The antioxidant and pro-oxidant activity of vitamin C and trolox in vitro: a comparative study

The antioxidant and pro‐oxidant properties of ascorbic acid (vitamin C) and the water‐soluble analogue of α‐tocopherol (trolox) were compared. Trolox has advantages over α‐tocopherol, the latter being only lipid‐soluble due to the presence of a carboxyl group in lieu of a phytol chain which imparts...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied toxicology Vol. 28; no. 2; pp. 183 - 188
Main Authors Poljšak, Borut, Raspor, Peter
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.03.2008
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The antioxidant and pro‐oxidant properties of ascorbic acid (vitamin C) and the water‐soluble analogue of α‐tocopherol (trolox) were compared. Trolox has advantages over α‐tocopherol, the latter being only lipid‐soluble due to the presence of a carboxyl group in lieu of a phytol chain which imparts trolox with water solubility. Trolox is used as a standard antioxidant in biochemical studies against which the antioxidant capacity of compounds is compared. Although ascorbic acid and tocopherols possess strong antioxidant properties, they might also exhibit pro‐oxidant properties in the presence of free transition metals. Thus, reactions detailed in this study were performed in the presence of Cr(VI) in an effort to investigate the potential of ascorbic acid and trolox to generate hydroxyl radicals in a Fenton‐like reaction. Results obtained were derived from reactions containing the same concentration of ascorbic acid and trolox under identical experimental conditions. Hydroxyl radical formation was observed in the reaction of Cr(VI) with ascorbic acid resulting from ascorbic acid auto‐oxidation and H2O2 formation. Hydroxyl radical formation was only detected in the reaction mixture containing Cr(VI) and trolox following the addition of H2O2. Copyright © 2007 John Wiley & Sons, Ltd.
AbstractList The antioxidant and pro-oxidant properties of ascorbic acid (vitamin C) and the water-soluble analogue of alpha-tocopherol (trolox) were compared. Trolox has advantages over alpha-tocopherol, the latter being only lipid-soluble due to the presence of a carboxyl group in lieu of a phytol chain which imparts trolox with water solubility. Trolox is used as a standard antioxidant in biochemical studies against which the antioxidant capacity of compounds is compared. Although ascorbic acid and tocopherols possess strong antioxidant properties, they might also exhibit pro-oxidant properties in the presence of free transition metals. Thus, reactions detailed in this study were performed in the presence of Cr(VI) in an effort to investigate the potential of ascorbic acid and trolox to generate hydroxyl radicals in a Fenton-like reaction. Results obtained were derived from reactions containing the same concentration of ascorbic acid and trolox under identical experimental conditions. Hydroxyl radical formation was observed in the reaction of Cr(VI) with ascorbic acid resulting from ascorbic acid auto-oxidation and H2O2 formation. Hydroxyl radical formation was only detected in the reaction mixture containing Cr(VI) and trolox following the addition of H2O2.The antioxidant and pro-oxidant properties of ascorbic acid (vitamin C) and the water-soluble analogue of alpha-tocopherol (trolox) were compared. Trolox has advantages over alpha-tocopherol, the latter being only lipid-soluble due to the presence of a carboxyl group in lieu of a phytol chain which imparts trolox with water solubility. Trolox is used as a standard antioxidant in biochemical studies against which the antioxidant capacity of compounds is compared. Although ascorbic acid and tocopherols possess strong antioxidant properties, they might also exhibit pro-oxidant properties in the presence of free transition metals. Thus, reactions detailed in this study were performed in the presence of Cr(VI) in an effort to investigate the potential of ascorbic acid and trolox to generate hydroxyl radicals in a Fenton-like reaction. Results obtained were derived from reactions containing the same concentration of ascorbic acid and trolox under identical experimental conditions. Hydroxyl radical formation was observed in the reaction of Cr(VI) with ascorbic acid resulting from ascorbic acid auto-oxidation and H2O2 formation. Hydroxyl radical formation was only detected in the reaction mixture containing Cr(VI) and trolox following the addition of H2O2.
The antioxidant and pro‐oxidant properties of ascorbic acid (vitamin C) and the water‐soluble analogue of α‐tocopherol (trolox) were compared. Trolox has advantages over α‐tocopherol, the latter being only lipid‐soluble due to the presence of a carboxyl group in lieu of a phytol chain which imparts trolox with water solubility. Trolox is used as a standard antioxidant in biochemical studies against which the antioxidant capacity of compounds is compared. Although ascorbic acid and tocopherols possess strong antioxidant properties, they might also exhibit pro‐oxidant properties in the presence of free transition metals. Thus, reactions detailed in this study were performed in the presence of Cr(VI) in an effort to investigate the potential of ascorbic acid and trolox to generate hydroxyl radicals in a Fenton‐like reaction. Results obtained were derived from reactions containing the same concentration of ascorbic acid and trolox under identical experimental conditions. Hydroxyl radical formation was observed in the reaction of Cr(VI) with ascorbic acid resulting from ascorbic acid auto‐oxidation and H2O2 formation. Hydroxyl radical formation was only detected in the reaction mixture containing Cr(VI) and trolox following the addition of H2O2. Copyright © 2007 John Wiley & Sons, Ltd.
The antioxidant and pro-oxidant properties of ascorbic acid (vitamin C) and the water-soluble analogue of alpha-tocopherol (trolox) were compared. Trolox has advantages over alpha-tocopherol, the latter being only lipid-soluble due to the presence of a carboxyl group in lieu of a phytol chain which imparts trolox with water solubility. Trolox is used as a standard antioxidant in biochemical studies against which the antioxidant capacity of compounds is compared. Although ascorbic acid and tocopherols possess strong antioxidant properties, they might also exhibit pro-oxidant properties in the presence of free transition metals. Thus, reactions detailed in this study were performed in the presence of Cr(VI) in an effort to investigate the potential of ascorbic acid and trolox to generate hydroxyl radicals in a Fenton-like reaction. Results obtained were derived from reactions containing the same concentration of ascorbic acid and trolox under identical experimental conditions. Hydroxyl radical formation was observed in the reaction of Cr(VI) with ascorbic acid resulting from ascorbic acid auto-oxidation and H2O2 formation. Hydroxyl radical formation was only detected in the reaction mixture containing Cr(VI) and trolox following the addition of H2O2.
The antioxidant and pro-oxidant properties of ascorbic acid (vitamin C) and the water-soluble analogue of -tocopherol (trolox) were compared. Trolox has advantages over -tocopherol, the latter being only lipid-soluble due to the presence of a carboxyl group in lieu of a phytol chain which imparts trolox with water solubility. Trolox is used as a standard antioxidant in biochemical studies against which the antioxidant capacity of compounds is compared. Although ascorbic acid and tocopherols possess strong antioxidant properties, they might also exhibit pro-oxidant properties in the presence of free transition metals. Thus, reactions detailed in this study were performed in the presence of Cr(VI) in an effort to investigate the potential of ascorbic acid and trolox to generate hydroxyl radicals in a Fenton-like reaction. Results obtained were derived from reactions containing the same concentration of ascorbic acid and trolox under identical experimental conditions. Hydroxyl radical formation was observed in the reaction of Cr(VI) with ascorbic acid resulting from ascorbic acid auto-oxidation and H2O2 formation. Hydroxyl radical formation was only detected in the reaction mixture containing Cr(VI) and trolox following the addition of H2O2.
The antioxidant and pro‐oxidant properties of ascorbic acid (vitamin C) and the water‐soluble analogue of α ‐tocopherol (trolox) were compared. Trolox has advantages over α ‐tocopherol, the latter being only lipid‐soluble due to the presence of a carboxyl group in lieu of a phytol chain which imparts trolox with water solubility. Trolox is used as a standard antioxidant in biochemical studies against which the antioxidant capacity of compounds is compared. Although ascorbic acid and tocopherols possess strong antioxidant properties, they might also exhibit pro‐oxidant properties in the presence of free transition metals. Thus, reactions detailed in this study were performed in the presence of Cr(VI) in an effort to investigate the potential of ascorbic acid and trolox to generate hydroxyl radicals in a Fenton‐like reaction. Results obtained were derived from reactions containing the same concentration of ascorbic acid and trolox under identical experimental conditions. Hydroxyl radical formation was observed in the reaction of Cr(VI) with ascorbic acid resulting from ascorbic acid auto‐oxidation and H 2 O 2 formation. Hydroxyl radical formation was only detected in the reaction mixture containing Cr(VI) and trolox following the addition of H 2 O 2 . Copyright © 2007 John Wiley & Sons, Ltd.
Author Poljšak, Borut
Raspor, Peter
Author_xml – sequence: 1
  givenname: Borut
  surname: Poljšak
  fullname: Poljšak, Borut
  email: borut.poljsak@vsz.uni-lj.si
  organization: Polytechnic Nova Gorica, School of Environmental Science, Vipavska 13, 5000 Nova Gorica, Slovenia
– sequence: 2
  givenname: Peter
  surname: Raspor
  fullname: Raspor, Peter
  organization: University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department, Chair of Biotechnology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20171815$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17582581$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1uEzEQAGALtaJpQeIJkC-gXjaMf3btcKsChFYVXJbCCcu1vcJld53aDk3eHpeESAUhcZqx_Y1tzRyjgzGMDqFnBKYEgL660XlKaMMfoQmB2awqOTtAE6ANVJyJL0foOKUbgHJG5WN0REQtaS3JBH1tvzmsx-zD2tsSS27xMoZqvzbZ__B5g0OHS9SDH_H8l8ox9GGNy7rsx_Aaa2zCsNRRlwqHU17ZzRN02Ok-uae7eII-vXvbzt9Xlx8X5_Ozy8pwyXklSMcZSMuAMqfFtWCsmwnb1J3mxJqaMtKA0MaAsIKLRvJaMwfMEUs4nwE7QS-395av365cymrwybi-16MLq6QEMMnlf0BGBUAjWYHPd3B1PTirltEPOm7U79YV8GIHdDK676IejU97R4EIIkld3HTrTAwpRdcpU9pYGj7mqH2vCKj7GaoyQ3U_w1Jw-kfB_u2_abWld753m386dXHWPvQ-Zbfeex2_q0YwUavPHxaqfUOueLuo1RX7CfNDt6I
CODEN JJATDK
CitedBy_id crossref_primary_10_35206_jan_1106268
crossref_primary_10_1016_j_neuroscience_2009_01_062
crossref_primary_10_3892_ijo_2015_3276
crossref_primary_10_1155_2014_358375
crossref_primary_10_1002_jbm_a_33174
crossref_primary_10_1002_cbdv_201100219
crossref_primary_10_2174_1381612825666190123112647
crossref_primary_10_3390_antiox9111058
crossref_primary_10_3390_cells12091274
crossref_primary_10_3762_bjoc_20_44
crossref_primary_10_1016_j_algal_2022_102891
crossref_primary_10_3923_ijp_2019_900_906
crossref_primary_10_1016_j_cbi_2013_10_022
crossref_primary_10_1089_ars_2009_2829
crossref_primary_10_3390_biom13050746
crossref_primary_10_1093_bbb_zbae077
crossref_primary_10_3390_nano7090276
crossref_primary_10_1139_cjc_2022_0189
crossref_primary_10_1016_j_plaphy_2017_08_005
crossref_primary_10_3390_app14104049
crossref_primary_10_3390_cells8010049
crossref_primary_10_7600_jpfsm_8_61
crossref_primary_10_1111_j_1471_4159_2008_05469_x
crossref_primary_10_3904_kjim_2022_338
crossref_primary_10_1155_2014_982358
crossref_primary_10_1016_j_foodchem_2023_137108
crossref_primary_10_3390_molecules26144295
crossref_primary_10_1039_D1RA06730C
crossref_primary_10_2217_pgs_10_17
crossref_primary_10_1016_j_bbagen_2016_11_022
crossref_primary_10_3390_antiox12051125
crossref_primary_10_1134_S0036023624602691
crossref_primary_10_1016_j_cbi_2012_11_017
crossref_primary_10_1016_j_ijpharm_2018_08_006
crossref_primary_10_1179_135100008X308939
crossref_primary_10_1042_BCJ20200602
crossref_primary_10_1016_j_bcp_2019_113649
crossref_primary_10_1097_JOM_0000000000001812
crossref_primary_10_3390_antiox10091359
Cites_doi 10.1016/S1382-6689(02)00003-0
10.1021/bi00003a025
10.1002/jat.1093
10.1111/j.1749-6632.1998.tb09921.x
10.1016/0003-9861(90)90589-Q
10.1016/j.etap.2005.11.004
10.1080/109374099281241
10.1016/0003-9861(90)90417-W
10.1021/tx00038a016
10.1021/ja974240z
10.1006/bbrc.1997.6277
10.2307/3431753
10.2307/3431756
10.1093/oxfordjournals.bmb.a072625
10.1016/0014-5793(95)01481-0
10.1016/j.mrfmmm.2003.09.006
ContentType Journal Article
Copyright Copyright © 2007 John Wiley & Sons, Ltd.
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2007 John Wiley & Sons, Ltd.
– notice: 2008 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
KR7
7X8
DOI 10.1002/jat.1264
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1099-1263
EndPage 188
ExternalDocumentID 17582581
20171815
10_1002_jat_1264
JAT1264
ark_67375_WNG_TD1V4TG5_V
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: NKFP
  funderid: 3/50/2001
– fundername: Ministry of Agriculture, Forestry and Food of the Republic of Slovenia
  funderid: V4‐0402‐00
– fundername: SLO
  funderid: 19/2000
– fundername: OTKA
  funderid: T 34157
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GWYGA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
UB1
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWP
WXSBR
WYISQ
XG1
XPP
XV2
YCJ
YHZ
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
KR7
7X8
ID FETCH-LOGICAL-c4844-71f4308d3023ea7b733f97d65fa41dc5231607acc07d7476845a3e03e1d144903
IEDL.DBID DR2
ISSN 0260-437X
IngestDate Sun Aug 24 03:01:20 EDT 2025
Thu Jul 10 19:18:40 EDT 2025
Mon Jul 21 05:53:27 EDT 2025
Mon Jul 21 09:10:34 EDT 2025
Thu Apr 24 22:51:55 EDT 2025
Tue Jul 01 00:49:51 EDT 2025
Wed Jan 22 16:59:05 EST 2025
Wed Oct 30 09:48:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Oxidative stress
Reactive oxygen species
Ascorbic acid
DNA damage
Vitamin
α-Tocopherol
Oxidant
Antioxidant
In vitro
Biological activity
Free radical
Trolox
Analog
Lesion
Damage
Comparative study
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4844-71f4308d3023ea7b733f97d65fa41dc5231607acc07d7476845a3e03e1d144903
Notes ArticleID:JAT1264
OTKA - No. T 34157
NKFP - No. 3/50/2001
istex:65D42FCDFAEE71CD541EDAA87A8F00C785F13ED1
ark:/67375/WNG-TD1V4TG5-V
Ministry of Agriculture, Forestry and Food of the Republic of Slovenia - No. V4-0402-00
SLO - No. 19/2000
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 17582581
PQID 32700683
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_70384890
proquest_miscellaneous_32700683
pubmed_primary_17582581
pascalfrancis_primary_20171815
crossref_citationtrail_10_1002_jat_1264
crossref_primary_10_1002_jat_1264
wiley_primary_10_1002_jat_1264_JAT1264
istex_primary_ark_67375_WNG_TD1V4TG5_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2008
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: March 2008
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
– name: Brisbane
– name: New York, NY
– name: England
PublicationTitle Journal of applied toxicology
PublicationTitleAlternate J. Appl. Toxicol
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Kortenkamp A, O'Brien P. 1994. The generation of DNA single-strand breaks during the reduction of chromate by ascorbic acid and/or glutathione in vitro. Environ. Health Perspect. 102: 237-241.
Shi X, Chiu A, Chen CT, Halliwell B, Castranova V, Vallyathan V. 1999. Reduction of Cr(VI) and its relationship to carcinogenesis. J. Toxicol. Environ. Health. 2(B): 87-104.
Cheeseman KH, Slater TF. 1993. An introduction to free radical biochemistry. Br. Med. Bull. 49: 481-493.
Kagan VE, Tyurina YY. 1999. Recycling and redox cycling of phenolic antioxidants. Ann. N.Y. Acad. Sci. 854: 425-434.
Stearns DM, Kennedy LJ, Courtney KD, Giangrande PH, Phieffer LS, Wetterhahn KE. 1995. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro. Biochemistry 34: 910-919.
Liu KJ, Shi X, Dalal NS. 1997. Synthesis of Cr(VI)-GSH, its identification and its free hydroxyl radical generation: a model compound for Cr(VI) carcinogenicity. Biochem. Biophys. Res. Commun. 235: 54-58.
Poljšak B, Gazdag Z, Pesti M, Jenko-Brinovec S, Belagyi J, Plesničar S, Raspor P. 2006. Pro-oxidative versus antioxidative reactions between Trolox and Cr(VI): The role of H2O2. Environ. Toxicol. Pharmacol. 22: 15-19.
O'Brien TJ, Ceryak S, Patierno SR. 2003. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat. Res. 533: 3-36.
Halliwell B, Gutteridge J. 1999. Free Radicals in Biology and Medicine, 3nd edn. Clarendon Press: Oxford.
Burkitt MJ, Milne L. 1996. Hydroxyl radical formation from Cu(II)-Trolox mixtures: insights into the pro-oxidant properties of α-tocopherol. FEBS Lett. 379: 51-54.
Stearns DM, Wetterhahn KE. 1994. Reaction of chromium(VI) with ascorbate produces chromium(V), chromium(IV), and carbon-based radicals. Chem. Res. Toxicol. 7: 219-230.
Rietjens I, Boersma M, de Haan L, Spenkelink B, Awad H, Cnubbe N, van Zanden J, van der Woude H, Alink G, Koeman J. 2002. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol. 11: 321-333.
O'Brien P, Kortenkamp A. 1994. Chemical models important in understanding the ways in which chromate can damage DNA. Environ. Health Perspect. 102: 3-10.
Shi X, Dalal NS. 1990a. Evidence for a Fenton-type mechanism for the generation of OH* radicals in the reduction of Cr(VI) in cellular media. Arch. Biochem. Biophys. 281: 90-95.
Lay PA, Levina A. 1998. Activation of molecular oxygen during the reactions of chromium (VI/V/IV) with biological reductants: implications for chromium-induced genotoxicities. J. Am. Chem. Soc. 120: 6704-6714.
Shi X, Dalal NS. 1990b. On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species. Arch. Biochem. Biophys. 277: 342-350.
Stearns D, Courtney K, Giangrande P, Phieffer L, Wetterhahn K. 1994. Chromium(VI) reduction by ascorbate: role of reactive intermediates in DNA damage in vitro. Environ. Health Perspect. 102: 21-25.
Poljsak B, Gazdag Z, Jenko-Brinovec S, Fujs S, Pesti M, Belagyi J, Plesnicar S, Raspor P. 2005. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach. J. Appl. Toxicol. 25: 535-548.
1994; 102
1997; 235
1993; 49
1990b; 277
1990a; 281
2006; 22
1995; 34
2002; 11
1999; 2(B)
1991
1996; 379
1999; 854
2003; 533
1998; 120
1994; 7
1999
2005; 25
Stocker R (e_1_2_1_20_1) 1991
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_5_1
Halliwell B (e_1_2_1_4_1) 1999
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_13_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
Kortenkamp A (e_1_2_1_6_1) 1994; 102
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: O'Brien TJ, Ceryak S, Patierno SR. 2003. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat. Res. 533: 3-36.
– reference: Poljsak B, Gazdag Z, Jenko-Brinovec S, Fujs S, Pesti M, Belagyi J, Plesnicar S, Raspor P. 2005. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach. J. Appl. Toxicol. 25: 535-548.
– reference: Halliwell B, Gutteridge J. 1999. Free Radicals in Biology and Medicine, 3nd edn. Clarendon Press: Oxford.
– reference: Kagan VE, Tyurina YY. 1999. Recycling and redox cycling of phenolic antioxidants. Ann. N.Y. Acad. Sci. 854: 425-434.
– reference: O'Brien P, Kortenkamp A. 1994. Chemical models important in understanding the ways in which chromate can damage DNA. Environ. Health Perspect. 102: 3-10.
– reference: Rietjens I, Boersma M, de Haan L, Spenkelink B, Awad H, Cnubbe N, van Zanden J, van der Woude H, Alink G, Koeman J. 2002. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol. 11: 321-333.
– reference: Shi X, Chiu A, Chen CT, Halliwell B, Castranova V, Vallyathan V. 1999. Reduction of Cr(VI) and its relationship to carcinogenesis. J. Toxicol. Environ. Health. 2(B): 87-104.
– reference: Poljšak B, Gazdag Z, Pesti M, Jenko-Brinovec S, Belagyi J, Plesničar S, Raspor P. 2006. Pro-oxidative versus antioxidative reactions between Trolox and Cr(VI): The role of H2O2. Environ. Toxicol. Pharmacol. 22: 15-19.
– reference: Cheeseman KH, Slater TF. 1993. An introduction to free radical biochemistry. Br. Med. Bull. 49: 481-493.
– reference: Kortenkamp A, O'Brien P. 1994. The generation of DNA single-strand breaks during the reduction of chromate by ascorbic acid and/or glutathione in vitro. Environ. Health Perspect. 102: 237-241.
– reference: Shi X, Dalal NS. 1990a. Evidence for a Fenton-type mechanism for the generation of OH* radicals in the reduction of Cr(VI) in cellular media. Arch. Biochem. Biophys. 281: 90-95.
– reference: Lay PA, Levina A. 1998. Activation of molecular oxygen during the reactions of chromium (VI/V/IV) with biological reductants: implications for chromium-induced genotoxicities. J. Am. Chem. Soc. 120: 6704-6714.
– reference: Stearns D, Courtney K, Giangrande P, Phieffer L, Wetterhahn K. 1994. Chromium(VI) reduction by ascorbate: role of reactive intermediates in DNA damage in vitro. Environ. Health Perspect. 102: 21-25.
– reference: Liu KJ, Shi X, Dalal NS. 1997. Synthesis of Cr(VI)-GSH, its identification and its free hydroxyl radical generation: a model compound for Cr(VI) carcinogenicity. Biochem. Biophys. Res. Commun. 235: 54-58.
– reference: Shi X, Dalal NS. 1990b. On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species. Arch. Biochem. Biophys. 277: 342-350.
– reference: Burkitt MJ, Milne L. 1996. Hydroxyl radical formation from Cu(II)-Trolox mixtures: insights into the pro-oxidant properties of α-tocopherol. FEBS Lett. 379: 51-54.
– reference: Stearns DM, Wetterhahn KE. 1994. Reaction of chromium(VI) with ascorbate produces chromium(V), chromium(IV), and carbon-based radicals. Chem. Res. Toxicol. 7: 219-230.
– reference: Stearns DM, Kennedy LJ, Courtney KD, Giangrande PH, Phieffer LS, Wetterhahn KE. 1995. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro. Biochemistry 34: 910-919.
– volume: 34
  start-page: 910
  year: 1995
  end-page: 919
  article-title: Reduction of chromium(VI) by ascorbate leads to chromium‐DNA binding and DNA strand breaks
  publication-title: Biochemistry
– volume: 102
  start-page: 21
  year: 1994
  end-page: 25
  article-title: Chromium(VI) reduction by ascorbate: role of reactive intermediates in DNA damage
  publication-title: Environ. Health Perspect.
– volume: 281
  start-page: 90
  year: 1990a
  end-page: 95
  article-title: Evidence for a Fenton‐type mechanism for the generation of OH radicals in the reduction of Cr(VI) in cellular media
  publication-title: Arch. Biochem. Biophys.
– volume: 854
  start-page: 425
  year: 1999
  end-page: 434
  article-title: Recycling and redox cycling of phenolic antioxidants
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 7
  start-page: 219
  year: 1994
  end-page: 230
  article-title: Reaction of chromium(VI) with ascorbate produces chromium(V), chromium(IV), and carbon‐based radicals
  publication-title: Chem. Res. Toxicol.
– volume: 120
  start-page: 6704
  year: 1998
  end-page: 6714
  article-title: Activation of molecular oxygen during the reactions of chromium (VI/V/IV) with biological reductants: implications for chromium‐induced genotoxicities
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 535
  year: 2005
  end-page: 548
  article-title: Pro‐oxidative vs antioxidative properties of ascorbic acid in chromium(VI)‐induced damage: an and approach
  publication-title: J. Appl. Toxicol.
– volume: 277
  start-page: 342
  year: 1990b
  end-page: 350
  article-title: On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species
  publication-title: Arch. Biochem. Biophys.
– volume: 533
  start-page: 3
  year: 2003
  end-page: 36
  article-title: Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms
  publication-title: Mutat. Res.
– volume: 49
  start-page: 481
  year: 1993
  end-page: 493
  article-title: An introduction to free radical biochemistry
  publication-title: Br. Med. Bull.
– volume: 22
  start-page: 15
  year: 2006
  end-page: 19
  article-title: Pro‐oxidative versus antioxidative reactions between Trolox and Cr(VI): The role of H O
  publication-title: Environ. Toxicol. Pharmacol.
– volume: 235
  start-page: 54
  year: 1997
  end-page: 58
  article-title: Synthesis of Cr(VI)‐GSH, its identification and its free hydroxyl radical generation: a model compound for Cr(VI) carcinogenicity
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 11
  start-page: 321
  year: 2002
  end-page: 333
  article-title: The pro‐oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids
  publication-title: Environ. Toxicol. Pharmacol.
– volume: 102
  start-page: 237
  year: 1994
  end-page: 241
  article-title: The generation of DNA single‐strand breaks during the reduction of chromate by ascorbic acid and/or glutathione
  publication-title: Environ. Health Perspect.
– volume: 379
  start-page: 51
  year: 1996
  end-page: 54
  article-title: Hydroxyl radical formation from Cu(II)‐Trolox mixtures: insights into the pro‐oxidant properties of ‐tocopherol
  publication-title: FEBS Lett.
– volume: 2(B)
  start-page: 87
  year: 1999
  end-page: 104
  article-title: Reduction of Cr(VI) and its relationship to carcinogenesis
  publication-title: J. Toxicol. Environ. Health.
– year: 1991
– volume: 102
  start-page: 3
  year: 1994
  end-page: 10
  article-title: Chemical models important in understanding the ways in which chromate can damage DNA
  publication-title: Environ. Health Perspect.
– year: 1999
– ident: e_1_2_1_13_1
  doi: 10.1016/S1382-6689(02)00003-0
– ident: e_1_2_1_18_1
  doi: 10.1021/bi00003a025
– ident: e_1_2_1_11_1
  doi: 10.1002/jat.1093
– ident: e_1_2_1_5_1
  doi: 10.1111/j.1749-6632.1998.tb09921.x
– ident: e_1_2_1_16_1
  doi: 10.1016/0003-9861(90)90589-Q
– ident: e_1_2_1_12_1
  doi: 10.1016/j.etap.2005.11.004
– ident: e_1_2_1_14_1
  doi: 10.1080/109374099281241
– ident: e_1_2_1_15_1
  doi: 10.1016/0003-9861(90)90417-W
– ident: e_1_2_1_19_1
  doi: 10.1021/tx00038a016
– volume-title: Oxidative Stress: Oxidants and Antioxidants
  year: 1991
  ident: e_1_2_1_20_1
– ident: e_1_2_1_7_1
  doi: 10.1021/ja974240z
– ident: e_1_2_1_8_1
  doi: 10.1006/bbrc.1997.6277
– volume-title: Free Radicals in Biology and Medicine
  year: 1999
  ident: e_1_2_1_4_1
– ident: e_1_2_1_9_1
  doi: 10.2307/3431753
– ident: e_1_2_1_17_1
  doi: 10.2307/3431756
– ident: e_1_2_1_3_1
  doi: 10.1093/oxfordjournals.bmb.a072625
– ident: e_1_2_1_2_1
  doi: 10.1016/0014-5793(95)01481-0
– volume: 102
  start-page: 237
  year: 1994
  ident: e_1_2_1_6_1
  article-title: The generation of DNA single‐strand breaks during the reduction of chromate by ascorbic acid and/or glutathione in vitro
  publication-title: Environ. Health Perspect.
– ident: e_1_2_1_10_1
  doi: 10.1016/j.mrfmmm.2003.09.006
SSID ssj0009928
Score 2.0386095
Snippet The antioxidant and pro‐oxidant properties of ascorbic acid (vitamin C) and the water‐soluble analogue of α‐tocopherol (trolox) were compared. Trolox has...
The antioxidant and pro‐oxidant properties of ascorbic acid (vitamin C) and the water‐soluble analogue of α ‐tocopherol (trolox) were compared. Trolox has...
The antioxidant and pro-oxidant properties of ascorbic acid (vitamin C) and the water-soluble analogue of alpha-tocopherol (trolox) were compared. Trolox has...
The antioxidant and pro-oxidant properties of ascorbic acid (vitamin C) and the water-soluble analogue of -tocopherol (trolox) were compared. Trolox has...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 183
SubjectTerms Antioxidants - chemistry
ascorbic acid
Ascorbic Acid - chemistry
Biological and medical sciences
Chromans - chemistry
Chromium - chemistry
DNA Damage
DNA, Superhelical - chemistry
Hydrogen Peroxide - chemistry
Hydroxyl Radical - chemistry
Medical sciences
Oxidants - chemistry
Oxidation-Reduction
oxidative stress
Plasmids - chemistry
reactive oxygen species
Toxicology
Trolox
Title The antioxidant and pro-oxidant activity of vitamin C and trolox in vitro: a comparative study
URI https://api.istex.fr/ark:/67375/WNG-TD1V4TG5-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjat.1264
https://www.ncbi.nlm.nih.gov/pubmed/17582581
https://www.proquest.com/docview/32700683
https://www.proquest.com/docview/70384890
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5VIJ8SiPhkcxElouzTaJncThhgpthURVoW1ZiYNxYkcqhQTtQ9r21J_Ab-SXMBNvEi1qJcTJSTSObGfGnnE-fwPwiif088pYX0ojMUDhoZ9jIOTbWBPdeR4lOR0U_niUHJ6ID-N4vERV0lkYxw_RbbiRZTTzNRm4zqe7PWnoNz0bhric4_RLUC3yhz71zFFZ1qRVJcYsX_B03PLOBtFuW3FlJbpFg7ogZKSe4uCULqvFdW7nqhfbLEP7d-FL2wGHPjkfzmf5sLj8i9vx_3p4D-4svVP21qnTfViz1SYMjh299cUOG_WntaY7bMCOe-Lri0247fYAmTva9AC-ojjTBKdcnBks8dowbPnvq1_dk8Jlr2B1ybDUP84qttfIEYC-XjC8x-eT-g3TrOiZyllDi_sQTvbfj_YO_WVGB78QUhDwsxQ8kIYyFVmd5innZZaaJC61CE2BQTHx3emiCFKDcU4iBaqMDbgNDQZ-WcAfwXpVV3YLmAlLIyNdyhgdWFHqTNigwBoS41WB7_Pgdft1VbGkO6esG9-VI2qOFA6vouH14GUn-dNRfFwjM2gUpBPQk3OCxKWx-nx0oEbvwlMxOojVqQfbKxrUVYiImEiGsQcvWpVSaMn0e0ZXtp5PFScMQCL5zRI4O0uBtuXBY6eLfXsx7ItiGWI7G426sSMKZ30qn_yr4FPYcBAZgt09g_XZZG6fox82y7cbi_sDPjQugg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAS4lFe4dEaCS2XZpuHkzhwQi3tAu2qQmm7ByTjxIlUCgnah7TlxE_gN_JLmIk3iRa1EuLkJBpHtjNjzzifvwF44Yf080rnthBaYIDiu3aKgZCdB4rozlMvTOmg8OEwHBzz96NgtAKvm7Mwhh-i3XAjy6jnazJw2pDe7lhDv6hp38X1_BqsUUJvIs7f_dhxR8VxnViVOLNs7kejhnnW8babmktr0RoN65ywkWqCw1OYvBaXOZ7Lfmy9EO3dhk9NFwz-5Lw_m6b97Mdf7I7_2cc7cGvhoLI3RqPuwkperkPvyDBcX2yxpDuwNdliPXbUcV9frMNNsw3IzOmme_AZxZkiROX8TGOJ15ph03___NU-yUwCC1YVDEv17axkO7UcYeirOcN7fD6uXjHFso6snNXMuPfheO9tsjOwF0kd7IwLTtjPgvuO0JSsKFdRGvl-EUc6DArFXZ1hXEyUdyrLnEhjqBMKjlqTO37uaoz9Ysd_AKtlVeaPgGm30MJThQjQh-WFinnuZFhDYMjK8X0WvGw-r8wWjOeUeOOrNFzNnsThlTS8FjxvJb8blo9LZHq1hrQCanxOqLgokKfDfZnsuic82Q_kiQUbSyrUVvCIm0i4gQWbjU5JNGb6Q6PKvJpNpE8wgFD4V0vgBC04mpcFD40ydu3FyM8LhIvtrFXqyo5InPipfPyvgptwfZAcHsiDd8MPT-CGQcwQCu8prE7Hs_wZumXTdKM2vz8ErTKe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BKyEkxFGucLRGQstLs83hJA5vqMu2XKsV2paVeDBO7EilkFR7SFue-An8Rn4JM_FuokWthHhyEo0j25mxZ5zP3wA8D2P6eaWNK4QWGKCEvpthIOSaSBHdeRbEGR0U_jCID4_423E0XqIq6SyM5YdoNtzIMur5mgz8TBd7LWnoVzXr-ricX4VNHnsppW3ofWypo9K0zqtKlFkuD5PxinjWC_ZWNdeWok0a1QVBI9UUR6ewaS0u8jvX3dh6Herfgs-rHlj4yWl3Psu6-Y-_yB3_r4u34ebSPWWvrD7dgSum3ILO0PJbn--yUXtca7rLOmzYMl-fb8ENuwnI7Nmmu_AFxZkiPOXiRGOJ15phy3___NU8yW36ClYVDEv1_aRk-7UcIeirBcN7fD6pXjLF8paqnNW8uPfgqP96tH_oLlM6uDkXnJCfBQ89oSlVkVFJloRhkSY6jgrFfZ1jVEyEdyrPvURjoBMLjjpjvND4GiO_1Avvw0ZZleYhMO0XWgSqEBF6sLxQKTdejjUEBqwc3-fAi9XXlfmS75zSbnyTlqk5kDi8kobXgWeN5Jnl-LhAplMrSCOgJqeEiUsi-WlwIEc9_5iPDiJ57MD2mgY1FQJiJhJ-5MDOSqUkmjL9n1GlqeZTGRIIIBbh5RI4PQuOxuXAA6uLbXsx7gsi4WM7a426tCMSp30qH_2r4A5cG_b68v2bwbvHcN3CZQiC9wQ2ZpO5eYo-2Szbro3vD0ucMU0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+antioxidant+and+pro%E2%80%90oxidant+activity+of+vitamin+C+and+trolox+in+vitro%3A+a+comparative+study&rft.jtitle=Journal+of+applied+toxicology&rft.au=Polj%C5%A1ak%2C+Borut&rft.au=Raspor%2C+Peter&rft.date=2008-03-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0260-437X&rft.eissn=1099-1263&rft.volume=28&rft.issue=2&rft.spage=183&rft.epage=188&rft_id=info:doi/10.1002%2Fjat.1264&rft.externalDBID=10.1002%252Fjat.1264&rft.externalDocID=JAT1264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-437X&client=summon