Recent advances in understanding catalysis of protein folding by molecular chaperones
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress‐induced unfolding. A fundamental function of molecular ch...
Saved in:
Published in | FEBS letters Vol. 594; no. 17; pp. 2770 - 2781 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress‐induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP‐dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding. |
---|---|
AbstractList | Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding. Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo . Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress‐induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP‐dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding. Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress‐induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP‐dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding. Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding. |
Author | Hayer‐Hartl, Manajit Hartl, F. Ulrich Balchin, David |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0002-5000-0995 surname: Balchin fullname: Balchin, David email: david.balchin@crick.ac.uk organization: The Francis Crick Institute – sequence: 2 givenname: Manajit orcidid: 0000-0001-8213-6742 surname: Hayer‐Hartl fullname: Hayer‐Hartl, Manajit organization: Max Planck Institute of Biochemistry – sequence: 3 givenname: F. Ulrich orcidid: 0000-0002-7941-135X surname: Hartl fullname: Hartl, F. Ulrich organization: Max Planck Institute of Biochemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32446288$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1v2zAURYnCQWMnnbsVGrMo4ZcoamwDuy0QoEAQz8QT9dSwoCmXlBL434e2kwwd6okgeQ7fBe-CzMIQkJDPjF4zSvkN07UohVT6mgkt5Qcyfz-ZkTmlTJZV3YhzskjpD817zZqP5FxwKRXXek7W92gxjAV0TxAspsKFYgodxjRC6Fz4XVgYwe-SS8XQF9s4jJiRfvCHy3ZXbAaPdvIQC_sIW4w5YLokZz34hJ9e1wuyXi0fbn-Ud7--_7z9eldamdOWfWdpzxoLXauk1Lat-ion1IyyrkPeUOw5tk0rGbBGI7TKggKrKmzqmmsuLsjV8d2c6--EaTQblyx6DwGHKRleMy2Erit6GpVUCVrXSmf0yys6tRvszDa6DcSdefu1DNwcARuHlCL27wijZt-L2bdg9i2YQy_ZqP4xrBthdEMYIzj_H08dvWfncXdqjFktv_Gj-AJZOKAB |
CitedBy_id | crossref_primary_10_1002_bies_202200014 crossref_primary_10_1002_1873_3468_14857 crossref_primary_10_1002_prot_26456 crossref_primary_10_1126_sciadv_add0922 crossref_primary_10_1042_ETLS20200317 crossref_primary_10_3390_v13060958 crossref_primary_10_1091_mbc_E21_10_0493 crossref_primary_10_1111_febs_15845 crossref_primary_10_1007_s12041_022_01389_4 crossref_primary_10_3390_insects13070570 crossref_primary_10_1016_j_molcel_2024_02_018 crossref_primary_10_31857_S032097252201002X crossref_primary_10_1016_j_jhazmat_2021_126900 crossref_primary_10_1021_acs_jpcb_2c04648 crossref_primary_10_1099_mic_0_001217 crossref_primary_10_3390_ijms232213970 crossref_primary_10_1128_spectrum_01778_23 crossref_primary_10_3390_ijms24044023 crossref_primary_10_1038_s41467_022_31767_6 crossref_primary_10_1242_dmm_048983 crossref_primary_10_1071_RD23026 crossref_primary_10_1242_dmm_050141 crossref_primary_10_1021_acs_jpclett_1c01216 crossref_primary_10_3389_fmolb_2023_1155521 crossref_primary_10_1016_j_molcel_2022_06_024 crossref_primary_10_2139_ssrn_3929009 crossref_primary_10_3390_ijms23073687 crossref_primary_10_3389_fmolb_2023_1180739 crossref_primary_10_3390_ijms23010285 crossref_primary_10_3390_ijms242015220 crossref_primary_10_3390_ijms25136905 crossref_primary_10_3390_vaccines8040773 crossref_primary_10_1134_S0006297922010011 crossref_primary_10_1016_j_biortech_2024_130427 crossref_primary_10_1073_pnas_2422640122 crossref_primary_10_1002_cbic_202300261 crossref_primary_10_7554_eLife_63997 crossref_primary_10_1038_s41467_024_46730_w crossref_primary_10_1021_acsinfecdis_1c00651 crossref_primary_10_1038_s41586_024_07843_w crossref_primary_10_1073_pnas_2213170119 crossref_primary_10_1002_1873_3468_14871 crossref_primary_10_3389_fmolb_2021_683132 crossref_primary_10_1080_07388551_2024_2426011 crossref_primary_10_3389_fragi_2022_844168 crossref_primary_10_1073_pnas_2311128120 crossref_primary_10_1016_j_cbpa_2023_102373 crossref_primary_10_1038_s41467_023_42735_z crossref_primary_10_3390_ijms26031193 crossref_primary_10_3390_biology11050652 crossref_primary_10_1073_pnas_2209422119 crossref_primary_10_1016_j_cell_2022_11_007 crossref_primary_10_1002_agt2_412 crossref_primary_10_1038_s41467_023_44538_8 crossref_primary_10_1021_acschemneuro_3c00792 crossref_primary_10_1016_j_lfs_2023_122167 crossref_primary_10_3390_ijms25052608 crossref_primary_10_1007_s11274_025_04302_0 crossref_primary_10_1016_j_jbc_2021_101282 crossref_primary_10_1038_s41467_022_30499_x crossref_primary_10_1016_j_cellsig_2020_109836 crossref_primary_10_3390_ijms24021170 crossref_primary_10_1016_j_bpc_2022_106821 crossref_primary_10_1038_s41580_023_00647_2 crossref_primary_10_1016_j_neuroscience_2023_11_031 crossref_primary_10_3390_life13020436 crossref_primary_10_1093_gbe_evaf010 crossref_primary_10_1002_ijch_202300153 crossref_primary_10_1073_pnas_2118465119 crossref_primary_10_3390_biom12101344 crossref_primary_10_1016_j_bbamcr_2020_118863 crossref_primary_10_1038_s41467_022_30238_2 crossref_primary_10_3390_ijms26010053 crossref_primary_10_3389_fmolb_2022_1034453 crossref_primary_10_1073_pnas_2210536119 crossref_primary_10_1371_journal_pgen_1010079 crossref_primary_10_1039_D3CB00086A crossref_primary_10_1007_s00018_022_04679_3 crossref_primary_10_1111_1462_2920_16478 crossref_primary_10_1111_febs_16441 crossref_primary_10_1002_pro_5123 crossref_primary_10_1016_j_bbagrm_2024_195061 crossref_primary_10_1002_2211_5463_13590 crossref_primary_10_1016_j_jmb_2024_168615 crossref_primary_10_3389_fmolb_2023_1091677 crossref_primary_10_1016_j_ymthe_2022_08_010 crossref_primary_10_3389_fmolb_2022_915307 crossref_primary_10_1128_mBio_03564_20 crossref_primary_10_3390_biomedicines12112603 crossref_primary_10_1002_cbic_202100459 crossref_primary_10_1002_1873_3468_14677 crossref_primary_10_1007_s10565_021_09689_8 crossref_primary_10_1016_j_chembiol_2021_11_004 crossref_primary_10_1007_s11274_024_03970_8 crossref_primary_10_1016_j_mib_2024_102480 crossref_primary_10_1039_D3NR06044F crossref_primary_10_1016_j_sajb_2023_08_069 crossref_primary_10_1002_1873_3468_14682 crossref_primary_10_1016_j_tibs_2022_04_008 crossref_primary_10_1039_D3CP03103A |
Cites_doi | 10.1073/pnas.1601846113 10.1016/j.bpj.2019.10.040 10.1074/jbc.REV118.002810 10.1074/jbc.M114.582049 10.1038/10754 10.1074/jbc.M113.480178 10.1016/j.molcel.2019.03.026 10.1038/nature08009 10.1038/nrm2941 10.1016/S0092-8674(02)01198-4 10.1074/jbc.M114.577205 10.1073/pnas.1207382109 10.3390/biom10010097 10.1038/23301 10.1016/j.cell.2005.05.028 10.1016/j.cell.2019.03.012 10.1016/j.celrep.2011.12.007 10.1038/370111a0 10.1016/S0092-8674(01)00517-7 10.1111/j.1742-4658.2011.08458.x 10.1146/annurev-biochem-013118-111717 10.1038/nchembio.742 10.1038/nsmb.3133 10.1038/ncomms15934 10.1016/j.sbi.2011.09.002 10.1038/s41589-018-0013-8 10.1016/S0092-8674(00)80787-4 10.1038/s41580-019-0133-3 10.1038/41024 10.1073/pnas.91.22.10345 10.1126/science.1219021 10.1016/j.celrep.2019.06.081 10.1038/emboj.2008.77 10.7554/eLife.48491 10.1016/S0092-8674(00)80509-7 10.1021/bi061597j 10.1016/j.molcel.2019.03.032 10.1016/j.tibs.2019.06.008 10.1016/S0022-2836(03)00929-X 10.7554/eLife.02218 10.1016/j.tibs.2015.07.009 10.1016/j.sbi.2016.06.002 10.1016/j.bpj.2013.01.034 10.1016/j.jmb.2015.04.013 10.1002/pro.3795 10.1111/j.1365-2958.2012.08054.x 10.1038/nsmb.1394 10.1098/rsif.2018.0244 10.1126/science.181.4096.223 10.1016/j.cell.2006.04.027 10.1073/pnas.1635051100 10.1038/41944 10.1038/s41467-019-14245-4 10.1016/j.molcel.2012.09.023 10.1016/j.cels.2019.03.006 10.1002/1873-3468.12036 10.1074/jbc.M110.155911 10.1073/pnas.1407086111 10.1038/nature12293 10.1016/j.cell.2013.04.052 10.1073/pnas.1424342112 10.1002/pro.3276 10.1006/jmbi.1995.0284 10.1016/j.cell.2017.12.010 10.1074/jbc.REV118.002814 10.1021/ja503501x 10.1038/nature10099 10.1016/j.jmb.2017.07.022 10.1016/j.cell.2014.03.038 10.1038/nrm2144 10.1038/356683a0 10.1038/emboj.2010.52 10.1126/science.aac4354 10.1038/nsmb.1592 10.1073/pnas.97.4.1525 10.1016/j.celrep.2015.03.018 10.1101/sqb.2009.74.043 10.1515/BC.2006.064 10.7554/eLife.28030 10.1042/BCJ20170380 10.1016/j.cell.2008.01.048 10.1093/emboj/16.7.1501 10.1074/jbc.M114.633636 10.1016/j.jmb.2012.11.028 10.1016/j.cell.2010.05.027 10.1038/nchembio.455 10.1021/ja802248m 10.1038/nsmb.2466 10.1016/j.cell.2012.12.001 10.1038/ncomms9861 10.1126/science.aax1280 10.1038/nature02261 10.1038/nsmb.1591 10.1016/j.molcel.2018.03.028 10.1021/acs.chemrev.5b00556 10.1073/pnas.1716168115 10.1016/j.jmb.2020.02.031 10.1016/j.bpj.2017.03.028 10.1073/pnas.0903503106 10.1016/j.tibs.2013.05.001 10.1016/S0968-0004(00)01610-8 10.1073/pnas.1508504112 10.1016/j.jmb.2014.04.018 10.1073/pnas.1201380109 10.1016/j.cell.2018.07.006 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies – notice: 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. |
DBID | 24P AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1002/1873-3468.13844 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1873-3468 |
EndPage | 2781 |
ExternalDocumentID | 32446288 10_1002_1873_3468_13844 FEB213844 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Wellcome Trust funderid: FC001985 – fundername: Max Planck Society – fundername: Francis Crick Institute funderid: FC001985; FC001985 – fundername: Cancer Research UK – fundername: UK Medical Research Council – fundername: Deutsche Forschungsgemeinschaft funderid: SFB 1035 – fundername: Medical Research Council grantid: FC001985 – fundername: Cancer Research UK grantid: FC001985 – fundername: Wellcome Trust grantid: FC001985 |
GroupedDBID | --- --K -~X .55 .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 29H 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHBH AAHHS AAHQN AAIKJ AAIPD AALRI AAMNL AANLZ AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABBQC ABCUV ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABQWH ABVKL ABWVN ABXDB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACRPL ACXBN ACXQS ADBBV ADBTR ADEOM ADEZE ADIYS ADKYN ADMGS ADMUD ADNMO ADOZA ADQTV ADUVX ADVLN ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AGHFR AGYEJ AHBTC AI. AIACR AIAGR AITUG AITYG AIURR AIWBW AJBDE AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FUBAC G-Q GBLVA GI5 GX1 HGLYW HVGLF HZ~ IHE IXB J1W KBYEO L7B LATKE LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R2- R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SEW SFE SSZ SUPJJ SV3 TEORI TR2 UHB UNMZH VH1 WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR X7M Y6R YK3 ZGI ZZTAW ~02 AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AEYWJ AFPUW AGHNM AGQPQ AGYGG AIGII AKBMS AKYEP CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4844-fdc0f19cadb6448cb5f51818101dde290ef2eb9b41a198eab6ca6ac65e9772823 |
IEDL.DBID | 24P |
ISSN | 0014-5793 1873-3468 |
IngestDate | Fri Jul 11 18:33:17 EDT 2025 Thu Jul 10 23:31:33 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Tue Jul 01 02:46:50 EDT 2025 Thu Apr 24 23:00:26 EDT 2025 Wed Jan 22 16:33:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Hsp70 Hsp60 DnaK confinement GroEL chaperonin protein misfolding protein folding molecular chaperones Hsp40 |
Language | English |
License | Attribution-NonCommercial 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4844-fdc0f19cadb6448cb5f51818101dde290ef2eb9b41a198eab6ca6ac65e9772823 |
Notes | Edited by Miguel De la Rosa ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7941-135X 0000-0002-5000-0995 0000-0001-8213-6742 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.13844 |
PMID | 32446288 |
PQID | 2406307768 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2718338750 proquest_miscellaneous_2406307768 pubmed_primary_32446288 crossref_primary_10_1002_1873_3468_13844 crossref_citationtrail_10_1002_1873_3468_13844 wiley_primary_10_1002_1873_3468_13844_FEB213844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2020 |
References | 2010; 11 1973; 181 1994; 370 2015; 427 2020; 11 2020; 10 2016; 38 2014; 136 2011; 474 1997; 388 2018; 174 2018; 172 2019; 20 2010; 29 1992; 356 2008; 27 2000; 97 2019; 28 2007; 8 1995; 249 2016; 41 2012; 22 2009; 16 2010; 6 2019; 8 2013; 104 2013; 500 2009; 459 2003; 332 2011; 8 2012; 109 2014; 157 2014; 426 2009; 74 2006; 45 2005; 122 2019; 44 2015; 112 2018; 115 2020; 432 2012; 48 2019; 294 1994; 91 2008; 133 2003; 100 2008; 130 2019; 177 2018; 15 2018; 14 2016; 23 2020; 29 2009; 106 2017; 6 2017; 8 2002; 111 2013; 20 2013; 288 2010; 142 1999; 400 2001; 107 2017; 112 2019; 365 1997; 90 2015; 290 2014; 3 2018; 70 2016; 113 2016; 353 2019; 476 1997; 16 2013; 152 1999; 97 2016; 116 2013; 153 2012; 338 2011; 286 2006; 125 2014; 289 2016; 590 2015; 6 2000; 25 2017; 26 2019; 74 2015; 11 2013; 425 2008; 15 2014; 111 1999; 6 2018; 430 2003; 426 2013; 38 2012; 1 2019; 88 2020; 118 2012; 279 2006; 387 2012; 84 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 De Los RP (e_1_2_8_23_1) 2014; 3 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 6 year: 2017 article-title: Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone‐substrate ensembles publication-title: Elife – volume: 590 start-page: 251 year: 2016 end-page: 257 article-title: Identification of novel in vivo obligate GroEL/ES substrates based on data from a cell‐free proteomics approach publication-title: FEBS Lett – volume: 29 start-page: 1552 year: 2010 end-page: 1564 article-title: A systematic survey of in vivo obligate chaperonin‐dependent substrates publication-title: EMBO J – volume: 125 start-page: 903 year: 2006 end-page: 914 article-title: Structural features of the GroEL‐GroES nano‐cage required for rapid folding of encapsulated protein publication-title: Cell – volume: 16 start-page: 1501 year: 1997 end-page: 1507 article-title: Substrate specificity of the DnaK chaperone determined by screening cellulose‐bound peptide libraries publication-title: EMBO J – volume: 14 start-page: 388 year: 2018 end-page: 395 article-title: Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins publication-title: Nat Chem Biol – volume: 16 start-page: 574 year: 2009 end-page: 581 article-title: Converging concepts of protein folding in vitro and in vivo publication-title: Nat Struct Mol Biol – volume: 112 start-page: 10395 year: 2015 end-page: 10400 article-title: Mapping the conformation of a client protein through the Hsp70 functional cycle publication-title: Proc Natl Acad Sci USA – volume: 74 start-page: 831 year: 2019 end-page: 843 article-title: Hsp70‐ and Hsp90‐mediated regulation of the conformation of p53 DNA binding domain and p53 cancer variants publication-title: Mol Cell – volume: 22 start-page: 4 year: 2012 end-page: 13 article-title: Residual structure in unfolded proteins publication-title: Curr Opin Struct Biol – volume: 3 year: 2014 article-title: Hsp70 chaperones are non‐equilibrium machines that achieve ultra‐affinity by energy consumption publication-title: Elife – volume: 152 start-page: 196 year: 2013 end-page: 209 article-title: The cotranslational function of ribosome‐associated Hsp70 in eukaryotic protein homeostasis publication-title: Cell – volume: 8 start-page: 147 year: 2011 end-page: 153 article-title: Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins publication-title: Nat Chem Biol – volume: 44 start-page: 914 year: 2019 end-page: 926 article-title: Nature and regulation of protein folding on the ribosome publication-title: Trends Biochem Sci – volume: 388 start-page: 741 year: 1997 end-page: 750 article-title: The crystal structure of the asymmetric GroEL‐GroES‐(ADP)7 chaperonin complex publication-title: Nature – volume: 8 year: 2017 article-title: GroEL actively stimulates folding of the endogenous substrate protein PepQ publication-title: Nat Commun – volume: 111 start-page: 1027 year: 2002 end-page: 1039 article-title: Directed evolution of substrate‐optimized GroEL/S chaperonins publication-title: Cell – volume: 353 year: 2016 article-title: In vivo aspects of protein folding and quality control publication-title: Science – volume: 153 start-page: 1354 year: 2013 end-page: 1365 article-title: Visualizing GroEL/ES in the act of encapsulating a folding protein publication-title: Cell – volume: 289 start-page: 28607 year: 2014 end-page: 28618 article-title: Chaperones rescue luciferase folding by separating its domains publication-title: J Biol Chem – volume: 425 start-page: 1476 year: 2013 end-page: 1487 article-title: Structure and allostery of the chaperonin GroEL publication-title: J Mol Biol – volume: 500 start-page: 98 year: 2013 end-page: 101 article-title: Reshaping of the conformational search of a protein by the chaperone trigger factor publication-title: Nature – volume: 365 start-page: 1313 year: 2019 end-page: 1319 article-title: Structural basis for client recognition and activity of Hsp40 chaperones publication-title: Science – volume: 332 start-page: 701 year: 2003 end-page: 713 article-title: Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape publication-title: J Mol Biol – volume: 279 start-page: 543 year: 2012 end-page: 550 article-title: What distinguishes GroEL substrates from other proteins? publication-title: FEBS J – volume: 432 start-page: 2304 year: 2020 end-page: 2318 article-title: Efficient catalysis of protein folding by GroEL/ES of the obligate chaperonin substrate MetF publication-title: J Mol Biol – volume: 104 start-page: 1098 year: 2013 end-page: 1106 article-title: Effects of interactions with the GroEL cavity on protein folding rates publication-title: Biophys J – volume: 29 start-page: 360 year: 2020 end-page: 377 article-title: Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones publication-title: Protein Sci – volume: 88 start-page: 337 year: 2019 end-page: 364 article-title: Mechanisms of cotranslational maturation of newly synthesized proteins publication-title: Annu Rev Biochem – volume: 11 start-page: 365 year: 2020 article-title: Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi‐domain protein publication-title: Nat Commun – volume: 11 start-page: 579 year: 2010 end-page: 592 article-title: The HSP70 chaperone machinery: J proteins as drivers of functional specificity publication-title: Nat Rev Mol Cell Biol – volume: 45 start-page: 13356 year: 2006 end-page: 13360 article-title: A simple semiempirical model for the effect of molecular confinement upon the rate of protein folding publication-title: Biochemistry – volume: 48 start-page: 863 year: 2012 end-page: 874 article-title: Structure and dynamics of the ATP‐bound open conformation of Hsp70 chaperones publication-title: Mol Cell – volume: 27 start-page: 1458 year: 2008 end-page: 1468 article-title: Essential role of the chaperonin folding compartment in vivo publication-title: EMBO J – volume: 100 start-page: 11345 year: 2003 end-page: 11349 article-title: Role of residual structure in the unfolded state of a thermophilic protein publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 665 year: 2019 end-page: 680 article-title: The Hsp70 chaperone network publication-title: Nat Rev Mol Cell Biol – volume: 107 start-page: 223 year: 2001 end-page: 233 article-title: Dual function of protein confinement in chaperonin‐assisted protein folding publication-title: Cell – volume: 288 start-page: 30944 year: 2013 end-page: 30955 article-title: Repetitive protein unfolding by the trans ring of the GroEL‐GroES chaperonin complex stimulates folding publication-title: J Biol Chem – volume: 109 start-page: 9851 year: 2012 end-page: 9856 article-title: Hydrophobic forces and the length limit of foldable protein domains publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 53 year: 2016 end-page: 58 article-title: Substrate protein folds while it is bound to the ATP‐independent chaperone Spy publication-title: Nat Struct Mol Biol – volume: 16 start-page: 582 year: 2009 end-page: 588 article-title: An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms publication-title: Nat Struct Mol Biol – volume: 115 start-page: 519 year: 2018 end-page: 524 article-title: Folding of maltose binding protein outside of and in GroEL publication-title: Proc Natl Acad Sci USA – volume: 70 start-page: 545 year: 2018 end-page: 552 article-title: Hsp90 breaks the deadlock of the Hsp70 chaperone system publication-title: Mol Cell – volume: 106 start-page: 8471 year: 2009 end-page: 8476 article-title: Solution conformation of wild‐type Hsp70 (DnaK) chaperone complexed with ADP and substrate publication-title: Proc Natl Acad Sci USA – volume: 181 start-page: 223 year: 1973 end-page: 230 article-title: Principles that govern the folding of protein chains publication-title: Science – volume: 20 start-page: 237 year: 2013 end-page: 243 article-title: Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding publication-title: Nat Struct Mol Biol – volume: 174 start-page: 1507 year: 2018 end-page: 1521 article-title: Pathway of actin folding directed by the eukaryotic chaperonin TRiC publication-title: Cell – volume: 249 start-page: 126 year: 1995 end-page: 137 article-title: The role of ATP in the functional cycle of the DnaK chaperone system publication-title: J Mol Biol – volume: 109 start-page: 8937 year: 2012 end-page: 8942 article-title: Global analysis of chaperone effects using a reconstituted cell‐free translation system publication-title: Proc Natl Acad Sci USA – volume: 97 start-page: 1525 year: 2000 end-page: 1529 article-title: Transition‐state structure as a unifying basis in protein‐folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism publication-title: Proc Natl Acad Sci USA – volume: 38 start-page: 102 year: 2016 end-page: 110 article-title: Quality over quantity: optimizing co‐translational protein folding with non‐‘optimal’ synonymous codons publication-title: Curr Opin Struct Biol – volume: 6 start-page: 914 year: 2010 end-page: 920 article-title: The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase publication-title: Nat Chem Biol – volume: 286 start-page: 3863 year: 2011 end-page: 3872 article-title: The denatured state dictates the topology of two proteins with almost identical sequence but different native structure and function publication-title: J Biol Chem – volume: 6 start-page: 697 year: 1999 end-page: 705 article-title: Co‐translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase publication-title: Nat Struct Biol – volume: 130 start-page: 11838 year: 2008 end-page: 11839 article-title: A role for confined water in chaperonin function publication-title: J Am Chem Soc – volume: 10 start-page: 97 year: 2020 article-title: Cotranslational folding of proteins on the ribosome publication-title: Biomolecules – volume: 177 start-page: 751 year: 2019 end-page: 765 article-title: The chaperonin TRiC/CCT associates with prefoldin through a conserved electrostatic interface essential for cellular proteostasis publication-title: Cell – volume: 8 start-page: 292 year: 2019 end-page: 301 article-title: End‐to‐end differentiable learning of protein structure publication-title: Cell Syst – volume: 11 start-page: 321 year: 2015 end-page: 333 article-title: Individual and collective contributions of chaperoning and degradation to protein homeostasis in publication-title: Cell Rep – volume: 74 start-page: 103 year: 2009 end-page: 108 article-title: Protein folding sculpting evolutionary change publication-title: Cold Spring Harb Symp Quant Biol – volume: 370 start-page: 111 year: 1994 end-page: 117 article-title: Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones publication-title: Nature – volume: 133 start-page: 142 year: 2008 end-page: 153 article-title: Monitoring protein conformation along the pathway of chaperonin‐assisted folding publication-title: Cell – volume: 97 start-page: 755 year: 1999 end-page: 765 article-title: Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains publication-title: Cell – volume: 15 start-page: 20180244 year: 2018 article-title: Lessons from pressure denaturation of proteins publication-title: J R Soc Interface – volume: 111 start-page: 13355 year: 2014 end-page: 13360 article-title: Single‐molecule spectroscopy reveals chaperone‐mediated expansion of substrate protein publication-title: Proc Natl Acad Sci USA – volume: 290 start-page: 15042 year: 2015 end-page: 15051 article-title: Effects of C‐terminal truncation of chaperonin GroEL on the yield of in‐cage folding of the green fluorescent protein publication-title: J Biol Chem – volume: 430 start-page: 450 year: 2018 end-page: 464 article-title: Exploring the denatured state ensemble by single‐molecule chemo‐mechanical unfolding: the effect of force, temperature, and urea publication-title: J Mol Biol – volume: 122 start-page: 209 year: 2005 end-page: 220 article-title: Proteome‐wide analysis of chaperonin‐dependent protein folding in publication-title: Cell – volume: 400 start-page: 693 year: 1999 end-page: 696 article-title: Trigger factor and DnaK cooperate in folding of newly synthesized proteins publication-title: Nature – volume: 1 start-page: 251 year: 2012 end-page: 264 article-title: DnaK functions as a central hub in the chaperone network publication-title: Cell Rep – volume: 294 start-page: 2085 year: 2019 end-page: 2097 article-title: Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones publication-title: J Biol Chem – volume: 142 start-page: 112 year: 2010 end-page: 122 article-title: Chaperonin‐catalyzed rescue of kinetically trapped states in protein folding publication-title: Cell – volume: 338 start-page: 1042 year: 2012 end-page: 1046 article-title: The protein‐folding problem, 50 years on publication-title: Science – volume: 426 start-page: 884 year: 2003 end-page: 890 article-title: Protein folding and misfolding publication-title: Nature – volume: 74 start-page: 816 year: 2019 end-page: 830 article-title: Coordinated conformational processing of the tumor suppressor protein p53 by the Hsp70 and Hsp90 chaperone machineries publication-title: Mol Cell – volume: 112 start-page: E3189 year: 2015 end-page: E3198 article-title: Conformational processing of oncogenic v‐Src kinase by the molecular chaperone Hsp90 publication-title: Proc Natl Acad Sci USA – volume: 84 start-page: 736 year: 2012 end-page: 747 article-title: Physical map and dynamics of the chaperone network in publication-title: Mol Microbiol – volume: 113 start-page: E2794 year: 2016 end-page: E2801 article-title: Hsp70 biases the folding pathways of client proteins publication-title: Proc Natl Acad Sci USA – volume: 118 start-page: 85 year: 2020 end-page: 95 article-title: The anti‐aggregation holdase Hsp33 promotes the formation of folded protein structures publication-title: Biophys J – volume: 15 start-page: 303 year: 2008 end-page: 311 article-title: GroEL stimulates protein folding through forced unfolding publication-title: Nat Struct Mol Biol – volume: 427 start-page: 2919 year: 2015 end-page: 2930 article-title: The mechanism and function of group II chaperonins publication-title: J Mol Biol – volume: 25 start-page: 331 year: 2000 end-page: 339 article-title: Understanding protein folding via free‐energy surfaces from theory and experiment publication-title: Trends Biochem Sci – volume: 294 start-page: 2076 year: 2019 end-page: 2084 article-title: The stop‐and‐go traffic regulating protein biogenesis: how translation kinetics controls proteostasis publication-title: J Biol Chem – volume: 172 start-page: 605 year: 2018 end-page: 617 article-title: GroEL ring separation and exchange in the chaperonin reaction publication-title: Cell – volume: 90 start-page: 491 year: 1997 end-page: 500 article-title: In vivo observation of polypeptide flux through the bacterial chaperonin system publication-title: Cell – volume: 8 start-page: 319 year: 2007 end-page: 330 article-title: The folding and evolution of multidomain proteins publication-title: Nat Rev Mol Cell Biol – volume: 356 start-page: 683 year: 1992 end-page: 689 article-title: Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone‐mediated protein folding publication-title: Nature – volume: 91 start-page: 10345 year: 1994 end-page: 10349 article-title: The ATP hydrolysis‐dependent reaction cycle of the Hsp70 system DnaK, DnaJ, and GrpE publication-title: Proc Natl Acad Sci USA – volume: 136 start-page: 9396 year: 2014 end-page: 9403 article-title: Probing water density and dynamics in the chaperonin GroEL cavity publication-title: J Am Chem Soc – volume: 6 start-page: 8861 year: 2015 article-title: Transient misfolding dominates multidomain protein folding publication-title: Nat Commun – volume: 28 start-page: 1335 year: 2019 end-page: 1345 article-title: The Hsp70 chaperone system stabilizes a thermo‐sensitive subproteome in publication-title: Cell Rep – volume: 116 start-page: 6588 year: 2016 end-page: 6606 article-title: Allosteric mechanisms in chaperonin machines publication-title: Chem Rev – volume: 157 start-page: 922 year: 2014 end-page: 934 article-title: GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM‐barrel domain folding publication-title: Cell – volume: 41 start-page: 62 year: 2016 end-page: 76 article-title: The GroEL‐GroES chaperonin machine: a nano‐cage for protein folding publication-title: Trends Biochem Sci – volume: 38 start-page: 337 year: 2013 end-page: 344 article-title: Folding the proteome publication-title: Trends Biochem Sci – volume: 476 start-page: 1653 year: 2019 end-page: 1677 article-title: Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines publication-title: Biochem J – volume: 388 start-page: 343 year: 1997 end-page: 349 article-title: Recombination of protein domains facilitated by co‐translational folding in eukaryotes publication-title: Nature – volume: 8 year: 2019 article-title: Efficient conversion of chemical energy into mechanical work by Hsp70 chaperones publication-title: Elife – volume: 426 start-page: 2739 year: 2014 end-page: 2754 article-title: Active cage mechanism of chaperonin‐assisted protein folding demonstrated at single‐molecule level publication-title: J Mol Biol – volume: 26 start-page: 2207 year: 2017 end-page: 2220 article-title: Conformational heterogeneity in the Hsp70 chaperone‐substrate ensemble identified from analysis of NMR‐detected titration data publication-title: Protein Sci – volume: 289 start-page: 23219 year: 2014 end-page: 23232 article-title: The C‐terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein publication-title: J Biol Chem – volume: 459 start-page: 668 year: 2009 end-page: 673 article-title: Chaperonin overexpression promotes genetic variation and enzyme evolution publication-title: Nature – volume: 387 start-page: 485 year: 2006 end-page: 497 article-title: Protein aggregation in crowded environments publication-title: Biol Chem – volume: 474 start-page: 662 year: 2011 end-page: 665 article-title: Single‐molecule fluorescence reveals sequence‐specific misfolding in multidomain proteins publication-title: Nature – volume: 112 start-page: 1829 year: 2017 end-page: 1840 article-title: Competing pathways and multiple folding nuclei in a large multidomain protein, luciferase publication-title: Biophys J – ident: e_1_2_8_34_1 doi: 10.1073/pnas.1601846113 – ident: e_1_2_8_102_1 doi: 10.1016/j.bpj.2019.10.040 – ident: e_1_2_8_18_1 doi: 10.1074/jbc.REV118.002810 – ident: e_1_2_8_86_1 doi: 10.1074/jbc.M114.582049 – ident: e_1_2_8_88_1 doi: 10.1038/10754 – ident: e_1_2_8_70_1 doi: 10.1074/jbc.M113.480178 – ident: e_1_2_8_32_1 doi: 10.1016/j.molcel.2019.03.026 – ident: e_1_2_8_15_1 doi: 10.1038/nature08009 – ident: e_1_2_8_45_1 doi: 10.1038/nrm2941 – ident: e_1_2_8_80_1 doi: 10.1016/S0092-8674(02)01198-4 – ident: e_1_2_8_72_1 doi: 10.1074/jbc.M114.577205 – ident: e_1_2_8_94_1 doi: 10.1073/pnas.1207382109 – ident: e_1_2_8_12_1 doi: 10.3390/biom10010097 – ident: e_1_2_8_96_1 doi: 10.1038/23301 – ident: e_1_2_8_53_1 doi: 10.1016/j.cell.2005.05.028 – ident: e_1_2_8_95_1 doi: 10.1016/j.cell.2019.03.012 – ident: e_1_2_8_42_1 doi: 10.1016/j.celrep.2011.12.007 – ident: e_1_2_8_87_1 doi: 10.1038/370111a0 – ident: e_1_2_8_67_1 doi: 10.1016/S0092-8674(01)00517-7 – ident: e_1_2_8_93_1 doi: 10.1111/j.1742-4658.2011.08458.x – ident: e_1_2_8_13_1 doi: 10.1146/annurev-biochem-013118-111717 – ident: e_1_2_8_69_1 doi: 10.1038/nchembio.742 – ident: e_1_2_8_104_1 doi: 10.1038/nsmb.3133 – ident: e_1_2_8_63_1 doi: 10.1038/ncomms15934 – ident: e_1_2_8_37_1 doi: 10.1016/j.sbi.2011.09.002 – ident: e_1_2_8_47_1 doi: 10.1038/s41589-018-0013-8 – ident: e_1_2_8_97_1 doi: 10.1016/S0092-8674(00)80787-4 – ident: e_1_2_8_19_1 doi: 10.1038/s41580-019-0133-3 – ident: e_1_2_8_89_1 doi: 10.1038/41024 – ident: e_1_2_8_21_1 doi: 10.1073/pnas.91.22.10345 – ident: e_1_2_8_5_1 doi: 10.1126/science.1219021 – ident: e_1_2_8_46_1 doi: 10.1016/j.celrep.2019.06.081 – ident: e_1_2_8_64_1 doi: 10.1038/emboj.2008.77 – ident: e_1_2_8_33_1 doi: 10.7554/eLife.48491 – ident: e_1_2_8_54_1 doi: 10.1016/S0092-8674(00)80509-7 – ident: e_1_2_8_74_1 doi: 10.1021/bi061597j – ident: e_1_2_8_30_1 doi: 10.1016/j.molcel.2019.03.032 – ident: e_1_2_8_14_1 doi: 10.1016/j.tibs.2019.06.008 – ident: e_1_2_8_73_1 doi: 10.1016/S0022-2836(03)00929-X – volume: 3 start-page: e02218 year: 2014 ident: e_1_2_8_23_1 article-title: Hsp70 chaperones are non‐equilibrium machines that achieve ultra‐affinity by energy consumption publication-title: Elife doi: 10.7554/eLife.02218 – ident: e_1_2_8_48_1 doi: 10.1016/j.tibs.2015.07.009 – ident: e_1_2_8_91_1 doi: 10.1016/j.sbi.2016.06.002 – ident: e_1_2_8_75_1 doi: 10.1016/j.bpj.2013.01.034 – ident: e_1_2_8_51_1 doi: 10.1016/j.jmb.2015.04.013 – ident: e_1_2_8_50_1 doi: 10.1002/pro.3795 – ident: e_1_2_8_100_1 doi: 10.1111/j.1365-2958.2012.08054.x – ident: e_1_2_8_68_1 doi: 10.1038/nsmb.1394 – ident: e_1_2_8_36_1 doi: 10.1098/rsif.2018.0244 – ident: e_1_2_8_2_1 doi: 10.1126/science.181.4096.223 – ident: e_1_2_8_65_1 doi: 10.1016/j.cell.2006.04.027 – ident: e_1_2_8_39_1 doi: 10.1073/pnas.1635051100 – ident: e_1_2_8_59_1 doi: 10.1038/41944 – ident: e_1_2_8_27_1 doi: 10.1038/s41467-019-14245-4 – ident: e_1_2_8_105_1 doi: 10.1016/j.molcel.2012.09.023 – ident: e_1_2_8_6_1 doi: 10.1016/j.cels.2019.03.006 – ident: e_1_2_8_81_1 doi: 10.1002/1873-3468.12036 – ident: e_1_2_8_38_1 doi: 10.1074/jbc.M110.155911 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.1407086111 – ident: e_1_2_8_103_1 doi: 10.1038/nature12293 – ident: e_1_2_8_76_1 doi: 10.1016/j.cell.2013.04.052 – ident: e_1_2_8_101_1 doi: 10.1073/pnas.1424342112 – ident: e_1_2_8_41_1 doi: 10.1002/pro.3276 – ident: e_1_2_8_22_1 doi: 10.1006/jmbi.1995.0284 – ident: e_1_2_8_58_1 doi: 10.1016/j.cell.2017.12.010 – ident: e_1_2_8_92_1 doi: 10.1074/jbc.REV118.002814 – ident: e_1_2_8_79_1 doi: 10.1021/ja503501x – ident: e_1_2_8_83_1 doi: 10.1038/nature10099 – ident: e_1_2_8_35_1 doi: 10.1016/j.jmb.2017.07.022 – ident: e_1_2_8_62_1 doi: 10.1016/j.cell.2014.03.038 – ident: e_1_2_8_84_1 doi: 10.1038/nrm2144 – ident: e_1_2_8_24_1 doi: 10.1038/356683a0 – ident: e_1_2_8_55_1 doi: 10.1038/emboj.2010.52 – ident: e_1_2_8_10_1 doi: 10.1126/science.aac4354 – ident: e_1_2_8_8_1 doi: 10.1038/nsmb.1592 – ident: e_1_2_8_4_1 doi: 10.1073/pnas.97.4.1525 – ident: e_1_2_8_98_1 doi: 10.1016/j.celrep.2015.03.018 – ident: e_1_2_8_16_1 doi: 10.1101/sqb.2009.74.043 – ident: e_1_2_8_11_1 doi: 10.1515/BC.2006.064 – ident: e_1_2_8_40_1 doi: 10.7554/eLife.28030 – ident: e_1_2_8_17_1 doi: 10.1042/BCJ20170380 – ident: e_1_2_8_71_1 doi: 10.1016/j.cell.2008.01.048 – ident: e_1_2_8_20_1 doi: 10.1093/emboj/16.7.1501 – ident: e_1_2_8_77_1 doi: 10.1074/jbc.M114.633636 – ident: e_1_2_8_49_1 doi: 10.1016/j.jmb.2012.11.028 – ident: e_1_2_8_61_1 doi: 10.1016/j.cell.2010.05.027 – ident: e_1_2_8_28_1 doi: 10.1038/nchembio.455 – ident: e_1_2_8_78_1 doi: 10.1021/ja802248m – ident: e_1_2_8_90_1 doi: 10.1038/nsmb.2466 – ident: e_1_2_8_43_1 doi: 10.1016/j.cell.2012.12.001 – ident: e_1_2_8_82_1 doi: 10.1038/ncomms9861 – ident: e_1_2_8_44_1 doi: 10.1126/science.aax1280 – ident: e_1_2_8_3_1 doi: 10.1038/nature02261 – ident: e_1_2_8_26_1 doi: 10.1038/nsmb.1591 – ident: e_1_2_8_25_1 doi: 10.1016/j.molcel.2018.03.028 – ident: e_1_2_8_52_1 doi: 10.1021/acs.chemrev.5b00556 – ident: e_1_2_8_66_1 doi: 10.1073/pnas.1716168115 – ident: e_1_2_8_56_1 doi: 10.1016/j.jmb.2020.02.031 – ident: e_1_2_8_85_1 doi: 10.1016/j.bpj.2017.03.028 – ident: e_1_2_8_106_1 doi: 10.1073/pnas.0903503106 – ident: e_1_2_8_9_1 doi: 10.1016/j.tibs.2013.05.001 – ident: e_1_2_8_7_1 doi: 10.1016/S0968-0004(00)01610-8 – ident: e_1_2_8_29_1 doi: 10.1073/pnas.1508504112 – ident: e_1_2_8_60_1 doi: 10.1016/j.jmb.2014.04.018 – ident: e_1_2_8_99_1 doi: 10.1073/pnas.1201380109 – ident: e_1_2_8_57_1 doi: 10.1016/j.cell.2018.07.006 |
SSID | ssj0001819 |
Score | 2.6190372 |
SecondaryResourceType | review_article |
Snippet | Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein... Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo . Diverse chaperone systems assist de novo protein... Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2770 |
SubjectTerms | catalytic activity chaperonin chaperonins confinement DnaK GroEL Hsp40 Hsp60 Hsp70 hydrophobicity molecular chaperones protein folding protein misfolding |
Title | Recent advances in understanding catalysis of protein folding by molecular chaperones |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.13844 https://www.ncbi.nlm.nih.gov/pubmed/32446288 https://www.proquest.com/docview/2406307768 https://www.proquest.com/docview/2718338750 |
Volume | 594 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHoR364vIoh4ibtt09dxFRdRFBEXvZUkm0FBq7juwX_vTLpdX6h462GStplk5ptk5gvADtIs0GkeS4xNIlWgQmnQaNnLUhM5tOSBud757Dw57qqTm7jOJuRamIofYrThxivD22te4Nr0m--koUGWRjJSSbYfRJlS4zDJBbac1Reqi5ExJgdWIeBAyZjmYs3u0wqbXzr47Ji-oc3P4NV7n84czA5ho2hXep6HMVcuwGK7pJD54VXsCp_I6XfIF2DqoH6aPqyvc1uELgFEcjBieOjfF3elGHysbBF-J4cJSsQjCs_fQCJYnU4J8yoe6pt0hb3VzC9OVnIJup2jq8NjObxTQVpFPymxZ1sY5Fb3DEdm1sQY0xgxzRcZujBvOQydyY0KdJBnTpvE6kTbJHYEFCk8i5ZhoqT-V0Fg4FKMEFOSV0mU5jlmFo1NqWeHOm3Afj2ghR0SjvO9F_dFRZUcFqyBgjVQeA00YG_U4Kni2vhZdLvWUEHjyIccunSPg37BCCVijqLsFxlyyBSaE1hqwEql3tELCWByuS61bnp9__UlRefoIPRPa_9usQ4zIYfvPmVtAyZengdukzDOi9nys3gLJtunl9enbwRw8hc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuqLRQlvIwEiAu7m5sJ04OPbSlqy19iENX6s3YXlsg0RSxXaH9W_2FzDjJQkGAOPTmw3gSeWzPN2P7G4CXEWeB1VXOY-4KrjIluIvO8kmpnQzRowem987HJ8VorN6d5WdLcNW9hWn4IRYJN1oZab-mBU4J6f4P1tCs1JJLVZRbmSyVai9WHob5NwzbptsHb9HGr4QY7p_ujXhbWYB7haI8TvwgZpW3E0fxiXd5zNHVEdkVLndRDUIUwVVOZRaD8mBd4W1hfZEHhEsYpEjUewtuq0Joqpog1PvF7o9KGsidKZ7j5O_ohAai_8sPX_eEv8Hb62g5ubvhKtxrcSrbaSbWfVgK9Rqs79QYo5_P2WuWbo6mlPwa3NntWit7Xf24dRgjIkWPxtpbBlP2qWazn5_SsJQ6IkYUdhFZIoxAkdgchzE3Z-dd6V7mP1oiNMdt-QGMb2SoH8JyjfofAYtZ0FHGqFFeFVJXVSx9dF6j5hCt7sFWN6DGtwznVGjjs2m4mYUhCxiygEkW6MGbRYcvDbnHn0VfdBYyOI50qmLrcDGbGoJEkkiRyr_IIAKQEkPDQQ82GvMuPoiIlt4HY-9-sve__sQM93dFaj3-7x7PYWV0enxkjg5ODjfhrqDcQbov9wSWL7_OwlMEWJfuWZrRDD7c9BL6DogULs0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT1QxEJ8gRvFCFARWUGuixkvZfW3f14EDXxsQJRzchFtpu51AAg_CsjH7Z_kfMu17bxGNGg_cepj2vXQ6nd-0M78CvEdaBSYvU46pzbhKlOAWreHDIrfSoyMPHOqdvx5mewP1-Tg9noEfbS1MzQ8xPXALlhH362DgV0Ps3pGGJkUuuVRZsZ7IQqkmr_LAT75T1Dba2N8hFX8Qor_7bXuPNw8LcKdIlOPQ9TApnRnaEJ44m2JKni5wXZG1i7LnUXhbWpUYism9sZkzmXFZ6gktUYwiadxH8DhcMYYsMqGOpps_DVIj7kTxlNZ-yybUE91ffvi-I_wN3d4Hy9Hb9Z_DfANT2Wa9rl7AjK8WYHGzohD9YsI-spg4Gk_kF-DJVtua226fj1uEAQFScmisSTIYsbOKjX-upGHx5CgQorBLZJEvgkSwvg1jdsIu2pd7mTs1gc-cduWXMHiQqV6C2YrGXwGGic9RIuYkrzKZlyUWDq3LaWSPJu_Aejuh2jUE5-GdjXNdUzMLHTSggwZ01EAHPk07XNXcHn8WfddqSNM8hksVU_nL8UgHRCQDJ1LxFxkCAFJSZNjrwHKt3ukHCdCG8mDq3Y36_tef6P7uloitV__d4y08Pdrp6y_7hwer8EyEk4OYLbcGszfXY_-a4NWNfRMXNIOTh7agW3fMLf8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+understanding+catalysis+of+protein+folding+by+molecular+chaperones&rft.jtitle=FEBS+letters&rft.au=Balchin%2C+David&rft.au=Hayer%E2%80%90Hartl%2C+Manajit&rft.au=Hartl%2C+F.+Ulrich&rft.date=2020-09-01&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=594&rft.issue=17&rft.spage=2770&rft.epage=2781&rft_id=info:doi/10.1002%2F1873-3468.13844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_1873_3468_13844 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |