Enthalpic and entropic contributions mediate the role of disulfide bonds on the conformational stability of Interleukin‐4

The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by di...

Full description

Saved in:
Bibliographic Details
Published inProtein science Vol. 15; no. 1; pp. 33 - 44
Main Authors Vaz, Daniela C., Rodrigues, J. Rui, Sebald, Walter, Dobson, Christopher M., Brito, Rui M.M.
Format Journal Article
LanguageEnglish
Published Bristol Cold Spring Harbor Laboratory Press 01.01.2006
Subjects
Online AccessGet full text
ISSN0961-8368
1469-896X
DOI10.1110/ps.051593306

Cover

Loading…
Abstract The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin‐4 (IL4), a four‐helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T‐IL4 and C24T‐IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent‐accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild‐type protein. Transition temperatures of unfolding decreased 14°C for C3T‐IL4 and 10°C for C24T‐IL4, when compared to WT‐IL4, and the conformational stability, at 25°C, decreased 4.9 kcal/mol for C3T‐IL4 and 3.2 kcal/mol for C24T‐IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle.
AbstractList The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin‐4 (IL4), a four‐helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T‐IL4 and C24T‐IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent‐accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild‐type protein. Transition temperatures of unfolding decreased 14°C for C3T‐IL4 and 10°C for C24T‐IL4, when compared to WT‐IL4, and the conformational stability, at 25°C, decreased 4.9 kcal/mol for C3T‐IL4 and 3.2 kcal/mol for C24T‐IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle.
The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin-4 (IL4), a four-helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T-IL4 and C24T-IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent-accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild-type protein. Transition temperatures of unfolding decreased 14 degree C for C3T-IL4 and 10 degree C for C24T-IL4, when compared to WT-IL4, and the conformational stability, at 25 degree C, decreased 4.9 kcal/mol for C3T-IL4 and 3.2 kcal/mol for C24T-IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle.
The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin-4 (IL4), a four-helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T-IL4 and C24T-IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent-accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild-type protein. Transition temperatures of unfolding decreased 14 degrees C for C3T-IL4 and 10 degrees C for C24T-IL4, when compared to WT-IL4, and the conformational stability, at 25 degrees C, decreased 4.9 kcal/mol for C3T-IL4 and 3.2 kcal/mol for C24T-IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle.The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin-4 (IL4), a four-helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T-IL4 and C24T-IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent-accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild-type protein. Transition temperatures of unfolding decreased 14 degrees C for C3T-IL4 and 10 degrees C for C24T-IL4, when compared to WT-IL4, and the conformational stability, at 25 degrees C, decreased 4.9 kcal/mol for C3T-IL4 and 3.2 kcal/mol for C24T-IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle.
The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin-4 (IL4), a four-helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T-IL4 and C24T-IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent-accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild-type protein. Transition temperatures of unfolding decreased 14 degrees C for C3T-IL4 and 10 degrees C for C24T-IL4, when compared to WT-IL4, and the conformational stability, at 25 degrees C, decreased 4.9 kcal/mol for C3T-IL4 and 3.2 kcal/mol for C24T-IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle.
Author Sebald, Walter
Brito, Rui M.M.
Dobson, Christopher M.
Vaz, Daniela C.
Rodrigues, J. Rui
AuthorAffiliation 1 Centro de Neurociências de Coimbra, Universidade de Coimbra, 3004-517 Coimbra, Portugal
4 Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
3 Department of Chemistry, Cambridge University, Cambridge CB2 1EW, United Kingdom
2 Theodor-Boveri-Institut fur Biowissenschaften, Biozentrum, Physiologische Chemie II, Universitat Würzburg, D-97074 Würzburg, Germany
AuthorAffiliation_xml – name: 2 Theodor-Boveri-Institut fur Biowissenschaften, Biozentrum, Physiologische Chemie II, Universitat Würzburg, D-97074 Würzburg, Germany
– name: 3 Department of Chemistry, Cambridge University, Cambridge CB2 1EW, United Kingdom
– name: 1 Centro de Neurociências de Coimbra, Universidade de Coimbra, 3004-517 Coimbra, Portugal
– name: 4 Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
Author_xml – sequence: 1
  givenname: Daniela C.
  surname: Vaz
  fullname: Vaz, Daniela C.
– sequence: 2
  givenname: J. Rui
  surname: Rodrigues
  fullname: Rodrigues, J. Rui
– sequence: 3
  givenname: Walter
  surname: Sebald
  fullname: Sebald, Walter
– sequence: 4
  givenname: Christopher M.
  surname: Dobson
  fullname: Dobson, Christopher M.
– sequence: 5
  givenname: Rui M.M.
  surname: Brito
  fullname: Brito, Rui M.M.
  email: brito@ci.uc.pt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16373475$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2KFDEUhYOMOD2tO9eSlStrzE1SP9kIMow6MDAiCu5CKj92NJ2UlZTSuPERfEafxKrpsVERXeWG-53DvfecoKOYokXoPpBTACCPh3xKaqgFY6S5hVbAG1F1onl7hFZENFB1rOmO0UnO7wkhHCi7g46hYS3jbb1CX85j2agweI1VNNjGMqblo9Nc-X4qPsWMt9Z4VSwuG4vHFCxODhufp-C8sbhP0WSc4nV7Fro0btUiVAHnonoffNktkotY7Bjs9MHH71-_8bvotlMh23s37xq9eXb--uxFdXn1_OLs6WWlecdZVUNDqYLaGQBBe0W0bq1jwBhngiswRHW8V1YY1dVOUwGtcxSUMm3NhNFsjZ7sfYepnzfRy5IqyGH0WzXuZFJe_t6JfiPfpU-SUk7n680GD28MxvRxsrnIrc_ahqCiTVOWTVt3oiXivyC0nIpuzmCNHvw60mGWn8HMAN0Dekw5j9ZJ7cv1UecJfZBA5JK-HLI8pD-LHv0hOvj-HWd7_LMPdvdPVr58dQU1IYyxH-uTxCc
CitedBy_id crossref_primary_10_1002_bip_20972
crossref_primary_10_1007_s11095_018_2418_1
crossref_primary_10_1016_j_ijbiomac_2014_10_068
crossref_primary_10_1016_j_jaci_2011_01_064
crossref_primary_10_1039_b815492a
crossref_primary_10_4049_jimmunol_182_2_811
crossref_primary_10_1002_bip_20579
crossref_primary_10_1002_prot_26611
crossref_primary_10_1016_j_ijbiomac_2015_06_040
crossref_primary_10_1021_bc2004389
crossref_primary_10_1016_j_procbio_2022_06_024
crossref_primary_10_1021_acs_jpcb_9b02370
crossref_primary_10_1039_C1MT00135C
crossref_primary_10_1002_bip_22096
crossref_primary_10_1016_j_molimm_2009_11_029
crossref_primary_10_1039_C8CP02949K
crossref_primary_10_1007_s00775_010_0752_9
crossref_primary_10_1038_srep23656
crossref_primary_10_1016_j_colsurfb_2022_112854
crossref_primary_10_1021_acsbiomaterials_6b00578
crossref_primary_10_1016_j_jbiotec_2012_11_010
crossref_primary_10_1016_j_jmb_2009_06_049
crossref_primary_10_1039_C9CC07439B
crossref_primary_10_1108_SR_01_2019_0001
crossref_primary_10_1093_protein_gzu017
crossref_primary_10_1016_j_bpj_2020_11_009
crossref_primary_10_1073_pnas_0706876104
crossref_primary_10_1016_j_ijbiomac_2018_06_119
crossref_primary_10_1110_ps_073246608
crossref_primary_10_1021_jp8089424
crossref_primary_10_1088_0953_8984_27_35_354107
crossref_primary_10_1016_j_jmb_2006_10_049
crossref_primary_10_1016_j_molliq_2017_01_017
crossref_primary_10_1371_journal_pcbi_1003613
crossref_primary_10_1007_s00894_015_2659_4
crossref_primary_10_1007_s11120_008_9327_9
crossref_primary_10_1021_jp402994r
crossref_primary_10_1074_jbc_M114_548354
crossref_primary_10_1021_bi802339c
crossref_primary_10_1021_jp910340t
crossref_primary_10_1021_cg070498h
Cites_doi 10.1016/S0021-9258(19)39390-1
10.1021/bi960309o
10.1021/bi00462a019
10.1016/0022-2836(91)90551-G
10.1002/pro.5560041020
10.1016/0010-4655(82)90174-6
10.1016/0014-5793(91)80939-Z
10.1016/0022-2836(92)90094-Z
10.1016/0022-2836(74)90105-3
10.1016/S0021-9258(19)88711-2
10.1016/S0065-3233(08)60377-0
10.1016/0022-2836(74)90188-0
10.1021/bi00219a014
10.1021/bi00238a023
10.1006/jmbi.1994.1265
10.1074/jbc.M104494200
10.1093/oso/9780199636198.003.0012
10.1021/bi00150a028
10.1016/0022-2836(81)90515-5
10.1021/bi00231a019
10.1021/ja00052a088
10.1021/bi00131a009
10.1016/S0065-3233(08)60548-3
10.1107/S0021889891004399
10.1515/bchm.1997.378.8.731
10.1021/bi990287g
10.1021/bi00421a014
10.1146/annurev.bb.16.060187.000555
10.1021/bi00432a026
10.1038/10706
10.1002/pro.5560031110
10.1016/S0021-9258(18)37859-1
10.1021/bi990222d
10.1021/bi012154c
10.1002/prot.340110407
10.1021/bi00077a030
ContentType Journal Article
Copyright Copyright © 2006 The Protein Society
Copyright © Copyright 2006 The Protein Society
Copyright_xml – notice: Copyright © 2006 The Protein Society
– notice: Copyright © Copyright 2006 The Protein Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
8FD
FR3
H94
P64
RC3
7X8
5PM
DOI 10.1110/ps.051593306
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Genetics Abstracts
Immunology Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
AIDS and Cancer Research Abstracts
MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1469-896X
EndPage 44
ExternalDocumentID PMC2242368
16373475
10_1110_ps_051593306
PRO150033
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7T5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H94
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4843-51622a15fd1192ba0cc7ef31334394a1d0a84bae9da85fc2917ff21aad7539dc3
ISSN 0961-8368
IngestDate Thu Aug 21 14:35:30 EDT 2025
Thu Jul 10 17:44:44 EDT 2025
Thu Jul 10 19:04:19 EDT 2025
Wed Feb 19 01:46:30 EST 2025
Tue Jul 01 01:08:08 EDT 2025
Thu Apr 24 22:59:42 EDT 2025
Wed Jan 22 17:06:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4843-51622a15fd1192ba0cc7ef31334394a1d0a84bae9da85fc2917ff21aad7539dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reprint requests to: Rui M.M. Brito, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal; e-mail: brito@ci.uc.pt; fax: +351-239-827703.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1110/ps.051593306
PMID 16373475
PQID 17429812
PQPubID 23462
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2242368
proquest_miscellaneous_67589709
proquest_miscellaneous_17429812
pubmed_primary_16373475
crossref_citationtrail_10_1110_ps_051593306
crossref_primary_10_1110_ps_051593306
wiley_primary_10_1110_ps_051593306_PRO150033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2006
2006-01-00
2006-Jan
20060101
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – month: 01
  year: 2006
  text: January 2006
PublicationDecade 2000
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 2006
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 1997; 378
1994; 238
1991; 11
1991; 30
1992; 267
1992; 225
1988; 39
1997
1988; 263
1991; 217
1992; 31
1996; 35
1999; 6
1995; 4
1990; 265
1989; 28
1987; 16
2001; 276
1991; 286
1981; 151
1982; 27
1974; 87
1974; 86
2002; 41
1991; 24
1995; 47
1990; 29
1999; 38
1993; 32
1992; 114
1988; 27
1994; 3
1996; 7
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
Walter M.R. (e_1_2_7_37_1) 1992; 267
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Brems D.N. (e_1_2_7_5_1) 1990; 265
Duschl A. (e_1_2_7_11_1) 1996; 7
Pace C.N. (e_1_2_7_25_1) 1997
2457027 - J Biol Chem. 1988 Aug 25;263(24):11820-5
7703845 - Protein Sci. 1994 Nov;3(11):1984-91
2043635 - Biochemistry. 1991 Jun 18;30(24):5974-85
2180927 - J Biol Chem. 1990 Apr 5;265(10):5504-11
8756688 - Biochemistry. 1996 Aug 13;35(32):10328-38
8535251 - Protein Sci. 1995 Oct;4(10):2138-48
3072868 - Adv Protein Chem. 1988;39:191-234
9377467 - Biol Chem. 1997 Aug;378(8):731-44
1991106 - Biochemistry. 1991 Feb 5;30(5):1259-64
1525170 - Biochemistry. 1992 Sep 8;31(35):8323-8
1864379 - FEBS Lett. 1991 Jul 29;286(1-2):58-60
11969396 - Biochemistry. 2002 Apr 30;41(17):5359-74
1758883 - Proteins. 1991;11(4):281-96
8329398 - Biochemistry. 1993 Jul 6;32(26):6744-62
1613799 - J Mol Biol. 1992 Jun 20;225(4):939-43
2499351 - Biochemistry. 1989 Mar 21;28(6):2520-5
1992169 - J Mol Biol. 1991 Jan 20;217(2):389-98
8145254 - J Mol Biol. 1994 Apr 22;238(1):23-41
1400355 - J Biol Chem. 1992 Oct 5;267(28):20371-6
11406632 - J Biol Chem. 2001 Sep 7;276(36):33465-70
7338898 - J Mol Biol. 1981 Sep 15;151(2):261-87
8561051 - Adv Protein Chem. 1995;47:307-425
2021617 - Biochemistry. 1991 Apr 30;30(17):4237-44
2110472 - Biochemistry. 1990 Mar 13;29(10):2564-72
4368360 - J Mol Biol. 1974 Jul 5;86(3):665-84
3297085 - Annu Rev Biophys Biophys Chem. 1987;16:115-37
4475110 - J Mol Biol. 1974 Aug 15;87(3):579-602
8704094 - Eur Cytokine Netw. 1996 Jan-Mar;7(1):37-49
10404222 - Nat Struct Biol. 1999 Jul;6(7):652-6
1567847 - Biochemistry. 1992 Apr 28;31(16):3947-55
3233195 - Biochemistry. 1988 Oct 18;27(21):8063-8
10387027 - Biochemistry. 1999 Jun 15;38(24):7865-73
10433712 - Biochemistry. 1999 Aug 3;38(31):10052-8
References_xml – volume: 86
  start-page: 665
  year: 1974
  end-page: 684
  article-title: A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study
  publication-title: J. Mol. Biol.
– volume: 30
  start-page: 1259
  year: 1991
  end-page: 1264
  article-title: Analysis of the conformation and stability of derived recombinant human interleukin‐4 by circular dichroism
  publication-title: Biochemistry
– volume: 28
  start-page: 2520
  year: 1989
  end-page: 2525
  article-title: A new method for determining the heat capacity change for protein folding
  publication-title: Biochemistry
– volume: 217
  start-page: 389
  year: 1991
  end-page: 398
  article-title: Is the hydrophobic effect stabilizing or destabilizing in proteins? The contribution of disulphide bonds to protein stability
  publication-title: J. Mol. Biol.
– volume: 151
  start-page: 261
  year: 1981
  end-page: 287
  article-title: Disulphide bridges in globular proteins
  publication-title: J. Mol. Biol.
– volume: 30
  start-page: 4237
  year: 1991
  end-page: 4244
  article-title: Contribution to the thermodynamics of protein folding from the reduction in water‐accessible surface area
  publication-title: Biochemistry
– volume: 31
  start-page: 3947
  year: 1992
  end-page: 3955
  article-title: Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of non‐polar and polar surfaces from water
  publication-title: Biochemistry
– volume: 3
  start-page: 1984
  year: 1994
  end-page: 1991
  article-title: Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions
  publication-title: Protein Sci.
– volume: 29
  start-page: 2564
  year: 1990
  end-page: 2572
  article-title: pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1
  publication-title: Biochemistry
– volume: 47
  start-page: 307
  year: 1995
  end-page: 417
  article-title: Energetics of protein structure
  publication-title: Adv. Protein Chem.
– volume: 4
  start-page: 2138
  year: 1995
  end-page: 2148
  article-title: Denaturant values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding
  publication-title: Protein Sci.
– volume: 31
  start-page: 8323
  year: 1992
  end-page: 8328
  article-title: Enthalpic destabilization of a mutant human lysozyme lacking a disulfide bridge between cysteine‐ 77 and cysteine‐95
  publication-title: Biochemistry
– volume: 41
  start-page: 5359
  year: 2002
  end-page: 5374
  article-title: Maximal stabilities of reversible two‐state proteins
  publication-title: Biochemistry
– volume: 87
  start-page: 579
  year: 1974
  end-page: 602
  article-title: Intermediates in the refolding of reduced pancreatic trypsin inhibitor
  publication-title: J. Mol. Biol.
– volume: 225
  start-page: 939
  year: 1992
  end-page: 943
  article-title: Thermo‐dynamic consequences of the removal of a disulphide bridge from hen lysozyme
  publication-title: J. Mol. Biol.
– volume: 6
  start-page: 652
  year: 1999
  end-page: 656
  article-title: Rational design of a GCN4‐derived mimetic of interleukin‐4
  publication-title: Nat. Struct. Biol.
– volume: 276
  start-page: 33465
  year: 2001
  end-page: 33470
  article-title: Reengineering granulocyte colony‐stimulating factor for enhanced stability
  publication-title: J. Biol. Chem.
– volume: 263
  start-page: 11820
  year: 1988
  end-page: 11825
  article-title: Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds
  publication-title: J. Biol. Chem.
– start-page: 299
  year: 1997
  end-page: 321
– volume: 35
  start-page: 10328
  year: 1996
  end-page: 10338
  article-title: Engineered disulfide bonds in staphylococcal nuclease: Effects on the stability and conformation of the folded protein
  publication-title: Biochemistry
– volume: 286
  start-page: 58
  year: 1991
  end-page: 60
  article-title: Site‐directed mutagenesis reveals the importance of disulfide bridges and aromatic residues for structure and proliferative activity of human interleukin‐4
  publication-title: FEBS Lett.
– volume: 238
  start-page: 23
  year: 1994
  end-page: 41
  article-title: Analysis of the solution structure of human interleukin‐4 determined by heteronuclear three‐dimensional nuclear magnetic resonance techniques
  publication-title: J. Mol. Biol.
– volume: 11
  start-page: 281
  year: 1991
  end-page: 296
  article-title: Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons
  publication-title: Proteins
– volume: 114
  start-page: 10663
  year: 1992
  end-page: 10665
  article-title: Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 229
  year: 1982
  end-page: 242
  article-title: CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations
  publication-title: Comput. Phys. Commun.
– volume: 39
  start-page: 191
  year: 1988
  end-page: 234
  article-title: Stability of protein structure and hydrophobic interaction
  publication-title: Adv. Protein Chem.
– volume: 378
  start-page: 731
  year: 1997
  end-page: 744
  article-title: Protein folding coupled to disulphide bond formation
  publication-title: Biol. Chem.
– volume: 27
  start-page: 8063
  year: 1988
  end-page: 8068
  article-title: Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl α‐chymotrypsin using different denaturants
  publication-title: Biochemistry
– volume: 38
  start-page: 7865
  year: 1999
  end-page: 7873
  article-title: Thermal denaturation of human γ‐interferon. A calorimetric and spectroscopic study
  publication-title: Biochemistry
– volume: 30
  start-page: 5974
  year: 1991
  end-page: 5985
  article-title: Solvent denaturation and stabilization of globular proteins
  publication-title: Biochemistry
– volume: 16
  start-page: 115
  year: 1987
  end-page: 137
  article-title: The thermodynamic stability of proteins
  publication-title: Annu. Rev. Biophys. Biophys. Chem.
– volume: 7
  start-page: 37
  year: 1996
  end-page: 49
  article-title: Transmembrane and intracellular signalling by interleukin‐4: Receptor dimerization and beyond
  publication-title: Eur. Cytokine Netw.
– volume: 32
  start-page: 6744
  year: 1993
  end-page: 6762
  article-title: The high‐resolution, three‐dimensional solution structure of human interleukin‐4 determined by multidimensional heteronuclear magnetic resonance spectroscopy
  publication-title: Biochemistry
– volume: 267
  start-page: 20371
  year: 1992
  end-page: 20376
  article-title: Crystal structure of recombinant human interleukin‐ 4
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 946
  year: 1991
  end-page: 950
  article-title: MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures
  publication-title: J. Appl. Crystallogr.
– volume: 265
  start-page: 5504
  year: 1990
  end-page: 5511
  article-title: Equilibrium denaturation of human growth hormone and its cysteine‐modified forms
  publication-title: J. Biol. Chem.
– volume: 38
  start-page: 10052
  year: 1999
  end-page: 10058
  article-title: Role of individual cysteine residues and disulfide bonds in the structure and function of ribonucleolytic toxin restrictocin
  publication-title: Biochemistry
– volume: 265
  start-page: 5504
  year: 1990
  ident: e_1_2_7_5_1
  article-title: Equilibrium denaturation of human growth hormone and its cysteine‐modified forms
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)39390-1
– ident: e_1_2_7_12_1
  doi: 10.1021/bi960309o
– ident: e_1_2_7_27_1
  doi: 10.1021/bi00462a019
– ident: e_1_2_7_9_1
  doi: 10.1016/0022-2836(91)90551-G
– ident: e_1_2_7_21_1
  doi: 10.1002/pro.5560041020
– ident: e_1_2_7_31_1
  doi: 10.1016/0010-4655(82)90174-6
– ident: e_1_2_7_15_1
  doi: 10.1016/0014-5793(91)80939-Z
– ident: e_1_2_7_6_1
  doi: 10.1016/0022-2836(92)90094-Z
– ident: e_1_2_7_7_1
  doi: 10.1016/0022-2836(74)90105-3
– volume: 7
  start-page: 37
  year: 1996
  ident: e_1_2_7_11_1
  article-title: Transmembrane and intracellular signalling by interleukin‐4: Receptor dimerization and beyond
  publication-title: Eur. Cytokine Netw.
– volume: 267
  start-page: 20371
  year: 1992
  ident: e_1_2_7_37_1
  article-title: Crystal structure of recombinant human interleukin‐ 4
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)88711-2
– ident: e_1_2_7_29_1
  doi: 10.1016/S0065-3233(08)60377-0
– ident: e_1_2_7_30_1
  doi: 10.1016/0022-2836(74)90188-0
– ident: e_1_2_7_38_1
  doi: 10.1021/bi00219a014
– ident: e_1_2_7_2_1
  doi: 10.1021/bi00238a023
– ident: e_1_2_7_32_1
  doi: 10.1006/jmbi.1994.1265
– ident: e_1_2_7_4_1
  doi: 10.1074/jbc.M104494200
– start-page: 299
  volume-title: Protein structure: A practical approach
  year: 1997
  ident: e_1_2_7_25_1
  doi: 10.1093/oso/9780199636198.003.0012
– ident: e_1_2_7_17_1
  doi: 10.1021/bi00150a028
– ident: e_1_2_7_36_1
  doi: 10.1016/0022-2836(81)90515-5
– ident: e_1_2_7_18_1
  doi: 10.1021/bi00231a019
– ident: e_1_2_7_13_1
  doi: 10.1021/ja00052a088
– ident: e_1_2_7_35_1
  doi: 10.1021/bi00131a009
– ident: e_1_2_7_19_1
  doi: 10.1016/S0065-3233(08)60548-3
– ident: e_1_2_7_14_1
  doi: 10.1107/S0021889891004399
– ident: e_1_2_7_8_1
  doi: 10.1515/bchm.1997.378.8.731
– ident: e_1_2_7_3_1
  doi: 10.1021/bi990287g
– ident: e_1_2_7_33_1
  doi: 10.1021/bi00421a014
– ident: e_1_2_7_34_1
  doi: 10.1146/annurev.bb.16.060187.000555
– ident: e_1_2_7_24_1
  doi: 10.1021/bi00432a026
– ident: e_1_2_7_10_1
  doi: 10.1038/10706
– ident: e_1_2_7_20_1
  doi: 10.1002/pro.5560031110
– ident: e_1_2_7_26_1
  doi: 10.1016/S0021-9258(18)37859-1
– ident: e_1_2_7_22_1
  doi: 10.1021/bi990222d
– ident: e_1_2_7_16_1
  doi: 10.1021/bi012154c
– ident: e_1_2_7_23_1
  doi: 10.1002/prot.340110407
– ident: e_1_2_7_28_1
  doi: 10.1021/bi00077a030
– reference: 8329398 - Biochemistry. 1993 Jul 6;32(26):6744-62
– reference: 7338898 - J Mol Biol. 1981 Sep 15;151(2):261-87
– reference: 1758883 - Proteins. 1991;11(4):281-96
– reference: 8535251 - Protein Sci. 1995 Oct;4(10):2138-48
– reference: 11969396 - Biochemistry. 2002 Apr 30;41(17):5359-74
– reference: 2043635 - Biochemistry. 1991 Jun 18;30(24):5974-85
– reference: 2180927 - J Biol Chem. 1990 Apr 5;265(10):5504-11
– reference: 7703845 - Protein Sci. 1994 Nov;3(11):1984-91
– reference: 1567847 - Biochemistry. 1992 Apr 28;31(16):3947-55
– reference: 4475110 - J Mol Biol. 1974 Aug 15;87(3):579-602
– reference: 1992169 - J Mol Biol. 1991 Jan 20;217(2):389-98
– reference: 4368360 - J Mol Biol. 1974 Jul 5;86(3):665-84
– reference: 2457027 - J Biol Chem. 1988 Aug 25;263(24):11820-5
– reference: 8145254 - J Mol Biol. 1994 Apr 22;238(1):23-41
– reference: 11406632 - J Biol Chem. 2001 Sep 7;276(36):33465-70
– reference: 8756688 - Biochemistry. 1996 Aug 13;35(32):10328-38
– reference: 10404222 - Nat Struct Biol. 1999 Jul;6(7):652-6
– reference: 10433712 - Biochemistry. 1999 Aug 3;38(31):10052-8
– reference: 3072868 - Adv Protein Chem. 1988;39:191-234
– reference: 9377467 - Biol Chem. 1997 Aug;378(8):731-44
– reference: 8704094 - Eur Cytokine Netw. 1996 Jan-Mar;7(1):37-49
– reference: 2110472 - Biochemistry. 1990 Mar 13;29(10):2564-72
– reference: 2021617 - Biochemistry. 1991 Apr 30;30(17):4237-44
– reference: 1613799 - J Mol Biol. 1992 Jun 20;225(4):939-43
– reference: 1991106 - Biochemistry. 1991 Feb 5;30(5):1259-64
– reference: 10387027 - Biochemistry. 1999 Jun 15;38(24):7865-73
– reference: 1864379 - FEBS Lett. 1991 Jul 29;286(1-2):58-60
– reference: 2499351 - Biochemistry. 1989 Mar 21;28(6):2520-5
– reference: 1525170 - Biochemistry. 1992 Sep 8;31(35):8323-8
– reference: 3297085 - Annu Rev Biophys Biophys Chem. 1987;16:115-37
– reference: 1400355 - J Biol Chem. 1992 Oct 5;267(28):20371-6
– reference: 3233195 - Biochemistry. 1988 Oct 18;27(21):8063-8
– reference: 8561051 - Adv Protein Chem. 1995;47:307-425
SSID ssj0004123
Score 2.0260096
Snippet The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 33
SubjectTerms ANS, 8‐anilino‐1‐naphthalenesulfonate
C24T‐IL4, Interleukin‐4 with cysteine 24 replaced by threonine
C3T‐IL4, Inter‐leukin‐4 with cysteine 3 replaced by threonine
CD, circular dichroism
Circular Dichroism
conformational stability
disulfide bridges
Disulfides - chemistry
enthalpy
Entropy
four‐helix bundle
GdmCl, guanidinium chloride
GM‐CSF, granulocyte‐macrophage colony stimulating factor
G‐CSF, granulocyte colony stimulating factor
Humans
Hydrophobic and Hydrophilic Interactions
IL2, Interleukin‐2
IL4, Interleukin‐4
Interleukin-4 - chemistry
Interleukin-4 - genetics
Interleukin‐4
Magnetic Resonance Spectroscopy
NMR, nuclear magnetic resonance
Protein Conformation
Protein Denaturation
Protein Folding
Protein Structure, Secondary
SASA, solvent‐accessible surface area
Spectrometry, Fluorescence
Surface Properties
Temperature
thermal unfolding
Tm, transition temperature of unfolding
TS, temperature of maximal stability
Urea
WT‐IL4, wild type Interleukin‐4
ΔCp, change in heat capacity upon protein unfolding
ΔG(H2O), conformational stability
ΔHm, enthalpy change of unfolding at the transition temperature
ΔSm, entropy change of unfolding at the transition temperature
Title Enthalpic and entropic contributions mediate the role of disulfide bonds on the conformational stability of Interleukin‐4
URI https://onlinelibrary.wiley.com/doi/abs/10.1110%2Fps.051593306
https://www.ncbi.nlm.nih.gov/pubmed/16373475
https://www.proquest.com/docview/17429812
https://www.proquest.com/docview/67589709
https://pubmed.ncbi.nlm.nih.gov/PMC2242368
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaEcoALAy2P8NQBuBgby28fO6FMKQQynRZ688i2TD2kdiaJD-1v5Eexeli2SduBXjyOLUex9ou0u9r9FqHXoRcEsBDbZkb8zPRiFpi0sH3Tj4M0S0MvIsJQnH4N9o-9gxP_ZDT63YtaataplV1cmldyE6nCNZArz5L9D8nqL4ULcA7yhSNIGI7_JOO9an1K5wtFucr9tDX_IMLPVR2rlcwNWbNBLGFerpp5UebMSGseEit3DPiDOplR5JFIEm-db7Kcs-ZXWamEGaXSzjjTQ1kZai1tJfidXnQp7NSYWN3WTr4sfzZyejqwjMOm1G4elipH9Q-xi6-17Lqtct7jQjCm1rUui0k9B11a-C15qhJg3fgiEc_DCvqhJ8JPGRAzcmXtHYvJWRpsejOKRQnEbhr3N-Aq52RJtKFWd0k2ecm6wQMtFyuLl7zhPp6g3wykvjgTGALtNXQ9WevlL57u2XTicOU0iG6h2w4YLbyexodPn7ssXSKKDeoXatMwiP2-3zGnsVW9DHWlDQNoM463b18JBenoPrqnLBu8K2H6AI1YtY12disY77Nz_BaLWGOxibON7kzaOoM76FyjGAOKcYtiPEAxVijGAFPMUYzrAmsUY4FiXFfi9hDFWKOYPzJA8UN0_HHvaLJvqoIgZuZFnmv6JHAcSvwiJ2CYpNTOspAVLnFdnt9NSW7TyEspi3Ma-UXmxCQsCodQmoNRHueZ-whtVXXFniAcMs40aLt5BPqtR-04jQjj3ItRARoyDcfIaIc-yRRbPi_aMk-k1Wwni1WiZTZGb3TrhWSJuaLdq1aKCYwy35ujFaubVUJCUAxB2b66Bbfs49COx-ixlHrXk4LLGIUDPOgGnEJ-eKcqTwWVvELsGL0TyLn2xyezw29gPtqu-_TGHT1Dd7sJ4TnaWi8b9gK0-nX6UvxZ_gBA6fwM
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enthalpic+and+entropic+contributions+mediate+the+role+of+disulfide+bonds+on+the+conformational+stability+of+Interleukin-4&rft.jtitle=Protein+science&rft.au=Vaz%2C+Daniela+C.&rft.au=Rodrigues%2C+J.+Rui&rft.au=Sebald%2C+Walter&rft.au=Dobson%2C+Christopher+M.&rft.date=2006-01-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=15&rft.issue=1&rft.spage=33&rft.epage=44&rft_id=info:doi/10.1110%2Fps.051593306&rft_id=info%3Apmid%2F16373475&rft.externalDocID=PMC2242368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon