Metabolomics reveals herbivore‐induced metabolites of resistance and susceptibility in maize leaves and roots

ABSTRACT Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra‐high‐pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS)‐base...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 36; no. 3; pp. 621 - 639
Main Authors MARTI, GUILLAUME, ERB, MATTHIAS, BOCCARD, JULIEN, GLAUSER, GAÉTAN, DOYEN, GWLADYS R., VILLARD, NEIL, ROBERT, CHRISTELLE A M., TURLINGS, TED C. J., RUDAZ, SERGE, WOLFENDER, JEAN‐LUC
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2013
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra‐high‐pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS)‐based metabolomics approach to evaluate local and systemic herbivore‐induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty‐two differentially regulated compounds were identified from Spodoptera littoralis‐infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano‐infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3‐benzoxazin‐4‐ones, phospholipids, N‐hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3‐benzoxazin‐4‐ones increased in the vascular sap and root exudates. The role of N‐hydroxycinnamoyltyramines in plant–herbivore interactions is unknown, and we therefore tested the effect of the dominating p‐coumaroyltyramine on S. littoralis. Unexpectedly, p‐coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots. In the presented manuscript, we developed an ultra‐high pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS) based metabolomics approach to study how maize plants respond to attack by the generalist herbivore Spodoptera littoralis. Using multivariate data analysis, microflow nuclear magnetic resonance and direct nano‐infusion tandem MS/MS, we systematically extracted, identified, quantified and tested major metabolites that are differentially regulated in maize seedlings. With this approach, our investigation provides deep insights into the dynamic patterns of local and systemic metabolic regulation.
AbstractList Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plant-herbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots.
Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra‐high‐pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS)‐based metabolomics approach to evaluate local and systemic herbivore‐induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty‐two differentially regulated compounds were identified from Spodoptera littoralis ‐infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano‐infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3‐benzoxazin‐4‐ones, phospholipids, N ‐hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3‐benzoxazin‐4‐ones increased in the vascular sap and root exudates. The role of N ‐hydroxycinnamoyltyramines in plant–herbivore interactions is unknown, and we therefore tested the effect of the dominating p ‐coumaroyltyramine on S. littoralis . Unexpectedly, p ‐coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots. In the presented manuscript, we developed an ultra‐high pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS) based metabolomics approach to study how maize plants respond to attack by the generalist herbivore Spodoptera littoralis. Using multivariate data analysis, microflow nuclear magnetic resonance and direct nano‐infusion tandem MS/MS, we systematically extracted, identified, quantified and tested major metabolites that are differentially regulated in maize seedlings. With this approach, our investigation provides deep insights into the dynamic patterns of local and systemic metabolic regulation.
Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plant-herbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots. In the presented manuscript, we developed an ultra-high pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS) based metabolomics approach to study how maize plants respond to attack by the generalist herbivore Spodoptera littoralis. Using multivariate data analysis, microflow nuclear magnetic resonance and direct nano-infusion tandem MS/MS, we systematically extracted, identified, quantified and tested major metabolites that are differentially regulated in maize seedlings. With this approach, our investigation provides deep insights into the dynamic patterns of local and systemic metabolic regulation. [PUBLICATION ABSTRACT]
ABSTRACT Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra‐high‐pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS)‐based metabolomics approach to evaluate local and systemic herbivore‐induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty‐two differentially regulated compounds were identified from Spodoptera littoralis‐infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano‐infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3‐benzoxazin‐4‐ones, phospholipids, N‐hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3‐benzoxazin‐4‐ones increased in the vascular sap and root exudates. The role of N‐hydroxycinnamoyltyramines in plant–herbivore interactions is unknown, and we therefore tested the effect of the dominating p‐coumaroyltyramine on S. littoralis. Unexpectedly, p‐coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots. In the presented manuscript, we developed an ultra‐high pressure liquid chromatography time‐of‐flight mass spectrometry (UHPLC‐TOF‐MS) based metabolomics approach to study how maize plants respond to attack by the generalist herbivore Spodoptera littoralis. Using multivariate data analysis, microflow nuclear magnetic resonance and direct nano‐infusion tandem MS/MS, we systematically extracted, identified, quantified and tested major metabolites that are differentially regulated in maize seedlings. With this approach, our investigation provides deep insights into the dynamic patterns of local and systemic metabolic regulation.
Author RUDAZ, SERGE
TURLINGS, TED C. J.
ERB, MATTHIAS
MARTI, GUILLAUME
BOCCARD, JULIEN
ROBERT, CHRISTELLE A M.
WOLFENDER, JEAN‐LUC
VILLARD, NEIL
GLAUSER, GAÉTAN
DOYEN, GWLADYS R.
Author_xml – sequence: 1
  givenname: GUILLAUME
  surname: MARTI
  fullname: MARTI, GUILLAUME
– sequence: 2
  givenname: MATTHIAS
  surname: ERB
  fullname: ERB, MATTHIAS
– sequence: 3
  givenname: JULIEN
  surname: BOCCARD
  fullname: BOCCARD, JULIEN
– sequence: 4
  givenname: GAÉTAN
  surname: GLAUSER
  fullname: GLAUSER, GAÉTAN
– sequence: 5
  givenname: GWLADYS R.
  surname: DOYEN
  fullname: DOYEN, GWLADYS R.
– sequence: 6
  givenname: NEIL
  surname: VILLARD
  fullname: VILLARD, NEIL
– sequence: 7
  givenname: CHRISTELLE A M.
  surname: ROBERT
  fullname: ROBERT, CHRISTELLE A M.
– sequence: 8
  givenname: TED C. J.
  surname: TURLINGS
  fullname: TURLINGS, TED C. J.
– sequence: 9
  givenname: SERGE
  surname: RUDAZ
  fullname: RUDAZ, SERGE
– sequence: 10
  givenname: JEAN‐LUC
  surname: WOLFENDER
  fullname: WOLFENDER, JEAN‐LUC
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26852120$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22913585$$D View this record in MEDLINE/PubMed
BookMark eNp10cFO3DAQAFALUZVd4MAPIEuoUjkEbMfZ2MdqtZRKVO1h75bjzAqvknixk0XbUz-Bb-RLGJptKyHhiyX7eWY8MyWHXeiAkDPOrjiu642DKy4YEwdkwvNZkeVMskMyYVyyrCw1PyLTlNaM4UGpP5IjITTPC1VMSPgOva1CE1rvEo2wBdskeg-x8tsQ4fn3k-_qwUFN2xH6HhINK6TJp952DqjtapqG5GDT-8qj2FHf0db6X0AbsFt88EpiCH06IR9WmAFO9_sxWd4slvPb7O7H12_zL3eZk0qKTEMJM61ZrmvgrLSO4ZfySqmi1qzgFlBZZvPK8rqaOa0BpFVCyoqDVpAfk89j2E0MDwOk3rQeC2wa20EYkuFCiYIXXOZIL97QdRhih8UZvBaCKVlKVJejcjGkFGFlNtG3Nu4MZ-Z1CAaHYP4MAe35PuJQtVD_k3-7juDTHtjkbLOK2Eaf_ruZKgSGQnc9ukffwO79jObnfDGmfgF0WqDi
CODEN PLCEDV
CitedBy_id crossref_primary_10_3390_metabo12030236
crossref_primary_10_1111_nph_17583
crossref_primary_10_1111_nph_14597
crossref_primary_10_1111_eea_12336
crossref_primary_10_1007_s00425_018_2886_x
crossref_primary_10_1111_pce_12926
crossref_primary_10_3390_metabo10080310
crossref_primary_10_1016_j_cois_2018_12_008
crossref_primary_10_3390_metabo11070438
crossref_primary_10_1111_tpj_12439
crossref_primary_10_1002_ece3_1922
crossref_primary_10_1093_jee_toz035
crossref_primary_10_1126_sciadv_aat6797
crossref_primary_10_1016_j_pld_2018_06_006
crossref_primary_10_1038_srep37390
crossref_primary_10_3390_molecules23020188
crossref_primary_10_1111_plb_12947
crossref_primary_10_1016_j_chroma_2014_10_091
crossref_primary_10_1038_srep37674
crossref_primary_10_1093_femsre_fuaa037
crossref_primary_10_1016_j_aca_2016_12_044
crossref_primary_10_1016_j_tig_2016_05_003
crossref_primary_10_1038_srep06122
crossref_primary_10_1016_j_jcs_2013_10_002
crossref_primary_10_1093_plphys_kiab368
crossref_primary_10_3390_toxins10050187
crossref_primary_10_1094_MPMI_04_15_0092_R
crossref_primary_10_1111_nph_19068
crossref_primary_10_1016_j_cpb_2022_100268
crossref_primary_10_1104_pp_114_253120
crossref_primary_10_7717_peerj_9819
crossref_primary_10_1016_j_scitotenv_2023_161737
crossref_primary_10_1094_MPMI_01_15_0016_R
crossref_primary_10_1073_pnas_1503106112
crossref_primary_10_1111_pce_13955
crossref_primary_10_3389_fpls_2017_01302
crossref_primary_10_1007_s11427_022_2279_5
crossref_primary_10_7554_eLife_68642
crossref_primary_10_1093_aob_mcu265
crossref_primary_10_1139_gen_2019_0043
crossref_primary_10_1093_pcp_pct041
crossref_primary_10_1021_acs_jafc_8b06316
crossref_primary_10_1086_713444
crossref_primary_10_5936_csbj_201301010
crossref_primary_10_3390_ijms19051356
crossref_primary_10_3390_ijms17060923
crossref_primary_10_1093_jxb_erw219
crossref_primary_10_1111_tpj_13639
crossref_primary_10_1104_pp_114_252700
crossref_primary_10_3390_foods12102046
crossref_primary_10_1105_tpc_113_112409
crossref_primary_10_1111_tpj_13001
crossref_primary_10_3389_fsufs_2023_1130089
crossref_primary_10_3390_ht7020016
crossref_primary_10_1007_s11829_017_9562_0
crossref_primary_10_1093_jxb_eru489
crossref_primary_10_1134_S106422932260097X
crossref_primary_10_3390_ijms21020406
crossref_primary_10_1111_een_12966
crossref_primary_10_1007_s00216_022_04475_9
crossref_primary_10_1007_s11284_016_1410_7
crossref_primary_10_3389_fpls_2018_00522
crossref_primary_10_3390_ijms25116124
crossref_primary_10_3390_metabo12060484
crossref_primary_10_1007_s11104_017_3452_1
crossref_primary_10_1016_j_tplants_2022_08_016
crossref_primary_10_1002_pld3_578
crossref_primary_10_3390_molecules190914004
crossref_primary_10_1039_C5NP00003C
crossref_primary_10_3390_metabo13050666
crossref_primary_10_1093_jxb_eraa582
crossref_primary_10_1016_j_tplants_2016_01_008
crossref_primary_10_1111_eea_13073
crossref_primary_10_1016_j_xplc_2021_100187
crossref_primary_10_1021_acs_jafc_0c01462
crossref_primary_10_1016_j_anbehav_2016_01_001
crossref_primary_10_2174_1389201020666190328115411
crossref_primary_10_1016_j_scienta_2018_06_003
crossref_primary_10_1111_pce_12735
crossref_primary_10_1111_pce_14643
crossref_primary_10_1111_tpj_14317
crossref_primary_10_1111_pce_12069
crossref_primary_10_1111_pce_12220
crossref_primary_10_1111_jipb_13204
crossref_primary_10_1080_09168451_2018_1429889
crossref_primary_10_1016_j_ejar_2024_05_002
crossref_primary_10_1016_j_foodchem_2016_02_148
crossref_primary_10_1007_s11306_018_1427_8
crossref_primary_10_3839_jabc_2021_021
crossref_primary_10_1139_er_2013_0011
crossref_primary_10_1007_s11829_023_09972_x
crossref_primary_10_1111_1365_2745_13841
crossref_primary_10_1186_s12870_015_0526_1
crossref_primary_10_1371_journal_pbio_3001114
crossref_primary_10_1111_pce_14458
crossref_primary_10_1111_tpj_12503
crossref_primary_10_3389_fnut_2024_1322904
crossref_primary_10_1111_1365_2656_12995
crossref_primary_10_1007_s00425_018_2953_3
crossref_primary_10_1007_s11104_019_04405_2
crossref_primary_10_1371_journal_pone_0241627
crossref_primary_10_1653_024_103_0301
crossref_primary_10_1007_s00216_015_8770_7
crossref_primary_10_1021_acs_analchem_5b03912
crossref_primary_10_1093_jxb_erv045
crossref_primary_10_1007_s10886_018_1015_4
crossref_primary_10_1111_nph_19415
crossref_primary_10_1186_s13007_022_00856_4
crossref_primary_10_1002_ecy_1855
crossref_primary_10_1007_s11306_019_1523_4
crossref_primary_10_1093_jxb_erab171
crossref_primary_10_1021_acs_analchem_0c04371
crossref_primary_10_1111_tpj_15988
crossref_primary_10_3390_metabo12080727
crossref_primary_10_1111_een_13143
crossref_primary_10_3389_fpls_2017_01513
crossref_primary_10_1007_s12374_021_09341_2
crossref_primary_10_1002_ece3_2208
crossref_primary_10_1016_j_pbi_2015_05_023
crossref_primary_10_1111_1365_2745_13394
crossref_primary_10_3390_metabo11020084
crossref_primary_10_1021_acs_jafc_1c02241
crossref_primary_10_3390_ijms22010318
Cites_doi 10.1111/j.1461-0248.2008.01200.x
10.1021/ac0713510
10.1016/S0074-7696(00)98008-2
10.1016/j.phytochem.2009.05.012
10.1073/pnas.0804488105
10.1034/j.1399-3054.2003.00054.x
10.1007/3-540-29782-0_13
10.1177/1934578X0900401019
10.1016/j.jchromb.2008.04.021
10.1111/j.1365-3040.2011.02327.x
10.1146/annurev.arplant.59.032607.092825
10.1007/s10886-008-9586-0
10.1111/j.1365-2745.2010.01756.x
10.1016/0031-9422(74)85129-0
10.1111/j.1365-2745.2010.01757.x
10.1007/s10886-011-0042-1
10.1105/tpc.11.11.2249
10.1016/S0031-9422(00)84681-6
10.1111/j.1461-0248.2011.01708.x
10.1093/nar/gkp896
10.1016/S0031-9422(97)00620-1
10.1002/cem.1187
10.1111/j.1755-0998.2010.02854.x
10.1371/journal.pone.0026214
10.1016/j.tplants.2008.03.005
10.1016/S0031-9422(02)00225-X
10.1111/j.1365-2656.2005.01006.x
10.1111/j.1365-3040.2009.01946.x
10.1126/science.276.5314.945
10.1126/science.1170025
10.1073/pnas.93.17.8820
10.1111/j.1570-7458.2005.00241.x
10.1002/cem.695
10.1126/science.277.5326.696
10.1094/MPMI-20-11-1439
10.1111/j.1365-313X.2009.04071.x
10.1111/j.1365-313X.2011.04740.x
10.1111/j.1469-8137.2007.02330.x
10.1021/bi00704a008
10.1016/j.pbi.2011.03.021
10.1002/rcm.3716
10.1104/pp.111.183749
10.1016/j.phytochem.2004.09.006
10.1016/S0031-9422(00)98051-8
10.1016/S1360-1385(01)02186-0
10.1016/j.gde.2007.09.002
10.1021/jf1017737
10.1105/tpc.111.088989
10.1016/j.phytochem.2008.03.006
10.1104/pp.111.179457
10.1016/j.chroma.2007.12.021
10.1046/j.1365-313X.1997.00547.x
10.1016/j.chroma.2008.05.038
10.1603/0022-0493(2007)100[1887:RTSFLN]2.0.CO;2
10.1073/pnas.89.17.8399
10.1007/s004250050466
10.1016/S0031-9422(99)00498-7
10.1016/S0031-9422(00)00494-5
10.1104/pp.107.112490
10.1111/j.1365-313X.2009.03868.x
10.1007/s10886-006-9196-7
10.1007/s00442-011-1968-2
10.1016/S0065-2296(08)60227-X
10.1371/journal.pone.0035498
10.1016/S0005-2760(98)00048-4
10.1271/bbb.64.1025
10.1016/j.phytochem.2007.09.017
10.1104/pp.110.166710
10.1007/s11306-008-0124-4
10.2307/3495238
10.1111/j.1469-8137.2011.03768.x
10.1104/pp.111.180224
10.1007/s10886-006-9117-9
10.1016/j.tplants.2009.08.006
10.1111/j.1469-8137.2012.04127.x
10.1111/j.1469-8137.2011.04001.x
10.1007/s00425-011-1409-9
10.1104/pp.34.6.656
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd
2014 INIST-CNRS
2012 Blackwell Publishing Ltd.
Copyright © 2013 Blackwell Publishing Ltd
Copyright_xml – notice: 2012 Blackwell Publishing Ltd
– notice: 2014 INIST-CNRS
– notice: 2012 Blackwell Publishing Ltd.
– notice: Copyright © 2013 Blackwell Publishing Ltd
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7ST
C1K
SOI
7X8
DOI 10.1111/pce.12002
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Calcium & Calcified Tissue Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 639
ExternalDocumentID 3071060781
10_1111_pce_12002
22913585
26852120
PCE12002
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
08R
8W4
ABHUG
ABPTK
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
UMP
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7QP
7ST
C1K
SOI
7X8
ID FETCH-LOGICAL-c4842-9e7e699039de107ac03043b885d9051ae484a0a3ba1db6c99ee4a8244b1e98e3
IEDL.DBID DR2
ISSN 0140-7791
IngestDate Wed Dec 04 14:37:47 EST 2024
Thu Oct 10 20:10:36 EDT 2024
Fri Dec 06 04:18:21 EST 2024
Sat Sep 28 08:04:12 EDT 2024
Fri Nov 25 13:52:52 EST 2022
Sat Aug 24 00:58:19 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Metabolomics
Monocotyledones
Exudate
Herbivorous
Metabolite
Insecta
Systemic
Induced resistance
Cereal crop
Spodoptera littoralis
Pest
Gramineae
p-coumaroyltyramine
Angiospermae
root exudates
Zea mays
Root
Induction
Time of flight spectrometer
systemic signaling
Plant ecology
Plant leaf
UHPLC-TOF-MS
Sensitivity resistance
benzoxazinones
Arthropoda
Lepidoptera
induced defence
Defense mechanism
Spermatophyta
Noctuidae
Invertebrata
Mass spectrometry
Language English
License CC BY 4.0
2012 Blackwell Publishing Ltd.
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4842-9e7e699039de107ac03043b885d9051ae484a0a3ba1db6c99ee4a8244b1e98e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pce.12002
PMID 22913585
PQID 1432208474
PQPubID 37957
PageCount 19
ParticipantIDs proquest_miscellaneous_1282515143
proquest_journals_1432208474
crossref_primary_10_1111_pce_12002
pubmed_primary_22913585
pascalfrancis_primary_26852120
wiley_primary_10_1111_pce_12002_PCE12002
PublicationCentury 2000
PublicationDate March 2013
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: March 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: United States
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
References 2008; 1198
2004; 65
2002; 16
2010; 10
2011; 157
1974; 13
2011; 234
2010; 58
2003; 117
2008b; 1180
2011b; 156
2006; 32
2007; 100
1997; 276
1997; 277
2011; 99
2008; 105
2011; 191
2011; 14
2012a; 194
2008; 146
2010; 61
1998; 47
2009b; 14
2000; 53
1997; 12
2008; 69
1998; 207
1999; 11
2011; 68
2011; 23
1982
2008; 22
2008; 871
2007; 20
2001; 56
1992; 89
2007; 68
2011; 167
2009; 324
1959; 34
2007; 17
2010; 38
1991; 74
2005; 115
2002; 7
2000; 64
1996; 93
2008; 59
2008; 13
2006
2009a; 59
2011; 34
2008; 11
2000; 198
2011; 37
2011; 6
1998; 1393
1989; 28
2008a; 22
2009; 35
2011a; 155
2009; 32
2009; 70
2002; 61
2007; 152
2012; 193
1999; 30
2009; 5
2012b; 15
2009; 4
2008; 178
2012; 7
2008; 80
1987; 26
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
Bremmer J.M. (e_1_2_6_5_1) 1982
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
Lee S. (e_1_2_6_44_1) 1997; 12
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 117
  start-page: 403
  year: 2003
  end-page: 412
  article-title: Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect‐induced volatile emission in
  publication-title: Physiologia Plantarum
– volume: 14
  start-page: 653
  year: 2009b
  end-page: 659
  article-title: The underestimated role of roots in defense against leaf attackers
  publication-title: Trends in Plant Science
– volume: 70
  start-page: 1645
  year: 2009
  end-page: 1651
  article-title: Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants
  publication-title: Phytochemistry
– volume: 16
  start-page: 119
  year: 2002
  end-page: 128
  article-title: Orthogonal projections to latent structures (O‐PLS)
  publication-title: Journal of Chemometrics
– volume: 68
  start-page: 2831
  year: 2007
  end-page: 2846
  article-title: From waste products to ecochemicals: fifty years research of plant secondary metabolism
  publication-title: Phytochemistry
– volume: 20
  start-page: 1439
  year: 2007
  end-page: 1448
  article-title: Induction of p‐coumaroyidopamine and feruloyidopamine, two novel metabolites, in tomato by the bacterial pathogen
  publication-title: Molecular Plant-Microbe Interactions
– volume: 89
  start-page: 8399
  year: 1992
  end-page: 8402
  article-title: Systemic release of chemical signals by herbivore‐injured corn
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 22
  start-page: 3154
  year: 2008a
  end-page: 3160
  article-title: High‐resolution profiling of oxylipin‐containing galactolipids in extracts by ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry
  publication-title: Rapid Communications in Mass Spectrometry
– volume: 234
  start-page: 207
  year: 2011
  end-page: 215
  article-title: Oviposition by a moth suppresses constitutive and herbivore‐induced plant volatiles in maize
  publication-title: Planta
– volume: 193
  start-page: 997
  year: 2012
  end-page: 1008
  article-title: The major volatile organic compound emitted from flowers, the sesquiterpene ‐β‐caryophyllene, is a defense against a bacterial pathogen
  publication-title: New Phytologist
– volume: 1198
  start-page: 196
  year: 2008
  end-page: 201
  article-title: Gas chromatographic investigation of phenylpropenoid glycerides from aspen (Populus L.) buds
  publication-title: Journal of Chromatography A
– volume: 99
  start-page: 46
  year: 2011
  end-page: 56
  article-title: Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below‐ground microflora
  publication-title: Journal of Ecology
– volume: 38
  start-page: D355
  year: 2010
  end-page: D360
  article-title: KEGG for representation and analysis of molecular networks involving diseases and drugs
  publication-title: Nucleic Acids Research
– volume: 56
  start-page: 669
  year: 2001
  end-page: 675
  article-title: Induced accumulation of 2‐hydroxy‐4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one glucoside (HDMBOA‐Glc) in maize leaves
  publication-title: Phytochemistry
– volume: 194
  start-page: 1061
  year: 2012a
  end-page: 1069
  article-title: Herbivore‐induced plant volatiles mediate host selection by a root herbivore
  publication-title: New Phytologist
– volume: 32
  start-page: 2733
  year: 2006
  end-page: 2748
  article-title: The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps
  publication-title: Journal of Chemical Ecology
– volume: 37
  start-page: 1294
  year: 2011
  end-page: 1303
  article-title: Herbivore‐induced changes in tomato ( ) primary metabolism: a whole plant perspective
  publication-title: Journal of Chemical Ecology
– volume: 207
  start-page: 146
  year: 1998
  end-page: 152
  article-title: Timing of induced volatile emissions in maize seedlings
  publication-title: Planta
– volume: 80
  start-page: 115
  year: 2008
  end-page: 122
  article-title: Visualization of GC/TOF‐MS‐based metabolomics data for identification of biochemically interesting compounds using OPLS class models
  publication-title: Analytical Chemistry
– volume: 1393
  start-page: 193
  year: 1998
  end-page: 202
  article-title: Increase in free linolenic and linoleic acids associated with phospholipase d‐mediated hydrolysis of phospholipids in wounded castor bean leaves
  publication-title: Biochimica Et Biophysica Acta-Lipids and Lipid Metabolism
– volume: 6
  start-page: e26214
  year: 2011
  article-title: Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco,
  publication-title: PLoS ONE
– volume: 47
  start-page: 659
  year: 1998
  end-page: 664
  article-title: Accumulation of feruloyltyramine and p‐coumaroyltyramine in tomato leaves in response to wounding
  publication-title: Phytochemistry
– volume: 32
  start-page: 520
  year: 2009
  end-page: 531
  article-title: Isoprene synthesis protects transgenic tobacco plants from oxidative stress
  publication-title: Plant, Cell & Environment
– volume: 146
  start-page: 845
  year: 2008
  end-page: 851
  article-title: Why does herbivore attack reconfigure primary metabolism?
  publication-title: Plant Physiology
– volume: 61
  start-page: 467
  year: 2010
  end-page: 481
  article-title: Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones
  publication-title: The Plant Journal
– volume: 13
  start-page: 264
  year: 2008
  end-page: 272
  article-title: Long‐distance signalling in plant defence
  publication-title: Trends in Plant Science
– volume: 26
  start-page: 2185
  year: 1987
  end-page: 2190
  article-title: Metabolism of tyramine and feruloyltyramine in TMV inoculated leaves of
  publication-title: Phytochemistry
– volume: 30
  start-page: 91
  year: 1999
  end-page: 115
– volume: 28
  start-page: 2613
  year: 1989
  end-page: 2615
  article-title: An antifungal compound, 9,12,13‐trihydroxy‐(E)‐10‐octadecenoic acid, from inoculated with
  publication-title: Phytochemistry
– volume: 157
  start-page: 1987
  year: 2011
  end-page: 1999
  article-title: The chloroplast‐localized phospholipases D α4 and α5 regulate herbivore‐induced direct and indirect defenses in rice
  publication-title: Plant Physiology
– volume: 65
  start-page: 2995
  year: 2004
  end-page: 3001
  article-title: Accumulation of HDMBOA‐Glc is induced by biotic stresses prior to the release of MBOA in maize leaves
  publication-title: Phytochemistry
– volume: 7
  start-page: e35498
  year: 2012
  article-title: Benzoxazinoids in root exudates of maize attract to the rhizosphere
  publication-title: PLoS ONE
– volume: 64
  start-page: 1025
  year: 2000
  end-page: 1031
  article-title: Induction of N‐hydroxycinnamoyltyramine synthesis and tyramine N‐hydroxycinnamoyltransferase (THT) activity by wounding in maize leaves
  publication-title: Bioscience Biotechnology and Biochemistry
– volume: 157
  start-page: 317
  year: 2011
  end-page: 327
  article-title: Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize
  publication-title: Plant Physiology
– start-page: 165
  year: 2006
  end-page: 181
– volume: 14
  start-page: 246
  year: 2011
  end-page: 251
  article-title: Natural diversity and adaptation in plant secondary metabolism
  publication-title: Current Opinion in Plant Biology
– volume: 11
  start-page: 841
  year: 2008
  end-page: 851
  article-title: Physiological integration of roots and shoots in plant defense strategies links above‐ and belowground herbivory
  publication-title: Ecology Letters
– volume: 191
  start-page: 1069
  year: 2011
  end-page: 1082
  article-title: Mining for treatment‐specific and general changes in target compounds and metabolic fingerprints in response to herbivory and phytohormones in
  publication-title: New Phytologist
– volume: 1180
  start-page: 90
  year: 2008b
  end-page: 98
  article-title: Optimized liquid chromatography‐mass spectrometry approach for the isolation of minor stress biomarkers in plant extracts and their identification by capillary nuclear magnetic resonance
  publication-title: Journal of Chromatography A
– volume: 59
  start-page: 41
  year: 2008
  end-page: 66
  article-title: Plant immunity to insect herbivores
  publication-title: Annual Review of Plant Biology
– volume: 13
  start-page: 1979
  year: 1974
  end-page: 1983
  article-title: N‐(ρ‐coumaryl)‐tryptamine and N‐ferulyl tryptamine in kernels of
  publication-title: Phytochemistry
– volume: 35
  start-page: 219
  year: 2009
  end-page: 229
  article-title: NMR Metabolomics of thrips ( ) resistance in senecio hybrids
  publication-title: Journal of Chemical Ecology
– volume: 276
  start-page: 945
  year: 1997
  end-page: 949
  article-title: An elicitor of plant volatiles from beet armyworm oral secretion
  publication-title: Science
– volume: 34
  start-page: 656
  year: 1959
  end-page: 661
  article-title: Estimated contributions of root and shoot to the nicotine content of the tobacco plant
  publication-title: Plant Physiology
– volume: 198
  start-page: 319
  year: 2000
  end-page: 346
– volume: 4
  start-page: 1417
  year: 2009
  end-page: 1430
  article-title: MS‐based plant metabolomic approaches for biomarker discovery
  publication-title: Natural Product Communications
– volume: 178
  start-page: 41
  year: 2008
  end-page: 61
  article-title: Indirect defence via tritrophic interactions
  publication-title: New Phytologist
– volume: 74
  start-page: 42
  year: 1991
  end-page: 50
  article-title: Do parasitoids use herbivore‐induced plant chemical defenses to locate hosts?
  publication-title: Florida Entomologist
– volume: 93
  start-page: 8820
  year: 1996
  end-page: 8825
  article-title: Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 34
  start-page: 1267
  year: 2011
  end-page: 1275
  article-title: Systemic root signaling in a belowground, volatile‐mediated tritrophic interaction
  publication-title: Plant, Cell & Environment
– volume: 61
  start-page: 331
  year: 2002
  end-page: 337
  article-title: Induction of HDMBOA‐Glc accumulation and DIMBOA‐Glc 4‐O‐methyltransferase by jasmonic acid in poaceous plants
  publication-title: Phytochemistry
– volume: 32
  start-page: 1911
  year: 2006
  end-page: 1924
  article-title: Attraction of larvae to volatiles from herbivore‐damaged maize seedlings
  publication-title: Journal of Chemical Ecology
– volume: 69
  start-page: 1795
  year: 2008
  end-page: 1813
  article-title: Beta‐glucosidases as detonators of plant chemical defense
  publication-title: Phytochemistry
– volume: 11
  start-page: 2249
  year: 1999
  end-page: 2260
  article-title: Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves
  publication-title: The Plant Cell
– volume: 23
  start-page: 3303
  year: 2011
  end-page: 3318
  article-title: Biosynthesis and defensive function of n‐acetylornithine, a jasmonate‐induced Arabidopsis metabolite
  publication-title: The Plant Cell
– volume: 100
  start-page: 1887
  year: 2007
  end-page: 1895
  article-title: Resistance to (Lepidoptera : noctuidae) and (Diptera : ulidiidae) in sweet corn derived from exogenous and endogenous genetic systems
  publication-title: Journal of Economic Entomology
– volume: 152
  start-page: 257
  year: 2007
  end-page: 264
  article-title: Impact of foliar herbivory on the development of a root‐feeding insect and its parasitoid
  publication-title: Oecologia
– volume: 68
  start-page: 901
  year: 2011
  end-page: 911
  article-title: Induction and detoxification of maize 1,4‐benzoxazin‐3‐ones by insect herbivores
  publication-title: The Plant Journal
– volume: 871
  start-page: 261
  year: 2008
  end-page: 270
  article-title: UPLC‐TOF‐MS for plant metabolomics: a sequential approach for wound marker analysis in
  publication-title: Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences
– volume: 17
  start-page: 519
  year: 2007
  end-page: 524
  article-title: The ecogenetics and ecogenomics of plant‐herbivore interactions: rapid progress on a slippery road
  publication-title: Current Opinion in Genetics & Development
– volume: 15
  start-page: 55
  year: 2012b
  end-page: 64
  article-title: A specialist root herbivore exploits defensive metabolites to locate nutritious tissues
  publication-title: Ecology Letters
– volume: 53
  start-page: 223
  year: 2000
  end-page: 229
  article-title: Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize
  publication-title: Phytochemistry
– volume: 12
  start-page: 547
  year: 1997
  end-page: 556
  article-title: Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants
  publication-title: The Plant Journal: For Cell and Molecular Biology
– volume: 5
  start-page: 150
  year: 2009
  end-page: 161
  article-title: Metabolomic analysis of the interaction between plants and herbivores
  publication-title: Metabolomics
– start-page: 595
  year: 1982
  end-page: 624
– volume: 58
  start-page: 9418
  year: 2010
  end-page: 9427
  article-title: Development and validation of a liquid chromatography‐electrospray ionization‐time‐of‐flight mass spectrometry method for induced changes in leaves during simulated herbivory
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 22
  start-page: 594
  year: 2008
  end-page: 600
  article-title: CV‐ANOVA for significance testing of PLS and OPLS (R) models
  publication-title: Journal of Chemometrics
– volume: 156
  start-page: 2082
  year: 2011b
  end-page: 2097
  article-title: Novel acidic sesquiterpenoids constitute a dominant class of pathogen‐induced phytoalexins in maize
  publication-title: Plant Physiology
– volume: 7
  start-page: 61
  year: 2002
  end-page: 67
  article-title: Fitness costs of induced resistance: emerging experimental support for a slippery concept
  publication-title: Trends in Plant Science
– volume: 105
  start-page: 17430
  year: 2008
  end-page: 17435
  article-title: Isoprene interferes with the attraction of bodyguards by herbaceous plants
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 167
  start-page: 1
  year: 2011
  end-page: 9
  article-title: Herbivore‐induced resource sequestration in plants: why bother?
  publication-title: Oecologia
– volume: 115
  start-page: 161
  year: 2005
  end-page: 170
  article-title: Root herbivory reduces growth and survival of the shoot feeding specialist on
  publication-title: Entomologia Experimentalis et Applicata
– volume: 10
  start-page: 583
  year: 2010
  end-page: 593
  article-title: Metabolomics: the chemistry between ecology and genetics
  publication-title: Molecular Ecology Resources
– volume: 324
  start-page: 89
  year: 2009
  end-page: 91
  article-title: Priming in systemic plant immunity
  publication-title: Science
– volume: 59
  start-page: 292
  year: 2009a
  end-page: 302
  article-title: Signal signature of aboveground‐induced resistance upon belowground herbivory in maize
  publication-title: The Plant Journal
– volume: 99
  start-page: 7
  year: 2011
  end-page: 15
  article-title: Sequence of arrival determines plant‐mediated interactions between herbivores
  publication-title: Journal of Ecology
– volume: 155
  start-page: 1325
  year: 2011a
  end-page: 1338
  article-title: ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance
  publication-title: Plant Physiology
– volume: 277
  start-page: 696
  year: 1997
  end-page: 699
  article-title: Analysis of a chemical plant defense mechanism in grasses
  publication-title: Science
– volume: 13
  start-page: 1354
  year: 1974
  end-page: 1363
  article-title: Biosynthesis of a hydroxy fatty acid polymer, cutin. Identification and biosynthesis of 16‐oxo‐9‐ or 10‐hydroxypalmitic acid, a novel compound in
  publication-title: Biochemistry
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1461-0248.2008.01200.x
– ident: e_1_2_6_77_1
  doi: 10.1021/ac0713510
– ident: e_1_2_6_68_1
  doi: 10.1016/S0074-7696(00)98008-2
– ident: e_1_2_6_19_1
  doi: 10.1016/j.phytochem.2009.05.012
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.0804488105
– ident: e_1_2_6_65_1
  doi: 10.1034/j.1399-3054.2003.00054.x
– ident: e_1_2_6_67_1
  doi: 10.1007/3-540-29782-0_13
– ident: e_1_2_6_78_1
  doi: 10.1177/1934578X0900401019
– ident: e_1_2_6_24_1
  doi: 10.1016/j.jchromb.2008.04.021
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1365-3040.2011.02327.x
– ident: e_1_2_6_30_1
  doi: 10.1146/annurev.arplant.59.032607.092825
– ident: e_1_2_6_45_1
  doi: 10.1007/s10886-008-9586-0
– ident: e_1_2_6_79_1
  doi: 10.1111/j.1365-2745.2010.01756.x
– ident: e_1_2_6_12_1
  doi: 10.1016/0031-9422(74)85129-0
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1365-2745.2010.01757.x
– ident: e_1_2_6_70_1
  doi: 10.1007/s10886-011-0042-1
– ident: e_1_2_6_50_1
  doi: 10.1105/tpc.11.11.2249
– ident: e_1_2_6_52_1
  doi: 10.1016/S0031-9422(00)84681-6
– start-page: 595
  volume-title: Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties
  year: 1982
  ident: e_1_2_6_5_1
  contributor:
    fullname: Bremmer J.M.
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1461-0248.2011.01708.x
– ident: e_1_2_6_38_1
  doi: 10.1093/nar/gkp896
– ident: e_1_2_6_58_1
  doi: 10.1016/S0031-9422(97)00620-1
– ident: e_1_2_6_16_1
  doi: 10.1002/cem.1187
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1755-0998.2010.02854.x
– ident: e_1_2_6_41_1
  doi: 10.1371/journal.pone.0026214
– ident: e_1_2_6_28_1
  doi: 10.1016/j.tplants.2008.03.005
– ident: e_1_2_6_55_1
  doi: 10.1016/S0031-9422(02)00225-X
– ident: e_1_2_6_69_1
  doi: 10.1111/j.1365-2656.2005.01006.x
– ident: e_1_2_6_76_1
  doi: 10.1111/j.1365-3040.2009.01946.x
– ident: e_1_2_6_4_1
  doi: 10.1126/science.276.5314.945
– ident: e_1_2_6_37_1
  doi: 10.1126/science.1170025
– ident: e_1_2_6_6_1
  doi: 10.1073/pnas.93.17.8820
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1570-7458.2005.00241.x
– ident: e_1_2_6_72_1
  doi: 10.1002/cem.695
– ident: e_1_2_6_18_1
  doi: 10.1126/science.277.5326.696
– ident: e_1_2_6_80_1
  doi: 10.1094/MPMI-20-11-1439
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-313X.2009.04071.x
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-313X.2011.04740.x
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1469-8137.2007.02330.x
– ident: e_1_2_6_42_1
  doi: 10.1021/bi00704a008
– ident: e_1_2_6_43_1
  doi: 10.1016/j.pbi.2011.03.021
– ident: e_1_2_6_21_1
  doi: 10.1002/rcm.3716
– ident: e_1_2_6_61_1
  doi: 10.1104/pp.111.183749
– ident: e_1_2_6_56_1
  doi: 10.1016/j.phytochem.2004.09.006
– ident: e_1_2_6_48_1
  doi: 10.1016/S0031-9422(00)98051-8
– ident: e_1_2_6_27_1
  doi: 10.1016/S1360-1385(01)02186-0
– ident: e_1_2_6_39_1
  doi: 10.1016/j.gde.2007.09.002
– ident: e_1_2_6_20_1
  doi: 10.1021/jf1017737
– ident: e_1_2_6_2_1
  doi: 10.1105/tpc.111.088989
– ident: e_1_2_6_49_1
  doi: 10.1016/j.phytochem.2008.03.006
– ident: e_1_2_6_33_1
  doi: 10.1104/pp.111.179457
– ident: e_1_2_6_22_1
  doi: 10.1016/j.chroma.2007.12.021
– volume: 12
  start-page: 547
  year: 1997
  ident: e_1_2_6_44_1
  article-title: Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants
  publication-title: The Plant Journal: For Cell and Molecular Biology
  doi: 10.1046/j.1365-313X.1997.00547.x
  contributor:
    fullname: Lee S.
– ident: e_1_2_6_35_1
  doi: 10.1016/j.chroma.2008.05.038
– ident: e_1_2_6_53_1
  doi: 10.1603/0022-0493(2007)100[1887:RTSFLN]2.0.CO;2
– ident: e_1_2_6_74_1
  doi: 10.1073/pnas.89.17.8399
– ident: e_1_2_6_75_1
  doi: 10.1007/s004250050466
– ident: e_1_2_6_7_1
  doi: 10.1016/S0031-9422(99)00498-7
– ident: e_1_2_6_54_1
  doi: 10.1016/S0031-9422(00)00494-5
– ident: e_1_2_6_66_1
  doi: 10.1104/pp.107.112490
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1365-313X.2009.03868.x
– ident: e_1_2_6_9_1
  doi: 10.1007/s10886-006-9196-7
– ident: e_1_2_6_57_1
  doi: 10.1007/s00442-011-1968-2
– ident: e_1_2_6_60_1
  doi: 10.1016/S0065-2296(08)60227-X
– ident: e_1_2_6_51_1
  doi: 10.1371/journal.pone.0035498
– ident: e_1_2_6_64_1
  doi: 10.1016/S0005-2760(98)00048-4
– ident: e_1_2_6_34_1
  doi: 10.1271/bbb.64.1025
– ident: e_1_2_6_25_1
  doi: 10.1016/j.phytochem.2007.09.017
– ident: e_1_2_6_32_1
  doi: 10.1104/pp.110.166710
– ident: e_1_2_6_36_1
  doi: 10.1007/s11306-008-0124-4
– ident: e_1_2_6_73_1
  doi: 10.2307/3495238
– ident: e_1_2_6_71_1
  doi: 10.1111/j.1469-8137.2011.03768.x
– ident: e_1_2_6_3_1
  doi: 10.1104/pp.111.180224
– ident: e_1_2_6_8_1
  doi: 10.1007/s10886-006-9117-9
– ident: e_1_2_6_14_1
  doi: 10.1016/j.tplants.2009.08.006
– ident: e_1_2_6_62_1
  doi: 10.1111/j.1469-8137.2012.04127.x
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1469-8137.2011.04001.x
– ident: e_1_2_6_59_1
  doi: 10.1007/s00425-011-1409-9
– ident: e_1_2_6_11_1
  doi: 10.1104/pp.34.6.656
SSID ssj0001479
Score 2.4983253
Snippet ABSTRACT Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as...
Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 621
SubjectTerms Animals
benzoxazinones
Biological and medical sciences
Chromatography, High Pressure Liquid
Coumaric Acids - metabolism
Fundamental and applied biological sciences. Psychology
Herbivory
induced defence
induced resistance
Ions - metabolism
Mass Spectrometry
Metabolome
Metabolomics
Plant Leaves - metabolism
Plant Roots - metabolism
p‐coumaroyltyramine
root exudates
Spodoptera
Spodoptera littoralis
systemic signaling
UHPLC‐TOF‐MS
Zea mays
Zea mays - metabolism
Title Metabolomics reveals herbivore‐induced metabolites of resistance and susceptibility in maize leaves and roots
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.12002
https://www.ncbi.nlm.nih.gov/pubmed/22913585
https://www.proquest.com/docview/1432208474
https://search.proquest.com/docview/1282515143
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9KURDEav2XWssqPviSI9lskl18amtLESoiFfoghN1kAkfb5OjmCtcnP4KfsZ-ks5vk6omC-LaQSdjszOz8Jpn5LcA7nlecUHAdatqBQyHTiEayClODsopVXUa-K-34c3b0TXw6TU_X4MPYC9PzQyw_uDnP8Pu1c3Bt7C9OPitxEg9EknGSu3K-j1_vqKNi0fPsufLFPFfxwCrkqniWd67EooczbWlZ6v48iz8BzlX86gPQ4QZ8H6fe152cTeadmZTXv7E6_ue7PYZHAzBlu70lPYE1bDbhfn9U5WIT7u21BCMXT6E9xo4M59x1M1vmCKDIgBlp3kyv2ku8-fGTsnyyl4pd9IKEaS1raxK1DquSkTHdVMzOra-o8cW5CzZt2IWeXiM7R31FNzgRAvWdfQYnhwcn-0fhcGpDWAopeKgwx4xiXKIqpNxSl-7na2KkTCvHBaaRpHSkE6PjymSlUohCS0IZJkYlMXkO603b4EtgRom0RI6yphiaZEZxrGOtU6HJiEzGA3g7qq-Y9dwcxZjT0AoWfgUD2FlR7FKSZ9L1LUcBbI-aLgb_tZQQ0UYXUeQWAbxZXibPc79TdIPtnGR8268DnAG86C3k7uFcxQllYgG893r--_yKL_sHfrD176Kv4AH3p3K4UrhtWO8u5_iasFFndrwT3ALY5Qt0
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9KVRTEP7VqtNZVfPAlR3bz53bBF60tp_aKyAl9kbCbTOCwTY4mV7g--RH8jH4SZ3cvV08UxLdAZsNmZ2bnN8nMbwFeiGEpCAVXoaYdOExkGtGVLMPUoCy5qorIdaWNj7LR5-T9cXq8Aa_6XhjPD7H64GY9w-3X1sHtB-lfvHxW4IB7Jskr5O7cFnS9_XRJHsUTz7RnCxiHQ8WXvEK2jmc1dC0a3Zzplham8ida_AlyriNYF4IObsOXfvK-8uTrYN6ZQXHxG6_j_77dHbi1xKbstTemu7CB9RZc86dVLrbg6puGkOTiHjRj7Mh2TmxDc8ssBxTZMCPlm-l5c4Y_vn2nRJ9MpmSnXpBgbcuaikRbC1fJzpiuS9bOW1dU4-pzF2xas1M9vUB2gvqcBlgRwvVduw2Tg_3J3ihcHtwQFolMRKhwiBmFuViVSOmlLuz_19hImZaWDkwjSelIx0bz0mSFUoiJlgQ0DEclMb4Pm3VT40NgRiVpgQJlRWE0zowSWHGt00STHZlMBPC8118-8_QceZ_W0ArmbgUD2F3T7EpSZNK2LkcB7PSqzpcu3FJORHtdRME7CeDZ6jY5n_2jomts5iTjOn8t5gzggTeRy4cLxWNKxgJ46RT99_nlH_f23cWjfxd9CtdHk_Fhfvju6MNjuCHcIR22Mm4HNruzOT4hqNSZXecRPwGMyw-V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9Kq1IoftSvaK2r-OBLjmSzye3ik7Y96kdLkQp9EMJuMoGjbXI0ucL1yT_Bv9G_xNndy9UTBfFtIZOw2ZnZ-U0y81uAV3xYckLBVahpBw6FTCMayTJMDcoyVlURua60g8Ns_4v4cJKerMCbvhfG80MsPrhZz3D7tXXwSVn94uSTAgexJ5JcExlXljh_9_M1d1QsPNGerV8cDlU8pxWyZTyLW5eC0cZEt7QulT_Q4k-IcxnAugg0ugNf-7n7wpPTwbQzg-LqN1rH_3y5u3B7jkzZW29K92AF60246c-qnG3CjXcN4cjZfWgOsCPLObPtzC2zDFBkwYxUb8aXzQX--Pad0nwymJKde0ECtS1rKhJtLVglK2O6Llk7bV1JjavOnbFxzc71-ArZGepLusGKEKrv2gdwPNo73tkP58c2hIWQgocKh5hRkEtUiZRc6sL-fU2MlGlpycA0kpSOdGJ0XJqsUApRaEkww8SoJCYPYbVuanwMzCiRFshRVhREk8wojlWsdSo0WZHJeAAve_XlE0_OkfdJDa1g7lYwgO0lxS4keSZt43IUwFav6XzuwC1lRLTTRRS6RQAvFpfJ9ez_FF1jMyUZ1_drEWcAj7yFXD-cqzihVCyA107Pf59ffrSz5wZP_l30Odw62h3ln94ffnwK69yd0GHL4rZgtbuY4jPCSZ3Zdv7wE1uCDkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolomics+reveals+herbivore-induced+metabolites+of+resistance+and+susceptibility+in+maize+leaves+and+roots&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Marti%2C+GUILLAUME&rft.au=Erb%2C+MATTHIAS&rft.au=Boccard%2C+JULIEN&rft.au=Glauser%2C+GA%C3%89TAN&rft.date=2013-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=36&rft.issue=3&rft.spage=621&rft_id=info:doi/10.1111%2Fpce.12002&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3071060781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon