Enthalpic and entropic contributions mediate the role of disulfide bonds on the conformational stability of Interleukin‐4
The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by di...
Saved in:
Published in | Protein science Vol. 15; no. 1; pp. 33 - 44 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
Cold Spring Harbor Laboratory Press
01.01.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 0961-8368 1469-896X |
DOI | 10.1110/ps.051593306 |
Cover
Loading…
Abstract | The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin‐4 (IL4), a four‐helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T‐IL4 and C24T‐IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent‐accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild‐type protein. Transition temperatures of unfolding decreased 14°C for C3T‐IL4 and 10°C for C24T‐IL4, when compared to WT‐IL4, and the conformational stability, at 25°C, decreased 4.9 kcal/mol for C3T‐IL4 and 3.2 kcal/mol for C24T‐IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle. |
---|---|
AbstractList | The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin‐4 (IL4), a four‐helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T‐IL4 and C24T‐IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent‐accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild‐type protein. Transition temperatures of unfolding decreased 14°C for C3T‐IL4 and 10°C for C24T‐IL4, when compared to WT‐IL4, and the conformational stability, at 25°C, decreased 4.9 kcal/mol for C3T‐IL4 and 3.2 kcal/mol for C24T‐IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle. The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin-4 (IL4), a four-helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T-IL4 and C24T-IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent-accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild-type protein. Transition temperatures of unfolding decreased 14 degree C for C3T-IL4 and 10 degree C for C24T-IL4, when compared to WT-IL4, and the conformational stability, at 25 degree C, decreased 4.9 kcal/mol for C3T-IL4 and 3.2 kcal/mol for C24T-IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle. The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin-4 (IL4), a four-helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T-IL4 and C24T-IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent-accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild-type protein. Transition temperatures of unfolding decreased 14 degrees C for C3T-IL4 and 10 degrees C for C24T-IL4, when compared to WT-IL4, and the conformational stability, at 25 degrees C, decreased 4.9 kcal/mol for C3T-IL4 and 3.2 kcal/mol for C24T-IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle.The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin-4 (IL4), a four-helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T-IL4 and C24T-IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent-accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild-type protein. Transition temperatures of unfolding decreased 14 degrees C for C3T-IL4 and 10 degrees C for C24T-IL4, when compared to WT-IL4, and the conformational stability, at 25 degrees C, decreased 4.9 kcal/mol for C3T-IL4 and 3.2 kcal/mol for C24T-IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle. The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein design and engineering. However, the relative importance of entropic and enthalpic contributions for the stabilization of proteins provided by disulfides is not always clear. Here, we perform a detailed analysis of the role of disulfides in the conformational stability of human Interleukin-4 (IL4), a four-helix bundle protein. In order to evaluate the contribution of two out of the three disulfides to the structure and stability of IL4, two IL4 mutants, C3T-IL4 and C24T-IL4, were used. NMR and ANS binding experiments were compatible with altered dynamics and an increase of the nonpolar solvent-accessible surface area of the folded state of the mutant proteins. Chemical and thermal unfolding experiments followed by fluorescence and circular dichroism revealed that both mutant proteins have lower conformational stability than the wild-type protein. Transition temperatures of unfolding decreased 14 degrees C for C3T-IL4 and 10 degrees C for C24T-IL4, when compared to WT-IL4, and the conformational stability, at 25 degrees C, decreased 4.9 kcal/mol for C3T-IL4 and 3.2 kcal/mol for C24T-IL4. Interestingly, both the enthalpy and the entropy of unfolding, at the transition temperature, decreased in the mutant proteins. Moreover, a smaller change in heat capacity of unfolding was also observed for the mutants. Thus, disulfide bridges in IL4 play a critical role in maintaining the thermodynamic stability and core packing of the helix bundle. |
Author | Sebald, Walter Brito, Rui M.M. Dobson, Christopher M. Vaz, Daniela C. Rodrigues, J. Rui |
AuthorAffiliation | 1 Centro de Neurociências de Coimbra, Universidade de Coimbra, 3004-517 Coimbra, Portugal 4 Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal 3 Department of Chemistry, Cambridge University, Cambridge CB2 1EW, United Kingdom 2 Theodor-Boveri-Institut fur Biowissenschaften, Biozentrum, Physiologische Chemie II, Universitat Würzburg, D-97074 Würzburg, Germany |
AuthorAffiliation_xml | – name: 2 Theodor-Boveri-Institut fur Biowissenschaften, Biozentrum, Physiologische Chemie II, Universitat Würzburg, D-97074 Würzburg, Germany – name: 3 Department of Chemistry, Cambridge University, Cambridge CB2 1EW, United Kingdom – name: 1 Centro de Neurociências de Coimbra, Universidade de Coimbra, 3004-517 Coimbra, Portugal – name: 4 Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal |
Author_xml | – sequence: 1 givenname: Daniela C. surname: Vaz fullname: Vaz, Daniela C. – sequence: 2 givenname: J. Rui surname: Rodrigues fullname: Rodrigues, J. Rui – sequence: 3 givenname: Walter surname: Sebald fullname: Sebald, Walter – sequence: 4 givenname: Christopher M. surname: Dobson fullname: Dobson, Christopher M. – sequence: 5 givenname: Rui M.M. surname: Brito fullname: Brito, Rui M.M. email: brito@ci.uc.pt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16373475$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc2KFDEUhYOMOD2tO9eSlStrzE1SP9kIMow6MDAiCu5CKj92NJ2UlZTSuPERfEafxKrpsVERXeWG-53DvfecoKOYokXoPpBTACCPh3xKaqgFY6S5hVbAG1F1onl7hFZENFB1rOmO0UnO7wkhHCi7g46hYS3jbb1CX85j2agweI1VNNjGMqblo9Nc-X4qPsWMt9Z4VSwuG4vHFCxODhufp-C8sbhP0WSc4nV7Fro0btUiVAHnonoffNktkotY7Bjs9MHH71-_8bvotlMh23s37xq9eXb--uxFdXn1_OLs6WWlecdZVUNDqYLaGQBBe0W0bq1jwBhngiswRHW8V1YY1dVOUwGtcxSUMm3NhNFsjZ7sfYepnzfRy5IqyGH0WzXuZFJe_t6JfiPfpU-SUk7n680GD28MxvRxsrnIrc_ahqCiTVOWTVt3oiXivyC0nIpuzmCNHvw60mGWn8HMAN0Dekw5j9ZJ7cv1UecJfZBA5JK-HLI8pD-LHv0hOvj-HWd7_LMPdvdPVr58dQU1IYyxH-uTxCc |
CitedBy_id | crossref_primary_10_1002_bip_20972 crossref_primary_10_1007_s11095_018_2418_1 crossref_primary_10_1016_j_ijbiomac_2014_10_068 crossref_primary_10_1016_j_jaci_2011_01_064 crossref_primary_10_1039_b815492a crossref_primary_10_4049_jimmunol_182_2_811 crossref_primary_10_1002_bip_20579 crossref_primary_10_1002_prot_26611 crossref_primary_10_1016_j_ijbiomac_2015_06_040 crossref_primary_10_1021_bc2004389 crossref_primary_10_1016_j_procbio_2022_06_024 crossref_primary_10_1021_acs_jpcb_9b02370 crossref_primary_10_1039_C1MT00135C crossref_primary_10_1002_bip_22096 crossref_primary_10_1016_j_molimm_2009_11_029 crossref_primary_10_1039_C8CP02949K crossref_primary_10_1007_s00775_010_0752_9 crossref_primary_10_1038_srep23656 crossref_primary_10_1016_j_colsurfb_2022_112854 crossref_primary_10_1021_acsbiomaterials_6b00578 crossref_primary_10_1016_j_jbiotec_2012_11_010 crossref_primary_10_1016_j_jmb_2009_06_049 crossref_primary_10_1039_C9CC07439B crossref_primary_10_1108_SR_01_2019_0001 crossref_primary_10_1093_protein_gzu017 crossref_primary_10_1016_j_bpj_2020_11_009 crossref_primary_10_1073_pnas_0706876104 crossref_primary_10_1016_j_ijbiomac_2018_06_119 crossref_primary_10_1110_ps_073246608 crossref_primary_10_1021_jp8089424 crossref_primary_10_1088_0953_8984_27_35_354107 crossref_primary_10_1016_j_jmb_2006_10_049 crossref_primary_10_1016_j_molliq_2017_01_017 crossref_primary_10_1371_journal_pcbi_1003613 crossref_primary_10_1007_s00894_015_2659_4 crossref_primary_10_1007_s11120_008_9327_9 crossref_primary_10_1021_jp402994r crossref_primary_10_1074_jbc_M114_548354 crossref_primary_10_1021_bi802339c crossref_primary_10_1021_jp910340t crossref_primary_10_1021_cg070498h |
Cites_doi | 10.1016/S0021-9258(19)39390-1 10.1021/bi960309o 10.1021/bi00462a019 10.1016/0022-2836(91)90551-G 10.1002/pro.5560041020 10.1016/0010-4655(82)90174-6 10.1016/0014-5793(91)80939-Z 10.1016/0022-2836(92)90094-Z 10.1016/0022-2836(74)90105-3 10.1016/S0021-9258(19)88711-2 10.1016/S0065-3233(08)60377-0 10.1016/0022-2836(74)90188-0 10.1021/bi00219a014 10.1021/bi00238a023 10.1006/jmbi.1994.1265 10.1074/jbc.M104494200 10.1093/oso/9780199636198.003.0012 10.1021/bi00150a028 10.1016/0022-2836(81)90515-5 10.1021/bi00231a019 10.1021/ja00052a088 10.1021/bi00131a009 10.1016/S0065-3233(08)60548-3 10.1107/S0021889891004399 10.1515/bchm.1997.378.8.731 10.1021/bi990287g 10.1021/bi00421a014 10.1146/annurev.bb.16.060187.000555 10.1021/bi00432a026 10.1038/10706 10.1002/pro.5560031110 10.1016/S0021-9258(18)37859-1 10.1021/bi990222d 10.1021/bi012154c 10.1002/prot.340110407 10.1021/bi00077a030 |
ContentType | Journal Article |
Copyright | Copyright © 2006 The Protein Society Copyright © Copyright 2006 The Protein Society |
Copyright_xml | – notice: Copyright © 2006 The Protein Society – notice: Copyright © Copyright 2006 The Protein Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 8FD FR3 H94 P64 RC3 7X8 5PM |
DOI | 10.1110/ps.051593306 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Genetics Abstracts Immunology Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1469-896X |
EndPage | 44 |
ExternalDocumentID | PMC2242368 16373475 10_1110_ps_051593306 PRO150033 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A00 A8Z AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ QRW RCA RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ WYJ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM VXZ 7T5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H94 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4843-51622a15fd1192ba0cc7ef31334394a1d0a84bae9da85fc2917ff21aad7539dc3 |
ISSN | 0961-8368 |
IngestDate | Thu Aug 21 14:35:30 EDT 2025 Thu Jul 10 17:44:44 EDT 2025 Thu Jul 10 19:04:19 EDT 2025 Wed Feb 19 01:46:30 EST 2025 Tue Jul 01 01:08:08 EDT 2025 Thu Apr 24 22:59:42 EDT 2025 Wed Jan 22 17:06:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4843-51622a15fd1192ba0cc7ef31334394a1d0a84bae9da85fc2917ff21aad7539dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reprint requests to: Rui M.M. Brito, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal; e-mail: brito@ci.uc.pt; fax: +351-239-827703. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1110/ps.051593306 |
PMID | 16373475 |
PQID | 17429812 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2242368 proquest_miscellaneous_67589709 proquest_miscellaneous_17429812 pubmed_primary_16373475 crossref_citationtrail_10_1110_ps_051593306 crossref_primary_10_1110_ps_051593306 wiley_primary_10_1110_ps_051593306_PRO150033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2006 2006-01-00 2006-Jan 20060101 |
PublicationDateYYYYMMDD | 2006-01-01 |
PublicationDate_xml | – month: 01 year: 2006 text: January 2006 |
PublicationDecade | 2000 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 2006 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 1997; 378 1994; 238 1991; 11 1991; 30 1992; 267 1992; 225 1988; 39 1997 1988; 263 1991; 217 1992; 31 1996; 35 1999; 6 1995; 4 1990; 265 1989; 28 1987; 16 2001; 276 1991; 286 1981; 151 1982; 27 1974; 87 1974; 86 2002; 41 1991; 24 1995; 47 1990; 29 1999; 38 1993; 32 1992; 114 1988; 27 1994; 3 1996; 7 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 Walter M.R. (e_1_2_7_37_1) 1992; 267 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Brems D.N. (e_1_2_7_5_1) 1990; 265 Duschl A. (e_1_2_7_11_1) 1996; 7 Pace C.N. (e_1_2_7_25_1) 1997 2457027 - J Biol Chem. 1988 Aug 25;263(24):11820-5 7703845 - Protein Sci. 1994 Nov;3(11):1984-91 2043635 - Biochemistry. 1991 Jun 18;30(24):5974-85 2180927 - J Biol Chem. 1990 Apr 5;265(10):5504-11 8756688 - Biochemistry. 1996 Aug 13;35(32):10328-38 8535251 - Protein Sci. 1995 Oct;4(10):2138-48 3072868 - Adv Protein Chem. 1988;39:191-234 9377467 - Biol Chem. 1997 Aug;378(8):731-44 1991106 - Biochemistry. 1991 Feb 5;30(5):1259-64 1525170 - Biochemistry. 1992 Sep 8;31(35):8323-8 1864379 - FEBS Lett. 1991 Jul 29;286(1-2):58-60 11969396 - Biochemistry. 2002 Apr 30;41(17):5359-74 1758883 - Proteins. 1991;11(4):281-96 8329398 - Biochemistry. 1993 Jul 6;32(26):6744-62 1613799 - J Mol Biol. 1992 Jun 20;225(4):939-43 2499351 - Biochemistry. 1989 Mar 21;28(6):2520-5 1992169 - J Mol Biol. 1991 Jan 20;217(2):389-98 8145254 - J Mol Biol. 1994 Apr 22;238(1):23-41 1400355 - J Biol Chem. 1992 Oct 5;267(28):20371-6 11406632 - J Biol Chem. 2001 Sep 7;276(36):33465-70 7338898 - J Mol Biol. 1981 Sep 15;151(2):261-87 8561051 - Adv Protein Chem. 1995;47:307-425 2021617 - Biochemistry. 1991 Apr 30;30(17):4237-44 2110472 - Biochemistry. 1990 Mar 13;29(10):2564-72 4368360 - J Mol Biol. 1974 Jul 5;86(3):665-84 3297085 - Annu Rev Biophys Biophys Chem. 1987;16:115-37 4475110 - J Mol Biol. 1974 Aug 15;87(3):579-602 8704094 - Eur Cytokine Netw. 1996 Jan-Mar;7(1):37-49 10404222 - Nat Struct Biol. 1999 Jul;6(7):652-6 1567847 - Biochemistry. 1992 Apr 28;31(16):3947-55 3233195 - Biochemistry. 1988 Oct 18;27(21):8063-8 10387027 - Biochemistry. 1999 Jun 15;38(24):7865-73 10433712 - Biochemistry. 1999 Aug 3;38(31):10052-8 |
References_xml | – volume: 86 start-page: 665 year: 1974 end-page: 684 article-title: A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study publication-title: J. Mol. Biol. – volume: 30 start-page: 1259 year: 1991 end-page: 1264 article-title: Analysis of the conformation and stability of derived recombinant human interleukin‐4 by circular dichroism publication-title: Biochemistry – volume: 28 start-page: 2520 year: 1989 end-page: 2525 article-title: A new method for determining the heat capacity change for protein folding publication-title: Biochemistry – volume: 217 start-page: 389 year: 1991 end-page: 398 article-title: Is the hydrophobic effect stabilizing or destabilizing in proteins? The contribution of disulphide bonds to protein stability publication-title: J. Mol. Biol. – volume: 151 start-page: 261 year: 1981 end-page: 287 article-title: Disulphide bridges in globular proteins publication-title: J. Mol. Biol. – volume: 30 start-page: 4237 year: 1991 end-page: 4244 article-title: Contribution to the thermodynamics of protein folding from the reduction in water‐accessible surface area publication-title: Biochemistry – volume: 31 start-page: 3947 year: 1992 end-page: 3955 article-title: Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of non‐polar and polar surfaces from water publication-title: Biochemistry – volume: 3 start-page: 1984 year: 1994 end-page: 1991 article-title: Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions publication-title: Protein Sci. – volume: 29 start-page: 2564 year: 1990 end-page: 2572 article-title: pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1 publication-title: Biochemistry – volume: 47 start-page: 307 year: 1995 end-page: 417 article-title: Energetics of protein structure publication-title: Adv. Protein Chem. – volume: 4 start-page: 2138 year: 1995 end-page: 2148 article-title: Denaturant values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding publication-title: Protein Sci. – volume: 31 start-page: 8323 year: 1992 end-page: 8328 article-title: Enthalpic destabilization of a mutant human lysozyme lacking a disulfide bridge between cysteine‐ 77 and cysteine‐95 publication-title: Biochemistry – volume: 41 start-page: 5359 year: 2002 end-page: 5374 article-title: Maximal stabilities of reversible two‐state proteins publication-title: Biochemistry – volume: 87 start-page: 579 year: 1974 end-page: 602 article-title: Intermediates in the refolding of reduced pancreatic trypsin inhibitor publication-title: J. Mol. Biol. – volume: 225 start-page: 939 year: 1992 end-page: 943 article-title: Thermo‐dynamic consequences of the removal of a disulphide bridge from hen lysozyme publication-title: J. Mol. Biol. – volume: 6 start-page: 652 year: 1999 end-page: 656 article-title: Rational design of a GCN4‐derived mimetic of interleukin‐4 publication-title: Nat. Struct. Biol. – volume: 276 start-page: 33465 year: 2001 end-page: 33470 article-title: Reengineering granulocyte colony‐stimulating factor for enhanced stability publication-title: J. Biol. Chem. – volume: 263 start-page: 11820 year: 1988 end-page: 11825 article-title: Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds publication-title: J. Biol. Chem. – start-page: 299 year: 1997 end-page: 321 – volume: 35 start-page: 10328 year: 1996 end-page: 10338 article-title: Engineered disulfide bonds in staphylococcal nuclease: Effects on the stability and conformation of the folded protein publication-title: Biochemistry – volume: 286 start-page: 58 year: 1991 end-page: 60 article-title: Site‐directed mutagenesis reveals the importance of disulfide bridges and aromatic residues for structure and proliferative activity of human interleukin‐4 publication-title: FEBS Lett. – volume: 238 start-page: 23 year: 1994 end-page: 41 article-title: Analysis of the solution structure of human interleukin‐4 determined by heteronuclear three‐dimensional nuclear magnetic resonance techniques publication-title: J. Mol. Biol. – volume: 11 start-page: 281 year: 1991 end-page: 296 article-title: Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons publication-title: Proteins – volume: 114 start-page: 10663 year: 1992 end-page: 10665 article-title: Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 229 year: 1982 end-page: 242 article-title: CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations publication-title: Comput. Phys. Commun. – volume: 39 start-page: 191 year: 1988 end-page: 234 article-title: Stability of protein structure and hydrophobic interaction publication-title: Adv. Protein Chem. – volume: 378 start-page: 731 year: 1997 end-page: 744 article-title: Protein folding coupled to disulphide bond formation publication-title: Biol. Chem. – volume: 27 start-page: 8063 year: 1988 end-page: 8068 article-title: Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl α‐chymotrypsin using different denaturants publication-title: Biochemistry – volume: 38 start-page: 7865 year: 1999 end-page: 7873 article-title: Thermal denaturation of human γ‐interferon. A calorimetric and spectroscopic study publication-title: Biochemistry – volume: 30 start-page: 5974 year: 1991 end-page: 5985 article-title: Solvent denaturation and stabilization of globular proteins publication-title: Biochemistry – volume: 16 start-page: 115 year: 1987 end-page: 137 article-title: The thermodynamic stability of proteins publication-title: Annu. Rev. Biophys. Biophys. Chem. – volume: 7 start-page: 37 year: 1996 end-page: 49 article-title: Transmembrane and intracellular signalling by interleukin‐4: Receptor dimerization and beyond publication-title: Eur. Cytokine Netw. – volume: 32 start-page: 6744 year: 1993 end-page: 6762 article-title: The high‐resolution, three‐dimensional solution structure of human interleukin‐4 determined by multidimensional heteronuclear magnetic resonance spectroscopy publication-title: Biochemistry – volume: 267 start-page: 20371 year: 1992 end-page: 20376 article-title: Crystal structure of recombinant human interleukin‐ 4 publication-title: J. Biol. Chem. – volume: 24 start-page: 946 year: 1991 end-page: 950 article-title: MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures publication-title: J. Appl. Crystallogr. – volume: 265 start-page: 5504 year: 1990 end-page: 5511 article-title: Equilibrium denaturation of human growth hormone and its cysteine‐modified forms publication-title: J. Biol. Chem. – volume: 38 start-page: 10052 year: 1999 end-page: 10058 article-title: Role of individual cysteine residues and disulfide bonds in the structure and function of ribonucleolytic toxin restrictocin publication-title: Biochemistry – volume: 265 start-page: 5504 year: 1990 ident: e_1_2_7_5_1 article-title: Equilibrium denaturation of human growth hormone and its cysteine‐modified forms publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)39390-1 – ident: e_1_2_7_12_1 doi: 10.1021/bi960309o – ident: e_1_2_7_27_1 doi: 10.1021/bi00462a019 – ident: e_1_2_7_9_1 doi: 10.1016/0022-2836(91)90551-G – ident: e_1_2_7_21_1 doi: 10.1002/pro.5560041020 – ident: e_1_2_7_31_1 doi: 10.1016/0010-4655(82)90174-6 – ident: e_1_2_7_15_1 doi: 10.1016/0014-5793(91)80939-Z – ident: e_1_2_7_6_1 doi: 10.1016/0022-2836(92)90094-Z – ident: e_1_2_7_7_1 doi: 10.1016/0022-2836(74)90105-3 – volume: 7 start-page: 37 year: 1996 ident: e_1_2_7_11_1 article-title: Transmembrane and intracellular signalling by interleukin‐4: Receptor dimerization and beyond publication-title: Eur. Cytokine Netw. – volume: 267 start-page: 20371 year: 1992 ident: e_1_2_7_37_1 article-title: Crystal structure of recombinant human interleukin‐ 4 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)88711-2 – ident: e_1_2_7_29_1 doi: 10.1016/S0065-3233(08)60377-0 – ident: e_1_2_7_30_1 doi: 10.1016/0022-2836(74)90188-0 – ident: e_1_2_7_38_1 doi: 10.1021/bi00219a014 – ident: e_1_2_7_2_1 doi: 10.1021/bi00238a023 – ident: e_1_2_7_32_1 doi: 10.1006/jmbi.1994.1265 – ident: e_1_2_7_4_1 doi: 10.1074/jbc.M104494200 – start-page: 299 volume-title: Protein structure: A practical approach year: 1997 ident: e_1_2_7_25_1 doi: 10.1093/oso/9780199636198.003.0012 – ident: e_1_2_7_17_1 doi: 10.1021/bi00150a028 – ident: e_1_2_7_36_1 doi: 10.1016/0022-2836(81)90515-5 – ident: e_1_2_7_18_1 doi: 10.1021/bi00231a019 – ident: e_1_2_7_13_1 doi: 10.1021/ja00052a088 – ident: e_1_2_7_35_1 doi: 10.1021/bi00131a009 – ident: e_1_2_7_19_1 doi: 10.1016/S0065-3233(08)60548-3 – ident: e_1_2_7_14_1 doi: 10.1107/S0021889891004399 – ident: e_1_2_7_8_1 doi: 10.1515/bchm.1997.378.8.731 – ident: e_1_2_7_3_1 doi: 10.1021/bi990287g – ident: e_1_2_7_33_1 doi: 10.1021/bi00421a014 – ident: e_1_2_7_34_1 doi: 10.1146/annurev.bb.16.060187.000555 – ident: e_1_2_7_24_1 doi: 10.1021/bi00432a026 – ident: e_1_2_7_10_1 doi: 10.1038/10706 – ident: e_1_2_7_20_1 doi: 10.1002/pro.5560031110 – ident: e_1_2_7_26_1 doi: 10.1016/S0021-9258(18)37859-1 – ident: e_1_2_7_22_1 doi: 10.1021/bi990222d – ident: e_1_2_7_16_1 doi: 10.1021/bi012154c – ident: e_1_2_7_23_1 doi: 10.1002/prot.340110407 – ident: e_1_2_7_28_1 doi: 10.1021/bi00077a030 – reference: 8329398 - Biochemistry. 1993 Jul 6;32(26):6744-62 – reference: 7338898 - J Mol Biol. 1981 Sep 15;151(2):261-87 – reference: 1758883 - Proteins. 1991;11(4):281-96 – reference: 8535251 - Protein Sci. 1995 Oct;4(10):2138-48 – reference: 11969396 - Biochemistry. 2002 Apr 30;41(17):5359-74 – reference: 2043635 - Biochemistry. 1991 Jun 18;30(24):5974-85 – reference: 2180927 - J Biol Chem. 1990 Apr 5;265(10):5504-11 – reference: 7703845 - Protein Sci. 1994 Nov;3(11):1984-91 – reference: 1567847 - Biochemistry. 1992 Apr 28;31(16):3947-55 – reference: 4475110 - J Mol Biol. 1974 Aug 15;87(3):579-602 – reference: 1992169 - J Mol Biol. 1991 Jan 20;217(2):389-98 – reference: 4368360 - J Mol Biol. 1974 Jul 5;86(3):665-84 – reference: 2457027 - J Biol Chem. 1988 Aug 25;263(24):11820-5 – reference: 8145254 - J Mol Biol. 1994 Apr 22;238(1):23-41 – reference: 11406632 - J Biol Chem. 2001 Sep 7;276(36):33465-70 – reference: 8756688 - Biochemistry. 1996 Aug 13;35(32):10328-38 – reference: 10404222 - Nat Struct Biol. 1999 Jul;6(7):652-6 – reference: 10433712 - Biochemistry. 1999 Aug 3;38(31):10052-8 – reference: 3072868 - Adv Protein Chem. 1988;39:191-234 – reference: 9377467 - Biol Chem. 1997 Aug;378(8):731-44 – reference: 8704094 - Eur Cytokine Netw. 1996 Jan-Mar;7(1):37-49 – reference: 2110472 - Biochemistry. 1990 Mar 13;29(10):2564-72 – reference: 2021617 - Biochemistry. 1991 Apr 30;30(17):4237-44 – reference: 1613799 - J Mol Biol. 1992 Jun 20;225(4):939-43 – reference: 1991106 - Biochemistry. 1991 Feb 5;30(5):1259-64 – reference: 10387027 - Biochemistry. 1999 Jun 15;38(24):7865-73 – reference: 1864379 - FEBS Lett. 1991 Jul 29;286(1-2):58-60 – reference: 2499351 - Biochemistry. 1989 Mar 21;28(6):2520-5 – reference: 1525170 - Biochemistry. 1992 Sep 8;31(35):8323-8 – reference: 3297085 - Annu Rev Biophys Biophys Chem. 1987;16:115-37 – reference: 1400355 - J Biol Chem. 1992 Oct 5;267(28):20371-6 – reference: 3233195 - Biochemistry. 1988 Oct 18;27(21):8063-8 – reference: 8561051 - Adv Protein Chem. 1995;47:307-425 |
SSID | ssj0004123 |
Score | 2.0260096 |
Snippet | The role of disulfide bridges in the structure, stability, and folding pathways of proteins has been the subject of wide interest in the fields of protein... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 33 |
SubjectTerms | ANS, 8‐anilino‐1‐naphthalenesulfonate C24T‐IL4, Interleukin‐4 with cysteine 24 replaced by threonine C3T‐IL4, Inter‐leukin‐4 with cysteine 3 replaced by threonine CD, circular dichroism Circular Dichroism conformational stability disulfide bridges Disulfides - chemistry enthalpy Entropy four‐helix bundle GdmCl, guanidinium chloride GM‐CSF, granulocyte‐macrophage colony stimulating factor G‐CSF, granulocyte colony stimulating factor Humans Hydrophobic and Hydrophilic Interactions IL2, Interleukin‐2 IL4, Interleukin‐4 Interleukin-4 - chemistry Interleukin-4 - genetics Interleukin‐4 Magnetic Resonance Spectroscopy NMR, nuclear magnetic resonance Protein Conformation Protein Denaturation Protein Folding Protein Structure, Secondary SASA, solvent‐accessible surface area Spectrometry, Fluorescence Surface Properties Temperature thermal unfolding Tm, transition temperature of unfolding TS, temperature of maximal stability Urea WT‐IL4, wild type Interleukin‐4 ΔCp, change in heat capacity upon protein unfolding ΔG(H2O), conformational stability ΔHm, enthalpy change of unfolding at the transition temperature ΔSm, entropy change of unfolding at the transition temperature |
Title | Enthalpic and entropic contributions mediate the role of disulfide bonds on the conformational stability of Interleukin‐4 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1110%2Fps.051593306 https://www.ncbi.nlm.nih.gov/pubmed/16373475 https://www.proquest.com/docview/17429812 https://www.proquest.com/docview/67589709 https://pubmed.ncbi.nlm.nih.gov/PMC2242368 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaEcoALAy2P8NQBuBgby28fO6FMKQQynRZ688i2TD2kdiaJD-1v5Eexeli2SduBXjyOLUex9ou0u9r9FqHXoRcEsBDbZkb8zPRiFpi0sH3Tj4M0S0MvIsJQnH4N9o-9gxP_ZDT63YtaataplV1cmldyE6nCNZArz5L9D8nqL4ULcA7yhSNIGI7_JOO9an1K5wtFucr9tDX_IMLPVR2rlcwNWbNBLGFerpp5UebMSGseEit3DPiDOplR5JFIEm-db7Kcs-ZXWamEGaXSzjjTQ1kZai1tJfidXnQp7NSYWN3WTr4sfzZyejqwjMOm1G4elipH9Q-xi6-17Lqtct7jQjCm1rUui0k9B11a-C15qhJg3fgiEc_DCvqhJ8JPGRAzcmXtHYvJWRpsejOKRQnEbhr3N-Aq52RJtKFWd0k2ecm6wQMtFyuLl7zhPp6g3wykvjgTGALtNXQ9WevlL57u2XTicOU0iG6h2w4YLbyexodPn7ssXSKKDeoXatMwiP2-3zGnsVW9DHWlDQNoM463b18JBenoPrqnLBu8K2H6AI1YtY12disY77Nz_BaLWGOxibON7kzaOoM76FyjGAOKcYtiPEAxVijGAFPMUYzrAmsUY4FiXFfi9hDFWKOYPzJA8UN0_HHvaLJvqoIgZuZFnmv6JHAcSvwiJ2CYpNTOspAVLnFdnt9NSW7TyEspi3Ma-UXmxCQsCodQmoNRHueZ-whtVXXFniAcMs40aLt5BPqtR-04jQjj3ItRARoyDcfIaIc-yRRbPi_aMk-k1Wwni1WiZTZGb3TrhWSJuaLdq1aKCYwy35ujFaubVUJCUAxB2b66Bbfs49COx-ixlHrXk4LLGIUDPOgGnEJ-eKcqTwWVvELsGL0TyLn2xyezw29gPtqu-_TGHT1Dd7sJ4TnaWi8b9gK0-nX6UvxZ_gBA6fwM |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enthalpic+and+entropic+contributions+mediate+the+role+of+disulfide+bonds+on+the+conformational+stability+of+Interleukin-4&rft.jtitle=Protein+science&rft.au=Vaz%2C+Daniela+C.&rft.au=Rodrigues%2C+J.+Rui&rft.au=Sebald%2C+Walter&rft.au=Dobson%2C+Christopher+M.&rft.date=2006-01-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=15&rft.issue=1&rft.spage=33&rft.epage=44&rft_id=info:doi/10.1110%2Fps.051593306&rft_id=info%3Apmid%2F16373475&rft.externalDocID=PMC2242368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |