The role of nonbilayer phospholipids in mitochondrial structure and function
Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer‐forming phospholipids phosphatidylethanolamine (PE) and car...
Saved in:
Published in | FEBS letters Vol. 592; no. 8; pp. 1273 - 1290 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer‐forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone‐shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE‐ and CL‐trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics. |
---|---|
AbstractList | Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone-shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE- and CL-trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone-shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE- and CL-trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics. Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer‐forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone‐shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE‐ and CL‐trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics. Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer‐forming phospholipids phosphatidylethanolamine ( PE ) and cardiolipin ( CL ) in the assembly and activity of mitochondrial respiratory chain ( MRC ) complexes. The nonbilayer phospholipids are cone‐shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE ‐ and CL ‐trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo . Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics. |
Author | Basu Ball, Writoban Gohil, Vishal M. Neff, John K. |
Author_xml | – sequence: 1 givenname: Writoban surname: Basu Ball fullname: Basu Ball, Writoban organization: Texas A&M University – sequence: 2 givenname: John K. surname: Neff fullname: Neff, John K. organization: Texas A&M University – sequence: 3 givenname: Vishal M. surname: Gohil fullname: Gohil, Vishal M. email: vgohil@tamu.edu organization: Texas A&M University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29067684$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1PwyAchomZcR969mY4eukGBVp61GVTkyVe5plQSjMMLRXamP33tnbu4EEPhECe94U8vzmY1K7WANxitMQIxSvMUxIRmvAljjlPL8DsfDMBM4QwjViakSmYh_CO-jPH2RWYxhlK0oTTGdjtDxp6ZzV0JezLc2PlUXvYHFzolzWNKQI0NaxM69TB1YU30sLQ-k61nddQ1gUsu1q1xtXX4LKUNuib074Ab9vNfv0c7V6fXtYPu0hRTtOISsryBPH-k4UqpUyxZERmSmUSFZQnUnPKUEkyyXOcFZqmRGte5FgxRlWMyALcj72Ndx-dDq2oTFDaWllr1wURp5gT0osg_6I4YyzBGNOh9e6EdnmlC9F4U0l_FD-yemA1Asq7ELwuzwhGYhiHGOSLQb74HkefYL8SyrRyUNV6aewfuWTMfRqrj_89I7abx3gMfgF09ZyJ |
CitedBy_id | crossref_primary_10_1073_pnas_2000640117 crossref_primary_10_1016_j_bbalip_2023_159379 crossref_primary_10_1083_jcb_202302069 crossref_primary_10_1371_journal_pbio_3001899 crossref_primary_10_1021_acschemneuro_1c00608 crossref_primary_10_1021_acs_molpharmaceut_2c00707 crossref_primary_10_1039_D2CB00158F crossref_primary_10_1039_D4RA08032G crossref_primary_10_1016_j_addr_2024_115355 crossref_primary_10_1016_j_bbalip_2021_158963 crossref_primary_10_1016_j_addr_2024_115475 crossref_primary_10_1016_j_jlr_2024_100643 crossref_primary_10_1038_s41589_021_00772_z crossref_primary_10_1016_j_kint_2021_10_039 crossref_primary_10_1016_j_tibs_2021_06_003 crossref_primary_10_1039_D0MD00122H crossref_primary_10_3390_cells11060997 crossref_primary_10_18097_pbmc20236903174 crossref_primary_10_5650_oleoscience_24_507 crossref_primary_10_1083_jcb_202206008 crossref_primary_10_1002_acn3_51639 crossref_primary_10_1016_j_molcel_2023_02_020 crossref_primary_10_1042_BCJ20220100 crossref_primary_10_1371_journal_ppat_1008810 crossref_primary_10_1073_pnas_1918216117 crossref_primary_10_3389_fphys_2022_921942 crossref_primary_10_1016_j_theriogenology_2022_03_035 crossref_primary_10_1016_j_jhazmat_2023_132013 crossref_primary_10_1016_j_bcp_2023_115621 crossref_primary_10_1038_s42003_025_07610_1 crossref_primary_10_1038_s41419_018_0815_3 crossref_primary_10_3390_cells8070728 crossref_primary_10_1016_j_jciso_2021_100022 crossref_primary_10_1096_fj_201901184RR crossref_primary_10_4103_2045_9912_344973 crossref_primary_10_1016_j_plipres_2024_101268 crossref_primary_10_1093_bbb_zbae161 crossref_primary_10_3390_ani14172476 crossref_primary_10_1038_s41598_023_33757_0 crossref_primary_10_1038_s42003_021_02492_5 crossref_primary_10_1093_hmg_ddad153 crossref_primary_10_3390_nu12113348 crossref_primary_10_1038_s41380_023_02372_w crossref_primary_10_3389_fendo_2020_00374 crossref_primary_10_1007_s00344_024_11258_2 crossref_primary_10_1002_acn3_51367 crossref_primary_10_1016_j_jbc_2021_101462 crossref_primary_10_1016_j_jbc_2022_101824 crossref_primary_10_3390_antiox10091483 crossref_primary_10_1016_j_plipres_2022_101195 crossref_primary_10_1016_j_ijbiomac_2022_07_032 crossref_primary_10_1016_j_jbc_2021_100539 crossref_primary_10_1016_j_celrep_2023_112121 crossref_primary_10_3389_fcell_2022_988014 crossref_primary_10_1186_s13195_019_0558_0 crossref_primary_10_1242_jcs_260857 crossref_primary_10_1038_s41467_024_50222_2 crossref_primary_10_1038_s42003_023_05657_6 crossref_primary_10_1016_j_mito_2019_07_010 crossref_primary_10_1080_15376516_2022_2062271 crossref_primary_10_15252_embj_2020106837 crossref_primary_10_1016_j_ceca_2020_102287 crossref_primary_10_1002_1873_3468_15060 crossref_primary_10_1134_S1068162021050253 crossref_primary_10_1002_1873_3468_14089 crossref_primary_10_1016_j_jciso_2021_100004 crossref_primary_10_1007_s12551_025_01270_5 crossref_primary_10_1016_j_bbamem_2021_183663 crossref_primary_10_1126_sciadv_adh0066 crossref_primary_10_1055_a_2192_3167 crossref_primary_10_1002_iub_2018 crossref_primary_10_3390_ijms23095274 crossref_primary_10_1021_acssynbio_4c00499 crossref_primary_10_1111_joim_13031 crossref_primary_10_1098_rsob_210238 crossref_primary_10_3389_fonc_2023_1081253 crossref_primary_10_3390_ijms26031279 crossref_primary_10_1016_j_jlr_2024_100563 crossref_primary_10_1155_2021_9986299 crossref_primary_10_1038_s12276_023_01071_4 crossref_primary_10_1007_s11011_024_01376_x crossref_primary_10_1016_j_mitoco_2022_10_002 crossref_primary_10_1016_j_bbamem_2019_02_011 crossref_primary_10_3390_cells11121928 crossref_primary_10_1039_D2NR00882C crossref_primary_10_1002_ana_27208 crossref_primary_10_32615_ps_2023_035 crossref_primary_10_1016_j_aquatox_2025_107252 crossref_primary_10_3390_ijms22042138 crossref_primary_10_3389_fendo_2020_00600 crossref_primary_10_3390_antiox11122314 crossref_primary_10_1016_j_bpj_2024_12_015 crossref_primary_10_1111_febs_16323 crossref_primary_10_1152_ajpcell_00502_2020 crossref_primary_10_1152_ajpheart_00028_2018 crossref_primary_10_1093_brain_awac025 crossref_primary_10_1002_slct_202403174 crossref_primary_10_1007_s00249_021_01501_z crossref_primary_10_1021_jacs_2c08602 crossref_primary_10_3390_biom12070969 crossref_primary_10_1128_mbio_01718_23 crossref_primary_10_1515_hsz_2020_0121 crossref_primary_10_3389_fcell_2019_00291 crossref_primary_10_3310_JDBC7982 crossref_primary_10_3390_livers3020014 crossref_primary_10_1039_D4LC00283K crossref_primary_10_3934_molsci_2020010 crossref_primary_10_1080_15548627_2022_2062111 crossref_primary_10_3390_nano12173051 crossref_primary_10_1042_ETLS20220029 crossref_primary_10_1128_mbio_00328_25 crossref_primary_10_3390_ijms23073738 crossref_primary_10_1016_j_jbc_2021_100691 crossref_primary_10_1002_ange_202404328 crossref_primary_10_1016_j_celrep_2024_113772 crossref_primary_10_1093_plphys_kiac123 crossref_primary_10_1172_JCI162836 crossref_primary_10_1038_s44319_024_00336_x crossref_primary_10_3390_biom13081225 crossref_primary_10_3892_etm_2021_10886 crossref_primary_10_1002_EXP_20230063 crossref_primary_10_1016_j_freeradbiomed_2022_06_226 crossref_primary_10_3390_ijms21103506 crossref_primary_10_3390_hydrobiology1010007 crossref_primary_10_1016_j_bpj_2024_10_009 crossref_primary_10_1038_s41570_022_00433_2 crossref_primary_10_1016_j_bbadis_2018_07_022 crossref_primary_10_7555_JBR_33_20180104 crossref_primary_10_3390_membranes11070465 crossref_primary_10_1111_jnc_16213 crossref_primary_10_3390_cells10071721 crossref_primary_10_3390_cells10092363 crossref_primary_10_1016_j_plipres_2022_101163 crossref_primary_10_1002_anie_202404328 crossref_primary_10_3390_biom13071138 crossref_primary_10_1016_j_tibs_2020_03_009 crossref_primary_10_3389_fimmu_2021_670338 crossref_primary_10_1038_s41467_025_57439_9 crossref_primary_10_3390_antiox12081517 |
Cites_doi | 10.1083/jcb.201601082 10.1074/jbc.M308366200 10.1038/nrm2330 10.1074/jbc.M112.367888 10.1038/srep18344 10.1016/j.bbalip.2016.08.006 10.1021/bi701962c 10.1093/emboj/19.8.1777 10.1093/pcp/pct104 10.1074/jbc.M403275200 10.1074/jbc.M505478200 10.1016/j.molcel.2016.08.013 10.1152/ajpheart.00084.2013 10.1074/jbc.M111.330167 10.1111/j.1600-0854.2012.01352.x 10.1371/journal.pone.0102738 10.1074/jbc.M103689200 10.1021/bi00578a041 10.1046/j.1365-2958.1997.5841950.x 10.1016/bs.ircmb.2015.10.001 10.1016/0003-9861(81)90153-3 10.1074/jbc.M109043200 10.1016/S0163-7827(02)00050-4 10.1007/s10863-015-9599-7 10.1074/jbc.273.16.9829 10.1038/srep01263 10.1016/0005-2736(88)90397-5 10.1074/jbc.M402545200 10.1091/mbc.e05-04-0344 10.1186/1750-1172-8-23 10.1073/pnas.0603242103 10.1016/j.cmet.2013.03.018 10.1074/jbc.M405479200 10.1038/nature13474 10.1038/s41598-017-11008-3 10.1016/j.jmb.2006.06.057 10.1016/j.bbalip.2004.09.007 10.1128/jb.179.18.5843-5848.1997 10.1038/nature19774 10.1074/jbc.M112.442392 10.1016/S0021-9258(19)61957-5 10.1091/mbc.E13-03-0121 10.1074/jbc.M112.425876 10.1074/jbc.C200551200 10.1074/jbc.M116.753574 10.1016/j.bbamem.2004.05.012 10.1016/j.bbabio.2007.01.016 10.1016/j.jmb.2012.09.001 10.1016/j.devcel.2014.06.007 10.1016/j.devcel.2014.06.006 10.1016/j.chemphyslip.2013.10.008 10.1083/jcb.201107053 10.1038/ncb3560 10.1007/BF01799418 10.1074/jbc.M112.404103 10.1074/jbc.M307382200 10.1074/jbc.M703786200 10.2337/db13-0993 10.1083/jcb.201602007 10.1111/j.1365-2958.2004.04202.x 10.1016/j.bbamem.2004.06.010 10.1038/emboj.2010.98 10.4161/auto.27191 10.1016/j.bbabio.2013.12.009 10.1080/15548627.2015.1023984 10.1016/j.cell.2016.11.012 10.1074/jbc.M110.171439 10.1021/ja310577u 10.1016/j.devcel.2011.08.026 10.1074/jbc.M116.722694 10.1083/jcb.200906098 10.1126/science.1225625 10.1016/j.bbabio.2012.04.015 10.1074/jbc.M805511200 10.1016/j.bbamem.2017.03.013 10.1371/journal.pone.0113664 10.1038/nchembio.2113 10.1002/(SICI)1097-0061(199910)15:14<1555::AID-YEA479>3.0.CO;2-Z 10.1074/jbc.M112.398107 10.1038/emboj.2011.379 10.7554/eLife.07739 10.1074/jbc.273.4.2402 10.1042/bj3640317 10.1074/jbc.M112.434183 10.1074/jbc.M112.399428 10.1016/0304-4157(85)90002-4 10.1091/mbc.E15-12-0865 10.1091/mbc.E09-06-0519 10.1083/jcb.200605043 10.1038/emboj.2011.324 10.1128/JB.182.4.1172-1175.2000 10.1128/MCB.01527-06 10.1038/ncb2837 10.1042/0264-6021:3470687 10.1074/jbc.M116.753624 10.1091/mbc.E05-03-0256 10.1074/jbc.M909868199 10.1074/jbc.M506510200 10.1111/bph.12461 10.1074/jbc.M705256200 10.1074/jbc.M113.525733 10.1083/jcb.200801152 10.1038/sj.emboj.7601618 10.1126/science.1175088 10.1091/mbc.12.4.997 10.1016/j.plipres.2013.07.002 10.1038/cdd.2015.160 10.1146/annurev.biochem.66.1.199 10.1016/0014-5793(93)80922-H 10.1111/j.1742-4658.2007.06138.x 10.1016/j.bbalip.2016.09.007 10.1091/mbc.E15-06-0330 10.1046/j.1365-2958.1999.01181.x 10.1016/S0021-9258(19)36940-6 10.1128/jb.173.6.2026-2034.1991 10.1016/j.cub.2009.10.074 10.1074/jbc.270.11.6062 10.1038/labinvest.3700274 10.1016/j.bbamem.2009.06.007 10.1016/S0021-9258(19)50785-2 10.1083/jcb.200810189 10.1083/jcb.200812018 |
ContentType | Journal Article |
Copyright | 2017 Federation of European Biochemical Societies 2017 Federation of European Biochemical Societies. |
Copyright_xml | – notice: 2017 Federation of European Biochemical Societies – notice: 2017 Federation of European Biochemical Societies. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1002/1873-3468.12887 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1873-3468 |
EndPage | 1290 |
ExternalDocumentID | 29067684 10_1002_1873_3468_12887 FEB212887 |
Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R01GM111672 – fundername: Welch Foundation funderid: A‐1810 – fundername: American Heart Association funderid: 16GRNT31020028 – fundername: NIGMS NIH HHS grantid: R01 GM111672 |
GroupedDBID | --- --K -~X .55 .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 29H 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHBH AAHHS AAHQN AAIKJ AAIPD AALRI AAMNL AANLZ AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABBQC ABCUV ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABQWH ABVKL ABWVN ABXDB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACRPL ACXBN ACXQS ADBBV ADBTR ADEOM ADEZE ADIYS ADKYN ADMGS ADMUD ADNMO ADOZA ADQTV ADUVX ADVLN ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AGHFR AGYEJ AHBTC AI. AIACR AIAGR AITUG AITYG AIURR AIWBW AJBDE AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FUBAC G-Q GBLVA GI5 GX1 HGLYW HVGLF HZ~ IHE IXB J1W KBYEO L7B LATKE LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R2- R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SEW SFE SSZ SUPJJ SV3 TEORI TR2 UHB UNMZH VH1 WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR X7M Y6R YK3 ZGI ZZTAW ~02 AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AEYWJ AFPUW AGHNM AGQPQ AGYGG AIGII AKBMS AKYEP CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4847-4a45b608468dcfaa71a53a9cc9a0d486ae8450f39a8b19de473ee8db1c554c203 |
ISSN | 0014-5793 1873-3468 |
IngestDate | Fri Jul 11 18:33:42 EDT 2025 Fri Jul 11 08:44:07 EDT 2025 Mon Jul 21 05:48:02 EDT 2025 Tue Jul 01 02:46:47 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Wed Jan 22 16:32:00 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | cardiolipin mitochondria phosphatidylethanolamine |
Language | English |
License | 2017 Federation of European Biochemical Societies. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4847-4a45b608468dcfaa71a53a9cc9a0d486ae8450f39a8b19de473ee8db1c554c203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5918238 |
PMID | 29067684 |
PQID | 1955611140 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2718338733 proquest_miscellaneous_1955611140 pubmed_primary_29067684 crossref_primary_10_1002_1873_3468_12887 crossref_citationtrail_10_1002_1873_3468_12887 wiley_primary_10_1002_1873_3468_12887_FEB212887 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2018 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2018 |
References | 2013; 3 2002; 277 2006; 174 2011; 195 2012; 13 2013; 8 2003; 278 2016; 36 2004; 1666 1998; 273 2008; 182 2010; 21 2014; 1837 2000; 19 1994; 269 2013; 54 2010; 29 2013; 52 2012; 1817 2009; 19 2016; 48 2003; 42 1956; 222 2014; 10 1997; 179 1991; 173 1979; 18 1996; 19 2007; 282 1997; 26 1981; 208 2016; 321 2005; 85 2016; 167 2007; 1767 1985; 822 2004; 1686 1995; 270 2016; 12 2001; 276 2004; 53 2004; 279 2000; 347 2002; 364 2007; 274 2008; 47 2000; 182 1999; 31 2009; 184 2016; 214 2009; 185 2016; 213 2009; 186 2014; 30 2016; 27 2005; 11 2006; 103 2016; 23 2017; 7 2012; 287 2012; 288 2017; 1862 2013; 24 2008; 9 2013; 288 2014; 171 2014; 63 1988; 946 2014; 179 2013; 15 2013; 17 1999; 15 2006; 361 2011; 21 2017; 9084 2009; 284 2014; 9 2001; 12 1993; 330 2012; 338 2009; 325 2011; 286 2007; 26 2007; 27 2014; 289 2009; 1788 2015; 5 2015; 4 1997; 66 2013; 305 2015; 11 2011; 30 2017; 292 2000; 275 2006; 2 1993; 268 2012; 423 2014; 510 2005; 280 2015; 26 2016; 537 2017; 1859 2016; 63 2013; 135 2017; 19 e_1_2_10_21_1 e_1_2_10_44_1 Musatov A (e_1_2_10_97_1) 2017; 9084 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 1666 start-page: 275 year: 2004 end-page: 288 article-title: Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile publication-title: Biochim Biophys Acta – volume: 19 start-page: 1777 year: 2000 end-page: 1783 article-title: Supercomplexes in the respiratory chains of yeast and mammalian mitochondria publication-title: EMBO J – volume: 2 start-page: 1006 year: 2006 end-page: 1017 article-title: Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote publication-title: Mol Biol Cell – volume: 19 start-page: 856 year: 2017 end-page: 863 article-title: Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin publication-title: Nat Cell Biol – volume: 4 start-page: e07739 year: 2015 article-title: MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture publication-title: Elife – volume: 31 start-page: 373 year: 1999 end-page: 379 article-title: Cardiolipin synthase expression is essential for growth at elevated temperature and is regulated by factors affecting mitochondrial development publication-title: Mol Microbiol – volume: 270 start-page: 6062 year: 1995 end-page: 6070 article-title: Identification of a non‐mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast publication-title: J Biol Chem – volume: 167 start-page: 1598 year: 2016 end-page: 1609 article-title: Structure of mammalian respiratory supercomplex I III IV publication-title: Cell – volume: 277 start-page: 43553 year: 2002 end-page: 43556 article-title: Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane publication-title: J Biol Chem – volume: 26 start-page: 481 year: 1997 end-page: 491 article-title: Cardiolipin is not essential for the growth of on fermentable or non‐fermentable carbon sources publication-title: Mol Microbiol – volume: 9 start-page: e102738 year: 2014 article-title: Specific interaction with cardiolipin triggers functional activation of Dynamin‐Related Protein 1 publication-title: PLoS ONE – volume: 325 start-page: 477 year: 2009 end-page: 481 article-title: An ER‐mitochondria tethering complex revealed by a synthetic biology screen publication-title: Science – volume: 171 start-page: 2029 year: 2014 end-page: 2050 article-title: First‐in‐class cardiolipin‐protective compound as a therapeutic agent to restore mitochondrial bioenergetics publication-title: Br J Pharmacol – volume: 1666 start-page: 62 year: 2004 end-page: 87 article-title: How lipids affect the activities of integral membrane proteins publication-title: Biochim Biophys Acta – volume: 287 start-page: 36744 year: 2012 end-page: 36755 article-title: Processing and topology of the yeast mitochondrial phosphatidylserine decarboxylase 1 publication-title: J Biol Chem – volume: 1837 start-page: 444 year: 2014 end-page: 450 article-title: The function of the respiratory supercomplexes: the plasticity model publication-title: Biochim Biophys Acta – volume: 287 start-page: 40131 year: 2012 end-page: 40139 article-title: Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1) publication-title: J Biol Chem – volume: 9 start-page: e113664 year: 2014 article-title: An assessment of growth media enrichment on lipid metabolome and the concurrent phenotypic properties of publication-title: PLoS ONE – volume: 9 start-page: 112 year: 2008 end-page: 124 article-title: Membrane lipids: where they are and how they behave publication-title: Nat Rev Mol Cell Biol – volume: 184 start-page: 583 year: 2009 end-page: 596 article-title: The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria publication-title: J Cell Biol – volume: 222 start-page: 193 year: 1956 end-page: 214 article-title: The function of cytidine coenzymes in the biosynthesis of phospholipides publication-title: J Biol Chem – volume: 288 start-page: 401 year: 2012 end-page: 411 article-title: Cardiolipin‐dependent reconstitution of respiratory supercomplexes from purified complexes III and IV publication-title: J Biol Chem – volume: 280 start-page: 35410 year: 2005 end-page: 35416 article-title: Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in publication-title: J Biol Chem – volume: 361 start-page: 462 year: 2006 end-page: 469 article-title: Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients publication-title: J Mol Biol – volume: 15 start-page: 1555 year: 1999 end-page: 1564 article-title: Lipid composition of subcellular membranes of an FY1679‐derived haploid yeast wild‐type strain grown on different carbon sources publication-title: Yeast – volume: 284 start-page: 11572 year: 2009 end-page: 11578 article-title: Identification of a cardiolipin‐specific phospholipase encoded by the gene CLD1 (YGR110W) in yeast publication-title: J Biol Chem – volume: 282 start-page: 28362 year: 2007 end-page: 28372 article-title: The CDP‐ethanolamine pathway and phosphatidylserine decarboxylation generate different phosphatidylethanolamine molecular species publication-title: J Biol Chem – volume: 279 start-page: 32294 year: 2004 end-page: 32300 article-title: Absence of cardiolipin results in temperature sensitivity, respiratory defects, and mitochondrial DNA instability independent of pet56 publication-title: J Biol Chem – volume: 537 start-page: 644 year: 2016 end-page: 648 article-title: The architecture of respiratory supercomplexes publication-title: Nature – volume: 17 start-page: 709 year: 2013 end-page: 718 article-title: Tam41 is a CDP‐diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria publication-title: Cell Metab – volume: 1862 start-page: 25 year: 2017 end-page: 38 article-title: Cell biology, physiology and enzymology of phosphatidylserine decarboxylase publication-title: Biochim Biophys Acta – volume: 36 start-page: 18718 year: 2016 end-page: 18729 article-title: Phosphatidylcholine affects inner membrane protein translocases of mitochondria publication-title: J Biol Chem – volume: 287 start-page: 17589 year: 2012 end-page: 17597 article-title: Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in publication-title: J Biol Chem – volume: 1767 start-page: 204 year: 2007 end-page: 221 article-title: Redox‐linked protonation state changes in cytochrome bc1 identified by Poisson‐Boltzmann electrostatics calculations publication-title: Biochim Biophys Acta – volume: 276 start-page: 48539 year: 2001 end-page: 48548 article-title: Phosphatidylethanolamine has an essential role in that is independent of its ability to form hexagonal phase structures publication-title: J Biol Chem – volume: 1859 start-page: 1156 year: 2017 end-page: 1163 article-title: Cardiolipin and mitochondrial cristae organization publication-title: Biochim Biophys Acta – volume: 186 start-page: 793 year: 2009 end-page: 803 article-title: Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion publication-title: J Cell Biol – volume: 10 start-page: 376 year: 2014 end-page: 378 article-title: LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease publication-title: Autophagy – volume: 19 start-page: 2133 year: 2009 end-page: 2139 article-title: Mitochondrial cardiolipin involved in outer‐membrane protein biogenesis: implications for Barth syndrome publication-title: Curr Biol – volume: 21 start-page: 694 year: 2011 end-page: 707 article-title: Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis publication-title: Dev Cell – volume: 29 start-page: 1976 year: 2010 end-page: 1987 article-title: A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4 publication-title: EMBO J – volume: 822 start-page: 1 year: 1985 end-page: 42 article-title: Lipids of mitochondria publication-title: Biochim Biophys Acta – volume: 1862 start-page: 81 year: 2017 end-page: 89 article-title: Intramitochondrial phospholipid trafficking publication-title: Biochim Biophys Acta – volume: 12 start-page: 997 year: 2001 end-page: 1007 article-title: Roles of phosphatidylethanolamine and of its several biosynthetic pathways in publication-title: Mol Biol Cell – volume: 292 start-page: 1092 year: 2017 end-page: 1102 article-title: Loss of cardiolipin leads to perturbation of acetyl‐CoA synthesis publication-title: J Biol Chem – volume: 364 start-page: 317 year: 2002 end-page: 322 article-title: Cardiolipin prevents rate‐dependent uncoupling and provides osmotic stability in yeast mitochondria publication-title: Biochem J – volume: 11 start-page: 643 year: 2015 end-page: 652 article-title: Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy publication-title: Autophagy – volume: 3 start-page: 1263 year: 2013 article-title: Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels publication-title: Sci Rep – volume: 275 start-page: 22387 year: 2000 end-page: 22394 article-title: Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function publication-title: J Biol Chem – volume: 273 start-page: 2402 year: 1998 end-page: 2408 article-title: Cardiolipin synthase is associated with a large complex in yeast mitochondria publication-title: J Biol Chem – volume: 27 start-page: 3327 year: 2007 end-page: 3336 article-title: Developmental and metabolic effects of disruption of the mouse CTP:phosphoethanolamine cytidylyltransferase gene (Pcyt2) publication-title: Mol Cell Biol – volume: 278 start-page: 51380 year: 2003 end-page: 51385 article-title: Remodeling of cardiolipin by phospholipid transacylation publication-title: J Biol Chem – volume: 269 start-page: 28670 year: 1994 end-page: 28675 article-title: Regulation of lipid polymorphism is essential for the viability of phosphatidylethanolamine‐deficient cells publication-title: J Biol Chem – volume: 182 start-page: 1172 year: 2000 end-page: 1175 article-title: Visualization of phospholipid domains in by using the cardiolipin‐specific fluorescent dye 10‐N‐nonyl acridine orange publication-title: J Bacteriol – volume: 946 start-page: 227 year: 1988 end-page: 234 article-title: Lipid topology and physical properties of the outer mitochondrial membrane of the yeast, publication-title: Biochim Biophys Acta – volume: 11 start-page: 5202 year: 2005 end-page: 5214 article-title: Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth syndrome publication-title: Mol Biol Cell – volume: 1788 start-page: 2048 year: 2009 end-page: 2058 article-title: Cardiolipin and mitochondrial carriers publication-title: Biochim Biophys Acta – volume: 30 start-page: 4652 year: 2011 end-page: 4664 article-title: Arrangement of electron transport chain components in bovine mitochondrial supercomplex I III IV publication-title: EMBO J – volume: 330 start-page: 71 year: 1993 end-page: 76 article-title: Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane publication-title: FEBS Lett – volume: 52 start-page: 590 year: 2013 end-page: 614 article-title: Lipids of mitochondria publication-title: Prog Lipid Res – volume: 27 start-page: 2161 year: 2016 end-page: 2171 article-title: Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation publication-title: Mol Biol Cell – volume: 182 start-page: 937 year: 2008 end-page: 950 article-title: Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane publication-title: J Cell Biol – volume: 63 start-page: 1034 year: 2016 end-page: 1043 article-title: Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division publication-title: Mol Cell – volume: 21 start-page: 443 year: 2010 end-page: 455 article-title: Compartment‐specific synthesis of phosphatidylethanolamine is required for normal heavy metal resistance publication-title: Mol Biol Cell – volume: 423 start-page: 677 year: 2012 end-page: 686 article-title: Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes publication-title: J Mol Biol – volume: 66 start-page: 199 year: 1997 end-page: 232 article-title: Molecular basis for membrane phospholipid diversity: why are there so many lipids? publication-title: Annu Rev Biochem – volume: 279 start-page: 42612 year: 2004 end-page: 42618 article-title: Cardiolipin biosynthesis and mitochondrial respiratory chain function are interdependent publication-title: J Biol Chem – volume: 1817 start-page: 1588 year: 2012 end-page: 1596 article-title: The stability and activity of respiratory Complex II is cardiolipin‐dependent publication-title: Biochim Biophys Acta – volume: 1686 start-page: 161 year: 2004 end-page: 168 article-title: Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast publication-title: Biochim Biophys Acta – volume: 174 start-page: 379 year: 2006 end-page: 390 article-title: Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins publication-title: J Cell Biol – volume: 23 start-page: 1140 year: 2016 end-page: 1151 article-title: NDPK‐D (NM23‐H4)‐mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy publication-title: Cell Death Differ – volume: 208 start-page: 305 year: 1981 end-page: 318 article-title: Asymmetrical orientation of phospholipids and their interactions with marker enzymes in pig heart mitochondrial inner membrane publication-title: Arch Biochem Biophys – volume: 185 start-page: 1029 year: 2009 end-page: 1045 article-title: Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria publication-title: J Cell Biol – volume: 214 start-page: 77 year: 2016 end-page: 88 article-title: Phosphatidylserine transport by Ups2‐Mdm35 in respiration‐active mitochondria publication-title: J Cell Biol – volume: 287 start-page: 23095 year: 2012 end-page: 23103 article-title: Arrangement of the respiratory chain complexes in supercomplex III IV revealed by single particle cryo‐electron microscopy publication-title: J Biol Chem – volume: 278 start-page: 52873 year: 2003 end-page: 52880 article-title: Cardiolipin stabilizes respiratory chain supercomplexes publication-title: J Biol Chem – volume: 7 start-page: 10744 year: 2017 article-title: Cryo‐EM Studies of Drp1 Reveal cardiolipin interactions that activate the helical oligomer publication-title: Sci Rep – volume: 305 start-page: H1332 year: 2013 end-page: H1343 article-title: Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts publication-title: Am J Physiol Heart Circ Physiol – volume: 292 start-page: 2916 year: 2017 end-page: 2923 article-title: Cardiolipin regulates mitophagy through the protein kinase C pathway publication-title: J Biol Chem – volume: 42 start-page: 115 year: 2003 end-page: 162 article-title: Biosynthesis of phosphatidylcholine in bacteria publication-title: Prog Lipid Res – volume: 280 start-page: 40032 year: 2005 end-page: 40040 article-title: Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects publication-title: J Biol Chem – volume: 179 start-page: 5843 year: 1997 end-page: 5848 article-title: Regulation of yeast phospholipid biosynthetic genes in phosphatidylserine decarboxylase mutants publication-title: J Bacteriol – volume: 288 start-page: 16451 year: 2013 end-page: 16459 article-title: Role of phosphatidylethanolamine in the biogenesis of mitochondrial outer membrane proteins publication-title: J Biol Chem – volume: 26 start-page: 1713 year: 2007 end-page: 1725 article-title: Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase publication-title: EMBO J – volume: 321 start-page: 29 year: 2016 end-page: 88 article-title: Phosphatidylethanolamine metabolism in health and disease publication-title: Int Rev Cell Mol Biol – volume: 8 start-page: 23 year: 2013 article-title: Barth syndrome publication-title: Orphanet J Rare Dis – volume: 279 start-page: 44394 year: 2004 end-page: 44399 article-title: The human TAZ gene complements mitochondrial dysfunction in the yeast taz1Delta mutant. Implications for Barth syndrome publication-title: J Biol Chem – volume: 15 start-page: 1197 year: 2013 end-page: 1205 article-title: Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells publication-title: Nat Cell Biol – volume: 287 start-page: 37939 year: 2012 end-page: 37948 article-title: Lipid‐dependent generation of dual topology for a membrane protein publication-title: J Biol Chem – volume: 268 start-page: 21416 year: 1993 end-page: 21424 article-title: Phosphatidylserine decarboxylase from . Isolation of mutants, cloning of the gene, and creation of a null allele publication-title: J Biol Chem – volume: 173 start-page: 2026 year: 1991 end-page: 2034 article-title: Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote publication-title: J Bacteriol – volume: 274 start-page: 6180 year: 2007 end-page: 6190 article-title: The phosphatidylethanolamine level of yeast mitochondria is affected by the mitochondrial components Oxa1p and Yme1p publication-title: FEBS J – volume: 273 start-page: 9829 year: 1998 end-page: 9836 article-title: The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero‐phosphate synthase of publication-title: J Biol Chem – volume: 213 start-page: 525 year: 2016 end-page: 534 article-title: MICOS and phospholipid transfer by Ups2‐Mdm35 organize membrane lipid synthesis in mitochondria publication-title: J Cell Biol – volume: 338 start-page: 815 year: 2012 end-page: 818 article-title: Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein publication-title: Science – volume: 54 start-page: 1612 year: 2013 end-page: 1619 article-title: Mitochondrial phosphatidylethanolamine level modulates Cyt c oxidase activity to maintain respiration capacity in rosette leaves publication-title: Plant Cell Physiol – volume: 19 start-page: 157 year: 1996 end-page: 160 article-title: X‐linked cardioskeletal myopathy and neutropenia (Barth syndrome): respiratory‐chain abnormalities in cultured fibroblasts publication-title: J Inherit Metab Dis – volume: 85 start-page: 823 year: 2005 end-page: 830 article-title: Characterization of lymphoblast mitochondria from patients with Barth syndrome publication-title: Lab Invest – volume: 286 start-page: 899 year: 2011 end-page: 908 article-title: Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome publication-title: J Biol Chem – volume: 289 start-page: 1768 year: 2014 end-page: 1778 article-title: Unremodeled and remodeled cardiolipin are functionally indistinguishable in yeast publication-title: J Biol Chem – volume: 103 start-page: 11584 year: 2006 end-page: 11588 article-title: A model of Barth syndrome publication-title: Proc Natl Acad Sci U S A – volume: 179 start-page: 25 year: 2014 end-page: 31 article-title: The topology and regulation of cardiolipin biosynthesis and remodeling in yeast publication-title: Chem Phys Lipids – volume: 9084 start-page: 30222 year: 2017 end-page: 30225 article-title: Role of cardiolipin in stability of integral membrane proteins publication-title: Biochimie – volume: 24 start-page: 2008 year: 2013 end-page: 2020 article-title: Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling publication-title: Mol Biol Cell – volume: 48 start-page: 125 year: 2016 end-page: 135 article-title: How lipids modulate mitochondrial protein import publication-title: J Bioenerg Biomembr – volume: 26 start-page: 3104 year: 2015 end-page: 3116 article-title: Cardiolipin's propensity for phase transition and its reorganization by dynamin‐related protein 1 form a basis for mitochondrial membrane fission publication-title: Mol Biol Cell – volume: 347 start-page: 687 year: 2000 end-page: 691 article-title: Oxidative phosphorylation in cardiolipin‐lacking yeast mitochondria publication-title: Biochem J – volume: 510 start-page: 48 year: 2014 end-page: 57 article-title: Lipid landscapes and pipelines in membrane homeostasis publication-title: Nature – volume: 13 start-page: 880 year: 2012 end-page: 890 article-title: Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance publication-title: Traffic – volume: 18 start-page: 2407 year: 1979 end-page: 2414 article-title: Phospholipid topology of the inner mitochondrial membrane of rat liver publication-title: Biochemistry – volume: 30 start-page: 95 year: 2014 end-page: 102 article-title: A dynamic interface between vacuoles and mitochondria in yeast publication-title: Dev Cell – volume: 135 start-page: 3112 year: 2013 end-page: 3120 article-title: Evidence for cardiolipin binding sites on the membrane‐exposed surface of the cytochrome bc1 publication-title: J Am Chem Soc – volume: 63 start-page: 2620 year: 2014 end-page: 2630 article-title: The concentration of phosphatidylethanolamine in mitochondria can modulate ATP production and glucose metabolism in mice publication-title: Diabetes – volume: 30 start-page: 4356 year: 2011 end-page: 4370 article-title: The mitochondrial contact site complex, a determinant of mitochondrial architecture publication-title: EMBO J – volume: 276 start-page: 25262 year: 2001 end-page: 25272 article-title: Lack of mitochondrial anionic phospholipids causes an inhibition of translation of protein components of the electron transport chain. A yeast genetic model system for the study of anionic phospholipid function in mitochondria publication-title: J Biol Chem – volume: 47 start-page: 4518 year: 2008 end-page: 4529 article-title: Role of phospholipid scramblase 3 in the regulation of tumor necrosis factor‐alpha‐induced apoptosis publication-title: Biochemistry – volume: 5 start-page: 18344 year: 2015 article-title: Interaction of MDM33 with mitochondrial inner membrane homeostasis pathways in yeast publication-title: Sci Rep – volume: 282 start-page: 28344 year: 2007 end-page: 28352 article-title: Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in publication-title: J Biol Chem – volume: 195 start-page: 323 year: 2011 end-page: 340 article-title: A mitochondrial‐focused genetic interaction map reveals a scaffold‐like complex required for inner membrane organization in mitochondria publication-title: J Cell Biol – volume: 30 start-page: 86 year: 2014 end-page: 94 article-title: Cellular metabolism regulates contact sites between vacuoles and mitochondria publication-title: Dev Cell – volume: 288 start-page: 4158 year: 2013 end-page: 4173 article-title: Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology publication-title: J Biol Chem – volume: 53 start-page: 1243 year: 2004 end-page: 1249 article-title: Post‐translational regulation of phosphatidylglycerolphosphate synthase in response to inositol publication-title: Mol Microbiol – volume: 12 start-page: 641 year: 2016 end-page: 647 article-title: Loss of protein association causes cardiolipin degradation in Barth syndrome publication-title: Nat Chem Biol – ident: e_1_2_10_39_1 doi: 10.1083/jcb.201601082 – ident: e_1_2_10_80_1 doi: 10.1074/jbc.M308366200 – ident: e_1_2_10_5_1 doi: 10.1038/nrm2330 – ident: e_1_2_10_83_1 doi: 10.1074/jbc.M112.367888 – ident: e_1_2_10_114_1 doi: 10.1038/srep18344 – ident: e_1_2_10_33_1 doi: 10.1016/j.bbalip.2016.08.006 – ident: e_1_2_10_29_1 doi: 10.1021/bi701962c – ident: e_1_2_10_77_1 doi: 10.1093/emboj/19.8.1777 – ident: e_1_2_10_116_1 doi: 10.1093/pcp/pct104 – ident: e_1_2_10_15_1 doi: 10.1074/jbc.M403275200 – ident: e_1_2_10_61_1 doi: 10.1074/jbc.M505478200 – ident: e_1_2_10_75_1 doi: 10.1016/j.molcel.2016.08.013 – ident: e_1_2_10_95_1 doi: 10.1152/ajpheart.00084.2013 – ident: e_1_2_10_69_1 doi: 10.1074/jbc.M111.330167 – ident: e_1_2_10_50_1 doi: 10.1111/j.1600-0854.2012.01352.x – ident: e_1_2_10_73_1 doi: 10.1371/journal.pone.0102738 – ident: e_1_2_10_87_1 doi: 10.1074/jbc.M103689200 – ident: e_1_2_10_13_1 doi: 10.1021/bi00578a041 – ident: e_1_2_10_22_1 doi: 10.1046/j.1365-2958.1997.5841950.x – ident: e_1_2_10_59_1 doi: 10.1016/bs.ircmb.2015.10.001 – ident: e_1_2_10_14_1 doi: 10.1016/0003-9861(81)90153-3 – ident: e_1_2_10_111_1 doi: 10.1074/jbc.M109043200 – ident: e_1_2_10_122_1 doi: 10.1016/S0163-7827(02)00050-4 – ident: e_1_2_10_103_1 doi: 10.1007/s10863-015-9599-7 – ident: e_1_2_10_20_1 doi: 10.1074/jbc.273.16.9829 – ident: e_1_2_10_90_1 doi: 10.1038/srep01263 – ident: e_1_2_10_11_1 doi: 10.1016/0005-2736(88)90397-5 – ident: e_1_2_10_53_1 doi: 10.1074/jbc.M402545200 – ident: e_1_2_10_113_1 doi: 10.1091/mbc.e05-04-0344 – ident: e_1_2_10_67_1 doi: 10.1186/1750-1172-8-23 – ident: e_1_2_10_62_1 doi: 10.1073/pnas.0603242103 – ident: e_1_2_10_19_1 doi: 10.1016/j.cmet.2013.03.018 – volume: 9084 start-page: 30222 year: 2017 ident: e_1_2_10_97_1 article-title: Role of cardiolipin in stability of integral membrane proteins publication-title: Biochimie – ident: e_1_2_10_94_1 doi: 10.1074/jbc.M405479200 – ident: e_1_2_10_2_1 doi: 10.1038/nature13474 – ident: e_1_2_10_72_1 doi: 10.1038/s41598-017-11008-3 – ident: e_1_2_10_82_1 doi: 10.1016/j.jmb.2006.06.057 – ident: e_1_2_10_110_1 doi: 10.1016/j.bbalip.2004.09.007 – ident: e_1_2_10_58_1 doi: 10.1128/jb.179.18.5843-5848.1997 – ident: e_1_2_10_78_1 doi: 10.1038/nature19774 – ident: e_1_2_10_120_1 doi: 10.1074/jbc.M112.442392 – ident: e_1_2_10_123_1 doi: 10.1016/S0021-9258(19)61957-5 – ident: e_1_2_10_26_1 doi: 10.1091/mbc.E13-03-0121 – ident: e_1_2_10_85_1 doi: 10.1074/jbc.M112.425876 – ident: e_1_2_10_81_1 doi: 10.1074/jbc.C200551200 – ident: e_1_2_10_108_1 doi: 10.1074/jbc.M116.753574 – ident: e_1_2_10_7_1 doi: 10.1016/j.bbamem.2004.05.012 – ident: e_1_2_10_88_1 doi: 10.1016/j.bbabio.2007.01.016 – ident: e_1_2_10_115_1 doi: 10.1016/j.jmb.2012.09.001 – ident: e_1_2_10_49_1 doi: 10.1016/j.devcel.2014.06.007 – ident: e_1_2_10_48_1 doi: 10.1016/j.devcel.2014.06.006 – ident: e_1_2_10_23_1 doi: 10.1016/j.chemphyslip.2013.10.008 – ident: e_1_2_10_31_1 doi: 10.1083/jcb.201107053 – ident: e_1_2_10_70_1 doi: 10.1038/ncb3560 – ident: e_1_2_10_86_1 doi: 10.1007/BF01799418 – ident: e_1_2_10_118_1 doi: 10.1074/jbc.M112.404103 – ident: e_1_2_10_25_1 doi: 10.1074/jbc.M307382200 – ident: e_1_2_10_45_1 doi: 10.1074/jbc.M703786200 – ident: e_1_2_10_119_1 doi: 10.2337/db13-0993 – ident: e_1_2_10_40_1 doi: 10.1083/jcb.201602007 – ident: e_1_2_10_54_1 doi: 10.1111/j.1365-2958.2004.04202.x – ident: e_1_2_10_6_1 doi: 10.1016/j.bbamem.2004.06.010 – ident: e_1_2_10_21_1 doi: 10.1038/emboj.2010.98 – ident: e_1_2_10_105_1 doi: 10.4161/auto.27191 – ident: e_1_2_10_76_1 doi: 10.1016/j.bbabio.2013.12.009 – ident: e_1_2_10_107_1 doi: 10.1080/15548627.2015.1023984 – ident: e_1_2_10_79_1 doi: 10.1016/j.cell.2016.11.012 – ident: e_1_2_10_63_1 doi: 10.1074/jbc.M110.171439 – ident: e_1_2_10_89_1 doi: 10.1021/ja310577u – ident: e_1_2_10_32_1 doi: 10.1016/j.devcel.2011.08.026 – ident: e_1_2_10_121_1 doi: 10.1074/jbc.M116.722694 – ident: e_1_2_10_71_1 doi: 10.1083/jcb.200906098 – ident: e_1_2_10_18_1 doi: 10.1126/science.1225625 – ident: e_1_2_10_91_1 doi: 10.1016/j.bbabio.2012.04.015 – ident: e_1_2_10_24_1 doi: 10.1074/jbc.M805511200 – ident: e_1_2_10_65_1 doi: 10.1016/j.bbamem.2017.03.013 – ident: e_1_2_10_17_1 doi: 10.1371/journal.pone.0113664 – ident: e_1_2_10_55_1 doi: 10.1038/nchembio.2113 – ident: e_1_2_10_10_1 doi: 10.1002/(SICI)1097-0061(199910)15:14<1555::AID-YEA479>3.0.CO;2-Z – ident: e_1_2_10_38_1 doi: 10.1074/jbc.M112.398107 – ident: e_1_2_10_30_1 doi: 10.1038/emboj.2011.379 – ident: e_1_2_10_68_1 doi: 10.7554/eLife.07739 – ident: e_1_2_10_51_1 doi: 10.1074/jbc.273.4.2402 – ident: e_1_2_10_93_1 doi: 10.1042/bj3640317 – ident: e_1_2_10_112_1 doi: 10.1074/jbc.M112.434183 – ident: e_1_2_10_46_1 doi: 10.1074/jbc.M112.399428 – ident: e_1_2_10_8_1 doi: 10.1016/0304-4157(85)90002-4 – ident: e_1_2_10_16_1 doi: 10.1091/mbc.E15-12-0865 – ident: e_1_2_10_41_1 doi: 10.1091/mbc.E09-06-0519 – ident: e_1_2_10_28_1 doi: 10.1083/jcb.200605043 – ident: e_1_2_10_84_1 doi: 10.1038/emboj.2011.324 – ident: e_1_2_10_124_1 doi: 10.1128/JB.182.4.1172-1175.2000 – ident: e_1_2_10_44_1 doi: 10.1128/MCB.01527-06 – ident: e_1_2_10_104_1 doi: 10.1038/ncb2837 – ident: e_1_2_10_92_1 doi: 10.1042/0264-6021:3470687 – ident: e_1_2_10_100_1 doi: 10.1074/jbc.M116.753624 – ident: e_1_2_10_27_1 doi: 10.1091/mbc.E05-03-0256 – ident: e_1_2_10_96_1 doi: 10.1074/jbc.M909868199 – ident: e_1_2_10_43_1 doi: 10.1074/jbc.M506510200 – ident: e_1_2_10_109_1 doi: 10.1111/bph.12461 – ident: e_1_2_10_36_1 doi: 10.1074/jbc.M705256200 – ident: e_1_2_10_66_1 doi: 10.1074/jbc.M113.525733 – ident: e_1_2_10_99_1 doi: 10.1083/jcb.200801152 – ident: e_1_2_10_117_1 doi: 10.1038/sj.emboj.7601618 – ident: e_1_2_10_47_1 doi: 10.1126/science.1175088 – ident: e_1_2_10_42_1 doi: 10.1091/mbc.12.4.997 – ident: e_1_2_10_4_1 doi: 10.1016/j.plipres.2013.07.002 – ident: e_1_2_10_106_1 doi: 10.1038/cdd.2015.160 – ident: e_1_2_10_3_1 doi: 10.1146/annurev.biochem.66.1.199 – ident: e_1_2_10_12_1 doi: 10.1016/0014-5793(93)80922-H – ident: e_1_2_10_56_1 doi: 10.1111/j.1742-4658.2007.06138.x – ident: e_1_2_10_57_1 doi: 10.1016/j.bbalip.2016.09.007 – ident: e_1_2_10_74_1 doi: 10.1091/mbc.E15-06-0330 – ident: e_1_2_10_52_1 doi: 10.1046/j.1365-2958.1999.01181.x – ident: e_1_2_10_34_1 doi: 10.1016/S0021-9258(19)36940-6 – ident: e_1_2_10_9_1 doi: 10.1128/jb.173.6.2026-2034.1991 – ident: e_1_2_10_101_1 doi: 10.1016/j.cub.2009.10.074 – ident: e_1_2_10_35_1 doi: 10.1074/jbc.270.11.6062 – ident: e_1_2_10_64_1 doi: 10.1038/labinvest.3700274 – ident: e_1_2_10_98_1 doi: 10.1016/j.bbamem.2009.06.007 – ident: e_1_2_10_37_1 doi: 10.1016/S0021-9258(19)50785-2 – ident: e_1_2_10_60_1 doi: 10.1083/jcb.200810189 – ident: e_1_2_10_102_1 doi: 10.1083/jcb.200812018 |
SSID | ssj0001819 |
Score | 2.564312 |
SecondaryResourceType | review_article |
Snippet | Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1273 |
SubjectTerms | Animals biosynthesis cardiolipin cardiolipins Cardiolipins - genetics Cardiolipins - metabolism Electron Transport - physiology electron transport chain Electron Transport Chain Complex Proteins - genetics Electron Transport Chain Complex Proteins - metabolism Humans mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism phosphatidylethanolamine phosphatidylethanolamines Phosphatidylethanolamines - genetics Phosphatidylethanolamines - metabolism Protein Transport - physiology |
Title | The role of nonbilayer phospholipids in mitochondrial structure and function |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.12887 https://www.ncbi.nlm.nih.gov/pubmed/29067684 https://www.proquest.com/docview/1955611140 https://www.proquest.com/docview/2718338733 |
Volume | 592 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE4IXBBuXcpOREEKqksWxEzuP7TQ0UbYH2GBvkWMnWqUsqWj7AL-e4zhxUtg0xkOjKHXc9Jwv52KfC0LvFOU61gnxqJQaHBTNvUzJwgMwKXMHl7FJTj4-iY_O2Kfz6Lxf0G-yS9aZr35dmVfyP1yFa8BXkyV7C866SeECnAN_4QgchuM_87gLDwQ3PluUEizoyfKiXsGnXCwXNtz1El5bEHOV_tGmh2z6jQOj2Bxzun6dh7Ovk7JJ9OlX0eVqM5lJu0sBPr0RBA5YJ7kt7tjE4cx9F9RTX9gl5m-mx3M5OfaHiwxEDGJTWsFJmBdx28zQz62sFJx6lNmuOJ0wjZJwgBoxEI0k5HSgZs3615Ui3JaEdZP7oEBblbxVLNsNjW4Y3OhqoFvYfHcX7YTgUIQjtDOdf_k-d1obLB3rKrV_tCsDFYT7f0y_bcH85ZZsezmNmXL6CD1s_Qs8tWB5jO7k1S7am1ZyXV_-xO9xE_HbbKXsonuz7uz-Qdf3bw99BlRhgypcF7hHFd5CFV5UeAtV2KEKA6pwh6on6Ozj4enBkdf23PAUA0PFY5JFWRyAVSq0KqTkREZUJkolMtBMxDIXLAoKmkiRkUTnjNM8FzojCuxSFQb0KRrBo-XPES7A10hEFIlMEMY1TwQjQQwmpuAqVkU2Rn5Hx1S1BelNX5QytaW0w9QQPjWETxvCj9EHd8PS1mK5fujbjjEpkM9sgskqrzerlCSmISwhLLh-TAgGG6UwIx2jZ5ar7gdNewSzeT1G-w2bb3qS1EHvxa3veIke9C_jKzQCRuavwQZeZ29a-P4G6WmlZw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+nonbilayer+phospholipids+in+mitochondrial+structure+and+function&rft.jtitle=FEBS+letters&rft.au=Basu+Ball%2C+Writoban&rft.au=Neff%2C+John+K.&rft.au=Gohil%2C+Vishal+M.&rft.date=2018-04-01&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=592&rft.issue=8&rft.spage=1273&rft.epage=1290&rft_id=info:doi/10.1002%2F1873-3468.12887&rft.externalDBID=10.1002%252F1873-3468.12887&rft.externalDocID=FEB212887 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |