The role of mitochondrial ROS in the aging brain

The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily function...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 592; no. 5; pp. 743 - 758
Main Authors Stefanatos, Rhoda, Sanz, Alberto
Format Journal Article
LanguageEnglish
Published England 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age‐associated increases in mtROS are a cause or a consequence of aging.
AbstractList The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species ( ROS ) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mt ROS ) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mt ROS are produced at the molecular level, how different brain cells and regions produce different amounts of mt ROS , and how mt ROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age‐associated increases in mt ROS are a cause or a consequence of aging.
The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging.
The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging.The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging.
Author Sanz, Alberto
Stefanatos, Rhoda
Author_xml – sequence: 1
  givenname: Rhoda
  surname: Stefanatos
  fullname: Stefanatos, Rhoda
  organization: Newcastle University
– sequence: 2
  givenname: Alberto
  surname: Sanz
  fullname: Sanz, Alberto
  email: alberto.sanz@newcastle.ac.uk
  organization: Newcastle University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29106705$$D View this record in MEDLINE/PubMed
BookMark eNqFkM9PwjAUgBuDkR969mZ29DJ4_bG1PSoBNSEhUTw3XdtBzVhxGzH89w5BDh7k1Lzm-95Lvj7qlKF0CN1iGGIAMsKC05iyVAwxkUAuUO_000E9AMzihEvaRf26_oB2FlheoS6RGFIOSQ_BYuWiKhQuCnm09k0wq1Dayusiep2_Rb6MmhbQS18uo6zSvrxGl7kuandzfAfofTpZjJ_j2fzpZfwwiw0TjMS5y7i1ORjtqMgZZ9hwKbjORKappRlLKAjtQFtrbE4SmXCbpymATFOdGUsH6P6wd1OFz62rG7X2tXFFoUsXtrUiHAtKJTByFsUyxUATkrAWvTui22ztrNpUfq2rnfoN0gKjA2CqUNeVy08IBrVPrvaB1T6w-kneGskfw_hGNz6UTdur-MdLD96XL9zu3Bk1nTySg_gNoRSQ6g
CitedBy_id crossref_primary_10_1007_s12640_022_00489_4
crossref_primary_10_2174_2772432819666230504093227
crossref_primary_10_1016_j_heliyon_2020_e04107
crossref_primary_10_1016_j_jchemneu_2022_102210
crossref_primary_10_1093_alcalc_agaa055
crossref_primary_10_1002_jbt_23256
crossref_primary_10_1016_j_freeradbiomed_2021_10_026
crossref_primary_10_2174_0115748855275769231114094037
crossref_primary_10_1016_j_neulet_2023_137136
crossref_primary_10_3390_ijms24065476
crossref_primary_10_3390_molecules27217167
crossref_primary_10_4103_1673_5374_291382
crossref_primary_10_1016_j_ijbiomac_2019_04_173
crossref_primary_10_1080_13880209_2023_2230753
crossref_primary_10_3390_molecules23020509
crossref_primary_10_3390_molecules23092357
crossref_primary_10_1007_s42764_023_00110_8
crossref_primary_10_1007_s10557_021_07215_w
crossref_primary_10_1016_j_jmb_2020_01_020
crossref_primary_10_3390_ijms23031238
crossref_primary_10_3389_fendo_2024_1385575
crossref_primary_10_3892_mmr_2021_12441
crossref_primary_10_3390_antiox11010007
crossref_primary_10_3390_ijms21124240
crossref_primary_10_3390_antiox11010130
crossref_primary_10_1007_s11033_023_08321_8
crossref_primary_10_3390_antiox12040782
crossref_primary_10_1007_s11357_022_00555_x
crossref_primary_10_3389_fcell_2019_00041
crossref_primary_10_2139_ssrn_4048906
crossref_primary_10_3390_antiox11081456
crossref_primary_10_1007_s11357_021_00365_7
crossref_primary_10_18632_aging_101881
crossref_primary_10_1007_s00210_025_03821_9
crossref_primary_10_3390_molecules29204841
crossref_primary_10_1007_s00232_021_00200_2
crossref_primary_10_1016_j_jinorgbio_2019_03_019
crossref_primary_10_1038_s12276_024_01333_9
crossref_primary_10_1016_j_jinorgbio_2021_111592
crossref_primary_10_3390_molecules26144138
crossref_primary_10_1007_s11011_023_01318_z
crossref_primary_10_3390_antiox13080980
crossref_primary_10_1007_s11010_023_04878_x
crossref_primary_10_1080_19336896_2020_1796898
crossref_primary_10_2139_ssrn_4052958
crossref_primary_10_1007_s00424_021_02531_4
crossref_primary_10_1021_acs_jafc_3c03183
crossref_primary_10_1038_s41598_023_44134_2
crossref_primary_10_3389_fmolb_2021_676187
crossref_primary_10_3390_nu14142781
crossref_primary_10_1007_s12035_020_02083_1
crossref_primary_10_1089_ars_2020_8238
crossref_primary_10_2174_1566524021666210218112616
crossref_primary_10_3389_fnagi_2018_00032
crossref_primary_10_1007_s43994_022_00001_w
crossref_primary_10_1093_nutrit_nuad084
crossref_primary_10_1016_j_envpol_2019_113359
crossref_primary_10_3389_fnagi_2022_1022821
crossref_primary_10_3390_biomedicines9091251
crossref_primary_10_1016_j_jchemneu_2022_102136
crossref_primary_10_1016_j_jhazmat_2021_126158
crossref_primary_10_3390_brainsci12060709
crossref_primary_10_1007_s10557_020_07018_5
crossref_primary_10_1016_j_scitotenv_2022_155316
crossref_primary_10_3390_antiox13121482
crossref_primary_10_3390_biomedicines10071611
crossref_primary_10_3390_ijms241713129
crossref_primary_10_3390_metabo13030405
crossref_primary_10_1016_j_ecoenv_2024_116314
crossref_primary_10_1016_j_arr_2020_101128
crossref_primary_10_1089_rej_2018_2159
crossref_primary_10_1016_j_cej_2024_153372
crossref_primary_10_1016_j_arr_2021_101529
crossref_primary_10_3390_cells10123569
crossref_primary_10_3390_stresses4040055
crossref_primary_10_3389_fnagi_2022_1010562
crossref_primary_10_3390_antiox12010131
crossref_primary_10_1155_2022_6459585
crossref_primary_10_1155_2022_7295224
crossref_primary_10_1002_ptr_7779
crossref_primary_10_1016_j_ecoenv_2021_112350
crossref_primary_10_1016_j_theriogenology_2023_07_021
crossref_primary_10_1017_erm_2023_19
crossref_primary_10_1038_s41598_021_83910_w
crossref_primary_10_1016_j_crneur_2021_100012
crossref_primary_10_1016_j_neurobiolaging_2021_04_013
crossref_primary_10_3390_ijms22062802
crossref_primary_10_1007_s12035_024_03976_1
crossref_primary_10_1016_j_drudis_2020_05_001
crossref_primary_10_1016_j_ejphar_2025_177277
crossref_primary_10_14336_AD_2023_0510
crossref_primary_10_3389_fnmol_2020_00043
crossref_primary_10_3390_ijms24087079
crossref_primary_10_1083_jcb_202304031
crossref_primary_10_1007_s10695_022_01072_6
crossref_primary_10_1186_s41110_023_00234_7
crossref_primary_10_1016_j_mtcomm_2022_103256
crossref_primary_10_3389_fnins_2024_1368552
crossref_primary_10_1080_13510002_2022_2046423
crossref_primary_10_3390_antiox11112205
crossref_primary_10_3389_fcell_2020_00702
crossref_primary_10_1109_JSEN_2022_3147207
crossref_primary_10_3390_ijms24087160
crossref_primary_10_3390_antiox13050576
crossref_primary_10_1080_2314808X_2022_2106693
crossref_primary_10_3389_fncel_2024_1434459
crossref_primary_10_3390_antiox11061128
crossref_primary_10_1016_j_celbio_2025_100016
crossref_primary_10_1016_j_fct_2021_112665
crossref_primary_10_1038_s41380_021_01313_9
crossref_primary_10_3390_app14135579
crossref_primary_10_1016_j_fshw_2023_02_038
crossref_primary_10_3390_ijms23137267
crossref_primary_10_1093_jpp_rgac036
crossref_primary_10_1111_exd_14529
crossref_primary_10_1016_j_arr_2023_101910
crossref_primary_10_1021_acs_analchem_2c05312
crossref_primary_10_1007_s12035_023_03494_6
crossref_primary_10_1096_fj_202400390R
crossref_primary_10_1007_s00894_021_04891_1
crossref_primary_10_3390_biom14111362
crossref_primary_10_1016_j_freeradbiomed_2020_02_029
crossref_primary_10_1111_azo_12347
crossref_primary_10_3389_fnagi_2021_747989
crossref_primary_10_1016_j_jointm_2023_02_002
crossref_primary_10_1097_JCMA_0000000000000401
crossref_primary_10_3390_ncrna8060072
crossref_primary_10_1007_s12035_024_03967_2
crossref_primary_10_1016_j_phymed_2025_156587
crossref_primary_10_1016_j_ejphar_2025_177505
crossref_primary_10_1016_j_jphotobiol_2023_112703
crossref_primary_10_1080_21655979_2021_1954742
crossref_primary_10_1016_j_jep_2020_112636
crossref_primary_10_1038_s41598_025_95254_w
crossref_primary_10_15252_msb_20209596
crossref_primary_10_3389_fnagi_2020_567861
crossref_primary_10_1016_j_jnutbio_2022_109056
crossref_primary_10_1007_s12017_023_08738_1
crossref_primary_10_1016_j_neuint_2019_04_011
crossref_primary_10_3390_molecules27207088
crossref_primary_10_3390_neurosci3010011
crossref_primary_10_1016_j_freeradbiomed_2022_02_021
crossref_primary_10_1096_fj_202000772R
crossref_primary_10_1002_1873_3468_13008
crossref_primary_10_1002_arch_70038
crossref_primary_10_1097_WNF_0000000000000615
crossref_primary_10_1515_ntrev_2023_0124
crossref_primary_10_1021_acs_jproteome_9b00552
crossref_primary_10_1016_j_biopha_2023_114776
crossref_primary_10_3389_fgene_2019_00435
crossref_primary_10_1038_s12276_021_00596_w
crossref_primary_10_1038_s41593_022_01027_3
crossref_primary_10_3389_fnins_2023_1197208
crossref_primary_10_3390_ijms24031869
crossref_primary_10_3390_antiox11010095
crossref_primary_10_1016_j_arr_2024_102646
crossref_primary_10_3389_fphar_2021_632388
crossref_primary_10_1007_s10522_022_09988_5
crossref_primary_10_1007_s10565_024_09869_2
crossref_primary_10_1016_j_arabjc_2023_104604
crossref_primary_10_1038_s41420_023_01792_5
crossref_primary_10_3389_fcvm_2021_692540
crossref_primary_10_1016_j_fshw_2022_10_021
crossref_primary_10_3390_ijms20081858
crossref_primary_10_1111_nan_12672
crossref_primary_10_3390_cells9092045
crossref_primary_10_1007_s11357_022_00550_2
crossref_primary_10_3390_ijms23052484
crossref_primary_10_1038_s41419_020_03355_3
crossref_primary_10_1021_acsabm_4c00853
crossref_primary_10_1016_j_expneurol_2021_113894
crossref_primary_10_3390_biomedicines11102711
crossref_primary_10_1016_j_abb_2022_109390
crossref_primary_10_1016_j_toxlet_2022_06_010
crossref_primary_10_3390_antiox13010044
crossref_primary_10_18632_aging_102451
crossref_primary_10_1016_j_archger_2020_104133
crossref_primary_10_3390_ijms25105122
crossref_primary_10_1016_j_phymed_2022_154341
crossref_primary_10_1080_10498850_2024_2350548
crossref_primary_10_1002_mnfr_202300080
crossref_primary_10_1016_j_preghy_2023_11_001
crossref_primary_10_3390_antiox10121872
crossref_primary_10_1039_C9RA10539E
crossref_primary_10_1080_1028415X_2021_1906392
crossref_primary_10_3390_ijms25179705
crossref_primary_10_3389_fnhum_2022_815759
crossref_primary_10_3390_ijms25126793
crossref_primary_10_1016_j_expneurol_2020_113248
crossref_primary_10_1089_ars_2021_0177
crossref_primary_10_3390_biom12070894
crossref_primary_10_1002_jnr_24446
crossref_primary_10_1016_j_arr_2023_101955
crossref_primary_10_3389_fnins_2022_1075141
crossref_primary_10_1007_s10561_022_10030_8
crossref_primary_10_1089_ars_2020_8075
crossref_primary_10_1038_s41392_024_01839_8
crossref_primary_10_1016_j_devcel_2022_10_008
crossref_primary_10_1093_gerona_glab172
crossref_primary_10_1038_s41392_020_00311_7
crossref_primary_10_1007_s11064_023_03962_4
crossref_primary_10_1007_s00223_023_01100_4
crossref_primary_10_1126_scisignal_abk3411
crossref_primary_10_3390_ijms242115951
crossref_primary_10_1038_s41419_021_03438_9
crossref_primary_10_1007_s12017_021_08644_4
crossref_primary_10_3389_fnins_2023_1097067
crossref_primary_10_3390_ijms20143563
crossref_primary_10_1242_bio_060515
crossref_primary_10_3389_fncel_2024_1496163
crossref_primary_10_2147_NDT_S452643
crossref_primary_10_1007_s40495_022_00307_7
crossref_primary_10_3389_fnmol_2023_1133106
crossref_primary_10_1080_14728222_2023_2240021
crossref_primary_10_1111_ejn_14181
crossref_primary_10_1111_febs_16691
crossref_primary_10_1016_j_mito_2020_11_011
crossref_primary_10_3390_nu14153012
crossref_primary_10_1007_s12013_024_01438_y
crossref_primary_10_3390_ijerph20176671
crossref_primary_10_3390_cells10010079
crossref_primary_10_1093_procel_pwad020
crossref_primary_10_1016_j_cbpb_2022_110713
crossref_primary_10_1039_D0FO02208J
crossref_primary_10_1007_s11064_020_03016_z
crossref_primary_10_3390_ijms22158333
crossref_primary_10_1016_j_foodchem_2025_143184
crossref_primary_10_1167_iovs_65_13_12
crossref_primary_10_1016_j_jff_2024_106311
crossref_primary_10_1016_j_mito_2022_03_003
crossref_primary_10_1007_s11011_020_00626_y
crossref_primary_10_3390_genes12050676
crossref_primary_10_1016_j_freeradbiomed_2023_09_035
crossref_primary_10_1016_j_taap_2020_115351
crossref_primary_10_1016_j_jafr_2024_101090
crossref_primary_10_1016_j_lfs_2022_120605
crossref_primary_10_1016_j_bbamcr_2022_119342
crossref_primary_10_3390_ijms24087318
crossref_primary_10_1016_j_neubiorev_2020_03_015
crossref_primary_10_1089_ars_2020_8028
crossref_primary_10_3390_foods13101493
crossref_primary_10_1016_j_jphyss_2024_100003
crossref_primary_10_3390_ijms20205195
crossref_primary_10_3390_antiox12020221
crossref_primary_10_1155_2024_7465045
crossref_primary_10_3390_foods13050774
crossref_primary_10_1016_j_neuint_2021_105268
crossref_primary_10_3390_ijms241512372
crossref_primary_10_1016_j_bbadis_2018_07_022
crossref_primary_10_1002_anie_202403880
crossref_primary_10_1002_ange_202403880
crossref_primary_10_1007_s12035_024_04023_9
crossref_primary_10_3233_JAD_220203
crossref_primary_10_1016_j_freeradbiomed_2021_01_018
crossref_primary_10_1155_2018_5076271
crossref_primary_10_3390_biomedicines9111625
crossref_primary_10_1038_s41598_023_40543_5
crossref_primary_10_3389_fncel_2022_1017153
crossref_primary_10_1021_acs_bioconjchem_3c00476
crossref_primary_10_30699_jambs_27_124_8
Cites_doi 10.1038/cddis.2016.105
10.1016/j.exger.2006.10.011
10.1371/journal.pbio.1000556
10.1016/j.mad.2013.10.001
10.3389/fphys.2017.00428
10.1371/journal.pone.0001616
10.1096/fj.05-5568com
10.1016/j.cell.2013.06.016
10.1371/journal.pgen.1002028
10.1016/j.cmet.2016.09.004
10.1016/j.freeradbiomed.2016.12.010
10.1038/nm.4132
10.1089/ars.2011.4210
10.1158/0008-5472.203.65.1
10.4161/auto.5269
10.1016/j.molbrainres.2005.07.018
10.1038/nrd3403
10.1007/s10522-011-9351-6
10.1016/j.neuint.2007.01.007
10.1111/j.1474-9726.2012.00870.x
10.1016/j.celrep.2016.12.011
10.18632/aging.101089
10.1016/j.redox.2017.07.005
10.1172/JCI64125
10.1152/ajpregu.00492.2007
10.15252/embj.201592862
10.1038/sj.emboj.7601623
10.1016/j.freeradbiomed.2014.10.632
10.1073/pnas.1613701113
10.1111/j.1532-5415.1972.tb00787.x
10.1111/j.1600-0854.2010.01144.x
10.1016/j.freeradbiomed.2011.06.033
10.1016/S0892-0362(99)00069-0
10.1089/ars.2010.3213
10.1089/ars.2012.4900
10.1038/nchembio.1910
10.1021/pr500295n
10.1016/j.cell.2014.03.026
10.1083/jcb.141.6.1423
10.1111/acel.12212
10.1038/cdd.2016.36
10.1038/ncb1881
10.1089/ars.2006.8.582
10.1016/j.celrep.2014.08.075
10.1089/ars.2012.5148
10.1073/pnas.1216197110
10.1073/pnas.88.23.10540
10.1016/0014-5793(82)80788-6
10.1074/jbc.M407715200
10.1007/s13105-011-0100-8
10.1007/s10863-005-4131-0
10.1016/j.bbabio.2010.01.032
10.1016/j.mehy.2005.09.009
10.1089/ars.2012.4886
10.1038/ncomms3267
10.1016/j.cmet.2011.06.011
10.1016/j.cmet.2015.12.009
10.1016/j.cmet.2016.08.012
10.1016/j.exger.2010.01.003
10.1016/j.cmet.2007.08.011
10.1016/j.celrep.2016.03.009
10.1016/S0168-0102(01)00282-6
10.1074/jbc.M606702200
10.1007/s11011-014-9508-5
10.1089/ars.2011.4414
10.1042/BJ20042130
10.1016/j.bbabio.2010.01.025
10.1016/j.freeradbiomed.2004.02.013
10.1016/S0924-977X(98)00035-2
10.1038/nature20411
10.1016/j.exger.2010.02.003
10.2217/fca.12.58
10.1016/j.cell.2013.05.039
10.1038/ng.95
10.1126/science.1230381
10.1016/j.molcel.2012.09.025
10.1089/ars.2012.4845
10.2174/1874609810801010010
10.1089/ars.2014.6214
10.1152/ajpregu.00226.2004
10.1016/j.neurobiolaging.2014.02.027
10.1038/ncomms7393
10.1016/j.cmet.2017.03.009
10.1111/j.1474-9726.2012.00795.x
10.1073/pnas.93.10.4765
10.1016/j.ceb.2014.09.010
10.1196/annals.1293.010
10.1038/nature02517
10.1038/msb.2010.5
10.1038/nrm.2016.14
10.1016/j.cmet.2011.08.007
10.1074/mcp.M500298-MCP200
10.1038/ncomms14532
10.1074/jbc.M804681200
10.1016/j.cmet.2016.03.009
10.1038/ncomms15691
10.1016/j.freeradbiomed.2004.11.034
10.7554/eLife.19493
10.1038/ng.f.94
10.1016/j.cell.2013.11.037
10.1371/journal.pone.0020914
10.1111/j.1399-3054.2009.01249.x
10.1126/science.1112125
10.1089/scd.2015.0117
10.1016/j.tibs.2009.10.006
10.1016/j.cub.2009.08.016
10.1089/ars.2009.2598
10.1016/j.bbabio.2016.03.018
10.3390/ijms10041911
10.1371/journal.pgen.1003478
10.1038/cdd.2014.150
10.1038/ncomms3300
10.1371/journal.pone.0011468
10.1016/j.bbalip.2017.02.001
10.1091/mbc.E02-06-0322
10.1038/nrn1886
10.1016/j.exger.2010.03.014
ContentType Journal Article
Copyright 2017 Federation of European Biochemical Societies
2017 Federation of European Biochemical Societies.
Copyright_xml – notice: 2017 Federation of European Biochemical Societies
– notice: 2017 Federation of European Biochemical Societies.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1002/1873-3468.12902
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 758
ExternalDocumentID 29106705
10_1002_1873_3468_12902
FEB212902
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: European Research Council
  funderid: 260632
– fundername: BBSRC
  funderid: BB/M023311/1
– fundername: European Research Council
  grantid: 260632
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M023311/1
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAHQN
AAIKJ
AAIPD
AALRI
AAMNL
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABWVN
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
AKBMS
AKYEP
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c4842-feb7ddf0cae38f4741c7987ab8ba3d3b45308ae0addcdf25957df6600966abcd3
ISSN 0014-5793
1873-3468
IngestDate Fri Jul 11 18:23:30 EDT 2025
Thu Jul 10 17:17:03 EDT 2025
Mon Jul 21 06:04:07 EDT 2025
Tue Jul 01 02:46:47 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Wed Jan 22 16:47:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords aging
brain
mitochondria
signalling
reactive oxygen species
Language English
License 2017 Federation of European Biochemical Societies.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4842-feb7ddf0cae38f4741c7987ab8ba3d3b45308ae0addcdf25957df6600966abcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://febs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1873-3468.12902
PMID 29106705
PQID 1961035254
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2718339042
proquest_miscellaneous_1961035254
pubmed_primary_29106705
crossref_primary_10_1002_1873_3468_12902
crossref_citationtrail_10_1002_1873_3468_12902
wiley_primary_10_1002_1873_3468_12902_FEB212902
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2018
References 2010; 12
2004; 287
2013; 4
2002; 13
2013; 123
2005; 65
2014; 29
2012; 16
2012; 11
2001; 41
2016; 35
2013; 9
2014; 20
2009; 11
2006; 20
2009; 10
1991; 88
2004; 36
2016; 1857
2007; 6
2014; 13
2011; 67
2013; 110
2004; 1011
2006; 281
2009; 19
2010; 2
2010; 5
2010; 6
2010; 8
2011; 2
2010; 35
1996; 93
2013; 340
2016; 17
2001; 24
2011; 6
2016; 15
2011; 7
2010; 1797
2004; 429
2014; 157
2010; 45
2016; 7
2004; 279
2014; 35
2012; 48
2008; 40
2016; 8
2016; 24
2016; 23
1982; 150
1998; 141
2016; 22
2017; 6
2017; 8
2017; 1862
2014; 33C
2011; 10
2011; 12
2008; 3
2008; 4
2011; 14
2008; 1
2013; 19
2005; 140
2006; 66
2016; 113
2013; 155
2005; 309
2013; 154
2013; 153
2014; 9
2005; 37
2005; 38
2007; 26
2005; 390
2015; 6
2017; 25
2000; 22
2015; 11
2006; 7
2006; 8
2006; 5
1972; 20
2007; 50
2015; 7
2009; 137
2008; 283
1999; 9
2015; 24
2015; 23
2016; 539
2011; 51
2015; 22
2017; 13
2013; 134
2017; 18
2007; 42
2017; 103
2008; 294
2012; 8
2014; 75
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
Wang X (e_1_2_7_52_1) 2010; 2
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
Chakrabarti S (e_1_2_7_7_1) 2011; 2
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
Reczek CR (e_1_2_7_5_1) 2014; 33
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
Herrero A (e_1_2_7_69_1) 2001; 24
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
Bernhardi R (e_1_2_7_82_1) 2015; 7
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 51
  start-page: 1289
  year: 2011
  end-page: 1301
  article-title: Cross talk between mitochondria and NADPH oxidases
  publication-title: Free Radic Biol Med
– volume: 153
  start-page: 1194
  year: 2013
  end-page: 1217
  article-title: The hallmarks of aging
  publication-title: Cell
– volume: 25
  start-page: 765
  year: 2017
  end-page: 776
  article-title: The enigma of the respiratory chain supercomplex
  publication-title: Cell Metab
– volume: 113
  start-page: 13063
  year: 2016
  end-page: 13068
  article-title: Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes
  publication-title: Proc Natl Acad Sci USA
– volume: 37
  start-page: 83
  year: 2005
  end-page: 90
  article-title: Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain
  publication-title: J Bioenerg Biomembr
– volume: 11
  start-page: 345
  year: 2012
  end-page: 349
  article-title: A senescent cell bystander effect: senescence‐induced senescence
  publication-title: Aging Cell
– volume: 14
  start-page: 533
  year: 2011
  end-page: 542
  article-title: NADPH oxidase 2 mediates intermittent hypoxia‐induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats
  publication-title: Antioxid Redox Signal
– volume: 110
  start-page: 8638
  year: 2013
  end-page: 8643
  article-title: Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan
  publication-title: Proc Natl Acad Sci USA
– volume: 45
  start-page: 410
  year: 2010
  end-page: 418
  article-title: How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis)
  publication-title: Exp Gerontol
– volume: 2
  start-page: 242
  year: 2011
  end-page: 256
  article-title: Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation
  publication-title: Aging Dis
– volume: 16
  start-page: 1295
  year: 2012
  end-page: 1322
  article-title: Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy
  publication-title: Antioxid Redox Signal
– volume: 11
  start-page: 834
  year: 2015
  end-page: 836
  article-title: Suppressors of superoxide production from mitochondrial complex III
  publication-title: Nat Chem Biol
– volume: 7
  start-page: e1002028
  year: 2011
  article-title: Ultra‐deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins
  publication-title: PLoS Genet
– volume: 340
  start-page: 1567
  year: 2013
  end-page: 1570
  article-title: Supercomplex assembly determines electron flux in the mitochondrial electron transport chain
  publication-title: Science
– volume: 35
  start-page: 2230
  year: 2014
  end-page: 2238
  article-title: Respiratory chain deficiency in aged spinal motor neurons
  publication-title: Neurobiol Aging
– volume: 35
  start-page: 724
  year: 2016
  end-page: 742
  article-title: Mitochondria are required for pro‐ageing features of the senescent phenotype
  publication-title: EMBO J
– volume: 33C
  start-page: 8
  year: 2014
  end-page: 13
  article-title: ROS‐dependent signal transduction
  publication-title: Curr Opin Cell Biol
– volume: 1011
  start-page: 86
  year: 2004
  end-page: 100
  article-title: The mitochondrial production of reactive oxygen species in relation to aging and pathology
  publication-title: Ann N Y Acad Sci
– volume: 20
  start-page: 1064
  year: 2006
  end-page: 1073
  article-title: Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins
  publication-title: FASEB J
– volume: 5
  start-page: 608
  year: 2006
  end-page: 619
  article-title: Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver
  publication-title: Mol Cell Proteomics
– volume: 22
  start-page: 175
  year: 2000
  end-page: 181
  article-title: Age‐related changes in reactive oxygen species production in rat brain homogenates
  publication-title: Neurotoxicol Teratol
– volume: 19
  start-page: 1953
  year: 2013
  end-page: 1969
  article-title: Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species‐dependent and reactive oxygen species‐independent mechanisms
  publication-title: Antioxid Redox Signal
– volume: 19
  start-page: 1591
  year: 2009
  end-page: 1598
  article-title: Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain
  publication-title: Curr Biol
– volume: 8
  start-page: 15691
  year: 2017
  article-title: Cellular senescence drives age‐dependent hepatic steatosis
  publication-title: Nat Commun
– volume: 13
  start-page: 765
  year: 2014
  end-page: 768
  article-title: levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice
  publication-title: Aging Cell
– volume: 1
  start-page: 10
  year: 2008
  end-page: 21
  article-title: The mitochondrial free radical theory of aging: a critical view
  publication-title: Curr Aging Sci
– volume: 390
  start-page: 501
  year: 2005
  end-page: 511
  article-title: Age‐associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster
  publication-title: Biochem J
– volume: 65
  start-page: 203
  year: 2005
  end-page: 209
  article-title: A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis
  publication-title: Cancer Res
– volume: 103
  start-page: 14
  year: 2017
  end-page: 22
  article-title: Sixty years old is the breakpoint of human frontal cortex aging
  publication-title: Free Radic Biol Med
– volume: 10
  start-page: 453
  year: 2011
  end-page: 471
  article-title: Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets
  publication-title: Nat Rev Drug Discovery
– volume: 309
  start-page: 481
  year: 2005
  end-page: 484
  article-title: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging
  publication-title: Science
– volume: 8
  start-page: 863
  year: 2012
  end-page: 884
  article-title: Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species
  publication-title: Future Cardiol
– volume: 150
  start-page: 454
  year: 1982
  end-page: 458
  article-title: The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts
  publication-title: FEBS Lett
– volume: 7
  start-page: e2253
  year: 2016
  article-title: ROS homeostasis and metabolism: a dangerous liason in cancer cells
  publication-title: Cell Death Dis
– volume: 24
  start-page: 1957
  year: 2015
  end-page: 1971
  article-title: Connecting mitochondria, metabolism, and stem cell fate
  publication-title: Stem Cells Dev
– volume: 13
  start-page: 452
  year: 2017
  end-page: 458
  article-title: Redox regulation of proteasome function
  publication-title: Redox Biol
– volume: 12
  start-page: 551
  year: 2011
  end-page: 564
  article-title: The aged‐related increase in xanthine oxidase expression and activity in several tissues from mice is not shown in long‐lived animals
  publication-title: Biogerontology
– volume: 50
  start-page: 719
  year: 2007
  end-page: 725
  article-title: Depolarization and cardiolipin depletion in aged rat brain mitochondria: relationship with oxidative stress and electron transport chain activity
  publication-title: Neurochem Int
– volume: 3
  start-page: e1616
  year: 2008
  article-title: MAO‐B elevation in mouse brain astrocytes results in Parkinson's pathology
  publication-title: PLoS ONE
– volume: 88
  start-page: 10540
  year: 1991
  end-page: 10543
  article-title: Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 996
  year: 2012
  end-page: 1004
  article-title: Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response
  publication-title: Aging Cell
– volume: 140
  start-page: 120
  year: 2005
  end-page: 126
  article-title: High intrinsic oxidative stress may underlie selective vulnerability of the hippocampal CA1 region
  publication-title: Brain Res Mol Brain Res
– volume: 7
  start-page: 124
  year: 2015
  article-title: Microglial cell dysregulation in brain aging and neurodegeneration
  publication-title: Front Aging Neurosci
– volume: 294
  start-page: R501
  year: 2008
  end-page: R509
  article-title: Hippocampal mitochondrial dysfunction in rat aging
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 15
  start-page: 197
  year: 2016
  end-page: 209
  article-title: The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency
  publication-title: Cell Rep
– volume: 75
  start-page: S18
  issue: Suppl 1
  year: 2014
  article-title: Enhanced proteasome degradation extends Caenorhabditis elegans lifespan and alleviates aggregation‐related pathologies
  publication-title: Free Radic Biol Med
– volume: 8
  start-page: 582
  year: 2006
  end-page: 599
  article-title: Is the mitochondrial free radical theory of aging intact?
  publication-title: Antioxid Redox Signal
– volume: 7
  start-page: 278
  year: 2006
  end-page: 294
  article-title: Ageing and neuronal vulnerability
  publication-title: Nat Rev Neurosci
– volume: 9
  start-page: 9
  year: 2014
  end-page: 15
  article-title: TOR signaling couples oxygen sensing to lifespan in
  publication-title: Cell Rep
– volume: 6
  start-page: 347
  year: 2010
  article-title: Feedback between p21 and reactive oxygen production is necessary for cell senescence
  publication-title: Mol Syst Biol
– volume: 14
  start-page: 537
  year: 2011
  end-page: 544
  article-title: Mitochondrial complex III ROS regulate adipocyte differentiation
  publication-title: Cell Metab
– volume: 40
  start-page: 392
  year: 2008
  end-page: 394
  article-title: DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice
  publication-title: Nat Genet
– volume: 281
  start-page: 36228
  year: 2006
  end-page: 36235
  article-title: Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death
  publication-title: J Biol Chem
– volume: 429
  start-page: 417
  year: 2004
  end-page: 423
  article-title: Premature ageing in mice expressing defective mitochondrial DNA polymerase
  publication-title: Nature
– volume: 157
  start-page: 882
  year: 2014
  end-page: 896
  article-title: Defective mitophagy in XPA via PARP‐1 hyperactivation and NAD(+)/SIRT1 reduction
  publication-title: Cell
– volume: 283
  start-page: 27810
  year: 2008
  end-page: 27819
  article-title: Life span extension and neuronal cell protection by Drosophila nicotinamidase
  publication-title: J Biol Chem
– volume: 6
  start-page: 280
  year: 2007
  end-page: 293
  article-title: Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress
  publication-title: Cell Metab
– volume: 8
  start-page: 2551
  year: 2016
  end-page: 2567
  article-title: Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria
  publication-title: Aging (Albany NY)
– volume: 9
  start-page: e1003478
  year: 2013
  article-title: Aconitase causes iron toxicity in Drosophila pink1 mutants
  publication-title: PLoS Genet
– volume: 6
  start-page: e19493
  year: 2017
  article-title: NADPH oxidase‐mediated redox signaling promotes oxidative stress resistance and longevity through memo‐1 in
  publication-title: Elife
– volume: 2
  start-page: 12
  year: 2010
  article-title: Selective neuronal vulnerability to oxidative stress in the brain
  publication-title: Front Aging Neurosci
– volume: 4
  start-page: 176
  year: 2008
  end-page: 184
  article-title: Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila
  publication-title: Autophagy
– volume: 22
  start-page: 377
  year: 2015
  end-page: 388
  article-title: Oxidative stress and autophagy: the clash between damage and metabolic needs
  publication-title: Cell Death Differ
– volume: 23
  start-page: 1502
  year: 2016
  end-page: 1514
  article-title: Metabolic reprogramming during neuronal differentiation
  publication-title: Cell Death Differ
– volume: 13
  start-page: 4243
  year: 2002
  end-page: 4255
  article-title: Peroxisome senescence in human fibroblasts
  publication-title: Mol Biol Cell
– volume: 287
  start-page: R1244
  year: 2004
  end-page: R1249
  article-title: Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 12
  start-page: 252
  year: 2011
  end-page: 259
  article-title: Peroxisome metabolism and cellular aging
  publication-title: Traffic
– volume: 1797
  start-page: 897
  year: 2010
  end-page: 906
  article-title: Redox signaling (cross‐talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species
  publication-title: Biochim Biophys Acta
– volume: 20
  start-page: 145
  year: 1972
  end-page: 147
  article-title: The biologic clock: the mitochondria?
  publication-title: J Am Geriatr Soc
– volume: 24
  start-page: 566
  year: 2016
  end-page: 581
  article-title: NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair
  publication-title: Cell Metab
– volume: 24
  start-page: 45
  year: 2001
  end-page: 50
  article-title: Effect of aging on mitochondrial and nuclear DNA oxidative damage in the heart and brain throughout the life‐span of the rat
  publication-title: J Am Aging Assoc
– volume: 6
  start-page: 6393
  year: 2015
  article-title: Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis
  publication-title: Nat Commun
– volume: 23
  start-page: 208
  year: 2015
  end-page: 238
  article-title: The interplay between respiratory supercomplexes and ROS in aging
  publication-title: Antioxid Redox Signal
– volume: 67
  start-page: 551
  year: 2011
  end-page: 558
  article-title: Age‐related changes in xanthine oxidase activity and lipid peroxidation, as well as in the correlation between both parameters, in plasma and several organs from female mice
  publication-title: J Physiol Biochem
– volume: 16
  start-page: 1183
  year: 2012
  end-page: 1194
  article-title: Redox control of 20S proteasome gating
  publication-title: Antioxid Redox Signal
– volume: 1857
  start-page: 1116
  year: 2016
  end-page: 1126
  article-title: Mitochondrial reactive oxygen species: do they extend or shorten animal lifespan?
  publication-title: Biochim Biophys Acta
– volume: 10
  start-page: 1911
  year: 2009
  end-page: 1929
  article-title: Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity
  publication-title: Int J Mol Sci
– volume: 141
  start-page: 1423
  year: 1998
  end-page: 1432
  article-title: The regulation of reactive oxygen species production during programmed cell death
  publication-title: J Cell Biol
– volume: 40
  start-page: 275
  year: 2008
  end-page: 279
  article-title: What causes mitochondrial DNA deletions in human cells?
  publication-title: Nat Genet
– volume: 5
  start-page: e11468
  year: 2010
  article-title: Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice
  publication-title: PLoS ONE
– volume: 8
  start-page: e1000556
  year: 2010
  article-title: A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans
  publication-title: PLoS Biol
– volume: 36
  start-page: 1112
  year: 2004
  end-page: 1125
  article-title: Reactive oxygen species induce different cell death mechanisms in cultured neurons
  publication-title: Free Radic Biol Med
– volume: 12
  start-page: 503
  year: 2010
  end-page: 535
  article-title: Mitochondrial turnover and aging of long‐lived postmitotic cells: the mitochondrial‐lysosomal axis theory of aging
  publication-title: Antioxid Redox Signal
– volume: 11
  start-page: 747
  year: 2009
  end-page: 752
  article-title: The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C‐Cdh1
  publication-title: Nat Cell Biol
– volume: 66
  start-page: 832
  year: 2006
  end-page: 843
  article-title: Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “Mitohormesis” for health and vitality
  publication-title: Med Hypotheses
– volume: 17
  start-page: 308
  year: 2016
  end-page: 321
  article-title: Nuclear DNA damage signalling to mitochondria in ageing
  publication-title: Nat Rev Mol Cell Biol
– volume: 123
  start-page: 951
  year: 2013
  end-page: 957
  article-title: The role of mitochondria in aging
  publication-title: J Clin Invest
– volume: 1862
  start-page: 485
  year: 2017
  end-page: 495
  article-title: Region‐specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system
  publication-title: Biochim Biophys Acta
– volume: 41
  start-page: 233
  year: 2001
  end-page: 241
  article-title: Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils
  publication-title: Neurosci Res
– volume: 137
  start-page: 362
  year: 2009
  end-page: 370
  article-title: Respiratory chain alternative enzymes as tools to better understand and counteract respiratory chain deficiencies in human cells and animals
  publication-title: Physiol Plant
– volume: 8
  start-page: 428
  year: 2017
  article-title: Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease
  publication-title: Front Physiol
– volume: 23
  start-page: 725
  year: 2016
  end-page: 734
  article-title: Mitochondrial ROS produced via reverse electron transport extend animal lifespan
  publication-title: Cell Metab
– volume: 155
  start-page: 1624
  year: 2013
  end-page: 1638
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear‐mitochondrial communication during aging
  publication-title: Cell
– volume: 93
  start-page: 4765
  year: 1996
  end-page: 4769
  article-title: Age‐related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain
  publication-title: Proc Natl Acad Sci USA
– volume: 42
  start-page: 256
  year: 2007
  end-page: 262
  article-title: Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases
  publication-title: Exp Gerontol
– volume: 4
  start-page: 2267
  year: 2013
  article-title: The TFEB orthologue HLH‐30 regulates autophagy and modulates longevity in Caenorhabditis elegans
  publication-title: Nat Commun
– volume: 14
  start-page: 264
  year: 2011
  end-page: 271
  article-title: Somatic oxidative bioenergetics transitions into pluripotency‐dependent glycolysis to facilitate nuclear reprogramming
  publication-title: Cell Metab
– volume: 24
  start-page: 582
  year: 2016
  end-page: 592
  article-title: Suppressors of superoxide‐H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia‐reperfusion injury
  publication-title: Cell Metab
– volume: 38
  start-page: 796
  year: 2005
  end-page: 805
  article-title: Tissue‐specific changes of mitochondrial functions in aged rats: effect of a long‐term dietary treatment with N‐acetylcysteine
  publication-title: Free Radic Biol Med
– volume: 1797
  start-page: 633
  year: 2010
  end-page: 640
  article-title: Mitochondrial respiratory chain super‐complex I‐III in physiology and pathology
  publication-title: Biochim Biophys Acta
– volume: 48
  start-page: 158
  year: 2012
  end-page: 167
  article-title: Physiological roles of mitochondrial reactive oxygen species
  publication-title: Mol Cell
– volume: 134
  start-page: 449
  year: 2013
  end-page: 459
  article-title: The glia doctrine: addressing the role of glial cells in healthy brain ageing
  publication-title: Mech Ageing Dev
– volume: 22
  start-page: 879
  year: 2016
  end-page: 888
  article-title: Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents
  publication-title: Nat Med
– volume: 4
  start-page: 2300
  year: 2013
  article-title: Overexpression of Atg5 in mice activates autophagy and extends lifespan
  publication-title: Nat Commun
– volume: 29
  start-page: 711
  year: 2014
  end-page: 719
  article-title: Differential production of reactive oxygen species in distinct brain regions of hypoglycemic mice
  publication-title: Metab Brain Dis
– volume: 279
  start-page: 49064
  year: 2004
  end-page: 49073
  article-title: Complex III releases superoxide to both sides of the inner mitochondrial membrane
  publication-title: J Biol Chem
– volume: 19
  start-page: 1469
  year: 2013
  end-page: 1480
  article-title: Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I
  publication-title: Antioxid Redox Signal
– volume: 8
  start-page: 14532
  year: 2017
  article-title: Cellular senescence mediates fibrotic pulmonary disease
  publication-title: Nat Commun
– volume: 20
  start-page: 372
  year: 2014
  end-page: 382
  article-title: Methods for detection of mitochondrial and cellular reactive oxygen species
  publication-title: Antioxid Redox Signal
– volume: 23
  start-page: 254
  year: 2016
  end-page: 263
  article-title: A unifying mechanism for mitochondrial superoxide production during ischemia‐reperfusion injury
  publication-title: Cell Metab
– volume: 18
  start-page: 557
  year: 2017
  end-page: 570
  article-title: Major shifts in glial regional identity are a transcriptional hallmark of human brain aging
  publication-title: Cell Rep
– volume: 539
  start-page: 180
  year: 2016
  end-page: 186
  article-title: Ageing, neurodegeneration and brain rejuvenation
  publication-title: Nature
– volume: 13
  start-page: 2620
  year: 2014
  end-page: 2636
  article-title: Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability
  publication-title: J Proteome Res
– volume: 26
  start-page: 1749
  year: 2007
  end-page: 1760
  article-title: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
  publication-title: EMBO J
– volume: 154
  start-page: 430
  year: 2013
  end-page: 441
  article-title: The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
  publication-title: Cell
– volume: 45
  start-page: 563
  year: 2010
  end-page: 572
  article-title: Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex
  publication-title: Exp Gerontol
– volume: 6
  start-page: e20914
  year: 2011
  article-title: Energy metabolism in human pluripotent stem cells and their differentiated counterparts
  publication-title: PLoS ONE
– volume: 45
  start-page: 466
  year: 2010
  end-page: 472
  article-title: The sites and topology of mitochondrial superoxide production
  publication-title: Exp Gerontol
– volume: 19
  start-page: 1420
  year: 2013
  end-page: 1445
  article-title: Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts
  publication-title: Antioxid Redox Signal
– volume: 35
  start-page: 145
  year: 2010
  end-page: 149
  article-title: Glycolysis: a bioenergetic or a survival pathway?
  publication-title: Trends Biochem Sci
– volume: 9
  start-page: 247
  year: 1999
  end-page: 252
  article-title: MAO inhibitors and oxidant stress in aging brain tissue
  publication-title: Eur Neuropsychopharmacol
– ident: e_1_2_7_76_1
  doi: 10.1038/cddis.2016.105
– ident: e_1_2_7_26_1
  doi: 10.1016/j.exger.2006.10.011
– ident: e_1_2_7_122_1
  doi: 10.1371/journal.pbio.1000556
– ident: e_1_2_7_78_1
  doi: 10.1016/j.mad.2013.10.001
– ident: e_1_2_7_20_1
  doi: 10.3389/fphys.2017.00428
– ident: e_1_2_7_31_1
  doi: 10.1371/journal.pone.0001616
– ident: e_1_2_7_37_1
  doi: 10.1096/fj.05-5568com
– ident: e_1_2_7_112_1
  doi: 10.1016/j.cell.2013.06.016
– ident: e_1_2_7_90_1
  doi: 10.1371/journal.pgen.1002028
– ident: e_1_2_7_113_1
  doi: 10.1016/j.cmet.2016.09.004
– ident: e_1_2_7_50_1
  doi: 10.1016/j.freeradbiomed.2016.12.010
– ident: e_1_2_7_99_1
  doi: 10.1038/nm.4132
– ident: e_1_2_7_100_1
  doi: 10.1089/ars.2011.4210
– ident: e_1_2_7_19_1
  doi: 10.1158/0008-5472.203.65.1
– ident: e_1_2_7_94_1
  doi: 10.4161/auto.5269
– ident: e_1_2_7_53_1
  doi: 10.1016/j.molbrainres.2005.07.018
– ident: e_1_2_7_25_1
  doi: 10.1038/nrd3403
– ident: e_1_2_7_28_1
  doi: 10.1007/s10522-011-9351-6
– ident: e_1_2_7_62_1
  doi: 10.1016/j.neuint.2007.01.007
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1474-9726.2012.00870.x
– ident: e_1_2_7_79_1
  doi: 10.1016/j.celrep.2016.12.011
– ident: e_1_2_7_63_1
  doi: 10.18632/aging.101089
– ident: e_1_2_7_103_1
  doi: 10.1016/j.redox.2017.07.005
– ident: e_1_2_7_118_1
  doi: 10.1172/JCI64125
– ident: e_1_2_7_57_1
  doi: 10.1152/ajpregu.00492.2007
– ident: e_1_2_7_84_1
  doi: 10.15252/embj.201592862
– ident: e_1_2_7_101_1
  doi: 10.1038/sj.emboj.7601623
– ident: e_1_2_7_97_1
  doi: 10.1016/j.freeradbiomed.2014.10.632
– ident: e_1_2_7_40_1
  doi: 10.1073/pnas.1613701113
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1532-5415.1972.tb00787.x
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1600-0854.2010.01144.x
– ident: e_1_2_7_27_1
  doi: 10.1016/j.freeradbiomed.2011.06.033
– ident: e_1_2_7_67_1
  doi: 10.1016/S0892-0362(99)00069-0
– ident: e_1_2_7_117_1
  doi: 10.1089/ars.2010.3213
– ident: e_1_2_7_10_1
  doi: 10.1089/ars.2012.4900
– ident: e_1_2_7_16_1
  doi: 10.1038/nchembio.1910
– ident: e_1_2_7_38_1
  doi: 10.1021/pr500295n
– ident: e_1_2_7_110_1
  doi: 10.1016/j.cell.2014.03.026
– ident: e_1_2_7_72_1
  doi: 10.1083/jcb.141.6.1423
– ident: e_1_2_7_91_1
  doi: 10.1111/acel.12212
– ident: e_1_2_7_105_1
  doi: 10.1038/cdd.2016.36
– ident: e_1_2_7_51_1
  doi: 10.1038/ncb1881
– ident: e_1_2_7_8_1
  doi: 10.1089/ars.2006.8.582
– ident: e_1_2_7_11_1
  doi: 10.1016/j.celrep.2014.08.075
– ident: e_1_2_7_3_1
  doi: 10.1089/ars.2012.5148
– ident: e_1_2_7_98_1
  doi: 10.1073/pnas.1216197110
– ident: e_1_2_7_68_1
  doi: 10.1073/pnas.88.23.10540
– ident: e_1_2_7_70_1
  doi: 10.1016/0014-5793(82)80788-6
– ident: e_1_2_7_21_1
  doi: 10.1074/jbc.M407715200
– ident: e_1_2_7_29_1
  doi: 10.1007/s13105-011-0100-8
– ident: e_1_2_7_48_1
  doi: 10.1007/s10863-005-4131-0
– ident: e_1_2_7_115_1
  doi: 10.1016/j.bbabio.2010.01.032
– ident: e_1_2_7_119_1
  doi: 10.1016/j.mehy.2005.09.009
– ident: e_1_2_7_12_1
  doi: 10.1089/ars.2012.4886
– ident: e_1_2_7_95_1
  doi: 10.1038/ncomms3267
– volume: 2
  start-page: 242
  year: 2011
  ident: e_1_2_7_7_1
  article-title: Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation
  publication-title: Aging Dis
– ident: e_1_2_7_106_1
  doi: 10.1016/j.cmet.2011.06.011
– ident: e_1_2_7_23_1
  doi: 10.1016/j.cmet.2015.12.009
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cmet.2016.08.012
– ident: e_1_2_7_18_1
  doi: 10.1016/j.exger.2010.01.003
– ident: e_1_2_7_121_1
  doi: 10.1016/j.cmet.2007.08.011
– ident: e_1_2_7_43_1
  doi: 10.1016/j.celrep.2016.03.009
– volume: 24
  start-page: 45
  year: 2001
  ident: e_1_2_7_69_1
  article-title: Effect of aging on mitochondrial and nuclear DNA oxidative damage in the heart and brain throughout the life‐span of the rat
  publication-title: J Am Aging Assoc
– ident: e_1_2_7_56_1
  doi: 10.1016/S0168-0102(01)00282-6
– ident: e_1_2_7_116_1
  doi: 10.1074/jbc.M606702200
– ident: e_1_2_7_54_1
  doi: 10.1007/s11011-014-9508-5
– ident: e_1_2_7_74_1
  doi: 10.1089/ars.2011.4414
– ident: e_1_2_7_60_1
  doi: 10.1042/BJ20042130
– ident: e_1_2_7_45_1
  doi: 10.1016/j.bbabio.2010.01.025
– ident: e_1_2_7_81_1
  doi: 10.1016/j.freeradbiomed.2004.02.013
– ident: e_1_2_7_30_1
  doi: 10.1016/S0924-977X(98)00035-2
– ident: e_1_2_7_2_1
  doi: 10.1038/nature20411
– ident: e_1_2_7_47_1
  doi: 10.1016/j.exger.2010.02.003
– ident: e_1_2_7_80_1
  doi: 10.2217/fca.12.58
– ident: e_1_2_7_6_1
  doi: 10.1016/j.cell.2013.05.039
– ident: e_1_2_7_92_1
  doi: 10.1038/ng.95
– volume: 7
  start-page: 124
  year: 2015
  ident: e_1_2_7_82_1
  article-title: Microglial cell dysregulation in brain aging and neurodegeneration
  publication-title: Front Aging Neurosci
– ident: e_1_2_7_42_1
  doi: 10.1126/science.1230381
– ident: e_1_2_7_22_1
  doi: 10.1016/j.molcel.2012.09.025
– ident: e_1_2_7_44_1
  doi: 10.1089/ars.2012.4845
– ident: e_1_2_7_4_1
  doi: 10.2174/1874609810801010010
– ident: e_1_2_7_46_1
  doi: 10.1089/ars.2014.6214
– ident: e_1_2_7_58_1
  doi: 10.1152/ajpregu.00226.2004
– ident: e_1_2_7_61_1
  doi: 10.1016/j.neurobiolaging.2014.02.027
– ident: e_1_2_7_93_1
  doi: 10.1038/ncomms7393
– ident: e_1_2_7_41_1
  doi: 10.1016/j.cmet.2017.03.009
– ident: e_1_2_7_83_1
  doi: 10.1111/j.1474-9726.2012.00795.x
– ident: e_1_2_7_55_1
  doi: 10.1073/pnas.93.10.4765
– volume: 33
  start-page: 8
  year: 2014
  ident: e_1_2_7_5_1
  article-title: ROS‐dependent signal transduction
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2014.09.010
– ident: e_1_2_7_88_1
  doi: 10.1196/annals.1293.010
– ident: e_1_2_7_64_1
  doi: 10.1038/nature02517
– ident: e_1_2_7_85_1
  doi: 10.1038/msb.2010.5
– ident: e_1_2_7_109_1
  doi: 10.1038/nrm.2016.14
– ident: e_1_2_7_108_1
  doi: 10.1016/j.cmet.2011.08.007
– ident: e_1_2_7_35_1
  doi: 10.1074/mcp.M500298-MCP200
– ident: e_1_2_7_87_1
  doi: 10.1038/ncomms14532
– ident: e_1_2_7_114_1
  doi: 10.1074/jbc.M804681200
– ident: e_1_2_7_15_1
  doi: 10.1016/j.cmet.2016.03.009
– ident: e_1_2_7_86_1
  doi: 10.1038/ncomms15691
– ident: e_1_2_7_59_1
  doi: 10.1016/j.freeradbiomed.2004.11.034
– ident: e_1_2_7_75_1
  doi: 10.7554/eLife.19493
– ident: e_1_2_7_89_1
  doi: 10.1038/ng.f.94
– ident: e_1_2_7_111_1
  doi: 10.1016/j.cell.2013.11.037
– ident: e_1_2_7_107_1
  doi: 10.1371/journal.pone.0020914
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1399-3054.2009.01249.x
– ident: e_1_2_7_66_1
  doi: 10.1126/science.1112125
– ident: e_1_2_7_104_1
  doi: 10.1089/scd.2015.0117
– ident: e_1_2_7_39_1
  doi: 10.1016/j.tibs.2009.10.006
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cub.2009.08.016
– ident: e_1_2_7_34_1
  doi: 10.1089/ars.2009.2598
– ident: e_1_2_7_9_1
  doi: 10.1016/j.bbabio.2016.03.018
– ident: e_1_2_7_36_1
  doi: 10.3390/ijms10041911
– ident: e_1_2_7_71_1
  doi: 10.1371/journal.pgen.1003478
– ident: e_1_2_7_102_1
  doi: 10.1038/cdd.2014.150
– ident: e_1_2_7_96_1
  doi: 10.1038/ncomms3300
– volume: 2
  start-page: 12
  year: 2010
  ident: e_1_2_7_52_1
  article-title: Selective neuronal vulnerability to oxidative stress in the brain
  publication-title: Front Aging Neurosci
– ident: e_1_2_7_65_1
  doi: 10.1371/journal.pone.0011468
– ident: e_1_2_7_49_1
  doi: 10.1016/j.bbalip.2017.02.001
– ident: e_1_2_7_33_1
  doi: 10.1091/mbc.E02-06-0322
– ident: e_1_2_7_77_1
  doi: 10.1038/nrn1886
– ident: e_1_2_7_120_1
  doi: 10.1016/j.exger.2010.03.014
SSID ssj0001819
Score 2.6499465
SecondaryResourceType review_article
Snippet The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 743
SubjectTerms Adenosine Triphosphate - genetics
Adenosine Triphosphate - metabolism
aging
Aging - genetics
Aging - metabolism
Aging - pathology
Animals
brain
Brain - metabolism
Brain - pathology
energy
Energy Metabolism
Humans
longevity
metabolism
mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - pathology
mitosis
Neurodegenerative Diseases - genetics
Neurodegenerative Diseases - metabolism
Neurodegenerative Diseases - pathology
oxidative stress
reactive oxygen species
Reactive Oxygen Species - metabolism
Signal Transduction
signalling
Title The role of mitochondrial ROS in the aging brain
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.12902
https://www.ncbi.nlm.nih.gov/pubmed/29106705
https://www.proquest.com/docview/1961035254
https://www.proquest.com/docview/2718339042
Volume 592
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZby9hextbukt3QYIxBcWrrYtmPaUkoa2mhSVjejGRLdNDapU0ftl-_I8myk3Vl3V6M4jiWOV989B3p6DsIfSJSyIpoFuW5JhCgGBXJXEn4qCiRvEy5dNkWx-nBnH1d8EVf8dTtLlmqYfnzj_tK_gdVOAe42l2y_4Bsd1M4AW3AF46AMBzvjXFID7yAVxNcWV25MhynJ9OQwejLEClbCmKViU7Ge9Odc7eZp6PV06U2soYw3E-_nDV9uD4FDuk3xNhM7GZ1siDJ-myp4AATFnHhixIGB8hzsoI037kcWt1S4SXVW8cmvJhSO0a2391yv17ONckEjShLs6Gd5CL9SBNW149Pisn86KiYjRezh2iTAMMHF7U5Ojz9dtgNo0A9fOzSPnHQZYrJ7m8drFOKW3HCetjheMPsGXraEn488ug9Rw90vYW2R9bKFz_wZ-xScN3axhZ6tBdaj_dDIb5tFAPM2MKMG4PXYMYAM_5eY4AZO5ixg_kFmk_Gs_2DqC10EZUsYyQyWomqMnEpNc0MA5JXijwTUmVK0ooqxmmcSR3DWFRWBgJWLiqTpjb8TKUqK_oSbdRNrV8jXEohKsKlJKVmWsXSCt4Rw6TJE8m5GqBhsFVRtirwthjJeeH1q0lhjVtY4xbOuAP0pfvBpRdAufvSj8H4BZjIrjzJWjc31wW4-cQJ77K7ryHAkijNYRAZoFceua5Dklulw5gP0K6D8m9PUsA7RFzrzT36e4ue9O_KO7SxvLrR74FqLtWH9k_5C7T4djM
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+mitochondrial+ROS+in+the+aging+brain&rft.jtitle=FEBS+letters&rft.au=Stefanatos%2C+Rhoda&rft.au=Sanz%2C+Alberto&rft.date=2018-03-01&rft.issn=0014-5793&rft.volume=592&rft.issue=5+p.743-758&rft.spage=743&rft.epage=758&rft_id=info:doi/10.1002%2F1873-3468.12902&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon