Recent advances in understanding catalysis of protein folding by molecular chaperones

Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress‐induced unfolding. A fundamental function of molecular ch...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 594; no. 17; pp. 2770 - 2781
Main Authors Balchin, David, Hayer‐Hartl, Manajit, Hartl, F. Ulrich
Format Journal Article
LanguageEnglish
Published England 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress‐induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP‐dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.
AbstractList Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo . Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress‐induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP‐dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress‐induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP‐dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.
Author Hayer‐Hartl, Manajit
Hartl, F. Ulrich
Balchin, David
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0002-5000-0995
  surname: Balchin
  fullname: Balchin, David
  email: david.balchin@crick.ac.uk
  organization: The Francis Crick Institute
– sequence: 2
  givenname: Manajit
  orcidid: 0000-0001-8213-6742
  surname: Hayer‐Hartl
  fullname: Hayer‐Hartl, Manajit
  organization: Max Planck Institute of Biochemistry
– sequence: 3
  givenname: F. Ulrich
  orcidid: 0000-0002-7941-135X
  surname: Hartl
  fullname: Hartl, F. Ulrich
  organization: Max Planck Institute of Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32446288$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1v2zAURYnCQWMnnbsVGrMo4ZcoamwDuy0QoEAQz8QT9dSwoCmXlBL434e2kwwd6okgeQ7fBe-CzMIQkJDPjF4zSvkN07UohVT6mgkt5Qcyfz-ZkTmlTJZV3YhzskjpD817zZqP5FxwKRXXek7W92gxjAV0TxAspsKFYgodxjRC6Fz4XVgYwe-SS8XQF9s4jJiRfvCHy3ZXbAaPdvIQC_sIW4w5YLokZz34hJ9e1wuyXi0fbn-Ud7--_7z9eldamdOWfWdpzxoLXauk1Lat-ion1IyyrkPeUOw5tk0rGbBGI7TKggKrKmzqmmsuLsjV8d2c6--EaTQblyx6DwGHKRleMy2Erit6GpVUCVrXSmf0yys6tRvszDa6DcSdefu1DNwcARuHlCL27wijZt-L2bdg9i2YQy_ZqP4xrBthdEMYIzj_H08dvWfncXdqjFktv_Gj-AJZOKAB
CitedBy_id crossref_primary_10_1002_bies_202200014
crossref_primary_10_1002_1873_3468_14857
crossref_primary_10_1002_prot_26456
crossref_primary_10_1126_sciadv_add0922
crossref_primary_10_1042_ETLS20200317
crossref_primary_10_3390_v13060958
crossref_primary_10_1091_mbc_E21_10_0493
crossref_primary_10_1111_febs_15845
crossref_primary_10_1007_s12041_022_01389_4
crossref_primary_10_3390_insects13070570
crossref_primary_10_1016_j_molcel_2024_02_018
crossref_primary_10_31857_S032097252201002X
crossref_primary_10_1016_j_jhazmat_2021_126900
crossref_primary_10_1021_acs_jpcb_2c04648
crossref_primary_10_1099_mic_0_001217
crossref_primary_10_3390_ijms232213970
crossref_primary_10_1128_spectrum_01778_23
crossref_primary_10_3390_ijms24044023
crossref_primary_10_1038_s41467_022_31767_6
crossref_primary_10_1242_dmm_048983
crossref_primary_10_1071_RD23026
crossref_primary_10_1242_dmm_050141
crossref_primary_10_1021_acs_jpclett_1c01216
crossref_primary_10_3389_fmolb_2023_1155521
crossref_primary_10_1016_j_molcel_2022_06_024
crossref_primary_10_2139_ssrn_3929009
crossref_primary_10_3390_ijms23073687
crossref_primary_10_3389_fmolb_2023_1180739
crossref_primary_10_3390_ijms23010285
crossref_primary_10_3390_ijms242015220
crossref_primary_10_3390_ijms25136905
crossref_primary_10_3390_vaccines8040773
crossref_primary_10_1134_S0006297922010011
crossref_primary_10_1016_j_biortech_2024_130427
crossref_primary_10_1073_pnas_2422640122
crossref_primary_10_1002_cbic_202300261
crossref_primary_10_7554_eLife_63997
crossref_primary_10_1038_s41467_024_46730_w
crossref_primary_10_1021_acsinfecdis_1c00651
crossref_primary_10_1038_s41586_024_07843_w
crossref_primary_10_1073_pnas_2213170119
crossref_primary_10_1002_1873_3468_14871
crossref_primary_10_3389_fmolb_2021_683132
crossref_primary_10_1080_07388551_2024_2426011
crossref_primary_10_3389_fragi_2022_844168
crossref_primary_10_1073_pnas_2311128120
crossref_primary_10_1016_j_cbpa_2023_102373
crossref_primary_10_1038_s41467_023_42735_z
crossref_primary_10_3390_ijms26031193
crossref_primary_10_3390_biology11050652
crossref_primary_10_1073_pnas_2209422119
crossref_primary_10_1016_j_cell_2022_11_007
crossref_primary_10_1002_agt2_412
crossref_primary_10_1038_s41467_023_44538_8
crossref_primary_10_1021_acschemneuro_3c00792
crossref_primary_10_1016_j_lfs_2023_122167
crossref_primary_10_3390_ijms25052608
crossref_primary_10_1007_s11274_025_04302_0
crossref_primary_10_1016_j_jbc_2021_101282
crossref_primary_10_1038_s41467_022_30499_x
crossref_primary_10_1016_j_cellsig_2020_109836
crossref_primary_10_3390_ijms24021170
crossref_primary_10_1016_j_bpc_2022_106821
crossref_primary_10_1038_s41580_023_00647_2
crossref_primary_10_1016_j_neuroscience_2023_11_031
crossref_primary_10_3390_life13020436
crossref_primary_10_1093_gbe_evaf010
crossref_primary_10_1002_ijch_202300153
crossref_primary_10_1073_pnas_2118465119
crossref_primary_10_3390_biom12101344
crossref_primary_10_1016_j_bbamcr_2020_118863
crossref_primary_10_1038_s41467_022_30238_2
crossref_primary_10_3390_ijms26010053
crossref_primary_10_3389_fmolb_2022_1034453
crossref_primary_10_1073_pnas_2210536119
crossref_primary_10_1371_journal_pgen_1010079
crossref_primary_10_1039_D3CB00086A
crossref_primary_10_1007_s00018_022_04679_3
crossref_primary_10_1111_1462_2920_16478
crossref_primary_10_1111_febs_16441
crossref_primary_10_1002_pro_5123
crossref_primary_10_1016_j_bbagrm_2024_195061
crossref_primary_10_1002_2211_5463_13590
crossref_primary_10_1016_j_jmb_2024_168615
crossref_primary_10_3389_fmolb_2023_1091677
crossref_primary_10_1016_j_ymthe_2022_08_010
crossref_primary_10_3389_fmolb_2022_915307
crossref_primary_10_1128_mBio_03564_20
crossref_primary_10_3390_biomedicines12112603
crossref_primary_10_1002_cbic_202100459
crossref_primary_10_1002_1873_3468_14677
crossref_primary_10_1007_s10565_021_09689_8
crossref_primary_10_1016_j_chembiol_2021_11_004
crossref_primary_10_1007_s11274_024_03970_8
crossref_primary_10_1016_j_mib_2024_102480
crossref_primary_10_1039_D3NR06044F
crossref_primary_10_1016_j_sajb_2023_08_069
crossref_primary_10_1002_1873_3468_14682
crossref_primary_10_1016_j_tibs_2022_04_008
crossref_primary_10_1039_D3CP03103A
Cites_doi 10.1073/pnas.1601846113
10.1016/j.bpj.2019.10.040
10.1074/jbc.REV118.002810
10.1074/jbc.M114.582049
10.1038/10754
10.1074/jbc.M113.480178
10.1016/j.molcel.2019.03.026
10.1038/nature08009
10.1038/nrm2941
10.1016/S0092-8674(02)01198-4
10.1074/jbc.M114.577205
10.1073/pnas.1207382109
10.3390/biom10010097
10.1038/23301
10.1016/j.cell.2005.05.028
10.1016/j.cell.2019.03.012
10.1016/j.celrep.2011.12.007
10.1038/370111a0
10.1016/S0092-8674(01)00517-7
10.1111/j.1742-4658.2011.08458.x
10.1146/annurev-biochem-013118-111717
10.1038/nchembio.742
10.1038/nsmb.3133
10.1038/ncomms15934
10.1016/j.sbi.2011.09.002
10.1038/s41589-018-0013-8
10.1016/S0092-8674(00)80787-4
10.1038/s41580-019-0133-3
10.1038/41024
10.1073/pnas.91.22.10345
10.1126/science.1219021
10.1016/j.celrep.2019.06.081
10.1038/emboj.2008.77
10.7554/eLife.48491
10.1016/S0092-8674(00)80509-7
10.1021/bi061597j
10.1016/j.molcel.2019.03.032
10.1016/j.tibs.2019.06.008
10.1016/S0022-2836(03)00929-X
10.7554/eLife.02218
10.1016/j.tibs.2015.07.009
10.1016/j.sbi.2016.06.002
10.1016/j.bpj.2013.01.034
10.1016/j.jmb.2015.04.013
10.1002/pro.3795
10.1111/j.1365-2958.2012.08054.x
10.1038/nsmb.1394
10.1098/rsif.2018.0244
10.1126/science.181.4096.223
10.1016/j.cell.2006.04.027
10.1073/pnas.1635051100
10.1038/41944
10.1038/s41467-019-14245-4
10.1016/j.molcel.2012.09.023
10.1016/j.cels.2019.03.006
10.1002/1873-3468.12036
10.1074/jbc.M110.155911
10.1073/pnas.1407086111
10.1038/nature12293
10.1016/j.cell.2013.04.052
10.1073/pnas.1424342112
10.1002/pro.3276
10.1006/jmbi.1995.0284
10.1016/j.cell.2017.12.010
10.1074/jbc.REV118.002814
10.1021/ja503501x
10.1038/nature10099
10.1016/j.jmb.2017.07.022
10.1016/j.cell.2014.03.038
10.1038/nrm2144
10.1038/356683a0
10.1038/emboj.2010.52
10.1126/science.aac4354
10.1038/nsmb.1592
10.1073/pnas.97.4.1525
10.1016/j.celrep.2015.03.018
10.1101/sqb.2009.74.043
10.1515/BC.2006.064
10.7554/eLife.28030
10.1042/BCJ20170380
10.1016/j.cell.2008.01.048
10.1093/emboj/16.7.1501
10.1074/jbc.M114.633636
10.1016/j.jmb.2012.11.028
10.1016/j.cell.2010.05.027
10.1038/nchembio.455
10.1021/ja802248m
10.1038/nsmb.2466
10.1016/j.cell.2012.12.001
10.1038/ncomms9861
10.1126/science.aax1280
10.1038/nature02261
10.1038/nsmb.1591
10.1016/j.molcel.2018.03.028
10.1021/acs.chemrev.5b00556
10.1073/pnas.1716168115
10.1016/j.jmb.2020.02.031
10.1016/j.bpj.2017.03.028
10.1073/pnas.0903503106
10.1016/j.tibs.2013.05.001
10.1016/S0968-0004(00)01610-8
10.1073/pnas.1508504112
10.1016/j.jmb.2014.04.018
10.1073/pnas.1201380109
10.1016/j.cell.2018.07.006
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies
2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies
– notice: 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
DBID 24P
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1002/1873-3468.13844
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 2781
ExternalDocumentID 32446288
10_1002_1873_3468_13844
FEB213844
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Wellcome Trust
  funderid: FC001985
– fundername: Max Planck Society
– fundername: Francis Crick Institute
  funderid: FC001985; FC001985
– fundername: Cancer Research UK
– fundername: UK Medical Research Council
– fundername: Deutsche Forschungsgemeinschaft
  funderid: SFB 1035
– fundername: Medical Research Council
  grantid: FC001985
– fundername: Cancer Research UK
  grantid: FC001985
– fundername: Wellcome Trust
  grantid: FC001985
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAHQN
AAIKJ
AAIPD
AALRI
AAMNL
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABWVN
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
AKBMS
AKYEP
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c4844-fdc0f19cadb6448cb5f51818101dde290ef2eb9b41a198eab6ca6ac65e9772823
IEDL.DBID 24P
ISSN 0014-5793
1873-3468
IngestDate Fri Jul 11 18:33:17 EDT 2025
Thu Jul 10 23:31:33 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Tue Jul 01 02:46:50 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
Wed Jan 22 16:33:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Hsp70
Hsp60
DnaK
confinement
GroEL
chaperonin
protein misfolding
protein folding
molecular chaperones
Hsp40
Language English
License Attribution-NonCommercial
2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4844-fdc0f19cadb6448cb5f51818101dde290ef2eb9b41a198eab6ca6ac65e9772823
Notes Edited by Miguel De la Rosa
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7941-135X
0000-0002-5000-0995
0000-0001-8213-6742
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.13844
PMID 32446288
PQID 2406307768
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2718338750
proquest_miscellaneous_2406307768
pubmed_primary_32446288
crossref_primary_10_1002_1873_3468_13844
crossref_citationtrail_10_1002_1873_3468_13844
wiley_primary_10_1002_1873_3468_13844_FEB213844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2020
References 2010; 11
1973; 181
1994; 370
2015; 427
2020; 11
2020; 10
2016; 38
2014; 136
2011; 474
1997; 388
2018; 174
2018; 172
2019; 20
2010; 29
1992; 356
2008; 27
2000; 97
2019; 28
2007; 8
1995; 249
2016; 41
2012; 22
2009; 16
2010; 6
2019; 8
2013; 104
2013; 500
2009; 459
2003; 332
2011; 8
2012; 109
2014; 157
2014; 426
2009; 74
2006; 45
2005; 122
2019; 44
2015; 112
2018; 115
2020; 432
2012; 48
2019; 294
1994; 91
2008; 133
2003; 100
2008; 130
2019; 177
2018; 15
2018; 14
2016; 23
2020; 29
2009; 106
2017; 6
2017; 8
2002; 111
2013; 20
2013; 288
2010; 142
1999; 400
2001; 107
2017; 112
2019; 365
1997; 90
2015; 290
2014; 3
2018; 70
2016; 113
2016; 353
2019; 476
1997; 16
2013; 152
1999; 97
2016; 116
2013; 153
2012; 338
2011; 286
2006; 125
2014; 289
2016; 590
2015; 6
2000; 25
2017; 26
2019; 74
2015; 11
2013; 425
2008; 15
2014; 111
1999; 6
2018; 430
2003; 426
2013; 38
2012; 1
2019; 88
2020; 118
2012; 279
2006; 387
2012; 84
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
De Los RP (e_1_2_8_23_1) 2014; 3
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 6
  year: 2017
  article-title: Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone‐substrate ensembles
  publication-title: Elife
– volume: 590
  start-page: 251
  year: 2016
  end-page: 257
  article-title: Identification of novel in vivo obligate GroEL/ES substrates based on data from a cell‐free proteomics approach
  publication-title: FEBS Lett
– volume: 29
  start-page: 1552
  year: 2010
  end-page: 1564
  article-title: A systematic survey of in vivo obligate chaperonin‐dependent substrates
  publication-title: EMBO J
– volume: 125
  start-page: 903
  year: 2006
  end-page: 914
  article-title: Structural features of the GroEL‐GroES nano‐cage required for rapid folding of encapsulated protein
  publication-title: Cell
– volume: 16
  start-page: 1501
  year: 1997
  end-page: 1507
  article-title: Substrate specificity of the DnaK chaperone determined by screening cellulose‐bound peptide libraries
  publication-title: EMBO J
– volume: 14
  start-page: 388
  year: 2018
  end-page: 395
  article-title: Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins
  publication-title: Nat Chem Biol
– volume: 16
  start-page: 574
  year: 2009
  end-page: 581
  article-title: Converging concepts of protein folding in vitro and in vivo
  publication-title: Nat Struct Mol Biol
– volume: 112
  start-page: 10395
  year: 2015
  end-page: 10400
  article-title: Mapping the conformation of a client protein through the Hsp70 functional cycle
  publication-title: Proc Natl Acad Sci USA
– volume: 74
  start-page: 831
  year: 2019
  end-page: 843
  article-title: Hsp70‐ and Hsp90‐mediated regulation of the conformation of p53 DNA binding domain and p53 cancer variants
  publication-title: Mol Cell
– volume: 22
  start-page: 4
  year: 2012
  end-page: 13
  article-title: Residual structure in unfolded proteins
  publication-title: Curr Opin Struct Biol
– volume: 3
  year: 2014
  article-title: Hsp70 chaperones are non‐equilibrium machines that achieve ultra‐affinity by energy consumption
  publication-title: Elife
– volume: 152
  start-page: 196
  year: 2013
  end-page: 209
  article-title: The cotranslational function of ribosome‐associated Hsp70 in eukaryotic protein homeostasis
  publication-title: Cell
– volume: 8
  start-page: 147
  year: 2011
  end-page: 153
  article-title: Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins
  publication-title: Nat Chem Biol
– volume: 44
  start-page: 914
  year: 2019
  end-page: 926
  article-title: Nature and regulation of protein folding on the ribosome
  publication-title: Trends Biochem Sci
– volume: 388
  start-page: 741
  year: 1997
  end-page: 750
  article-title: The crystal structure of the asymmetric GroEL‐GroES‐(ADP)7 chaperonin complex
  publication-title: Nature
– volume: 8
  year: 2017
  article-title: GroEL actively stimulates folding of the endogenous substrate protein PepQ
  publication-title: Nat Commun
– volume: 111
  start-page: 1027
  year: 2002
  end-page: 1039
  article-title: Directed evolution of substrate‐optimized GroEL/S chaperonins
  publication-title: Cell
– volume: 353
  year: 2016
  article-title: In vivo aspects of protein folding and quality control
  publication-title: Science
– volume: 153
  start-page: 1354
  year: 2013
  end-page: 1365
  article-title: Visualizing GroEL/ES in the act of encapsulating a folding protein
  publication-title: Cell
– volume: 289
  start-page: 28607
  year: 2014
  end-page: 28618
  article-title: Chaperones rescue luciferase folding by separating its domains
  publication-title: J Biol Chem
– volume: 425
  start-page: 1476
  year: 2013
  end-page: 1487
  article-title: Structure and allostery of the chaperonin GroEL
  publication-title: J Mol Biol
– volume: 500
  start-page: 98
  year: 2013
  end-page: 101
  article-title: Reshaping of the conformational search of a protein by the chaperone trigger factor
  publication-title: Nature
– volume: 365
  start-page: 1313
  year: 2019
  end-page: 1319
  article-title: Structural basis for client recognition and activity of Hsp40 chaperones
  publication-title: Science
– volume: 332
  start-page: 701
  year: 2003
  end-page: 713
  article-title: Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape
  publication-title: J Mol Biol
– volume: 279
  start-page: 543
  year: 2012
  end-page: 550
  article-title: What distinguishes GroEL substrates from other proteins?
  publication-title: FEBS J
– volume: 432
  start-page: 2304
  year: 2020
  end-page: 2318
  article-title: Efficient catalysis of protein folding by GroEL/ES of the obligate chaperonin substrate MetF
  publication-title: J Mol Biol
– volume: 104
  start-page: 1098
  year: 2013
  end-page: 1106
  article-title: Effects of interactions with the GroEL cavity on protein folding rates
  publication-title: Biophys J
– volume: 29
  start-page: 360
  year: 2020
  end-page: 377
  article-title: Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones
  publication-title: Protein Sci
– volume: 88
  start-page: 337
  year: 2019
  end-page: 364
  article-title: Mechanisms of cotranslational maturation of newly synthesized proteins
  publication-title: Annu Rev Biochem
– volume: 11
  start-page: 365
  year: 2020
  article-title: Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi‐domain protein
  publication-title: Nat Commun
– volume: 11
  start-page: 579
  year: 2010
  end-page: 592
  article-title: The HSP70 chaperone machinery: J proteins as drivers of functional specificity
  publication-title: Nat Rev Mol Cell Biol
– volume: 45
  start-page: 13356
  year: 2006
  end-page: 13360
  article-title: A simple semiempirical model for the effect of molecular confinement upon the rate of protein folding
  publication-title: Biochemistry
– volume: 48
  start-page: 863
  year: 2012
  end-page: 874
  article-title: Structure and dynamics of the ATP‐bound open conformation of Hsp70 chaperones
  publication-title: Mol Cell
– volume: 27
  start-page: 1458
  year: 2008
  end-page: 1468
  article-title: Essential role of the chaperonin folding compartment in vivo
  publication-title: EMBO J
– volume: 100
  start-page: 11345
  year: 2003
  end-page: 11349
  article-title: Role of residual structure in the unfolded state of a thermophilic protein
  publication-title: Proc Natl Acad Sci USA
– volume: 20
  start-page: 665
  year: 2019
  end-page: 680
  article-title: The Hsp70 chaperone network
  publication-title: Nat Rev Mol Cell Biol
– volume: 107
  start-page: 223
  year: 2001
  end-page: 233
  article-title: Dual function of protein confinement in chaperonin‐assisted protein folding
  publication-title: Cell
– volume: 288
  start-page: 30944
  year: 2013
  end-page: 30955
  article-title: Repetitive protein unfolding by the trans ring of the GroEL‐GroES chaperonin complex stimulates folding
  publication-title: J Biol Chem
– volume: 109
  start-page: 9851
  year: 2012
  end-page: 9856
  article-title: Hydrophobic forces and the length limit of foldable protein domains
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 53
  year: 2016
  end-page: 58
  article-title: Substrate protein folds while it is bound to the ATP‐independent chaperone Spy
  publication-title: Nat Struct Mol Biol
– volume: 16
  start-page: 582
  year: 2009
  end-page: 588
  article-title: An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms
  publication-title: Nat Struct Mol Biol
– volume: 115
  start-page: 519
  year: 2018
  end-page: 524
  article-title: Folding of maltose binding protein outside of and in GroEL
  publication-title: Proc Natl Acad Sci USA
– volume: 70
  start-page: 545
  year: 2018
  end-page: 552
  article-title: Hsp90 breaks the deadlock of the Hsp70 chaperone system
  publication-title: Mol Cell
– volume: 106
  start-page: 8471
  year: 2009
  end-page: 8476
  article-title: Solution conformation of wild‐type Hsp70 (DnaK) chaperone complexed with ADP and substrate
  publication-title: Proc Natl Acad Sci USA
– volume: 181
  start-page: 223
  year: 1973
  end-page: 230
  article-title: Principles that govern the folding of protein chains
  publication-title: Science
– volume: 20
  start-page: 237
  year: 2013
  end-page: 243
  article-title: Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding
  publication-title: Nat Struct Mol Biol
– volume: 174
  start-page: 1507
  year: 2018
  end-page: 1521
  article-title: Pathway of actin folding directed by the eukaryotic chaperonin TRiC
  publication-title: Cell
– volume: 249
  start-page: 126
  year: 1995
  end-page: 137
  article-title: The role of ATP in the functional cycle of the DnaK chaperone system
  publication-title: J Mol Biol
– volume: 109
  start-page: 8937
  year: 2012
  end-page: 8942
  article-title: Global analysis of chaperone effects using a reconstituted cell‐free translation system
  publication-title: Proc Natl Acad Sci USA
– volume: 97
  start-page: 1525
  year: 2000
  end-page: 1529
  article-title: Transition‐state structure as a unifying basis in protein‐folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism
  publication-title: Proc Natl Acad Sci USA
– volume: 38
  start-page: 102
  year: 2016
  end-page: 110
  article-title: Quality over quantity: optimizing co‐translational protein folding with non‐‘optimal’ synonymous codons
  publication-title: Curr Opin Struct Biol
– volume: 6
  start-page: 914
  year: 2010
  end-page: 920
  article-title: The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase
  publication-title: Nat Chem Biol
– volume: 286
  start-page: 3863
  year: 2011
  end-page: 3872
  article-title: The denatured state dictates the topology of two proteins with almost identical sequence but different native structure and function
  publication-title: J Biol Chem
– volume: 6
  start-page: 697
  year: 1999
  end-page: 705
  article-title: Co‐translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase
  publication-title: Nat Struct Biol
– volume: 130
  start-page: 11838
  year: 2008
  end-page: 11839
  article-title: A role for confined water in chaperonin function
  publication-title: J Am Chem Soc
– volume: 10
  start-page: 97
  year: 2020
  article-title: Cotranslational folding of proteins on the ribosome
  publication-title: Biomolecules
– volume: 177
  start-page: 751
  year: 2019
  end-page: 765
  article-title: The chaperonin TRiC/CCT associates with prefoldin through a conserved electrostatic interface essential for cellular proteostasis
  publication-title: Cell
– volume: 8
  start-page: 292
  year: 2019
  end-page: 301
  article-title: End‐to‐end differentiable learning of protein structure
  publication-title: Cell Syst
– volume: 11
  start-page: 321
  year: 2015
  end-page: 333
  article-title: Individual and collective contributions of chaperoning and degradation to protein homeostasis in
  publication-title: Cell Rep
– volume: 74
  start-page: 103
  year: 2009
  end-page: 108
  article-title: Protein folding sculpting evolutionary change
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 370
  start-page: 111
  year: 1994
  end-page: 117
  article-title: Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones
  publication-title: Nature
– volume: 133
  start-page: 142
  year: 2008
  end-page: 153
  article-title: Monitoring protein conformation along the pathway of chaperonin‐assisted folding
  publication-title: Cell
– volume: 97
  start-page: 755
  year: 1999
  end-page: 765
  article-title: Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains
  publication-title: Cell
– volume: 15
  start-page: 20180244
  year: 2018
  article-title: Lessons from pressure denaturation of proteins
  publication-title: J R Soc Interface
– volume: 111
  start-page: 13355
  year: 2014
  end-page: 13360
  article-title: Single‐molecule spectroscopy reveals chaperone‐mediated expansion of substrate protein
  publication-title: Proc Natl Acad Sci USA
– volume: 290
  start-page: 15042
  year: 2015
  end-page: 15051
  article-title: Effects of C‐terminal truncation of chaperonin GroEL on the yield of in‐cage folding of the green fluorescent protein
  publication-title: J Biol Chem
– volume: 430
  start-page: 450
  year: 2018
  end-page: 464
  article-title: Exploring the denatured state ensemble by single‐molecule chemo‐mechanical unfolding: the effect of force, temperature, and urea
  publication-title: J Mol Biol
– volume: 122
  start-page: 209
  year: 2005
  end-page: 220
  article-title: Proteome‐wide analysis of chaperonin‐dependent protein folding in
  publication-title: Cell
– volume: 400
  start-page: 693
  year: 1999
  end-page: 696
  article-title: Trigger factor and DnaK cooperate in folding of newly synthesized proteins
  publication-title: Nature
– volume: 1
  start-page: 251
  year: 2012
  end-page: 264
  article-title: DnaK functions as a central hub in the chaperone network
  publication-title: Cell Rep
– volume: 294
  start-page: 2085
  year: 2019
  end-page: 2097
  article-title: Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones
  publication-title: J Biol Chem
– volume: 142
  start-page: 112
  year: 2010
  end-page: 122
  article-title: Chaperonin‐catalyzed rescue of kinetically trapped states in protein folding
  publication-title: Cell
– volume: 338
  start-page: 1042
  year: 2012
  end-page: 1046
  article-title: The protein‐folding problem, 50 years on
  publication-title: Science
– volume: 426
  start-page: 884
  year: 2003
  end-page: 890
  article-title: Protein folding and misfolding
  publication-title: Nature
– volume: 74
  start-page: 816
  year: 2019
  end-page: 830
  article-title: Coordinated conformational processing of the tumor suppressor protein p53 by the Hsp70 and Hsp90 chaperone machineries
  publication-title: Mol Cell
– volume: 112
  start-page: E3189
  year: 2015
  end-page: E3198
  article-title: Conformational processing of oncogenic v‐Src kinase by the molecular chaperone Hsp90
  publication-title: Proc Natl Acad Sci USA
– volume: 84
  start-page: 736
  year: 2012
  end-page: 747
  article-title: Physical map and dynamics of the chaperone network in
  publication-title: Mol Microbiol
– volume: 113
  start-page: E2794
  year: 2016
  end-page: E2801
  article-title: Hsp70 biases the folding pathways of client proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 118
  start-page: 85
  year: 2020
  end-page: 95
  article-title: The anti‐aggregation holdase Hsp33 promotes the formation of folded protein structures
  publication-title: Biophys J
– volume: 15
  start-page: 303
  year: 2008
  end-page: 311
  article-title: GroEL stimulates protein folding through forced unfolding
  publication-title: Nat Struct Mol Biol
– volume: 427
  start-page: 2919
  year: 2015
  end-page: 2930
  article-title: The mechanism and function of group II chaperonins
  publication-title: J Mol Biol
– volume: 25
  start-page: 331
  year: 2000
  end-page: 339
  article-title: Understanding protein folding via free‐energy surfaces from theory and experiment
  publication-title: Trends Biochem Sci
– volume: 294
  start-page: 2076
  year: 2019
  end-page: 2084
  article-title: The stop‐and‐go traffic regulating protein biogenesis: how translation kinetics controls proteostasis
  publication-title: J Biol Chem
– volume: 172
  start-page: 605
  year: 2018
  end-page: 617
  article-title: GroEL ring separation and exchange in the chaperonin reaction
  publication-title: Cell
– volume: 90
  start-page: 491
  year: 1997
  end-page: 500
  article-title: In vivo observation of polypeptide flux through the bacterial chaperonin system
  publication-title: Cell
– volume: 8
  start-page: 319
  year: 2007
  end-page: 330
  article-title: The folding and evolution of multidomain proteins
  publication-title: Nat Rev Mol Cell Biol
– volume: 356
  start-page: 683
  year: 1992
  end-page: 689
  article-title: Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone‐mediated protein folding
  publication-title: Nature
– volume: 91
  start-page: 10345
  year: 1994
  end-page: 10349
  article-title: The ATP hydrolysis‐dependent reaction cycle of the Hsp70 system DnaK, DnaJ, and GrpE
  publication-title: Proc Natl Acad Sci USA
– volume: 136
  start-page: 9396
  year: 2014
  end-page: 9403
  article-title: Probing water density and dynamics in the chaperonin GroEL cavity
  publication-title: J Am Chem Soc
– volume: 6
  start-page: 8861
  year: 2015
  article-title: Transient misfolding dominates multidomain protein folding
  publication-title: Nat Commun
– volume: 28
  start-page: 1335
  year: 2019
  end-page: 1345
  article-title: The Hsp70 chaperone system stabilizes a thermo‐sensitive subproteome in
  publication-title: Cell Rep
– volume: 116
  start-page: 6588
  year: 2016
  end-page: 6606
  article-title: Allosteric mechanisms in chaperonin machines
  publication-title: Chem Rev
– volume: 157
  start-page: 922
  year: 2014
  end-page: 934
  article-title: GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM‐barrel domain folding
  publication-title: Cell
– volume: 41
  start-page: 62
  year: 2016
  end-page: 76
  article-title: The GroEL‐GroES chaperonin machine: a nano‐cage for protein folding
  publication-title: Trends Biochem Sci
– volume: 38
  start-page: 337
  year: 2013
  end-page: 344
  article-title: Folding the proteome
  publication-title: Trends Biochem Sci
– volume: 476
  start-page: 1653
  year: 2019
  end-page: 1677
  article-title: Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines
  publication-title: Biochem J
– volume: 388
  start-page: 343
  year: 1997
  end-page: 349
  article-title: Recombination of protein domains facilitated by co‐translational folding in eukaryotes
  publication-title: Nature
– volume: 8
  year: 2019
  article-title: Efficient conversion of chemical energy into mechanical work by Hsp70 chaperones
  publication-title: Elife
– volume: 426
  start-page: 2739
  year: 2014
  end-page: 2754
  article-title: Active cage mechanism of chaperonin‐assisted protein folding demonstrated at single‐molecule level
  publication-title: J Mol Biol
– volume: 26
  start-page: 2207
  year: 2017
  end-page: 2220
  article-title: Conformational heterogeneity in the Hsp70 chaperone‐substrate ensemble identified from analysis of NMR‐detected titration data
  publication-title: Protein Sci
– volume: 289
  start-page: 23219
  year: 2014
  end-page: 23232
  article-title: The C‐terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein
  publication-title: J Biol Chem
– volume: 459
  start-page: 668
  year: 2009
  end-page: 673
  article-title: Chaperonin overexpression promotes genetic variation and enzyme evolution
  publication-title: Nature
– volume: 387
  start-page: 485
  year: 2006
  end-page: 497
  article-title: Protein aggregation in crowded environments
  publication-title: Biol Chem
– volume: 474
  start-page: 662
  year: 2011
  end-page: 665
  article-title: Single‐molecule fluorescence reveals sequence‐specific misfolding in multidomain proteins
  publication-title: Nature
– volume: 112
  start-page: 1829
  year: 2017
  end-page: 1840
  article-title: Competing pathways and multiple folding nuclei in a large multidomain protein, luciferase
  publication-title: Biophys J
– ident: e_1_2_8_34_1
  doi: 10.1073/pnas.1601846113
– ident: e_1_2_8_102_1
  doi: 10.1016/j.bpj.2019.10.040
– ident: e_1_2_8_18_1
  doi: 10.1074/jbc.REV118.002810
– ident: e_1_2_8_86_1
  doi: 10.1074/jbc.M114.582049
– ident: e_1_2_8_88_1
  doi: 10.1038/10754
– ident: e_1_2_8_70_1
  doi: 10.1074/jbc.M113.480178
– ident: e_1_2_8_32_1
  doi: 10.1016/j.molcel.2019.03.026
– ident: e_1_2_8_15_1
  doi: 10.1038/nature08009
– ident: e_1_2_8_45_1
  doi: 10.1038/nrm2941
– ident: e_1_2_8_80_1
  doi: 10.1016/S0092-8674(02)01198-4
– ident: e_1_2_8_72_1
  doi: 10.1074/jbc.M114.577205
– ident: e_1_2_8_94_1
  doi: 10.1073/pnas.1207382109
– ident: e_1_2_8_12_1
  doi: 10.3390/biom10010097
– ident: e_1_2_8_96_1
  doi: 10.1038/23301
– ident: e_1_2_8_53_1
  doi: 10.1016/j.cell.2005.05.028
– ident: e_1_2_8_95_1
  doi: 10.1016/j.cell.2019.03.012
– ident: e_1_2_8_42_1
  doi: 10.1016/j.celrep.2011.12.007
– ident: e_1_2_8_87_1
  doi: 10.1038/370111a0
– ident: e_1_2_8_67_1
  doi: 10.1016/S0092-8674(01)00517-7
– ident: e_1_2_8_93_1
  doi: 10.1111/j.1742-4658.2011.08458.x
– ident: e_1_2_8_13_1
  doi: 10.1146/annurev-biochem-013118-111717
– ident: e_1_2_8_69_1
  doi: 10.1038/nchembio.742
– ident: e_1_2_8_104_1
  doi: 10.1038/nsmb.3133
– ident: e_1_2_8_63_1
  doi: 10.1038/ncomms15934
– ident: e_1_2_8_37_1
  doi: 10.1016/j.sbi.2011.09.002
– ident: e_1_2_8_47_1
  doi: 10.1038/s41589-018-0013-8
– ident: e_1_2_8_97_1
  doi: 10.1016/S0092-8674(00)80787-4
– ident: e_1_2_8_19_1
  doi: 10.1038/s41580-019-0133-3
– ident: e_1_2_8_89_1
  doi: 10.1038/41024
– ident: e_1_2_8_21_1
  doi: 10.1073/pnas.91.22.10345
– ident: e_1_2_8_5_1
  doi: 10.1126/science.1219021
– ident: e_1_2_8_46_1
  doi: 10.1016/j.celrep.2019.06.081
– ident: e_1_2_8_64_1
  doi: 10.1038/emboj.2008.77
– ident: e_1_2_8_33_1
  doi: 10.7554/eLife.48491
– ident: e_1_2_8_54_1
  doi: 10.1016/S0092-8674(00)80509-7
– ident: e_1_2_8_74_1
  doi: 10.1021/bi061597j
– ident: e_1_2_8_30_1
  doi: 10.1016/j.molcel.2019.03.032
– ident: e_1_2_8_14_1
  doi: 10.1016/j.tibs.2019.06.008
– ident: e_1_2_8_73_1
  doi: 10.1016/S0022-2836(03)00929-X
– volume: 3
  start-page: e02218
  year: 2014
  ident: e_1_2_8_23_1
  article-title: Hsp70 chaperones are non‐equilibrium machines that achieve ultra‐affinity by energy consumption
  publication-title: Elife
  doi: 10.7554/eLife.02218
– ident: e_1_2_8_48_1
  doi: 10.1016/j.tibs.2015.07.009
– ident: e_1_2_8_91_1
  doi: 10.1016/j.sbi.2016.06.002
– ident: e_1_2_8_75_1
  doi: 10.1016/j.bpj.2013.01.034
– ident: e_1_2_8_51_1
  doi: 10.1016/j.jmb.2015.04.013
– ident: e_1_2_8_50_1
  doi: 10.1002/pro.3795
– ident: e_1_2_8_100_1
  doi: 10.1111/j.1365-2958.2012.08054.x
– ident: e_1_2_8_68_1
  doi: 10.1038/nsmb.1394
– ident: e_1_2_8_36_1
  doi: 10.1098/rsif.2018.0244
– ident: e_1_2_8_2_1
  doi: 10.1126/science.181.4096.223
– ident: e_1_2_8_65_1
  doi: 10.1016/j.cell.2006.04.027
– ident: e_1_2_8_39_1
  doi: 10.1073/pnas.1635051100
– ident: e_1_2_8_59_1
  doi: 10.1038/41944
– ident: e_1_2_8_27_1
  doi: 10.1038/s41467-019-14245-4
– ident: e_1_2_8_105_1
  doi: 10.1016/j.molcel.2012.09.023
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cels.2019.03.006
– ident: e_1_2_8_81_1
  doi: 10.1002/1873-3468.12036
– ident: e_1_2_8_38_1
  doi: 10.1074/jbc.M110.155911
– ident: e_1_2_8_31_1
  doi: 10.1073/pnas.1407086111
– ident: e_1_2_8_103_1
  doi: 10.1038/nature12293
– ident: e_1_2_8_76_1
  doi: 10.1016/j.cell.2013.04.052
– ident: e_1_2_8_101_1
  doi: 10.1073/pnas.1424342112
– ident: e_1_2_8_41_1
  doi: 10.1002/pro.3276
– ident: e_1_2_8_22_1
  doi: 10.1006/jmbi.1995.0284
– ident: e_1_2_8_58_1
  doi: 10.1016/j.cell.2017.12.010
– ident: e_1_2_8_92_1
  doi: 10.1074/jbc.REV118.002814
– ident: e_1_2_8_79_1
  doi: 10.1021/ja503501x
– ident: e_1_2_8_83_1
  doi: 10.1038/nature10099
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jmb.2017.07.022
– ident: e_1_2_8_62_1
  doi: 10.1016/j.cell.2014.03.038
– ident: e_1_2_8_84_1
  doi: 10.1038/nrm2144
– ident: e_1_2_8_24_1
  doi: 10.1038/356683a0
– ident: e_1_2_8_55_1
  doi: 10.1038/emboj.2010.52
– ident: e_1_2_8_10_1
  doi: 10.1126/science.aac4354
– ident: e_1_2_8_8_1
  doi: 10.1038/nsmb.1592
– ident: e_1_2_8_4_1
  doi: 10.1073/pnas.97.4.1525
– ident: e_1_2_8_98_1
  doi: 10.1016/j.celrep.2015.03.018
– ident: e_1_2_8_16_1
  doi: 10.1101/sqb.2009.74.043
– ident: e_1_2_8_11_1
  doi: 10.1515/BC.2006.064
– ident: e_1_2_8_40_1
  doi: 10.7554/eLife.28030
– ident: e_1_2_8_17_1
  doi: 10.1042/BCJ20170380
– ident: e_1_2_8_71_1
  doi: 10.1016/j.cell.2008.01.048
– ident: e_1_2_8_20_1
  doi: 10.1093/emboj/16.7.1501
– ident: e_1_2_8_77_1
  doi: 10.1074/jbc.M114.633636
– ident: e_1_2_8_49_1
  doi: 10.1016/j.jmb.2012.11.028
– ident: e_1_2_8_61_1
  doi: 10.1016/j.cell.2010.05.027
– ident: e_1_2_8_28_1
  doi: 10.1038/nchembio.455
– ident: e_1_2_8_78_1
  doi: 10.1021/ja802248m
– ident: e_1_2_8_90_1
  doi: 10.1038/nsmb.2466
– ident: e_1_2_8_43_1
  doi: 10.1016/j.cell.2012.12.001
– ident: e_1_2_8_82_1
  doi: 10.1038/ncomms9861
– ident: e_1_2_8_44_1
  doi: 10.1126/science.aax1280
– ident: e_1_2_8_3_1
  doi: 10.1038/nature02261
– ident: e_1_2_8_26_1
  doi: 10.1038/nsmb.1591
– ident: e_1_2_8_25_1
  doi: 10.1016/j.molcel.2018.03.028
– ident: e_1_2_8_52_1
  doi: 10.1021/acs.chemrev.5b00556
– ident: e_1_2_8_66_1
  doi: 10.1073/pnas.1716168115
– ident: e_1_2_8_56_1
  doi: 10.1016/j.jmb.2020.02.031
– ident: e_1_2_8_85_1
  doi: 10.1016/j.bpj.2017.03.028
– ident: e_1_2_8_106_1
  doi: 10.1073/pnas.0903503106
– ident: e_1_2_8_9_1
  doi: 10.1016/j.tibs.2013.05.001
– ident: e_1_2_8_7_1
  doi: 10.1016/S0968-0004(00)01610-8
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.1508504112
– ident: e_1_2_8_60_1
  doi: 10.1016/j.jmb.2014.04.018
– ident: e_1_2_8_99_1
  doi: 10.1073/pnas.1201380109
– ident: e_1_2_8_57_1
  doi: 10.1016/j.cell.2018.07.006
SSID ssj0001819
Score 2.6190372
SecondaryResourceType review_article
Snippet Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein...
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo . Diverse chaperone systems assist de novo protein...
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2770
SubjectTerms catalytic activity
chaperonin
chaperonins
confinement
DnaK
GroEL
Hsp40
Hsp60
Hsp70
hydrophobicity
molecular chaperones
protein folding
protein misfolding
Title Recent advances in understanding catalysis of protein folding by molecular chaperones
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.13844
https://www.ncbi.nlm.nih.gov/pubmed/32446288
https://www.proquest.com/docview/2406307768
https://www.proquest.com/docview/2718338750
Volume 594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHoR364vIoh4ibtt09dxFRdRFBEXvZUkm0FBq7juwX_vTLpdX6h462GStplk5ptk5gvADtIs0GkeS4xNIlWgQmnQaNnLUhM5tOSBud757Dw57qqTm7jOJuRamIofYrThxivD22te4Nr0m--koUGWRjJSSbYfRJlS4zDJBbac1Reqi5ExJgdWIeBAyZjmYs3u0wqbXzr47Ji-oc3P4NV7n84czA5ho2hXep6HMVcuwGK7pJD54VXsCp_I6XfIF2DqoH6aPqyvc1uELgFEcjBieOjfF3elGHysbBF-J4cJSsQjCs_fQCJYnU4J8yoe6pt0hb3VzC9OVnIJup2jq8NjObxTQVpFPymxZ1sY5Fb3DEdm1sQY0xgxzRcZujBvOQydyY0KdJBnTpvE6kTbJHYEFCk8i5ZhoqT-V0Fg4FKMEFOSV0mU5jlmFo1NqWeHOm3Afj2ghR0SjvO9F_dFRZUcFqyBgjVQeA00YG_U4Kni2vhZdLvWUEHjyIccunSPg37BCCVijqLsFxlyyBSaE1hqwEql3tELCWByuS61bnp9__UlRefoIPRPa_9usQ4zIYfvPmVtAyZengdukzDOi9nys3gLJtunl9enbwRw8hc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuqLRQlvIwEiAu7m5sJ04OPbSlqy19iENX6s3YXlsg0RSxXaH9W_2FzDjJQkGAOPTmw3gSeWzPN2P7G4CXEWeB1VXOY-4KrjIluIvO8kmpnQzRowem987HJ8VorN6d5WdLcNW9hWn4IRYJN1oZab-mBU4J6f4P1tCs1JJLVZRbmSyVai9WHob5NwzbptsHb9HGr4QY7p_ujXhbWYB7haI8TvwgZpW3E0fxiXd5zNHVEdkVLndRDUIUwVVOZRaD8mBd4W1hfZEHhEsYpEjUewtuq0Joqpog1PvF7o9KGsidKZ7j5O_ohAai_8sPX_eEv8Hb62g5ubvhKtxrcSrbaSbWfVgK9Rqs79QYo5_P2WuWbo6mlPwa3NntWit7Xf24dRgjIkWPxtpbBlP2qWazn5_SsJQ6IkYUdhFZIoxAkdgchzE3Z-dd6V7mP1oiNMdt-QGMb2SoH8JyjfofAYtZ0FHGqFFeFVJXVSx9dF6j5hCt7sFWN6DGtwznVGjjs2m4mYUhCxiygEkW6MGbRYcvDbnHn0VfdBYyOI50qmLrcDGbGoJEkkiRyr_IIAKQEkPDQQ82GvMuPoiIlt4HY-9-sve__sQM93dFaj3-7x7PYWV0enxkjg5ODjfhrqDcQbov9wSWL7_OwlMEWJfuWZrRDD7c9BL6DogULs0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT1QxEJ8gRvFCFARWUGuixkvZfW3f14EDXxsQJRzchFtpu51AAg_CsjH7Z_kfMu17bxGNGg_cepj2vXQ6nd-0M78CvEdaBSYvU46pzbhKlOAWreHDIrfSoyMPHOqdvx5mewP1-Tg9noEfbS1MzQ8xPXALlhH362DgV0Ps3pGGJkUuuVRZsZ7IQqkmr_LAT75T1Dba2N8hFX8Qor_7bXuPNw8LcKdIlOPQ9TApnRnaEJ44m2JKni5wXZG1i7LnUXhbWpUYism9sZkzmXFZ6gktUYwiadxH8DhcMYYsMqGOpps_DVIj7kTxlNZ-yybUE91ffvi-I_wN3d4Hy9Hb9Z_DfANT2Wa9rl7AjK8WYHGzohD9YsI-spg4Gk_kF-DJVtua226fj1uEAQFScmisSTIYsbOKjX-upGHx5CgQorBLZJEvgkSwvg1jdsIu2pd7mTs1gc-cduWXMHiQqV6C2YrGXwGGic9RIuYkrzKZlyUWDq3LaWSPJu_Aejuh2jUE5-GdjXNdUzMLHTSggwZ01EAHPk07XNXcHn8WfddqSNM8hksVU_nL8UgHRCQDJ1LxFxkCAFJSZNjrwHKt3ukHCdCG8mDq3Y36_tef6P7uloitV__d4y08Pdrp6y_7hwer8EyEk4OYLbcGszfXY_-a4NWNfRMXNIOTh7agW3fMLf8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+understanding+catalysis+of+protein+folding+by+molecular+chaperones&rft.jtitle=FEBS+letters&rft.au=Balchin%2C+David&rft.au=Hayer%E2%80%90Hartl%2C+Manajit&rft.au=Hartl%2C+F.+Ulrich&rft.date=2020-09-01&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=594&rft.issue=17&rft.spage=2770&rft.epage=2781&rft_id=info:doi/10.1002%2F1873-3468.13844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_1873_3468_13844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon