115_1
  doi: 10.1016/j.jmb.2012.09.001
– ident: e_1_2_10_49_1
  doi: 10.1016/j.devcel.2014.06.007
– ident: e_1_2_10_48_1
  doi: 10.1016/j.devcel.2014.06.006
– ident: e_1_2_10_23_1
  doi: 10.1016/j.chemphyslip.2013.10.008
– ident: e_1_2_10_31_1
  doi: 10.1083/jcb.201107053
– ident: e_1_2_10_70_1
  doi: 10.1038/ncb3560
– ident: e_1_2_10_86_1
  doi: 10.1007/BF01799418
– ident: e_1_2_10_118_1
  doi: 10.1074/jbc.M112.404103
– ident: e_1_2_10_25_1
  doi: 10.1074/jbc.M307382200
– ident: e_1_2_10_45_1
  doi: 10.1074/jbc.M703786200
– ident: e_1_2_10_119_1
  doi: 10.2337/db13-0993
– ident: e_1_2_10_40_1
  doi: 10.1083/jcb.201602007
– ident: e_1_2_10_54_1
  doi: 10.1111/j.1365-2958.2004.04202.x
– ident: e_1_2_10_6_1
  doi: 10.1016/j.bbamem.2004.06.010
– ident: e_1_2_10_21_1
  doi: 10.1038/emboj.2010.98
– ident: e_1_2_10_105_1
  doi: 10.4161/auto.27191
– ident: e_1_2_10_76_1
  doi: 10.1016/j.bbabio.2013.12.009
– ident: e_1_2_10_107_1
  doi: 10.1080/15548627.2015.1023984
– ident: e_1_2_10_79_1
  doi: 10.1016/j.cell.2016.11.012
– ident: e_1_2_10_63_1
  doi: 10.1074/jbc.M110.171439
– ident: e_1_2_10_89_1
  doi: 10.1021/ja310577u
– ident: e_1_2_10_32_1
  doi: 10.1016/j.devcel.2011.08.026
– ident: e_1_2_10_121_1
  doi: 10.1074/jbc.M116.722694
– ident: e_1_2_10_71_1
  doi: 10.1083/jcb.200906098
– ident: e_1_2_10_18_1
  doi: 10.1126/science.1225625
– ident: e_1_2_10_91_1
  doi: 10.1016/j.bbabio.2012.04.015
– ident: e_1_2_10_24_1
  doi: 10.1074/jbc.M805511200
– ident: e_1_2_10_65_1
  doi: 10.1016/j.bbamem.2017.03.013
– ident: e_1_2_10_17_1
  doi: 10.1371/journal.pone.0113664
– ident: e_1_2_10_55_1
  doi: 10.1038/nchembio.2113
– ident: e_1_2_10_10_1
  doi: 10.1002/(SICI)1097-0061(199910)15:14<1555::AID-YEA479>3.0.CO;2-Z
– ident: e_1_2_10_38_1
  doi: 10.1074/jbc.M112.398107
– ident: e_1_2_10_30_1
  doi: 10.1038/emboj.2011.379
– ident: e_1_2_10_68_1
  doi: 10.7554/eLife.07739
– ident: e_1_2_10_51_1
  doi: 10.1074/jbc.273.4.2402
– ident: e_1_2_10_93_1
  doi: 10.1042/bj3640317
– ident: e_1_2_10_112_1
  doi: 10.1074/jbc.M112.434183
– ident: e_1_2_10_46_1
  doi: 10.1074/jbc.M112.399428
– ident: e_1_2_10_8_1
  doi: 10.1016/0304-4157(85)90002-4
– ident: e_1_2_10_16_1
  doi: 10.1091/mbc.E15-12-0865
– ident: e_1_2_10_41_1
  doi: 10.1091/mbc.E09-06-0519
– ident: e_1_2_10_28_1
  doi: 10.1083/jcb.200605043
– ident: e_1_2_10_84_1
  doi: 10.1038/emboj.2011.324
– ident: e_1_2_10_124_1
  doi: 10.1128/JB.182.4.1172-1175.2000
– ident: e_1_2_10_44_1
  doi: 10.1128/MCB.01527-06
– ident: e_1_2_10_104_1
  doi: 10.1038/ncb2837
– ident: e_1_2_10_92_1
  doi: 10.1042/0264-6021:3470687
– ident: e_1_2_10_100_1
  doi: 10.1074/jbc.M116.753624
– ident: e_1_2_10_27_1
  doi: 10.1091/mbc.E05-03-0256
– ident: e_1_2_10_96_1
  doi: 10.1074/jbc.M909868199
– ident: e_1_2_10_43_1
  doi: 10.1074/jbc.M506510200
– ident: e_1_2_10_109_1
  doi: 10.1111/bph.12461
– ident: e_1_2_10_36_1
  doi: 10.1074/jbc.M705256200
– ident: e_1_2_10_66_1
  doi: 10.1074/jbc.M113.525733
– ident: e_1_2_10_99_1
  doi: 10.1083/jcb.200801152
– ident: e_1_2_10_117_1
  doi: 10.1038/sj.emboj.7601618
– ident: e_1_2_10_47_1
  doi: 10.1126/science.1175088
– ident: e_1_2_10_42_1
  doi: 10.1091/mbc.12.4.997
– ident: e_1_2_10_4_1
  doi: 10.1016/j.plipres.2013.07.002
– ident: e_1_2_10_106_1
  doi: 10.1038/cdd.2015.160
– ident: e_1_2_10_3_1
  doi: 10.1146/annurev.biochem.66.1.199
– ident: e_1_2_10_12_1
  doi: 10.1016/0014-5793(93)80922-H
– ident: e_1_2_10_56_1
  doi: 10.1111/j.1742-4658.2007.06138.x
– ident: e_1_2_10_57_1
  doi: 10.1016/j.bbalip.2016.09.007
– ident: e_1_2_10_74_1
  doi: 10.1091/mbc.E15-06-0330
– ident: e_1_2_10_52_1
  doi: 10.1046/j.1365-2958.1999.01181.x
– ident: e_1_2_10_34_1
  doi: 10.1016/S0021-9258(19)36940-6
– ident: e_1_2_10_9_1
  doi: 10.1128/jb.173.6.2026-2034.1991
– ident: e_1_2_10_101_1
  doi: 10.1016/j.cub.2009.10.074
– ident: e_1_2_10_35_1
  doi: 10.1074/jbc.270.11.6062
– ident: e_1_2_10_64_1
  doi: 10.1038/labinvest.3700274
– ident: e_1_2_10_98_1
  doi: 10.1016/j.bbamem.2009.06.007
– ident: e_1_2_10_37_1
  doi: 10.1016/S0021-9258(19)50785-2
– ident: e_1_2_10_60_1
  doi: 10.1083/jcb.200810189
– ident: e_1_2_10_102_1
  doi: 10.1083/jcb.200812018
SSID ssj0001819
Score 2.564312
SecondaryResourceType review_article
Snippet Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1273
SubjectTerms Animals
biosynthesis
cardiolipin
cardiolipins
Cardiolipins - genetics
Cardiolipins - metabolism
Electron Transport - physiology
electron transport chain
Electron Transport Chain Complex Proteins - genetics
Electron Transport Chain Complex Proteins - metabolism
Humans
mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
phosphatidylethanolamine
phosphatidylethanolamines
Phosphatidylethanolamines - genetics
Phosphatidylethanolamines - metabolism
Protein Transport - physiology
Title The role of nonbilayer phospholipids in mitochondrial structure and function
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.12887
https://www.ncbi.nlm.nih.gov/pubmed/29067684
https://www.proquest.com/docview/1955611140
https://www.proquest.com/docview/2718338733
Volume 592
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4IXBBuXcpOREEKqksWxEzuP7TQ0UbYH2GBvkWMnWqUsqWj7AL-e4zhxUtg0xkOjKHXc9Jwv52KfC0LvFOU61gnxqJQaHBTNvUzJwgMwKXMHl7FJTj4-iY_O2Kfz6Lxf0G-yS9aZr35dmVfyP1yFa8BXkyV7C866SeECnAN_4QgchuM_87gLDwQ3PluUEizoyfKiXsGnXCwXNtz1El5bEHOV_tGmh2z6jQOj2Bxzun6dh7Ovk7JJ9OlX0eVqM5lJu0sBPr0RBA5YJ7kt7tjE4cx9F9RTX9gl5m-mx3M5OfaHiwxEDGJTWsFJmBdx28zQz62sFJx6lNmuOJ0wjZJwgBoxEI0k5HSgZs3615Ui3JaEdZP7oEBblbxVLNsNjW4Y3OhqoFvYfHcX7YTgUIQjtDOdf_k-d1obLB3rKrV_tCsDFYT7f0y_bcH85ZZsezmNmXL6CD1s_Qs8tWB5jO7k1S7am1ZyXV_-xO9xE_HbbKXsonuz7uz-Qdf3bw99BlRhgypcF7hHFd5CFV5UeAtV2KEKA6pwh6on6Ozj4enBkdf23PAUA0PFY5JFWRyAVSq0KqTkREZUJkolMtBMxDIXLAoKmkiRkUTnjNM8FzojCuxSFQb0KRrBo-XPES7A10hEFIlMEMY1TwQjQQwmpuAqVkU2Rn5Hx1S1BelNX5QytaW0w9QQPjWETxvCj9EHd8PS1mK5fujbjjEpkM9sgskqrzerlCSmISwhLLh-TAgGG6UwIx2jZ5ar7gdNewSzeT1G-w2bb3qS1EHvxa3veIke9C_jKzQCRuavwQZeZ29a-P4G6WmlZw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+nonbilayer+phospholipids+in+mitochondrial+structure+and+function&rft.jtitle=FEBS+letters&rft.au=Basu+Ball%2C+Writoban&rft.au=Neff%2C+John+K.&rft.au=Gohil%2C+Vishal+M.&rft.date=2018-04-01&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=592&rft.issue=8&rft.spage=1273&rft.epage=1290&rft_id=info:doi/10.1002%2F1873-3468.12887&rft.externalDBID=10.1002%252F1873-3468.12887&rft.externalDocID=FEB212887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon