Metabolomics reveals herbivore‐induced metabolites of resistance and susceptibility in maize leaves and roots
ABSTRACT Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra‐high‐pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS)‐base...
Saved in:
Published in | Plant, cell and environment Vol. 36; no. 3; pp. 621 - 639 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2013
Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra‐high‐pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS)‐based metabolomics approach to evaluate local and systemic herbivore‐induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty‐two differentially regulated compounds were identified from Spodoptera littoralis‐infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano‐infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3‐benzoxazin‐4‐ones, phospholipids, N‐hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3‐benzoxazin‐4‐ones increased in the vascular sap and root exudates. The role of N‐hydroxycinnamoyltyramines in plant–herbivore interactions is unknown, and we therefore tested the effect of the dominating p‐coumaroyltyramine on S. littoralis. Unexpectedly, p‐coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots.
In the presented manuscript, we developed an ultra‐high pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS) based metabolomics approach to study how maize plants respond to attack by the generalist herbivore Spodoptera littoralis. Using multivariate data analysis, microflow nuclear magnetic resonance and direct nano‐infusion tandem MS/MS, we systematically extracted, identified, quantified and tested major metabolites that are differentially regulated in maize seedlings. With this approach, our investigation provides deep insights into the dynamic patterns of local and systemic metabolic regulation. |
---|---|
AbstractList | Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plant-herbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots. Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra‐high‐pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS)‐based metabolomics approach to evaluate local and systemic herbivore‐induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty‐two differentially regulated compounds were identified from Spodoptera littoralis ‐infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano‐infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3‐benzoxazin‐4‐ones, phospholipids, N ‐hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3‐benzoxazin‐4‐ones increased in the vascular sap and root exudates. The role of N ‐hydroxycinnamoyltyramines in plant–herbivore interactions is unknown, and we therefore tested the effect of the dominating p ‐coumaroyltyramine on S. littoralis . Unexpectedly, p ‐coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots. In the presented manuscript, we developed an ultra‐high pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS) based metabolomics approach to study how maize plants respond to attack by the generalist herbivore Spodoptera littoralis. Using multivariate data analysis, microflow nuclear magnetic resonance and direct nano‐infusion tandem MS/MS, we systematically extracted, identified, quantified and tested major metabolites that are differentially regulated in maize seedlings. With this approach, our investigation provides deep insights into the dynamic patterns of local and systemic metabolic regulation. Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plant-herbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots. In the presented manuscript, we developed an ultra-high pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS) based metabolomics approach to study how maize plants respond to attack by the generalist herbivore Spodoptera littoralis. Using multivariate data analysis, microflow nuclear magnetic resonance and direct nano-infusion tandem MS/MS, we systematically extracted, identified, quantified and tested major metabolites that are differentially regulated in maize seedlings. With this approach, our investigation provides deep insights into the dynamic patterns of local and systemic metabolic regulation. [PUBLICATION ABSTRACT] ABSTRACT Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra‐high‐pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS)‐based metabolomics approach to evaluate local and systemic herbivore‐induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty‐two differentially regulated compounds were identified from Spodoptera littoralis‐infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano‐infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3‐benzoxazin‐4‐ones, phospholipids, N‐hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3‐benzoxazin‐4‐ones increased in the vascular sap and root exudates. The role of N‐hydroxycinnamoyltyramines in plant–herbivore interactions is unknown, and we therefore tested the effect of the dominating p‐coumaroyltyramine on S. littoralis. Unexpectedly, p‐coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots. In the presented manuscript, we developed an ultra‐high pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS) based metabolomics approach to study how maize plants respond to attack by the generalist herbivore Spodoptera littoralis. Using multivariate data analysis, microflow nuclear magnetic resonance and direct nano‐infusion tandem MS/MS, we systematically extracted, identified, quantified and tested major metabolites that are differentially regulated in maize seedlings. With this approach, our investigation provides deep insights into the dynamic patterns of local and systemic metabolic regulation. |
Author | RUDAZ, SERGE TURLINGS, TED C. J. ERB, MATTHIAS MARTI, GUILLAUME BOCCARD, JULIEN ROBERT, CHRISTELLE A M. WOLFENDER, JEAN‐LUC VILLARD, NEIL GLAUSER, GAÉTAN DOYEN, GWLADYS R. |
Author_xml | – sequence: 1 givenname: GUILLAUME surname: MARTI fullname: MARTI, GUILLAUME – sequence: 2 givenname: MATTHIAS surname: ERB fullname: ERB, MATTHIAS – sequence: 3 givenname: JULIEN surname: BOCCARD fullname: BOCCARD, JULIEN – sequence: 4 givenname: GAÉTAN surname: GLAUSER fullname: GLAUSER, GAÉTAN – sequence: 5 givenname: GWLADYS R. surname: DOYEN fullname: DOYEN, GWLADYS R. – sequence: 6 givenname: NEIL surname: VILLARD fullname: VILLARD, NEIL – sequence: 7 givenname: CHRISTELLE A M. surname: ROBERT fullname: ROBERT, CHRISTELLE A M. – sequence: 8 givenname: TED C. J. surname: TURLINGS fullname: TURLINGS, TED C. J. – sequence: 9 givenname: SERGE surname: RUDAZ fullname: RUDAZ, SERGE – sequence: 10 givenname: JEAN‐LUC surname: WOLFENDER fullname: WOLFENDER, JEAN‐LUC |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26852120$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22913585$$D View this record in MEDLINE/PubMed |
BookMark | eNp10cFO3DAQAFALUZVd4MAPIEuoUjkEbMfZ2MdqtZRKVO1h75bjzAqvknixk0XbUz-Bb-RLGJptKyHhiyX7eWY8MyWHXeiAkDPOrjiu642DKy4YEwdkwvNZkeVMskMyYVyyrCw1PyLTlNaM4UGpP5IjITTPC1VMSPgOva1CE1rvEo2wBdskeg-x8tsQ4fn3k-_qwUFN2xH6HhINK6TJp952DqjtapqG5GDT-8qj2FHf0db6X0AbsFt88EpiCH06IR9WmAFO9_sxWd4slvPb7O7H12_zL3eZk0qKTEMJM61ZrmvgrLSO4ZfySqmi1qzgFlBZZvPK8rqaOa0BpFVCyoqDVpAfk89j2E0MDwOk3rQeC2wa20EYkuFCiYIXXOZIL97QdRhih8UZvBaCKVlKVJejcjGkFGFlNtG3Nu4MZ-Z1CAaHYP4MAe35PuJQtVD_k3-7juDTHtjkbLOK2Eaf_ruZKgSGQnc9ukffwO79jObnfDGmfgF0WqDi |
CODEN | PLCEDV |
CitedBy_id | crossref_primary_10_3390_metabo12030236 crossref_primary_10_1111_nph_17583 crossref_primary_10_1111_nph_14597 crossref_primary_10_1111_eea_12336 crossref_primary_10_1007_s00425_018_2886_x crossref_primary_10_1111_pce_12926 crossref_primary_10_3390_metabo10080310 crossref_primary_10_1016_j_cois_2018_12_008 crossref_primary_10_3390_metabo11070438 crossref_primary_10_1111_tpj_12439 crossref_primary_10_1002_ece3_1922 crossref_primary_10_1093_jee_toz035 crossref_primary_10_1126_sciadv_aat6797 crossref_primary_10_1016_j_pld_2018_06_006 crossref_primary_10_1038_srep37390 crossref_primary_10_3390_molecules23020188 crossref_primary_10_1111_plb_12947 crossref_primary_10_1016_j_chroma_2014_10_091 crossref_primary_10_1038_srep37674 crossref_primary_10_1093_femsre_fuaa037 crossref_primary_10_1016_j_aca_2016_12_044 crossref_primary_10_1016_j_tig_2016_05_003 crossref_primary_10_1038_srep06122 crossref_primary_10_1016_j_jcs_2013_10_002 crossref_primary_10_1093_plphys_kiab368 crossref_primary_10_3390_toxins10050187 crossref_primary_10_1094_MPMI_04_15_0092_R crossref_primary_10_1111_nph_19068 crossref_primary_10_1016_j_cpb_2022_100268 crossref_primary_10_1104_pp_114_253120 crossref_primary_10_7717_peerj_9819 crossref_primary_10_1016_j_scitotenv_2023_161737 crossref_primary_10_1094_MPMI_01_15_0016_R crossref_primary_10_1073_pnas_1503106112 crossref_primary_10_1111_pce_13955 crossref_primary_10_3389_fpls_2017_01302 crossref_primary_10_1007_s11427_022_2279_5 crossref_primary_10_7554_eLife_68642 crossref_primary_10_1093_aob_mcu265 crossref_primary_10_1139_gen_2019_0043 crossref_primary_10_1093_pcp_pct041 crossref_primary_10_1021_acs_jafc_8b06316 crossref_primary_10_1086_713444 crossref_primary_10_5936_csbj_201301010 crossref_primary_10_3390_ijms19051356 crossref_primary_10_3390_ijms17060923 crossref_primary_10_1093_jxb_erw219 crossref_primary_10_1111_tpj_13639 crossref_primary_10_1104_pp_114_252700 crossref_primary_10_3390_foods12102046 crossref_primary_10_1105_tpc_113_112409 crossref_primary_10_1111_tpj_13001 crossref_primary_10_3389_fsufs_2023_1130089 crossref_primary_10_3390_ht7020016 crossref_primary_10_1007_s11829_017_9562_0 crossref_primary_10_1093_jxb_eru489 crossref_primary_10_1134_S106422932260097X crossref_primary_10_3390_ijms21020406 crossref_primary_10_1111_een_12966 crossref_primary_10_1007_s00216_022_04475_9 crossref_primary_10_1007_s11284_016_1410_7 crossref_primary_10_3389_fpls_2018_00522 crossref_primary_10_3390_ijms25116124 crossref_primary_10_3390_metabo12060484 crossref_primary_10_1007_s11104_017_3452_1 crossref_primary_10_1016_j_tplants_2022_08_016 crossref_primary_10_1002_pld3_578 crossref_primary_10_3390_molecules190914004 crossref_primary_10_1039_C5NP00003C crossref_primary_10_3390_metabo13050666 crossref_primary_10_1093_jxb_eraa582 crossref_primary_10_1016_j_tplants_2016_01_008 crossref_primary_10_1111_eea_13073 crossref_primary_10_1016_j_xplc_2021_100187 crossref_primary_10_1021_acs_jafc_0c01462 crossref_primary_10_1016_j_anbehav_2016_01_001 crossref_primary_10_2174_1389201020666190328115411 crossref_primary_10_1016_j_scienta_2018_06_003 crossref_primary_10_1111_pce_12735 crossref_primary_10_1111_pce_14643 crossref_primary_10_1111_tpj_14317 crossref_primary_10_1111_pce_12069 crossref_primary_10_1111_pce_12220 crossref_primary_10_1111_jipb_13204 crossref_primary_10_1080_09168451_2018_1429889 crossref_primary_10_1016_j_ejar_2024_05_002 crossref_primary_10_1016_j_foodchem_2016_02_148 crossref_primary_10_1007_s11306_018_1427_8 crossref_primary_10_3839_jabc_2021_021 crossref_primary_10_1139_er_2013_0011 crossref_primary_10_1007_s11829_023_09972_x crossref_primary_10_1111_1365_2745_13841 crossref_primary_10_1186_s12870_015_0526_1 crossref_primary_10_1371_journal_pbio_3001114 crossref_primary_10_1111_pce_14458 crossref_primary_10_1111_tpj_12503 crossref_primary_10_3389_fnut_2024_1322904 crossref_primary_10_1111_1365_2656_12995 crossref_primary_10_1007_s00425_018_2953_3 crossref_primary_10_1007_s11104_019_04405_2 crossref_primary_10_1371_journal_pone_0241627 crossref_primary_10_1653_024_103_0301 crossref_primary_10_1007_s00216_015_8770_7 crossref_primary_10_1021_acs_analchem_5b03912 crossref_primary_10_1093_jxb_erv045 crossref_primary_10_1007_s10886_018_1015_4 crossref_primary_10_1111_nph_19415 crossref_primary_10_1186_s13007_022_00856_4 crossref_primary_10_1002_ecy_1855 crossref_primary_10_1007_s11306_019_1523_4 crossref_primary_10_1093_jxb_erab171 crossref_primary_10_1021_acs_analchem_0c04371 crossref_primary_10_1111_tpj_15988 crossref_primary_10_3390_metabo12080727 crossref_primary_10_1111_een_13143 crossref_primary_10_3389_fpls_2017_01513 crossref_primary_10_1007_s12374_021_09341_2 crossref_primary_10_1002_ece3_2208 crossref_primary_10_1016_j_pbi_2015_05_023 crossref_primary_10_1111_1365_2745_13394 crossref_primary_10_3390_metabo11020084 crossref_primary_10_1021_acs_jafc_1c02241 crossref_primary_10_3390_ijms22010318 |
Cites_doi | 10.1111/j.1461-0248.2008.01200.x 10.1021/ac0713510 10.1016/S0074-7696(00)98008-2 10.1016/j.phytochem.2009.05.012 10.1073/pnas.0804488105 10.1034/j.1399-3054.2003.00054.x 10.1007/3-540-29782-0_13 10.1177/1934578X0900401019 10.1016/j.jchromb.2008.04.021 10.1111/j.1365-3040.2011.02327.x 10.1146/annurev.arplant.59.032607.092825 10.1007/s10886-008-9586-0 10.1111/j.1365-2745.2010.01756.x 10.1016/0031-9422(74)85129-0 10.1111/j.1365-2745.2010.01757.x 10.1007/s10886-011-0042-1 10.1105/tpc.11.11.2249 10.1016/S0031-9422(00)84681-6 10.1111/j.1461-0248.2011.01708.x 10.1093/nar/gkp896 10.1016/S0031-9422(97)00620-1 10.1002/cem.1187 10.1111/j.1755-0998.2010.02854.x 10.1371/journal.pone.0026214 10.1016/j.tplants.2008.03.005 10.1016/S0031-9422(02)00225-X 10.1111/j.1365-2656.2005.01006.x 10.1111/j.1365-3040.2009.01946.x 10.1126/science.276.5314.945 10.1126/science.1170025 10.1073/pnas.93.17.8820 10.1111/j.1570-7458.2005.00241.x 10.1002/cem.695 10.1126/science.277.5326.696 10.1094/MPMI-20-11-1439 10.1111/j.1365-313X.2009.04071.x 10.1111/j.1365-313X.2011.04740.x 10.1111/j.1469-8137.2007.02330.x 10.1021/bi00704a008 10.1016/j.pbi.2011.03.021 10.1002/rcm.3716 10.1104/pp.111.183749 10.1016/j.phytochem.2004.09.006 10.1016/S0031-9422(00)98051-8 10.1016/S1360-1385(01)02186-0 10.1016/j.gde.2007.09.002 10.1021/jf1017737 10.1105/tpc.111.088989 10.1016/j.phytochem.2008.03.006 10.1104/pp.111.179457 10.1016/j.chroma.2007.12.021 10.1046/j.1365-313X.1997.00547.x 10.1016/j.chroma.2008.05.038 10.1603/0022-0493(2007)100[1887:RTSFLN]2.0.CO;2 10.1073/pnas.89.17.8399 10.1007/s004250050466 10.1016/S0031-9422(99)00498-7 10.1016/S0031-9422(00)00494-5 10.1104/pp.107.112490 10.1111/j.1365-313X.2009.03868.x 10.1007/s10886-006-9196-7 10.1007/s00442-011-1968-2 10.1016/S0065-2296(08)60227-X 10.1371/journal.pone.0035498 10.1016/S0005-2760(98)00048-4 10.1271/bbb.64.1025 10.1016/j.phytochem.2007.09.017 10.1104/pp.110.166710 10.1007/s11306-008-0124-4 10.2307/3495238 10.1111/j.1469-8137.2011.03768.x 10.1104/pp.111.180224 10.1007/s10886-006-9117-9 10.1016/j.tplants.2009.08.006 10.1111/j.1469-8137.2012.04127.x 10.1111/j.1469-8137.2011.04001.x 10.1007/s00425-011-1409-9 10.1104/pp.34.6.656 |
ContentType | Journal Article |
Copyright | 2012 Blackwell Publishing Ltd 2014 INIST-CNRS 2012 Blackwell Publishing Ltd. Copyright © 2013 Blackwell Publishing Ltd |
Copyright_xml | – notice: 2012 Blackwell Publishing Ltd – notice: 2014 INIST-CNRS – notice: 2012 Blackwell Publishing Ltd. – notice: Copyright © 2013 Blackwell Publishing Ltd |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7ST C1K SOI 7X8 |
DOI | 10.1111/pce.12002 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 639 |
ExternalDocumentID | 3071060781 10_1111_pce_12002 22913585 26852120 PCE12002 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT 08R 8W4 ABHUG ABPTK ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS IQODW UMP CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7QP 7ST C1K SOI 7X8 |
ID | FETCH-LOGICAL-c4842-9e7e699039de107ac03043b885d9051ae484a0a3ba1db6c99ee4a8244b1e98e3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 |
IngestDate | Wed Dec 04 14:37:47 EST 2024 Thu Oct 10 20:10:36 EDT 2024 Fri Dec 06 04:18:21 EST 2024 Sat Sep 28 08:04:12 EDT 2024 Fri Nov 25 13:52:52 EST 2022 Sat Aug 24 00:58:19 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Metabolomics Monocotyledones Exudate Herbivorous Metabolite Insecta Systemic Induced resistance Cereal crop Spodoptera littoralis Pest Gramineae p-coumaroyltyramine Angiospermae root exudates Zea mays Root Induction Time of flight spectrometer systemic signaling Plant ecology Plant leaf UHPLC-TOF-MS Sensitivity resistance benzoxazinones Arthropoda Lepidoptera induced defence Defense mechanism Spermatophyta Noctuidae Invertebrata Mass spectrometry |
Language | English |
License | CC BY 4.0 2012 Blackwell Publishing Ltd. http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4842-9e7e699039de107ac03043b885d9051ae484a0a3ba1db6c99ee4a8244b1e98e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pce.12002 |
PMID | 22913585 |
PQID | 1432208474 |
PQPubID | 37957 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1282515143 proquest_journals_1432208474 crossref_primary_10_1111_pce_12002 pubmed_primary_22913585 pascalfrancis_primary_26852120 wiley_primary_10_1111_pce_12002_PCE12002 |
PublicationCentury | 2000 |
PublicationDate | March 2013 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: March 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: United States |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell – name: Wiley Subscription Services, Inc |
References | 2008; 1198 2004; 65 2002; 16 2010; 10 2011; 157 1974; 13 2011; 234 2010; 58 2003; 117 2008b; 1180 2011b; 156 2006; 32 2007; 100 1997; 276 1997; 277 2011; 99 2008; 105 2011; 191 2011; 14 2012a; 194 2008; 146 2010; 61 1998; 47 2009b; 14 2000; 53 1997; 12 2008; 69 1998; 207 1999; 11 2011; 68 2011; 23 1982 2008; 22 2008; 871 2007; 20 2001; 56 1992; 89 2007; 68 2011; 167 2009; 324 1959; 34 2007; 17 2010; 38 1991; 74 2005; 115 2002; 7 2000; 64 1996; 93 2008; 59 2008; 13 2006 2009a; 59 2011; 34 2008; 11 2000; 198 2011; 37 2011; 6 1998; 1393 1989; 28 2008a; 22 2009; 35 2011a; 155 2009; 32 2009; 70 2002; 61 2007; 152 2012; 193 1999; 30 2009; 5 2012b; 15 2009; 4 2008; 178 2012; 7 2008; 80 1987; 26 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 Bremmer J.M. (e_1_2_6_5_1) 1982 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 Lee S. (e_1_2_6_44_1) 1997; 12 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 117 start-page: 403 year: 2003 end-page: 412 article-title: Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect‐induced volatile emission in publication-title: Physiologia Plantarum – volume: 14 start-page: 653 year: 2009b end-page: 659 article-title: The underestimated role of roots in defense against leaf attackers publication-title: Trends in Plant Science – volume: 70 start-page: 1645 year: 2009 end-page: 1651 article-title: Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants publication-title: Phytochemistry – volume: 16 start-page: 119 year: 2002 end-page: 128 article-title: Orthogonal projections to latent structures (O‐PLS) publication-title: Journal of Chemometrics – volume: 68 start-page: 2831 year: 2007 end-page: 2846 article-title: From waste products to ecochemicals: fifty years research of plant secondary metabolism publication-title: Phytochemistry – volume: 20 start-page: 1439 year: 2007 end-page: 1448 article-title: Induction of p‐coumaroyidopamine and feruloyidopamine, two novel metabolites, in tomato by the bacterial pathogen publication-title: Molecular Plant-Microbe Interactions – volume: 89 start-page: 8399 year: 1992 end-page: 8402 article-title: Systemic release of chemical signals by herbivore‐injured corn publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 22 start-page: 3154 year: 2008a end-page: 3160 article-title: High‐resolution profiling of oxylipin‐containing galactolipids in extracts by ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry publication-title: Rapid Communications in Mass Spectrometry – volume: 234 start-page: 207 year: 2011 end-page: 215 article-title: Oviposition by a moth suppresses constitutive and herbivore‐induced plant volatiles in maize publication-title: Planta – volume: 193 start-page: 997 year: 2012 end-page: 1008 article-title: The major volatile organic compound emitted from flowers, the sesquiterpene ‐β‐caryophyllene, is a defense against a bacterial pathogen publication-title: New Phytologist – volume: 1198 start-page: 196 year: 2008 end-page: 201 article-title: Gas chromatographic investigation of phenylpropenoid glycerides from aspen (Populus L.) buds publication-title: Journal of Chromatography A – volume: 99 start-page: 46 year: 2011 end-page: 56 article-title: Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below‐ground microflora publication-title: Journal of Ecology – volume: 38 start-page: D355 year: 2010 end-page: D360 article-title: KEGG for representation and analysis of molecular networks involving diseases and drugs publication-title: Nucleic Acids Research – volume: 56 start-page: 669 year: 2001 end-page: 675 article-title: Induced accumulation of 2‐hydroxy‐4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one glucoside (HDMBOA‐Glc) in maize leaves publication-title: Phytochemistry – volume: 194 start-page: 1061 year: 2012a end-page: 1069 article-title: Herbivore‐induced plant volatiles mediate host selection by a root herbivore publication-title: New Phytologist – volume: 32 start-page: 2733 year: 2006 end-page: 2748 article-title: The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps publication-title: Journal of Chemical Ecology – volume: 37 start-page: 1294 year: 2011 end-page: 1303 article-title: Herbivore‐induced changes in tomato ( ) primary metabolism: a whole plant perspective publication-title: Journal of Chemical Ecology – volume: 207 start-page: 146 year: 1998 end-page: 152 article-title: Timing of induced volatile emissions in maize seedlings publication-title: Planta – volume: 80 start-page: 115 year: 2008 end-page: 122 article-title: Visualization of GC/TOF‐MS‐based metabolomics data for identification of biochemically interesting compounds using OPLS class models publication-title: Analytical Chemistry – volume: 1393 start-page: 193 year: 1998 end-page: 202 article-title: Increase in free linolenic and linoleic acids associated with phospholipase d‐mediated hydrolysis of phospholipids in wounded castor bean leaves publication-title: Biochimica Et Biophysica Acta-Lipids and Lipid Metabolism – volume: 6 start-page: e26214 year: 2011 article-title: Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco, publication-title: PLoS ONE – volume: 47 start-page: 659 year: 1998 end-page: 664 article-title: Accumulation of feruloyltyramine and p‐coumaroyltyramine in tomato leaves in response to wounding publication-title: Phytochemistry – volume: 32 start-page: 520 year: 2009 end-page: 531 article-title: Isoprene synthesis protects transgenic tobacco plants from oxidative stress publication-title: Plant, Cell & Environment – volume: 146 start-page: 845 year: 2008 end-page: 851 article-title: Why does herbivore attack reconfigure primary metabolism? publication-title: Plant Physiology – volume: 61 start-page: 467 year: 2010 end-page: 481 article-title: Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones publication-title: The Plant Journal – volume: 13 start-page: 264 year: 2008 end-page: 272 article-title: Long‐distance signalling in plant defence publication-title: Trends in Plant Science – volume: 26 start-page: 2185 year: 1987 end-page: 2190 article-title: Metabolism of tyramine and feruloyltyramine in TMV inoculated leaves of publication-title: Phytochemistry – volume: 30 start-page: 91 year: 1999 end-page: 115 – volume: 28 start-page: 2613 year: 1989 end-page: 2615 article-title: An antifungal compound, 9,12,13‐trihydroxy‐(E)‐10‐octadecenoic acid, from inoculated with publication-title: Phytochemistry – volume: 157 start-page: 1987 year: 2011 end-page: 1999 article-title: The chloroplast‐localized phospholipases D α4 and α5 regulate herbivore‐induced direct and indirect defenses in rice publication-title: Plant Physiology – volume: 65 start-page: 2995 year: 2004 end-page: 3001 article-title: Accumulation of HDMBOA‐Glc is induced by biotic stresses prior to the release of MBOA in maize leaves publication-title: Phytochemistry – volume: 7 start-page: e35498 year: 2012 article-title: Benzoxazinoids in root exudates of maize attract to the rhizosphere publication-title: PLoS ONE – volume: 64 start-page: 1025 year: 2000 end-page: 1031 article-title: Induction of N‐hydroxycinnamoyltyramine synthesis and tyramine N‐hydroxycinnamoyltransferase (THT) activity by wounding in maize leaves publication-title: Bioscience Biotechnology and Biochemistry – volume: 157 start-page: 317 year: 2011 end-page: 327 article-title: Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize publication-title: Plant Physiology – start-page: 165 year: 2006 end-page: 181 – volume: 14 start-page: 246 year: 2011 end-page: 251 article-title: Natural diversity and adaptation in plant secondary metabolism publication-title: Current Opinion in Plant Biology – volume: 11 start-page: 841 year: 2008 end-page: 851 article-title: Physiological integration of roots and shoots in plant defense strategies links above‐ and belowground herbivory publication-title: Ecology Letters – volume: 191 start-page: 1069 year: 2011 end-page: 1082 article-title: Mining for treatment‐specific and general changes in target compounds and metabolic fingerprints in response to herbivory and phytohormones in publication-title: New Phytologist – volume: 1180 start-page: 90 year: 2008b end-page: 98 article-title: Optimized liquid chromatography‐mass spectrometry approach for the isolation of minor stress biomarkers in plant extracts and their identification by capillary nuclear magnetic resonance publication-title: Journal of Chromatography A – volume: 59 start-page: 41 year: 2008 end-page: 66 article-title: Plant immunity to insect herbivores publication-title: Annual Review of Plant Biology – volume: 13 start-page: 1979 year: 1974 end-page: 1983 article-title: N‐(ρ‐coumaryl)‐tryptamine and N‐ferulyl tryptamine in kernels of publication-title: Phytochemistry – volume: 35 start-page: 219 year: 2009 end-page: 229 article-title: NMR Metabolomics of thrips ( ) resistance in senecio hybrids publication-title: Journal of Chemical Ecology – volume: 276 start-page: 945 year: 1997 end-page: 949 article-title: An elicitor of plant volatiles from beet armyworm oral secretion publication-title: Science – volume: 34 start-page: 656 year: 1959 end-page: 661 article-title: Estimated contributions of root and shoot to the nicotine content of the tobacco plant publication-title: Plant Physiology – volume: 198 start-page: 319 year: 2000 end-page: 346 – volume: 4 start-page: 1417 year: 2009 end-page: 1430 article-title: MS‐based plant metabolomic approaches for biomarker discovery publication-title: Natural Product Communications – volume: 178 start-page: 41 year: 2008 end-page: 61 article-title: Indirect defence via tritrophic interactions publication-title: New Phytologist – volume: 74 start-page: 42 year: 1991 end-page: 50 article-title: Do parasitoids use herbivore‐induced plant chemical defenses to locate hosts? publication-title: Florida Entomologist – volume: 93 start-page: 8820 year: 1996 end-page: 8825 article-title: Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 34 start-page: 1267 year: 2011 end-page: 1275 article-title: Systemic root signaling in a belowground, volatile‐mediated tritrophic interaction publication-title: Plant, Cell & Environment – volume: 61 start-page: 331 year: 2002 end-page: 337 article-title: Induction of HDMBOA‐Glc accumulation and DIMBOA‐Glc 4‐O‐methyltransferase by jasmonic acid in poaceous plants publication-title: Phytochemistry – volume: 32 start-page: 1911 year: 2006 end-page: 1924 article-title: Attraction of larvae to volatiles from herbivore‐damaged maize seedlings publication-title: Journal of Chemical Ecology – volume: 69 start-page: 1795 year: 2008 end-page: 1813 article-title: Beta‐glucosidases as detonators of plant chemical defense publication-title: Phytochemistry – volume: 11 start-page: 2249 year: 1999 end-page: 2260 article-title: Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves publication-title: The Plant Cell – volume: 23 start-page: 3303 year: 2011 end-page: 3318 article-title: Biosynthesis and defensive function of n‐acetylornithine, a jasmonate‐induced Arabidopsis metabolite publication-title: The Plant Cell – volume: 100 start-page: 1887 year: 2007 end-page: 1895 article-title: Resistance to (Lepidoptera : noctuidae) and (Diptera : ulidiidae) in sweet corn derived from exogenous and endogenous genetic systems publication-title: Journal of Economic Entomology – volume: 152 start-page: 257 year: 2007 end-page: 264 article-title: Impact of foliar herbivory on the development of a root‐feeding insect and its parasitoid publication-title: Oecologia – volume: 68 start-page: 901 year: 2011 end-page: 911 article-title: Induction and detoxification of maize 1,4‐benzoxazin‐3‐ones by insect herbivores publication-title: The Plant Journal – volume: 871 start-page: 261 year: 2008 end-page: 270 article-title: UPLC‐TOF‐MS for plant metabolomics: a sequential approach for wound marker analysis in publication-title: Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences – volume: 17 start-page: 519 year: 2007 end-page: 524 article-title: The ecogenetics and ecogenomics of plant‐herbivore interactions: rapid progress on a slippery road publication-title: Current Opinion in Genetics & Development – volume: 15 start-page: 55 year: 2012b end-page: 64 article-title: A specialist root herbivore exploits defensive metabolites to locate nutritious tissues publication-title: Ecology Letters – volume: 53 start-page: 223 year: 2000 end-page: 229 article-title: Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize publication-title: Phytochemistry – volume: 12 start-page: 547 year: 1997 end-page: 556 article-title: Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants publication-title: The Plant Journal: For Cell and Molecular Biology – volume: 5 start-page: 150 year: 2009 end-page: 161 article-title: Metabolomic analysis of the interaction between plants and herbivores publication-title: Metabolomics – start-page: 595 year: 1982 end-page: 624 – volume: 58 start-page: 9418 year: 2010 end-page: 9427 article-title: Development and validation of a liquid chromatography‐electrospray ionization‐time‐of‐flight mass spectrometry method for induced changes in leaves during simulated herbivory publication-title: Journal of Agricultural and Food Chemistry – volume: 22 start-page: 594 year: 2008 end-page: 600 article-title: CV‐ANOVA for significance testing of PLS and OPLS (R) models publication-title: Journal of Chemometrics – volume: 156 start-page: 2082 year: 2011b end-page: 2097 article-title: Novel acidic sesquiterpenoids constitute a dominant class of pathogen‐induced phytoalexins in maize publication-title: Plant Physiology – volume: 7 start-page: 61 year: 2002 end-page: 67 article-title: Fitness costs of induced resistance: emerging experimental support for a slippery concept publication-title: Trends in Plant Science – volume: 105 start-page: 17430 year: 2008 end-page: 17435 article-title: Isoprene interferes with the attraction of bodyguards by herbaceous plants publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 167 start-page: 1 year: 2011 end-page: 9 article-title: Herbivore‐induced resource sequestration in plants: why bother? publication-title: Oecologia – volume: 115 start-page: 161 year: 2005 end-page: 170 article-title: Root herbivory reduces growth and survival of the shoot feeding specialist on publication-title: Entomologia Experimentalis et Applicata – volume: 10 start-page: 583 year: 2010 end-page: 593 article-title: Metabolomics: the chemistry between ecology and genetics publication-title: Molecular Ecology Resources – volume: 324 start-page: 89 year: 2009 end-page: 91 article-title: Priming in systemic plant immunity publication-title: Science – volume: 59 start-page: 292 year: 2009a end-page: 302 article-title: Signal signature of aboveground‐induced resistance upon belowground herbivory in maize publication-title: The Plant Journal – volume: 99 start-page: 7 year: 2011 end-page: 15 article-title: Sequence of arrival determines plant‐mediated interactions between herbivores publication-title: Journal of Ecology – volume: 155 start-page: 1325 year: 2011a end-page: 1338 article-title: ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance publication-title: Plant Physiology – volume: 277 start-page: 696 year: 1997 end-page: 699 article-title: Analysis of a chemical plant defense mechanism in grasses publication-title: Science – volume: 13 start-page: 1354 year: 1974 end-page: 1363 article-title: Biosynthesis of a hydroxy fatty acid polymer, cutin. Identification and biosynthesis of 16‐oxo‐9‐ or 10‐hydroxypalmitic acid, a novel compound in publication-title: Biochemistry – ident: e_1_2_6_40_1 doi: 10.1111/j.1461-0248.2008.01200.x – ident: e_1_2_6_77_1 doi: 10.1021/ac0713510 – ident: e_1_2_6_68_1 doi: 10.1016/S0074-7696(00)98008-2 – ident: e_1_2_6_19_1 doi: 10.1016/j.phytochem.2009.05.012 – ident: e_1_2_6_46_1 doi: 10.1073/pnas.0804488105 – ident: e_1_2_6_65_1 doi: 10.1034/j.1399-3054.2003.00054.x – ident: e_1_2_6_67_1 doi: 10.1007/3-540-29782-0_13 – ident: e_1_2_6_78_1 doi: 10.1177/1934578X0900401019 – ident: e_1_2_6_24_1 doi: 10.1016/j.jchromb.2008.04.021 – ident: e_1_2_6_29_1 doi: 10.1111/j.1365-3040.2011.02327.x – ident: e_1_2_6_30_1 doi: 10.1146/annurev.arplant.59.032607.092825 – ident: e_1_2_6_45_1 doi: 10.1007/s10886-008-9586-0 – ident: e_1_2_6_79_1 doi: 10.1111/j.1365-2745.2010.01756.x – ident: e_1_2_6_12_1 doi: 10.1016/0031-9422(74)85129-0 – ident: e_1_2_6_15_1 doi: 10.1111/j.1365-2745.2010.01757.x – ident: e_1_2_6_70_1 doi: 10.1007/s10886-011-0042-1 – ident: e_1_2_6_50_1 doi: 10.1105/tpc.11.11.2249 – ident: e_1_2_6_52_1 doi: 10.1016/S0031-9422(00)84681-6 – start-page: 595 volume-title: Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties year: 1982 ident: e_1_2_6_5_1 contributor: fullname: Bremmer J.M. – ident: e_1_2_6_63_1 doi: 10.1111/j.1461-0248.2011.01708.x – ident: e_1_2_6_38_1 doi: 10.1093/nar/gkp896 – ident: e_1_2_6_58_1 doi: 10.1016/S0031-9422(97)00620-1 – ident: e_1_2_6_16_1 doi: 10.1002/cem.1187 – ident: e_1_2_6_47_1 doi: 10.1111/j.1755-0998.2010.02854.x – ident: e_1_2_6_41_1 doi: 10.1371/journal.pone.0026214 – ident: e_1_2_6_28_1 doi: 10.1016/j.tplants.2008.03.005 – ident: e_1_2_6_55_1 doi: 10.1016/S0031-9422(02)00225-X – ident: e_1_2_6_69_1 doi: 10.1111/j.1365-2656.2005.01006.x – ident: e_1_2_6_76_1 doi: 10.1111/j.1365-3040.2009.01946.x – ident: e_1_2_6_4_1 doi: 10.1126/science.276.5314.945 – ident: e_1_2_6_37_1 doi: 10.1126/science.1170025 – ident: e_1_2_6_6_1 doi: 10.1073/pnas.93.17.8820 – ident: e_1_2_6_10_1 doi: 10.1111/j.1570-7458.2005.00241.x – ident: e_1_2_6_72_1 doi: 10.1002/cem.695 – ident: e_1_2_6_18_1 doi: 10.1126/science.277.5326.696 – ident: e_1_2_6_80_1 doi: 10.1094/MPMI-20-11-1439 – ident: e_1_2_6_17_1 doi: 10.1111/j.1365-313X.2009.04071.x – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-313X.2011.04740.x – ident: e_1_2_6_26_1 doi: 10.1111/j.1469-8137.2007.02330.x – ident: e_1_2_6_42_1 doi: 10.1021/bi00704a008 – ident: e_1_2_6_43_1 doi: 10.1016/j.pbi.2011.03.021 – ident: e_1_2_6_21_1 doi: 10.1002/rcm.3716 – ident: e_1_2_6_61_1 doi: 10.1104/pp.111.183749 – ident: e_1_2_6_56_1 doi: 10.1016/j.phytochem.2004.09.006 – ident: e_1_2_6_48_1 doi: 10.1016/S0031-9422(00)98051-8 – ident: e_1_2_6_27_1 doi: 10.1016/S1360-1385(01)02186-0 – ident: e_1_2_6_39_1 doi: 10.1016/j.gde.2007.09.002 – ident: e_1_2_6_20_1 doi: 10.1021/jf1017737 – ident: e_1_2_6_2_1 doi: 10.1105/tpc.111.088989 – ident: e_1_2_6_49_1 doi: 10.1016/j.phytochem.2008.03.006 – ident: e_1_2_6_33_1 doi: 10.1104/pp.111.179457 – ident: e_1_2_6_22_1 doi: 10.1016/j.chroma.2007.12.021 – volume: 12 start-page: 547 year: 1997 ident: e_1_2_6_44_1 article-title: Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants publication-title: The Plant Journal: For Cell and Molecular Biology doi: 10.1046/j.1365-313X.1997.00547.x contributor: fullname: Lee S. – ident: e_1_2_6_35_1 doi: 10.1016/j.chroma.2008.05.038 – ident: e_1_2_6_53_1 doi: 10.1603/0022-0493(2007)100[1887:RTSFLN]2.0.CO;2 – ident: e_1_2_6_74_1 doi: 10.1073/pnas.89.17.8399 – ident: e_1_2_6_75_1 doi: 10.1007/s004250050466 – ident: e_1_2_6_7_1 doi: 10.1016/S0031-9422(99)00498-7 – ident: e_1_2_6_54_1 doi: 10.1016/S0031-9422(00)00494-5 – ident: e_1_2_6_66_1 doi: 10.1104/pp.107.112490 – ident: e_1_2_6_13_1 doi: 10.1111/j.1365-313X.2009.03868.x – ident: e_1_2_6_9_1 doi: 10.1007/s10886-006-9196-7 – ident: e_1_2_6_57_1 doi: 10.1007/s00442-011-1968-2 – ident: e_1_2_6_60_1 doi: 10.1016/S0065-2296(08)60227-X – ident: e_1_2_6_51_1 doi: 10.1371/journal.pone.0035498 – ident: e_1_2_6_64_1 doi: 10.1016/S0005-2760(98)00048-4 – ident: e_1_2_6_34_1 doi: 10.1271/bbb.64.1025 – ident: e_1_2_6_25_1 doi: 10.1016/j.phytochem.2007.09.017 – ident: e_1_2_6_32_1 doi: 10.1104/pp.110.166710 – ident: e_1_2_6_36_1 doi: 10.1007/s11306-008-0124-4 – ident: e_1_2_6_73_1 doi: 10.2307/3495238 – ident: e_1_2_6_71_1 doi: 10.1111/j.1469-8137.2011.03768.x – ident: e_1_2_6_3_1 doi: 10.1104/pp.111.180224 – ident: e_1_2_6_8_1 doi: 10.1007/s10886-006-9117-9 – ident: e_1_2_6_14_1 doi: 10.1016/j.tplants.2009.08.006 – ident: e_1_2_6_62_1 doi: 10.1111/j.1469-8137.2012.04127.x – ident: e_1_2_6_31_1 doi: 10.1111/j.1469-8137.2011.04001.x – ident: e_1_2_6_59_1 doi: 10.1007/s00425-011-1409-9 – ident: e_1_2_6_11_1 doi: 10.1104/pp.34.6.656 |
SSID | ssj0001479 |
Score | 2.4983253 |
Snippet | ABSTRACT
Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as... Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins... |
SourceID | proquest crossref pubmed pascalfrancis wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 621 |
SubjectTerms | Animals benzoxazinones Biological and medical sciences Chromatography, High Pressure Liquid Coumaric Acids - metabolism Fundamental and applied biological sciences. Psychology Herbivory induced defence induced resistance Ions - metabolism Mass Spectrometry Metabolome Metabolomics Plant Leaves - metabolism Plant Roots - metabolism p‐coumaroyltyramine root exudates Spodoptera Spodoptera littoralis systemic signaling UHPLC‐TOF‐MS Zea mays Zea mays - metabolism |
Title | Metabolomics reveals herbivore‐induced metabolites of resistance and susceptibility in maize leaves and roots |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.12002 https://www.ncbi.nlm.nih.gov/pubmed/22913585 https://www.proquest.com/docview/1432208474 https://search.proquest.com/docview/1282515143 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9KURDEav2XWssqPviSI9lskl18amtLESoiFfoghN1kAkfb5OjmCtcnP4KfsZ-ks5vk6omC-LaQSdjszOz8Jpn5LcA7nlecUHAdatqBQyHTiEayClODsopVXUa-K-34c3b0TXw6TU_X4MPYC9PzQyw_uDnP8Pu1c3Bt7C9OPitxEg9EknGSu3K-j1_vqKNi0fPsufLFPFfxwCrkqniWd67EooczbWlZ6v48iz8BzlX86gPQ4QZ8H6fe152cTeadmZTXv7E6_ue7PYZHAzBlu70lPYE1bDbhfn9U5WIT7u21BCMXT6E9xo4M59x1M1vmCKDIgBlp3kyv2ku8-fGTsnyyl4pd9IKEaS1raxK1DquSkTHdVMzOra-o8cW5CzZt2IWeXiM7R31FNzgRAvWdfQYnhwcn-0fhcGpDWAopeKgwx4xiXKIqpNxSl-7na2KkTCvHBaaRpHSkE6PjymSlUohCS0IZJkYlMXkO603b4EtgRom0RI6yphiaZEZxrGOtU6HJiEzGA3g7qq-Y9dwcxZjT0AoWfgUD2FlR7FKSZ9L1LUcBbI-aLgb_tZQQ0UYXUeQWAbxZXibPc79TdIPtnGR8268DnAG86C3k7uFcxQllYgG893r--_yKL_sHfrD176Kv4AH3p3K4UrhtWO8u5_iasFFndrwT3ALY5Qt0 |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9KVRTEP7VqtNZVfPAlR3bz53bBF60tp_aKyAl9kbCbTOCwTY4mV7g--RH8jH4SZ3cvV08UxLdAZsNmZ2bnN8nMbwFeiGEpCAVXoaYdOExkGtGVLMPUoCy5qorIdaWNj7LR5-T9cXq8Aa_6XhjPD7H64GY9w-3X1sHtB-lfvHxW4IB7Jskr5O7cFnS9_XRJHsUTz7RnCxiHQ8WXvEK2jmc1dC0a3Zzplham8ida_AlyriNYF4IObsOXfvK-8uTrYN6ZQXHxG6_j_77dHbi1xKbstTemu7CB9RZc86dVLrbg6puGkOTiHjRj7Mh2TmxDc8ssBxTZMCPlm-l5c4Y_vn2nRJ9MpmSnXpBgbcuaikRbC1fJzpiuS9bOW1dU4-pzF2xas1M9vUB2gvqcBlgRwvVduw2Tg_3J3ihcHtwQFolMRKhwiBmFuViVSOmlLuz_19hImZaWDkwjSelIx0bz0mSFUoiJlgQ0DEclMb4Pm3VT40NgRiVpgQJlRWE0zowSWHGt00STHZlMBPC8118-8_QceZ_W0ArmbgUD2F3T7EpSZNK2LkcB7PSqzpcu3FJORHtdRME7CeDZ6jY5n_2jomts5iTjOn8t5gzggTeRy4cLxWNKxgJ46RT99_nlH_f23cWjfxd9CtdHk_Fhfvju6MNjuCHcIR22Mm4HNruzOT4hqNSZXecRPwGMyw-V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9Kq1IoftSvaK2r-OBLjmSzye3ik7Y96kdLkQp9EMJuMoGjbXI0ucL1yT_Bv9G_xNndy9UTBfFtIZOw2ZnZ-U0y81uAV3xYckLBVahpBw6FTCMayTJMDcoyVlURua60g8Ns_4v4cJKerMCbvhfG80MsPrhZz3D7tXXwSVn94uSTAgexJ5JcExlXljh_9_M1d1QsPNGerV8cDlU8pxWyZTyLW5eC0cZEt7QulT_Q4k-IcxnAugg0ugNf-7n7wpPTwbQzg-LqN1rH_3y5u3B7jkzZW29K92AF60246c-qnG3CjXcN4cjZfWgOsCPLObPtzC2zDFBkwYxUb8aXzQX--Pad0nwymJKde0ECtS1rKhJtLVglK2O6Llk7bV1JjavOnbFxzc71-ArZGepLusGKEKrv2gdwPNo73tkP58c2hIWQgocKh5hRkEtUiZRc6sL-fU2MlGlpycA0kpSOdGJ0XJqsUApRaEkww8SoJCYPYbVuanwMzCiRFshRVhREk8wojlWsdSo0WZHJeAAve_XlE0_OkfdJDa1g7lYwgO0lxS4keSZt43IUwFav6XzuwC1lRLTTRRS6RQAvFpfJ9ez_FF1jMyUZ1_drEWcAj7yFXD-cqzihVCyA107Pf59ffrSz5wZP_l30Odw62h3ln94ffnwK69yd0GHL4rZgtbuY4jPCSZ3Zdv7wE1uCDkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolomics+reveals+herbivore-induced+metabolites+of+resistance+and+susceptibility+in+maize+leaves+and+roots&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Marti%2C+GUILLAUME&rft.au=Erb%2C+MATTHIAS&rft.au=Boccard%2C+JULIEN&rft.au=Glauser%2C+GA%C3%89TAN&rft.date=2013-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=36&rft.issue=3&rft.spage=621&rft_id=info:doi/10.1111%2Fpce.12002&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3071060781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |