The role of mitochondrial ROS in the aging brain
The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily function...
Saved in:
Published in | FEBS letters Vol. 592; no. 5; pp. 743 - 758 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age‐associated increases in mtROS are a cause or a consequence of aging. |
---|---|
AbstractList | The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less
ATP
and more reactive oxygen species (
ROS
) accumulate. The current consensus is that
ROS
cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial
ROS
(mt
ROS
) in the brain extends lifespan, suggesting that
ROS
may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mt
ROS
are produced at the molecular level, how different brain cells and regions produce different amounts of mt
ROS
, and how mt
ROS
levels change during aging. Finally, we critically discuss the possible roles of
ROS
in aging as signaling molecules and damaging agents, addressing whether age‐associated increases in mt
ROS
are a cause or a consequence of aging. The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging. The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging.The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging. |
Author | Sanz, Alberto Stefanatos, Rhoda |
Author_xml | – sequence: 1 givenname: Rhoda surname: Stefanatos fullname: Stefanatos, Rhoda organization: Newcastle University – sequence: 2 givenname: Alberto surname: Sanz fullname: Sanz, Alberto email: alberto.sanz@newcastle.ac.uk organization: Newcastle University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29106705$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM9PwjAUgBuDkR969mZ29DJ4_bG1PSoBNSEhUTw3XdtBzVhxGzH89w5BDh7k1Lzm-95Lvj7qlKF0CN1iGGIAMsKC05iyVAwxkUAuUO_000E9AMzihEvaRf26_oB2FlheoS6RGFIOSQ_BYuWiKhQuCnm09k0wq1Dayusiep2_Rb6MmhbQS18uo6zSvrxGl7kuandzfAfofTpZjJ_j2fzpZfwwiw0TjMS5y7i1ORjtqMgZZ9hwKbjORKappRlLKAjtQFtrbE4SmXCbpymATFOdGUsH6P6wd1OFz62rG7X2tXFFoUsXtrUiHAtKJTByFsUyxUATkrAWvTui22ztrNpUfq2rnfoN0gKjA2CqUNeVy08IBrVPrvaB1T6w-kneGskfw_hGNz6UTdur-MdLD96XL9zu3Bk1nTySg_gNoRSQ6g |
CitedBy_id | crossref_primary_10_1007_s12640_022_00489_4 crossref_primary_10_2174_2772432819666230504093227 crossref_primary_10_1016_j_heliyon_2020_e04107 crossref_primary_10_1016_j_jchemneu_2022_102210 crossref_primary_10_1093_alcalc_agaa055 crossref_primary_10_1002_jbt_23256 crossref_primary_10_1016_j_freeradbiomed_2021_10_026 crossref_primary_10_2174_0115748855275769231114094037 crossref_primary_10_1016_j_neulet_2023_137136 crossref_primary_10_3390_ijms24065476 crossref_primary_10_3390_molecules27217167 crossref_primary_10_4103_1673_5374_291382 crossref_primary_10_1016_j_ijbiomac_2019_04_173 crossref_primary_10_1080_13880209_2023_2230753 crossref_primary_10_3390_molecules23020509 crossref_primary_10_3390_molecules23092357 crossref_primary_10_1007_s42764_023_00110_8 crossref_primary_10_1007_s10557_021_07215_w crossref_primary_10_1016_j_jmb_2020_01_020 crossref_primary_10_3390_ijms23031238 crossref_primary_10_3389_fendo_2024_1385575 crossref_primary_10_3892_mmr_2021_12441 crossref_primary_10_3390_antiox11010007 crossref_primary_10_3390_ijms21124240 crossref_primary_10_3390_antiox11010130 crossref_primary_10_1007_s11033_023_08321_8 crossref_primary_10_3390_antiox12040782 crossref_primary_10_1007_s11357_022_00555_x crossref_primary_10_3389_fcell_2019_00041 crossref_primary_10_2139_ssrn_4048906 crossref_primary_10_3390_antiox11081456 crossref_primary_10_1007_s11357_021_00365_7 crossref_primary_10_18632_aging_101881 crossref_primary_10_1007_s00210_025_03821_9 crossref_primary_10_3390_molecules29204841 crossref_primary_10_1007_s00232_021_00200_2 crossref_primary_10_1016_j_jinorgbio_2019_03_019 crossref_primary_10_1038_s12276_024_01333_9 crossref_primary_10_1016_j_jinorgbio_2021_111592 crossref_primary_10_3390_molecules26144138 crossref_primary_10_1007_s11011_023_01318_z crossref_primary_10_3390_antiox13080980 crossref_primary_10_1007_s11010_023_04878_x crossref_primary_10_1080_19336896_2020_1796898 crossref_primary_10_2139_ssrn_4052958 crossref_primary_10_1007_s00424_021_02531_4 crossref_primary_10_1021_acs_jafc_3c03183 crossref_primary_10_1038_s41598_023_44134_2 crossref_primary_10_3389_fmolb_2021_676187 crossref_primary_10_3390_nu14142781 crossref_primary_10_1007_s12035_020_02083_1 crossref_primary_10_1089_ars_2020_8238 crossref_primary_10_2174_1566524021666210218112616 crossref_primary_10_3389_fnagi_2018_00032 crossref_primary_10_1007_s43994_022_00001_w crossref_primary_10_1093_nutrit_nuad084 crossref_primary_10_1016_j_envpol_2019_113359 crossref_primary_10_3389_fnagi_2022_1022821 crossref_primary_10_3390_biomedicines9091251 crossref_primary_10_1016_j_jchemneu_2022_102136 crossref_primary_10_1016_j_jhazmat_2021_126158 crossref_primary_10_3390_brainsci12060709 crossref_primary_10_1007_s10557_020_07018_5 crossref_primary_10_1016_j_scitotenv_2022_155316 crossref_primary_10_3390_antiox13121482 crossref_primary_10_3390_biomedicines10071611 crossref_primary_10_3390_ijms241713129 crossref_primary_10_3390_metabo13030405 crossref_primary_10_1016_j_ecoenv_2024_116314 crossref_primary_10_1016_j_arr_2020_101128 crossref_primary_10_1089_rej_2018_2159 crossref_primary_10_1016_j_cej_2024_153372 crossref_primary_10_1016_j_arr_2021_101529 crossref_primary_10_3390_cells10123569 crossref_primary_10_3390_stresses4040055 crossref_primary_10_3389_fnagi_2022_1010562 crossref_primary_10_3390_antiox12010131 crossref_primary_10_1155_2022_6459585 crossref_primary_10_1155_2022_7295224 crossref_primary_10_1002_ptr_7779 crossref_primary_10_1016_j_ecoenv_2021_112350 crossref_primary_10_1016_j_theriogenology_2023_07_021 crossref_primary_10_1017_erm_2023_19 crossref_primary_10_1038_s41598_021_83910_w crossref_primary_10_1016_j_crneur_2021_100012 crossref_primary_10_1016_j_neurobiolaging_2021_04_013 crossref_primary_10_3390_ijms22062802 crossref_primary_10_1007_s12035_024_03976_1 crossref_primary_10_1016_j_drudis_2020_05_001 crossref_primary_10_1016_j_ejphar_2025_177277 crossref_primary_10_14336_AD_2023_0510 crossref_primary_10_3389_fnmol_2020_00043 crossref_primary_10_3390_ijms24087079 crossref_primary_10_1083_jcb_202304031 crossref_primary_10_1007_s10695_022_01072_6 crossref_primary_10_1186_s41110_023_00234_7 crossref_primary_10_1016_j_mtcomm_2022_103256 crossref_primary_10_3389_fnins_2024_1368552 crossref_primary_10_1080_13510002_2022_2046423 crossref_primary_10_3390_antiox11112205 crossref_primary_10_3389_fcell_2020_00702 crossref_primary_10_1109_JSEN_2022_3147207 crossref_primary_10_3390_ijms24087160 crossref_primary_10_3390_antiox13050576 crossref_primary_10_1080_2314808X_2022_2106693 crossref_primary_10_3389_fncel_2024_1434459 crossref_primary_10_3390_antiox11061128 crossref_primary_10_1016_j_celbio_2025_100016 crossref_primary_10_1016_j_fct_2021_112665 crossref_primary_10_1038_s41380_021_01313_9 crossref_primary_10_3390_app14135579 crossref_primary_10_1016_j_fshw_2023_02_038 crossref_primary_10_3390_ijms23137267 crossref_primary_10_1093_jpp_rgac036 crossref_primary_10_1111_exd_14529 crossref_primary_10_1016_j_arr_2023_101910 crossref_primary_10_1021_acs_analchem_2c05312 crossref_primary_10_1007_s12035_023_03494_6 crossref_primary_10_1096_fj_202400390R crossref_primary_10_1007_s00894_021_04891_1 crossref_primary_10_3390_biom14111362 crossref_primary_10_1016_j_freeradbiomed_2020_02_029 crossref_primary_10_1111_azo_12347 crossref_primary_10_3389_fnagi_2021_747989 crossref_primary_10_1016_j_jointm_2023_02_002 crossref_primary_10_1097_JCMA_0000000000000401 crossref_primary_10_3390_ncrna8060072 crossref_primary_10_1007_s12035_024_03967_2 crossref_primary_10_1016_j_phymed_2025_156587 crossref_primary_10_1016_j_ejphar_2025_177505 crossref_primary_10_1016_j_jphotobiol_2023_112703 crossref_primary_10_1080_21655979_2021_1954742 crossref_primary_10_1016_j_jep_2020_112636 crossref_primary_10_1038_s41598_025_95254_w crossref_primary_10_15252_msb_20209596 crossref_primary_10_3389_fnagi_2020_567861 crossref_primary_10_1016_j_jnutbio_2022_109056 crossref_primary_10_1007_s12017_023_08738_1 crossref_primary_10_1016_j_neuint_2019_04_011 crossref_primary_10_3390_molecules27207088 crossref_primary_10_3390_neurosci3010011 crossref_primary_10_1016_j_freeradbiomed_2022_02_021 crossref_primary_10_1096_fj_202000772R crossref_primary_10_1002_1873_3468_13008 crossref_primary_10_1002_arch_70038 crossref_primary_10_1097_WNF_0000000000000615 crossref_primary_10_1515_ntrev_2023_0124 crossref_primary_10_1021_acs_jproteome_9b00552 crossref_primary_10_1016_j_biopha_2023_114776 crossref_primary_10_3389_fgene_2019_00435 crossref_primary_10_1038_s12276_021_00596_w crossref_primary_10_1038_s41593_022_01027_3 crossref_primary_10_3389_fnins_2023_1197208 crossref_primary_10_3390_ijms24031869 crossref_primary_10_3390_antiox11010095 crossref_primary_10_1016_j_arr_2024_102646 crossref_primary_10_3389_fphar_2021_632388 crossref_primary_10_1007_s10522_022_09988_5 crossref_primary_10_1007_s10565_024_09869_2 crossref_primary_10_1016_j_arabjc_2023_104604 crossref_primary_10_1038_s41420_023_01792_5 crossref_primary_10_3389_fcvm_2021_692540 crossref_primary_10_1016_j_fshw_2022_10_021 crossref_primary_10_3390_ijms20081858 crossref_primary_10_1111_nan_12672 crossref_primary_10_3390_cells9092045 crossref_primary_10_1007_s11357_022_00550_2 crossref_primary_10_3390_ijms23052484 crossref_primary_10_1038_s41419_020_03355_3 crossref_primary_10_1021_acsabm_4c00853 crossref_primary_10_1016_j_expneurol_2021_113894 crossref_primary_10_3390_biomedicines11102711 crossref_primary_10_1016_j_abb_2022_109390 crossref_primary_10_1016_j_toxlet_2022_06_010 crossref_primary_10_3390_antiox13010044 crossref_primary_10_18632_aging_102451 crossref_primary_10_1016_j_archger_2020_104133 crossref_primary_10_3390_ijms25105122 crossref_primary_10_1016_j_phymed_2022_154341 crossref_primary_10_1080_10498850_2024_2350548 crossref_primary_10_1002_mnfr_202300080 crossref_primary_10_1016_j_preghy_2023_11_001 crossref_primary_10_3390_antiox10121872 crossref_primary_10_1039_C9RA10539E crossref_primary_10_1080_1028415X_2021_1906392 crossref_primary_10_3390_ijms25179705 crossref_primary_10_3389_fnhum_2022_815759 crossref_primary_10_3390_ijms25126793 crossref_primary_10_1016_j_expneurol_2020_113248 crossref_primary_10_1089_ars_2021_0177 crossref_primary_10_3390_biom12070894 crossref_primary_10_1002_jnr_24446 crossref_primary_10_1016_j_arr_2023_101955 crossref_primary_10_3389_fnins_2022_1075141 crossref_primary_10_1007_s10561_022_10030_8 crossref_primary_10_1089_ars_2020_8075 crossref_primary_10_1038_s41392_024_01839_8 crossref_primary_10_1016_j_devcel_2022_10_008 crossref_primary_10_1093_gerona_glab172 crossref_primary_10_1038_s41392_020_00311_7 crossref_primary_10_1007_s11064_023_03962_4 crossref_primary_10_1007_s00223_023_01100_4 crossref_primary_10_1126_scisignal_abk3411 crossref_primary_10_3390_ijms242115951 crossref_primary_10_1038_s41419_021_03438_9 crossref_primary_10_1007_s12017_021_08644_4 crossref_primary_10_3389_fnins_2023_1097067 crossref_primary_10_3390_ijms20143563 crossref_primary_10_1242_bio_060515 crossref_primary_10_3389_fncel_2024_1496163 crossref_primary_10_2147_NDT_S452643 crossref_primary_10_1007_s40495_022_00307_7 crossref_primary_10_3389_fnmol_2023_1133106 crossref_primary_10_1080_14728222_2023_2240021 crossref_primary_10_1111_ejn_14181 crossref_primary_10_1111_febs_16691 crossref_primary_10_1016_j_mito_2020_11_011 crossref_primary_10_3390_nu14153012 crossref_primary_10_1007_s12013_024_01438_y crossref_primary_10_3390_ijerph20176671 crossref_primary_10_3390_cells10010079 crossref_primary_10_1093_procel_pwad020 crossref_primary_10_1016_j_cbpb_2022_110713 crossref_primary_10_1039_D0FO02208J crossref_primary_10_1007_s11064_020_03016_z crossref_primary_10_3390_ijms22158333 crossref_primary_10_1016_j_foodchem_2025_143184 crossref_primary_10_1167_iovs_65_13_12 crossref_primary_10_1016_j_jff_2024_106311 crossref_primary_10_1016_j_mito_2022_03_003 crossref_primary_10_1007_s11011_020_00626_y crossref_primary_10_3390_genes12050676 crossref_primary_10_1016_j_freeradbiomed_2023_09_035 crossref_primary_10_1016_j_taap_2020_115351 crossref_primary_10_1016_j_jafr_2024_101090 crossref_primary_10_1016_j_lfs_2022_120605 crossref_primary_10_1016_j_bbamcr_2022_119342 crossref_primary_10_3390_ijms24087318 crossref_primary_10_1016_j_neubiorev_2020_03_015 crossref_primary_10_1089_ars_2020_8028 crossref_primary_10_3390_foods13101493 crossref_primary_10_1016_j_jphyss_2024_100003 crossref_primary_10_3390_ijms20205195 crossref_primary_10_3390_antiox12020221 crossref_primary_10_1155_2024_7465045 crossref_primary_10_3390_foods13050774 crossref_primary_10_1016_j_neuint_2021_105268 crossref_primary_10_3390_ijms241512372 crossref_primary_10_1016_j_bbadis_2018_07_022 crossref_primary_10_1002_anie_202403880 crossref_primary_10_1002_ange_202403880 crossref_primary_10_1007_s12035_024_04023_9 crossref_primary_10_3233_JAD_220203 crossref_primary_10_1016_j_freeradbiomed_2021_01_018 crossref_primary_10_1155_2018_5076271 crossref_primary_10_3390_biomedicines9111625 crossref_primary_10_1038_s41598_023_40543_5 crossref_primary_10_3389_fncel_2022_1017153 crossref_primary_10_1021_acs_bioconjchem_3c00476 crossref_primary_10_30699_jambs_27_124_8 |
Cites_doi | 10.1038/cddis.2016.105 10.1016/j.exger.2006.10.011 10.1371/journal.pbio.1000556 10.1016/j.mad.2013.10.001 10.3389/fphys.2017.00428 10.1371/journal.pone.0001616 10.1096/fj.05-5568com 10.1016/j.cell.2013.06.016 10.1371/journal.pgen.1002028 10.1016/j.cmet.2016.09.004 10.1016/j.freeradbiomed.2016.12.010 10.1038/nm.4132 10.1089/ars.2011.4210 10.1158/0008-5472.203.65.1 10.4161/auto.5269 10.1016/j.molbrainres.2005.07.018 10.1038/nrd3403 10.1007/s10522-011-9351-6 10.1016/j.neuint.2007.01.007 10.1111/j.1474-9726.2012.00870.x 10.1016/j.celrep.2016.12.011 10.18632/aging.101089 10.1016/j.redox.2017.07.005 10.1172/JCI64125 10.1152/ajpregu.00492.2007 10.15252/embj.201592862 10.1038/sj.emboj.7601623 10.1016/j.freeradbiomed.2014.10.632 10.1073/pnas.1613701113 10.1111/j.1532-5415.1972.tb00787.x 10.1111/j.1600-0854.2010.01144.x 10.1016/j.freeradbiomed.2011.06.033 10.1016/S0892-0362(99)00069-0 10.1089/ars.2010.3213 10.1089/ars.2012.4900 10.1038/nchembio.1910 10.1021/pr500295n 10.1016/j.cell.2014.03.026 10.1083/jcb.141.6.1423 10.1111/acel.12212 10.1038/cdd.2016.36 10.1038/ncb1881 10.1089/ars.2006.8.582 10.1016/j.celrep.2014.08.075 10.1089/ars.2012.5148 10.1073/pnas.1216197110 10.1073/pnas.88.23.10540 10.1016/0014-5793(82)80788-6 10.1074/jbc.M407715200 10.1007/s13105-011-0100-8 10.1007/s10863-005-4131-0 10.1016/j.bbabio.2010.01.032 10.1016/j.mehy.2005.09.009 10.1089/ars.2012.4886 10.1038/ncomms3267 10.1016/j.cmet.2011.06.011 10.1016/j.cmet.2015.12.009 10.1016/j.cmet.2016.08.012 10.1016/j.exger.2010.01.003 10.1016/j.cmet.2007.08.011 10.1016/j.celrep.2016.03.009 10.1016/S0168-0102(01)00282-6 10.1074/jbc.M606702200 10.1007/s11011-014-9508-5 10.1089/ars.2011.4414 10.1042/BJ20042130 10.1016/j.bbabio.2010.01.025 10.1016/j.freeradbiomed.2004.02.013 10.1016/S0924-977X(98)00035-2 10.1038/nature20411 10.1016/j.exger.2010.02.003 10.2217/fca.12.58 10.1016/j.cell.2013.05.039 10.1038/ng.95 10.1126/science.1230381 10.1016/j.molcel.2012.09.025 10.1089/ars.2012.4845 10.2174/1874609810801010010 10.1089/ars.2014.6214 10.1152/ajpregu.00226.2004 10.1016/j.neurobiolaging.2014.02.027 10.1038/ncomms7393 10.1016/j.cmet.2017.03.009 10.1111/j.1474-9726.2012.00795.x 10.1073/pnas.93.10.4765 10.1016/j.ceb.2014.09.010 10.1196/annals.1293.010 10.1038/nature02517 10.1038/msb.2010.5 10.1038/nrm.2016.14 10.1016/j.cmet.2011.08.007 10.1074/mcp.M500298-MCP200 10.1038/ncomms14532 10.1074/jbc.M804681200 10.1016/j.cmet.2016.03.009 10.1038/ncomms15691 10.1016/j.freeradbiomed.2004.11.034 10.7554/eLife.19493 10.1038/ng.f.94 10.1016/j.cell.2013.11.037 10.1371/journal.pone.0020914 10.1111/j.1399-3054.2009.01249.x 10.1126/science.1112125 10.1089/scd.2015.0117 10.1016/j.tibs.2009.10.006 10.1016/j.cub.2009.08.016 10.1089/ars.2009.2598 10.1016/j.bbabio.2016.03.018 10.3390/ijms10041911 10.1371/journal.pgen.1003478 10.1038/cdd.2014.150 10.1038/ncomms3300 10.1371/journal.pone.0011468 10.1016/j.bbalip.2017.02.001 10.1091/mbc.E02-06-0322 10.1038/nrn1886 10.1016/j.exger.2010.03.014 |
ContentType | Journal Article |
Copyright | 2017 Federation of European Biochemical Societies 2017 Federation of European Biochemical Societies. |
Copyright_xml | – notice: 2017 Federation of European Biochemical Societies – notice: 2017 Federation of European Biochemical Societies. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1002/1873-3468.12902 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1873-3468 |
EndPage | 758 |
ExternalDocumentID | 29106705 10_1002_1873_3468_12902 FEB212902 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: European Research Council funderid: 260632 – fundername: BBSRC funderid: BB/M023311/1 – fundername: European Research Council grantid: 260632 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M023311/1 |
GroupedDBID | --- --K -~X .55 .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 29H 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHBH AAHHS AAHQN AAIKJ AAIPD AALRI AAMNL AANLZ AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABBQC ABCUV ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABQWH ABVKL ABWVN ABXDB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACRPL ACXBN ACXQS ADBBV ADBTR ADEOM ADEZE ADIYS ADKYN ADMGS ADMUD ADNMO ADOZA ADQTV ADUVX ADVLN ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AGHFR AGYEJ AHBTC AI. AIACR AIAGR AITUG AITYG AIURR AIWBW AJBDE AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FUBAC G-Q GBLVA GI5 GX1 HGLYW HVGLF HZ~ IHE IXB J1W KBYEO L7B LATKE LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R2- R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SEW SFE SSZ SUPJJ SV3 TEORI TR2 UHB UNMZH VH1 WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR X7M Y6R YK3 ZGI ZZTAW ~02 AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AEYWJ AFPUW AGHNM AGQPQ AGYGG AIGII AKBMS AKYEP CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4842-feb7ddf0cae38f4741c7987ab8ba3d3b45308ae0addcdf25957df6600966abcd3 |
ISSN | 0014-5793 1873-3468 |
IngestDate | Fri Jul 11 18:23:30 EDT 2025 Thu Jul 10 17:17:03 EDT 2025 Mon Jul 21 06:04:07 EDT 2025 Tue Jul 01 02:46:47 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Wed Jan 22 16:47:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | aging brain mitochondria signalling reactive oxygen species |
Language | English |
License | 2017 Federation of European Biochemical Societies. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4842-feb7ddf0cae38f4741c7987ab8ba3d3b45308ae0addcdf25957df6600966abcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://febs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1873-3468.12902 |
PMID | 29106705 |
PQID | 1961035254 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2718339042 proquest_miscellaneous_1961035254 pubmed_primary_29106705 crossref_primary_10_1002_1873_3468_12902 crossref_citationtrail_10_1002_1873_3468_12902 wiley_primary_10_1002_1873_3468_12902_FEB212902 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2018 |
References | 2010; 12 2004; 287 2013; 4 2002; 13 2013; 123 2005; 65 2014; 29 2012; 16 2012; 11 2001; 41 2016; 35 2013; 9 2014; 20 2009; 11 2006; 20 2009; 10 1991; 88 2004; 36 2016; 1857 2007; 6 2014; 13 2011; 67 2013; 110 2004; 1011 2006; 281 2009; 19 2010; 2 2010; 5 2010; 6 2010; 8 2011; 2 2010; 35 1996; 93 2013; 340 2016; 17 2001; 24 2011; 6 2016; 15 2011; 7 2010; 1797 2004; 429 2014; 157 2010; 45 2016; 7 2004; 279 2014; 35 2012; 48 2008; 40 2016; 8 2016; 24 2016; 23 1982; 150 1998; 141 2016; 22 2017; 6 2017; 8 2017; 1862 2014; 33C 2011; 10 2011; 12 2008; 3 2008; 4 2011; 14 2008; 1 2013; 19 2005; 140 2006; 66 2016; 113 2013; 155 2005; 309 2013; 154 2013; 153 2014; 9 2005; 37 2005; 38 2007; 26 2005; 390 2015; 6 2017; 25 2000; 22 2015; 11 2006; 7 2006; 8 2006; 5 1972; 20 2007; 50 2015; 7 2009; 137 2008; 283 1999; 9 2015; 24 2015; 23 2016; 539 2011; 51 2015; 22 2017; 13 2013; 134 2017; 18 2007; 42 2017; 103 2008; 294 2012; 8 2014; 75 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 Wang X (e_1_2_7_52_1) 2010; 2 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 Chakrabarti S (e_1_2_7_7_1) 2011; 2 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 Reczek CR (e_1_2_7_5_1) 2014; 33 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 Herrero A (e_1_2_7_69_1) 2001; 24 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 Bernhardi R (e_1_2_7_82_1) 2015; 7 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 51 start-page: 1289 year: 2011 end-page: 1301 article-title: Cross talk between mitochondria and NADPH oxidases publication-title: Free Radic Biol Med – volume: 153 start-page: 1194 year: 2013 end-page: 1217 article-title: The hallmarks of aging publication-title: Cell – volume: 25 start-page: 765 year: 2017 end-page: 776 article-title: The enigma of the respiratory chain supercomplex publication-title: Cell Metab – volume: 113 start-page: 13063 year: 2016 end-page: 13068 article-title: Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes publication-title: Proc Natl Acad Sci USA – volume: 37 start-page: 83 year: 2005 end-page: 90 article-title: Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain publication-title: J Bioenerg Biomembr – volume: 11 start-page: 345 year: 2012 end-page: 349 article-title: A senescent cell bystander effect: senescence‐induced senescence publication-title: Aging Cell – volume: 14 start-page: 533 year: 2011 end-page: 542 article-title: NADPH oxidase 2 mediates intermittent hypoxia‐induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats publication-title: Antioxid Redox Signal – volume: 110 start-page: 8638 year: 2013 end-page: 8643 article-title: Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan publication-title: Proc Natl Acad Sci USA – volume: 45 start-page: 410 year: 2010 end-page: 418 article-title: How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis) publication-title: Exp Gerontol – volume: 2 start-page: 242 year: 2011 end-page: 256 article-title: Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation publication-title: Aging Dis – volume: 16 start-page: 1295 year: 2012 end-page: 1322 article-title: Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy publication-title: Antioxid Redox Signal – volume: 11 start-page: 834 year: 2015 end-page: 836 article-title: Suppressors of superoxide production from mitochondrial complex III publication-title: Nat Chem Biol – volume: 7 start-page: e1002028 year: 2011 article-title: Ultra‐deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins publication-title: PLoS Genet – volume: 340 start-page: 1567 year: 2013 end-page: 1570 article-title: Supercomplex assembly determines electron flux in the mitochondrial electron transport chain publication-title: Science – volume: 35 start-page: 2230 year: 2014 end-page: 2238 article-title: Respiratory chain deficiency in aged spinal motor neurons publication-title: Neurobiol Aging – volume: 35 start-page: 724 year: 2016 end-page: 742 article-title: Mitochondria are required for pro‐ageing features of the senescent phenotype publication-title: EMBO J – volume: 33C start-page: 8 year: 2014 end-page: 13 article-title: ROS‐dependent signal transduction publication-title: Curr Opin Cell Biol – volume: 1011 start-page: 86 year: 2004 end-page: 100 article-title: The mitochondrial production of reactive oxygen species in relation to aging and pathology publication-title: Ann N Y Acad Sci – volume: 20 start-page: 1064 year: 2006 end-page: 1073 article-title: Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins publication-title: FASEB J – volume: 5 start-page: 608 year: 2006 end-page: 619 article-title: Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver publication-title: Mol Cell Proteomics – volume: 22 start-page: 175 year: 2000 end-page: 181 article-title: Age‐related changes in reactive oxygen species production in rat brain homogenates publication-title: Neurotoxicol Teratol – volume: 19 start-page: 1953 year: 2013 end-page: 1969 article-title: Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species‐dependent and reactive oxygen species‐independent mechanisms publication-title: Antioxid Redox Signal – volume: 19 start-page: 1591 year: 2009 end-page: 1598 article-title: Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain publication-title: Curr Biol – volume: 8 start-page: 15691 year: 2017 article-title: Cellular senescence drives age‐dependent hepatic steatosis publication-title: Nat Commun – volume: 13 start-page: 765 year: 2014 end-page: 768 article-title: levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice publication-title: Aging Cell – volume: 1 start-page: 10 year: 2008 end-page: 21 article-title: The mitochondrial free radical theory of aging: a critical view publication-title: Curr Aging Sci – volume: 390 start-page: 501 year: 2005 end-page: 511 article-title: Age‐associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster publication-title: Biochem J – volume: 65 start-page: 203 year: 2005 end-page: 209 article-title: A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis publication-title: Cancer Res – volume: 103 start-page: 14 year: 2017 end-page: 22 article-title: Sixty years old is the breakpoint of human frontal cortex aging publication-title: Free Radic Biol Med – volume: 10 start-page: 453 year: 2011 end-page: 471 article-title: Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets publication-title: Nat Rev Drug Discovery – volume: 309 start-page: 481 year: 2005 end-page: 484 article-title: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging publication-title: Science – volume: 8 start-page: 863 year: 2012 end-page: 884 article-title: Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species publication-title: Future Cardiol – volume: 150 start-page: 454 year: 1982 end-page: 458 article-title: The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts publication-title: FEBS Lett – volume: 7 start-page: e2253 year: 2016 article-title: ROS homeostasis and metabolism: a dangerous liason in cancer cells publication-title: Cell Death Dis – volume: 24 start-page: 1957 year: 2015 end-page: 1971 article-title: Connecting mitochondria, metabolism, and stem cell fate publication-title: Stem Cells Dev – volume: 13 start-page: 452 year: 2017 end-page: 458 article-title: Redox regulation of proteasome function publication-title: Redox Biol – volume: 12 start-page: 551 year: 2011 end-page: 564 article-title: The aged‐related increase in xanthine oxidase expression and activity in several tissues from mice is not shown in long‐lived animals publication-title: Biogerontology – volume: 50 start-page: 719 year: 2007 end-page: 725 article-title: Depolarization and cardiolipin depletion in aged rat brain mitochondria: relationship with oxidative stress and electron transport chain activity publication-title: Neurochem Int – volume: 3 start-page: e1616 year: 2008 article-title: MAO‐B elevation in mouse brain astrocytes results in Parkinson's pathology publication-title: PLoS ONE – volume: 88 start-page: 10540 year: 1991 end-page: 10543 article-title: Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 996 year: 2012 end-page: 1004 article-title: Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response publication-title: Aging Cell – volume: 140 start-page: 120 year: 2005 end-page: 126 article-title: High intrinsic oxidative stress may underlie selective vulnerability of the hippocampal CA1 region publication-title: Brain Res Mol Brain Res – volume: 7 start-page: 124 year: 2015 article-title: Microglial cell dysregulation in brain aging and neurodegeneration publication-title: Front Aging Neurosci – volume: 294 start-page: R501 year: 2008 end-page: R509 article-title: Hippocampal mitochondrial dysfunction in rat aging publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 15 start-page: 197 year: 2016 end-page: 209 article-title: The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency publication-title: Cell Rep – volume: 75 start-page: S18 issue: Suppl 1 year: 2014 article-title: Enhanced proteasome degradation extends Caenorhabditis elegans lifespan and alleviates aggregation‐related pathologies publication-title: Free Radic Biol Med – volume: 8 start-page: 582 year: 2006 end-page: 599 article-title: Is the mitochondrial free radical theory of aging intact? publication-title: Antioxid Redox Signal – volume: 7 start-page: 278 year: 2006 end-page: 294 article-title: Ageing and neuronal vulnerability publication-title: Nat Rev Neurosci – volume: 9 start-page: 9 year: 2014 end-page: 15 article-title: TOR signaling couples oxygen sensing to lifespan in publication-title: Cell Rep – volume: 6 start-page: 347 year: 2010 article-title: Feedback between p21 and reactive oxygen production is necessary for cell senescence publication-title: Mol Syst Biol – volume: 14 start-page: 537 year: 2011 end-page: 544 article-title: Mitochondrial complex III ROS regulate adipocyte differentiation publication-title: Cell Metab – volume: 40 start-page: 392 year: 2008 end-page: 394 article-title: DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice publication-title: Nat Genet – volume: 281 start-page: 36228 year: 2006 end-page: 36235 article-title: Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death publication-title: J Biol Chem – volume: 429 start-page: 417 year: 2004 end-page: 423 article-title: Premature ageing in mice expressing defective mitochondrial DNA polymerase publication-title: Nature – volume: 157 start-page: 882 year: 2014 end-page: 896 article-title: Defective mitophagy in XPA via PARP‐1 hyperactivation and NAD(+)/SIRT1 reduction publication-title: Cell – volume: 283 start-page: 27810 year: 2008 end-page: 27819 article-title: Life span extension and neuronal cell protection by Drosophila nicotinamidase publication-title: J Biol Chem – volume: 6 start-page: 280 year: 2007 end-page: 293 article-title: Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress publication-title: Cell Metab – volume: 8 start-page: 2551 year: 2016 end-page: 2567 article-title: Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria publication-title: Aging (Albany NY) – volume: 9 start-page: e1003478 year: 2013 article-title: Aconitase causes iron toxicity in Drosophila pink1 mutants publication-title: PLoS Genet – volume: 6 start-page: e19493 year: 2017 article-title: NADPH oxidase‐mediated redox signaling promotes oxidative stress resistance and longevity through memo‐1 in publication-title: Elife – volume: 2 start-page: 12 year: 2010 article-title: Selective neuronal vulnerability to oxidative stress in the brain publication-title: Front Aging Neurosci – volume: 4 start-page: 176 year: 2008 end-page: 184 article-title: Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila publication-title: Autophagy – volume: 22 start-page: 377 year: 2015 end-page: 388 article-title: Oxidative stress and autophagy: the clash between damage and metabolic needs publication-title: Cell Death Differ – volume: 23 start-page: 1502 year: 2016 end-page: 1514 article-title: Metabolic reprogramming during neuronal differentiation publication-title: Cell Death Differ – volume: 13 start-page: 4243 year: 2002 end-page: 4255 article-title: Peroxisome senescence in human fibroblasts publication-title: Mol Biol Cell – volume: 287 start-page: R1244 year: 2004 end-page: R1249 article-title: Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 12 start-page: 252 year: 2011 end-page: 259 article-title: Peroxisome metabolism and cellular aging publication-title: Traffic – volume: 1797 start-page: 897 year: 2010 end-page: 906 article-title: Redox signaling (cross‐talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species publication-title: Biochim Biophys Acta – volume: 20 start-page: 145 year: 1972 end-page: 147 article-title: The biologic clock: the mitochondria? publication-title: J Am Geriatr Soc – volume: 24 start-page: 566 year: 2016 end-page: 581 article-title: NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair publication-title: Cell Metab – volume: 24 start-page: 45 year: 2001 end-page: 50 article-title: Effect of aging on mitochondrial and nuclear DNA oxidative damage in the heart and brain throughout the life‐span of the rat publication-title: J Am Aging Assoc – volume: 6 start-page: 6393 year: 2015 article-title: Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis publication-title: Nat Commun – volume: 23 start-page: 208 year: 2015 end-page: 238 article-title: The interplay between respiratory supercomplexes and ROS in aging publication-title: Antioxid Redox Signal – volume: 67 start-page: 551 year: 2011 end-page: 558 article-title: Age‐related changes in xanthine oxidase activity and lipid peroxidation, as well as in the correlation between both parameters, in plasma and several organs from female mice publication-title: J Physiol Biochem – volume: 16 start-page: 1183 year: 2012 end-page: 1194 article-title: Redox control of 20S proteasome gating publication-title: Antioxid Redox Signal – volume: 1857 start-page: 1116 year: 2016 end-page: 1126 article-title: Mitochondrial reactive oxygen species: do they extend or shorten animal lifespan? publication-title: Biochim Biophys Acta – volume: 10 start-page: 1911 year: 2009 end-page: 1929 article-title: Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity publication-title: Int J Mol Sci – volume: 141 start-page: 1423 year: 1998 end-page: 1432 article-title: The regulation of reactive oxygen species production during programmed cell death publication-title: J Cell Biol – volume: 40 start-page: 275 year: 2008 end-page: 279 article-title: What causes mitochondrial DNA deletions in human cells? publication-title: Nat Genet – volume: 5 start-page: e11468 year: 2010 article-title: Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice publication-title: PLoS ONE – volume: 8 start-page: e1000556 year: 2010 article-title: A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans publication-title: PLoS Biol – volume: 36 start-page: 1112 year: 2004 end-page: 1125 article-title: Reactive oxygen species induce different cell death mechanisms in cultured neurons publication-title: Free Radic Biol Med – volume: 12 start-page: 503 year: 2010 end-page: 535 article-title: Mitochondrial turnover and aging of long‐lived postmitotic cells: the mitochondrial‐lysosomal axis theory of aging publication-title: Antioxid Redox Signal – volume: 11 start-page: 747 year: 2009 end-page: 752 article-title: The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C‐Cdh1 publication-title: Nat Cell Biol – volume: 66 start-page: 832 year: 2006 end-page: 843 article-title: Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “Mitohormesis” for health and vitality publication-title: Med Hypotheses – volume: 17 start-page: 308 year: 2016 end-page: 321 article-title: Nuclear DNA damage signalling to mitochondria in ageing publication-title: Nat Rev Mol Cell Biol – volume: 123 start-page: 951 year: 2013 end-page: 957 article-title: The role of mitochondria in aging publication-title: J Clin Invest – volume: 1862 start-page: 485 year: 2017 end-page: 495 article-title: Region‐specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system publication-title: Biochim Biophys Acta – volume: 41 start-page: 233 year: 2001 end-page: 241 article-title: Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils publication-title: Neurosci Res – volume: 137 start-page: 362 year: 2009 end-page: 370 article-title: Respiratory chain alternative enzymes as tools to better understand and counteract respiratory chain deficiencies in human cells and animals publication-title: Physiol Plant – volume: 8 start-page: 428 year: 2017 article-title: Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease publication-title: Front Physiol – volume: 23 start-page: 725 year: 2016 end-page: 734 article-title: Mitochondrial ROS produced via reverse electron transport extend animal lifespan publication-title: Cell Metab – volume: 155 start-page: 1624 year: 2013 end-page: 1638 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear‐mitochondrial communication during aging publication-title: Cell – volume: 93 start-page: 4765 year: 1996 end-page: 4769 article-title: Age‐related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain publication-title: Proc Natl Acad Sci USA – volume: 42 start-page: 256 year: 2007 end-page: 262 article-title: Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases publication-title: Exp Gerontol – volume: 4 start-page: 2267 year: 2013 article-title: The TFEB orthologue HLH‐30 regulates autophagy and modulates longevity in Caenorhabditis elegans publication-title: Nat Commun – volume: 14 start-page: 264 year: 2011 end-page: 271 article-title: Somatic oxidative bioenergetics transitions into pluripotency‐dependent glycolysis to facilitate nuclear reprogramming publication-title: Cell Metab – volume: 24 start-page: 582 year: 2016 end-page: 592 article-title: Suppressors of superoxide‐H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia‐reperfusion injury publication-title: Cell Metab – volume: 38 start-page: 796 year: 2005 end-page: 805 article-title: Tissue‐specific changes of mitochondrial functions in aged rats: effect of a long‐term dietary treatment with N‐acetylcysteine publication-title: Free Radic Biol Med – volume: 1797 start-page: 633 year: 2010 end-page: 640 article-title: Mitochondrial respiratory chain super‐complex I‐III in physiology and pathology publication-title: Biochim Biophys Acta – volume: 48 start-page: 158 year: 2012 end-page: 167 article-title: Physiological roles of mitochondrial reactive oxygen species publication-title: Mol Cell – volume: 134 start-page: 449 year: 2013 end-page: 459 article-title: The glia doctrine: addressing the role of glial cells in healthy brain ageing publication-title: Mech Ageing Dev – volume: 22 start-page: 879 year: 2016 end-page: 888 article-title: Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents publication-title: Nat Med – volume: 4 start-page: 2300 year: 2013 article-title: Overexpression of Atg5 in mice activates autophagy and extends lifespan publication-title: Nat Commun – volume: 29 start-page: 711 year: 2014 end-page: 719 article-title: Differential production of reactive oxygen species in distinct brain regions of hypoglycemic mice publication-title: Metab Brain Dis – volume: 279 start-page: 49064 year: 2004 end-page: 49073 article-title: Complex III releases superoxide to both sides of the inner mitochondrial membrane publication-title: J Biol Chem – volume: 19 start-page: 1469 year: 2013 end-page: 1480 article-title: Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I publication-title: Antioxid Redox Signal – volume: 8 start-page: 14532 year: 2017 article-title: Cellular senescence mediates fibrotic pulmonary disease publication-title: Nat Commun – volume: 20 start-page: 372 year: 2014 end-page: 382 article-title: Methods for detection of mitochondrial and cellular reactive oxygen species publication-title: Antioxid Redox Signal – volume: 23 start-page: 254 year: 2016 end-page: 263 article-title: A unifying mechanism for mitochondrial superoxide production during ischemia‐reperfusion injury publication-title: Cell Metab – volume: 18 start-page: 557 year: 2017 end-page: 570 article-title: Major shifts in glial regional identity are a transcriptional hallmark of human brain aging publication-title: Cell Rep – volume: 539 start-page: 180 year: 2016 end-page: 186 article-title: Ageing, neurodegeneration and brain rejuvenation publication-title: Nature – volume: 13 start-page: 2620 year: 2014 end-page: 2636 article-title: Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability publication-title: J Proteome Res – volume: 26 start-page: 1749 year: 2007 end-page: 1760 article-title: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 publication-title: EMBO J – volume: 154 start-page: 430 year: 2013 end-page: 441 article-title: The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling publication-title: Cell – volume: 45 start-page: 563 year: 2010 end-page: 572 article-title: Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex publication-title: Exp Gerontol – volume: 6 start-page: e20914 year: 2011 article-title: Energy metabolism in human pluripotent stem cells and their differentiated counterparts publication-title: PLoS ONE – volume: 45 start-page: 466 year: 2010 end-page: 472 article-title: The sites and topology of mitochondrial superoxide production publication-title: Exp Gerontol – volume: 19 start-page: 1420 year: 2013 end-page: 1445 article-title: Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts publication-title: Antioxid Redox Signal – volume: 35 start-page: 145 year: 2010 end-page: 149 article-title: Glycolysis: a bioenergetic or a survival pathway? publication-title: Trends Biochem Sci – volume: 9 start-page: 247 year: 1999 end-page: 252 article-title: MAO inhibitors and oxidant stress in aging brain tissue publication-title: Eur Neuropsychopharmacol – ident: e_1_2_7_76_1 doi: 10.1038/cddis.2016.105 – ident: e_1_2_7_26_1 doi: 10.1016/j.exger.2006.10.011 – ident: e_1_2_7_122_1 doi: 10.1371/journal.pbio.1000556 – ident: e_1_2_7_78_1 doi: 10.1016/j.mad.2013.10.001 – ident: e_1_2_7_20_1 doi: 10.3389/fphys.2017.00428 – ident: e_1_2_7_31_1 doi: 10.1371/journal.pone.0001616 – ident: e_1_2_7_37_1 doi: 10.1096/fj.05-5568com – ident: e_1_2_7_112_1 doi: 10.1016/j.cell.2013.06.016 – ident: e_1_2_7_90_1 doi: 10.1371/journal.pgen.1002028 – ident: e_1_2_7_113_1 doi: 10.1016/j.cmet.2016.09.004 – ident: e_1_2_7_50_1 doi: 10.1016/j.freeradbiomed.2016.12.010 – ident: e_1_2_7_99_1 doi: 10.1038/nm.4132 – ident: e_1_2_7_100_1 doi: 10.1089/ars.2011.4210 – ident: e_1_2_7_19_1 doi: 10.1158/0008-5472.203.65.1 – ident: e_1_2_7_94_1 doi: 10.4161/auto.5269 – ident: e_1_2_7_53_1 doi: 10.1016/j.molbrainres.2005.07.018 – ident: e_1_2_7_25_1 doi: 10.1038/nrd3403 – ident: e_1_2_7_28_1 doi: 10.1007/s10522-011-9351-6 – ident: e_1_2_7_62_1 doi: 10.1016/j.neuint.2007.01.007 – ident: e_1_2_7_73_1 doi: 10.1111/j.1474-9726.2012.00870.x – ident: e_1_2_7_79_1 doi: 10.1016/j.celrep.2016.12.011 – ident: e_1_2_7_63_1 doi: 10.18632/aging.101089 – ident: e_1_2_7_103_1 doi: 10.1016/j.redox.2017.07.005 – ident: e_1_2_7_118_1 doi: 10.1172/JCI64125 – ident: e_1_2_7_57_1 doi: 10.1152/ajpregu.00492.2007 – ident: e_1_2_7_84_1 doi: 10.15252/embj.201592862 – ident: e_1_2_7_101_1 doi: 10.1038/sj.emboj.7601623 – ident: e_1_2_7_97_1 doi: 10.1016/j.freeradbiomed.2014.10.632 – ident: e_1_2_7_40_1 doi: 10.1073/pnas.1613701113 – ident: e_1_2_7_24_1 doi: 10.1111/j.1532-5415.1972.tb00787.x – ident: e_1_2_7_32_1 doi: 10.1111/j.1600-0854.2010.01144.x – ident: e_1_2_7_27_1 doi: 10.1016/j.freeradbiomed.2011.06.033 – ident: e_1_2_7_67_1 doi: 10.1016/S0892-0362(99)00069-0 – ident: e_1_2_7_117_1 doi: 10.1089/ars.2010.3213 – ident: e_1_2_7_10_1 doi: 10.1089/ars.2012.4900 – ident: e_1_2_7_16_1 doi: 10.1038/nchembio.1910 – ident: e_1_2_7_38_1 doi: 10.1021/pr500295n – ident: e_1_2_7_110_1 doi: 10.1016/j.cell.2014.03.026 – ident: e_1_2_7_72_1 doi: 10.1083/jcb.141.6.1423 – ident: e_1_2_7_91_1 doi: 10.1111/acel.12212 – ident: e_1_2_7_105_1 doi: 10.1038/cdd.2016.36 – ident: e_1_2_7_51_1 doi: 10.1038/ncb1881 – ident: e_1_2_7_8_1 doi: 10.1089/ars.2006.8.582 – ident: e_1_2_7_11_1 doi: 10.1016/j.celrep.2014.08.075 – ident: e_1_2_7_3_1 doi: 10.1089/ars.2012.5148 – ident: e_1_2_7_98_1 doi: 10.1073/pnas.1216197110 – ident: e_1_2_7_68_1 doi: 10.1073/pnas.88.23.10540 – ident: e_1_2_7_70_1 doi: 10.1016/0014-5793(82)80788-6 – ident: e_1_2_7_21_1 doi: 10.1074/jbc.M407715200 – ident: e_1_2_7_29_1 doi: 10.1007/s13105-011-0100-8 – ident: e_1_2_7_48_1 doi: 10.1007/s10863-005-4131-0 – ident: e_1_2_7_115_1 doi: 10.1016/j.bbabio.2010.01.032 – ident: e_1_2_7_119_1 doi: 10.1016/j.mehy.2005.09.009 – ident: e_1_2_7_12_1 doi: 10.1089/ars.2012.4886 – ident: e_1_2_7_95_1 doi: 10.1038/ncomms3267 – volume: 2 start-page: 242 year: 2011 ident: e_1_2_7_7_1 article-title: Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation publication-title: Aging Dis – ident: e_1_2_7_106_1 doi: 10.1016/j.cmet.2011.06.011 – ident: e_1_2_7_23_1 doi: 10.1016/j.cmet.2015.12.009 – ident: e_1_2_7_17_1 doi: 10.1016/j.cmet.2016.08.012 – ident: e_1_2_7_18_1 doi: 10.1016/j.exger.2010.01.003 – ident: e_1_2_7_121_1 doi: 10.1016/j.cmet.2007.08.011 – ident: e_1_2_7_43_1 doi: 10.1016/j.celrep.2016.03.009 – volume: 24 start-page: 45 year: 2001 ident: e_1_2_7_69_1 article-title: Effect of aging on mitochondrial and nuclear DNA oxidative damage in the heart and brain throughout the life‐span of the rat publication-title: J Am Aging Assoc – ident: e_1_2_7_56_1 doi: 10.1016/S0168-0102(01)00282-6 – ident: e_1_2_7_116_1 doi: 10.1074/jbc.M606702200 – ident: e_1_2_7_54_1 doi: 10.1007/s11011-014-9508-5 – ident: e_1_2_7_74_1 doi: 10.1089/ars.2011.4414 – ident: e_1_2_7_60_1 doi: 10.1042/BJ20042130 – ident: e_1_2_7_45_1 doi: 10.1016/j.bbabio.2010.01.025 – ident: e_1_2_7_81_1 doi: 10.1016/j.freeradbiomed.2004.02.013 – ident: e_1_2_7_30_1 doi: 10.1016/S0924-977X(98)00035-2 – ident: e_1_2_7_2_1 doi: 10.1038/nature20411 – ident: e_1_2_7_47_1 doi: 10.1016/j.exger.2010.02.003 – ident: e_1_2_7_80_1 doi: 10.2217/fca.12.58 – ident: e_1_2_7_6_1 doi: 10.1016/j.cell.2013.05.039 – ident: e_1_2_7_92_1 doi: 10.1038/ng.95 – volume: 7 start-page: 124 year: 2015 ident: e_1_2_7_82_1 article-title: Microglial cell dysregulation in brain aging and neurodegeneration publication-title: Front Aging Neurosci – ident: e_1_2_7_42_1 doi: 10.1126/science.1230381 – ident: e_1_2_7_22_1 doi: 10.1016/j.molcel.2012.09.025 – ident: e_1_2_7_44_1 doi: 10.1089/ars.2012.4845 – ident: e_1_2_7_4_1 doi: 10.2174/1874609810801010010 – ident: e_1_2_7_46_1 doi: 10.1089/ars.2014.6214 – ident: e_1_2_7_58_1 doi: 10.1152/ajpregu.00226.2004 – ident: e_1_2_7_61_1 doi: 10.1016/j.neurobiolaging.2014.02.027 – ident: e_1_2_7_93_1 doi: 10.1038/ncomms7393 – ident: e_1_2_7_41_1 doi: 10.1016/j.cmet.2017.03.009 – ident: e_1_2_7_83_1 doi: 10.1111/j.1474-9726.2012.00795.x – ident: e_1_2_7_55_1 doi: 10.1073/pnas.93.10.4765 – volume: 33 start-page: 8 year: 2014 ident: e_1_2_7_5_1 article-title: ROS‐dependent signal transduction publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2014.09.010 – ident: e_1_2_7_88_1 doi: 10.1196/annals.1293.010 – ident: e_1_2_7_64_1 doi: 10.1038/nature02517 – ident: e_1_2_7_85_1 doi: 10.1038/msb.2010.5 – ident: e_1_2_7_109_1 doi: 10.1038/nrm.2016.14 – ident: e_1_2_7_108_1 doi: 10.1016/j.cmet.2011.08.007 – ident: e_1_2_7_35_1 doi: 10.1074/mcp.M500298-MCP200 – ident: e_1_2_7_87_1 doi: 10.1038/ncomms14532 – ident: e_1_2_7_114_1 doi: 10.1074/jbc.M804681200 – ident: e_1_2_7_15_1 doi: 10.1016/j.cmet.2016.03.009 – ident: e_1_2_7_86_1 doi: 10.1038/ncomms15691 – ident: e_1_2_7_59_1 doi: 10.1016/j.freeradbiomed.2004.11.034 – ident: e_1_2_7_75_1 doi: 10.7554/eLife.19493 – ident: e_1_2_7_89_1 doi: 10.1038/ng.f.94 – ident: e_1_2_7_111_1 doi: 10.1016/j.cell.2013.11.037 – ident: e_1_2_7_107_1 doi: 10.1371/journal.pone.0020914 – ident: e_1_2_7_14_1 doi: 10.1111/j.1399-3054.2009.01249.x – ident: e_1_2_7_66_1 doi: 10.1126/science.1112125 – ident: e_1_2_7_104_1 doi: 10.1089/scd.2015.0117 – ident: e_1_2_7_39_1 doi: 10.1016/j.tibs.2009.10.006 – ident: e_1_2_7_13_1 doi: 10.1016/j.cub.2009.08.016 – ident: e_1_2_7_34_1 doi: 10.1089/ars.2009.2598 – ident: e_1_2_7_9_1 doi: 10.1016/j.bbabio.2016.03.018 – ident: e_1_2_7_36_1 doi: 10.3390/ijms10041911 – ident: e_1_2_7_71_1 doi: 10.1371/journal.pgen.1003478 – ident: e_1_2_7_102_1 doi: 10.1038/cdd.2014.150 – ident: e_1_2_7_96_1 doi: 10.1038/ncomms3300 – volume: 2 start-page: 12 year: 2010 ident: e_1_2_7_52_1 article-title: Selective neuronal vulnerability to oxidative stress in the brain publication-title: Front Aging Neurosci – ident: e_1_2_7_65_1 doi: 10.1371/journal.pone.0011468 – ident: e_1_2_7_49_1 doi: 10.1016/j.bbalip.2017.02.001 – ident: e_1_2_7_33_1 doi: 10.1091/mbc.E02-06-0322 – ident: e_1_2_7_77_1 doi: 10.1038/nrn1886 – ident: e_1_2_7_120_1 doi: 10.1016/j.exger.2010.03.014 |
SSID | ssj0001819 |
Score | 2.6499465 |
SecondaryResourceType | review_article |
Snippet | The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 743 |
SubjectTerms | Adenosine Triphosphate - genetics Adenosine Triphosphate - metabolism aging Aging - genetics Aging - metabolism Aging - pathology Animals brain Brain - metabolism Brain - pathology energy Energy Metabolism Humans longevity metabolism mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondria - pathology mitosis Neurodegenerative Diseases - genetics Neurodegenerative Diseases - metabolism Neurodegenerative Diseases - pathology oxidative stress reactive oxygen species Reactive Oxygen Species - metabolism Signal Transduction signalling |
Title | The role of mitochondrial ROS in the aging brain |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.12902 https://www.ncbi.nlm.nih.gov/pubmed/29106705 https://www.proquest.com/docview/1961035254 https://www.proquest.com/docview/2718339042 |
Volume | 592 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZby9hextbukt3QYIxBcWrrYtmPaUkoa2mhSVjejGRLdNDapU0ftl-_I8myk3Vl3V6M4jiWOV989B3p6DsIfSJSyIpoFuW5JhCgGBXJXEn4qCiRvEy5dNkWx-nBnH1d8EVf8dTtLlmqYfnzj_tK_gdVOAe42l2y_4Bsd1M4AW3AF46AMBzvjXFID7yAVxNcWV25MhynJ9OQwejLEClbCmKViU7Ge9Odc7eZp6PV06U2soYw3E-_nDV9uD4FDuk3xNhM7GZ1siDJ-myp4AATFnHhixIGB8hzsoI037kcWt1S4SXVW8cmvJhSO0a2391yv17ONckEjShLs6Gd5CL9SBNW149Pisn86KiYjRezh2iTAMMHF7U5Ojz9dtgNo0A9fOzSPnHQZYrJ7m8drFOKW3HCetjheMPsGXraEn488ug9Rw90vYW2R9bKFz_wZ-xScN3axhZ6tBdaj_dDIb5tFAPM2MKMG4PXYMYAM_5eY4AZO5ixg_kFmk_Gs_2DqC10EZUsYyQyWomqMnEpNc0MA5JXijwTUmVK0ooqxmmcSR3DWFRWBgJWLiqTpjb8TKUqK_oSbdRNrV8jXEohKsKlJKVmWsXSCt4Rw6TJE8m5GqBhsFVRtirwthjJeeH1q0lhjVtY4xbOuAP0pfvBpRdAufvSj8H4BZjIrjzJWjc31wW4-cQJ77K7ryHAkijNYRAZoFceua5Dklulw5gP0K6D8m9PUsA7RFzrzT36e4ue9O_KO7SxvLrR74FqLtWH9k_5C7T4djM |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+mitochondrial+ROS+in+the+aging+brain&rft.jtitle=FEBS+letters&rft.au=Stefanatos%2C+Rhoda&rft.au=Sanz%2C+Alberto&rft.date=2018-03-01&rft.issn=0014-5793&rft.volume=592&rft.issue=5+p.743-758&rft.spage=743&rft.epage=758&rft_id=info:doi/10.1002%2F1873-3468.12902&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |