Self-regulated reionization

Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M≳ 109 M⊙, in a comoving volume (100 h−1 Mpc)3. This is large enough to sample the global mean...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 376; no. 2; pp. 534 - 548
Main Authors Iliev, Ilian T., Mellema, Garrelt, Shapiro, Paul R., Pen, Ue-Li
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2007
Blackwell Science
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M≳ 109 M⊙, in a comoving volume (100 h−1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 M⊙, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 M⊙, however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is ‘self-regulating’, as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, zov, they serve to boost the electron-scattering optical depth of the universe, τes. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (zov < 7), while cosmic microwave background polarization measurements report a large enough τes that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on zov and τes are shown to be achievable with standard stellar sources in haloes above 108 M⊙. Neither minihaloes nor exotic sources are required, and the phenomenon of ‘double reionization’ previously suggested does not occur.
AbstractList Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M≳ 109 M⊙, in a comoving volume (100 h−1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 M⊙, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 M⊙, however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is ‘self-regulating’, as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, zov, they serve to boost the electron-scattering optical depth of the universe, τes. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (zov < 7), while cosmic microwave background polarization measurements report a large enough τes that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on zov and τes are shown to be achievable with standard stellar sources in haloes above 108 M⊙. Neither minihaloes nor exotic sources are required, and the phenomenon of ‘double reionization’ previously suggested does not occur.
ABSTRACT Recently, we have presented the first, truly large‐scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M≳ 109 M⊙, in a comoving volume (100 h−1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 M⊙, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 M⊙, however, are subject to Jeans‐mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is ‘self‐regulating’, as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low‐mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans‐mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, zov, they serve to boost the electron‐scattering optical depth of the universe, τes. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (zov < 7), while cosmic microwave background polarization measurements report a large enough τes that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1‐ and 3‐yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on zov and τes are shown to be achievable with standard stellar sources in haloes above 108 M⊙. Neither minihaloes nor exotic sources are required, and the phenomenon of ‘double reionization’ previously suggested does not occur.
Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M[gsim] 10 super(9) M sub([odot]), in a comoving volume (100 h super(-1) Mpc) super(3). This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 10 super(8) M sub([odot]), to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 10 super(9) M sub([odot]), however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is 'self-regulating', as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, z sub(ov), they serve to boost the electron-scattering optical depth of the universe, tau sub(es). This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (z sub(ov) < 7), while cosmic microwave background polarization measurements report a large enough tau sub(es) that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on z sub(ov) and tau sub(es) are shown to be achievable with standard stellar sources in haloes above 10 super(8) M sub([odot]). Neither minihaloes nor exotic sources are required, and the phenomenon of 'double reionization' previously suggested does not occur.
Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M[> ~] 109 M[middot in circle], in a comoving volume (100 h-1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 M[middot in circle], to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 M[middot in circle], however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is 'self-regulating', as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, z ov, they serve to boost the electron-scattering optical depth of the universe, tau es. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (zov < 7), while cosmic microwave background polarization measurements report a large enough tau es that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on z ov and tau es are shown to be achievable with standard stellar sources in haloes above 108 M[middot in circle]. Neither minihaloes nor exotic sources are required, and the phenomenon of 'double reionization' previously suggested does not occur. [PUBLICATION ABSTRACT]
Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M≳ 109 M⊙, in a comoving volume (100 h −1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 M⊙, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 M⊙, however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is 'self-regulating', as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, z ov, they serve to boost the electron-scattering optical depth of the universe, τes. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (z ov < 7), while cosmic microwave background polarization measurements report a large enough τes that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on z ov and τes are shown to be achievable with standard stellar sources in haloes above 108 M⊙. Neither minihaloes nor exotic sources are required, and the phenomenon of 'double reionization' previously suggested does not occur.
Author Iliev, Ilian T.
Mellema, Garrelt
Pen, Ue-Li
Shapiro, Paul R.
Author_xml – sequence: 1
  givenname: Ilian T.
  surname: Iliev
  fullname: Iliev, Ilian T.
  email: iliev@cita.utoronto.ca, * iliev@cita.utoronto.ca
  organization: Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Canada ON M5S 3H8
– sequence: 2
  givenname: Garrelt
  surname: Mellema
  fullname: Mellema, Garrelt
  organization: Stockholm Observatory, AlbaNova University Centre, Stockholm University, SE-106 91 Stockholm, Sweden
– sequence: 3
  givenname: Paul R.
  surname: Shapiro
  fullname: Shapiro, Paul R.
  organization: Department of Astronomy, University of Texas, Austin, TX 78712-1083, USA
– sequence: 4
  givenname: Ue-Li
  surname: Pen
  fullname: Pen, Ue-Li
  organization: Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Canada ON M5S 3H8
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18619099$$DView record in Pascal Francis
BookMark eNqNkFtrGzEQhUVIIbabX9CXEGjf1tFttdqXQjG1HXBSyLXkZRhrtUXuZteVdonTXx_5gh9CQ6OXEaPvnBmdPjmsm9oScsLokMVzthgyodKE50oNOaVZ7ErNh6sD0ts_HJIepSJNdMbYEemHsKCUSsFVj3y6tlWZePurq7C1xYm3rqndX2xj-Ug-lFgFe7yrA3I7_n4zmiazH5Pz0bdZYqSWPJEpWlRaUClFrnJbSGWieVxOKSvkXGstilTPOeYU1bxAXlCqLceSl4aiEQPyZeu79M2fzoYWHl0wtqqwtk0XgEdnTjmP4OkrcNF0vo67RSYTKks5i9DnHYTBYFV6rI0LsPTuEf0zMK1YTvM8cl-3nPFNCN6WYFy7-Xfr0VXAKKwDhgWsc4R1jrAOGDYBwyoa6FcG-xn_l-5mP7nKPr9bBxeXV5trNBBbg6ZbviFP_jU22apcaO1qr0P_G1QmshSmPx9gMkvHk_u7MdyIF9_IsCk
CODEN MNRAA4
CitedBy_id crossref_primary_10_1093_mnras_stz1220
crossref_primary_10_1051_0004_6361_200810757
crossref_primary_10_1111_j_1365_2966_2011_18399_x
crossref_primary_10_1093_mnras_stt926
crossref_primary_10_1093_mnras_stv2812
crossref_primary_10_1111_j_1365_2966_2012_22114_x
crossref_primary_10_3847_2041_8213_aab14d
crossref_primary_10_1093_mnras_stu1365
crossref_primary_10_5303_JKAS_2014_47_2_49
crossref_primary_10_1088_0004_637X_785_1_65
crossref_primary_10_1093_mnras_stt2366
crossref_primary_10_1103_PhysRevD_76_043002
crossref_primary_10_1093_mnras_sty1945
crossref_primary_10_1088_2041_8205_759_2_L38
crossref_primary_10_1093_mnras_stu299
crossref_primary_10_1111_j_1365_2966_2009_15558_x
crossref_primary_10_1093_mnras_stab3801
crossref_primary_10_1088_0004_637X_785_2_134
crossref_primary_10_1111_j_1365_2966_2009_14449_x
crossref_primary_10_3847_1538_4357_aa6031
crossref_primary_10_3847_1538_4357_ab1ea8
crossref_primary_10_1103_PhysRevD_88_081303
crossref_primary_10_1093_mnras_sts021
crossref_primary_10_1093_mnras_stt918
crossref_primary_10_1088_0004_637X_710_2_1089
crossref_primary_10_1111_j_1365_2966_2007_12629_x
crossref_primary_10_1088_0004_637X_794_1_20
crossref_primary_10_1111_j_1365_2966_2012_21228_x
crossref_primary_10_1111_j_1365_2966_2011_19752_x
crossref_primary_10_1088_0004_637X_750_1_20
crossref_primary_10_1093_mnras_stt2497
crossref_primary_10_1088_0004_637X_756_1_65
crossref_primary_10_3847_1538_4357_abd7f4
crossref_primary_10_1088_0004_637X_786_2_111
crossref_primary_10_1093_mnras_staa1026
crossref_primary_10_1093_mnras_stv2887
crossref_primary_10_1111_j_1365_2966_2008_14190_x
crossref_primary_10_3847_1538_4357_abf3bf
crossref_primary_10_1093_mnras_stt2099
crossref_primary_10_3847_1538_4357_ab2adc
crossref_primary_10_1111_j_1365_2966_2011_18292_x
crossref_primary_10_1007_s10509_008_9865_9
crossref_primary_10_1103_PhysRevD_95_063504
crossref_primary_10_3847_1538_4357_abf55c
crossref_primary_10_1111_j_1365_2966_2007_11489_x
crossref_primary_10_1111_j_1365_2966_2009_15012_x
crossref_primary_10_3847_1538_4357_ac815c
crossref_primary_10_1111_j_1745_3933_2010_00993_x
crossref_primary_10_1086_591047
crossref_primary_10_1093_mnras_stad2228
crossref_primary_10_1093_mnras_stv1064
crossref_primary_10_1007_s12036_022_09882_z
crossref_primary_10_1111_j_1365_2966_2012_20760_x
crossref_primary_10_1111_j_1365_2966_2008_13879_x
crossref_primary_10_1111_j_1365_2966_2010_17100_x
crossref_primary_10_1093_mnras_stae114
crossref_primary_10_1146_annurev_astro_081309_130936
crossref_primary_10_1093_mnras_sts242
crossref_primary_10_1093_mnras_stw3026
crossref_primary_10_1051_0004_6361_201116811
crossref_primary_10_1111_j_1365_2966_2012_21032_x
crossref_primary_10_1111_j_1365_2966_2007_12279_x
crossref_primary_10_1088_1475_7516_2014_08_010
crossref_primary_10_1088_0004_637X_803_2_103
crossref_primary_10_1088_0004_637X_724_1_244
crossref_primary_10_1093_mnras_stu261
crossref_primary_10_1111_j_1365_2966_2012_21293_x
crossref_primary_10_1093_mnras_stt693
crossref_primary_10_1093_mnras_stac182
crossref_primary_10_1093_mnras_stac2320
crossref_primary_10_1093_mnras_stt1341
crossref_primary_10_1093_mnrasl_sly122
crossref_primary_10_1093_mnras_sts116
crossref_primary_10_1093_mnras_stx805
crossref_primary_10_1093_mnras_stu1600
crossref_primary_10_1103_PhysRevD_91_083015
crossref_primary_10_3847_1538_4357_ac497b
crossref_primary_10_1093_mnras_stw2145
crossref_primary_10_1111_j_1365_2966_2008_13776_x
crossref_primary_10_3847_1538_4357_aab6af
crossref_primary_10_1086_519310
crossref_primary_10_3847_0004_637X_832_2_134
crossref_primary_10_1086_522566
crossref_primary_10_1093_mnras_stw674
crossref_primary_10_1111_j_1365_2966_2009_14771_x
crossref_primary_10_1093_mnras_stx649
crossref_primary_10_1093_mnras_stz1663
crossref_primary_10_1088_1475_7516_2013_07_025
crossref_primary_10_1111_j_1745_3933_2008_00433_x
crossref_primary_10_1093_mnras_stu927
crossref_primary_10_1088_0067_0049_216_1_13
crossref_primary_10_1051_0004_6361_200911663
crossref_primary_10_1093_mnras_stw2036
crossref_primary_10_1111_j_1365_2966_2010_17920_x
crossref_primary_10_1017_S174392131601019X
crossref_primary_10_1093_mnras_stw2433
crossref_primary_10_1111_j_1365_2966_2012_21268_x
crossref_primary_10_5303_JKAS_2015_48_1_67
crossref_primary_10_1093_mnras_staa853
crossref_primary_10_1103_PhysRevD_96_103515
crossref_primary_10_1088_0004_637X_704_2_1396
crossref_primary_10_1103_RevModPhys_81_1405
crossref_primary_10_1086_513687
crossref_primary_10_1088_0004_637X_777_1_51
crossref_primary_10_3847_1538_4357_aae30b
crossref_primary_10_1088_0067_0049_180_2_306
crossref_primary_10_1017_pasa_2017_25
crossref_primary_10_1111_j_1365_2966_2009_15521_x
crossref_primary_10_1093_mnras_stz2986
crossref_primary_10_1088_1538_3873_129_974_045001
crossref_primary_10_1093_mnras_stv976
crossref_primary_10_1093_mnras_stad237
crossref_primary_10_3847_1538_4357_ab9812
crossref_primary_10_1111_j_1365_2966_2008_14383_x
crossref_primary_10_1093_mnras_staa487
crossref_primary_10_1088_0004_637X_695_2_1430
crossref_primary_10_1111_j_1365_2966_2008_13104_x
crossref_primary_10_1111_j_1365_2966_2011_18646_x
crossref_primary_10_1093_mnras_stac1847
crossref_primary_10_1088_0004_637X_702_2_1575
crossref_primary_10_1111_j_1745_3933_2007_00342_x
crossref_primary_10_1088_1475_7516_2024_09_008
crossref_primary_10_1103_PhysRevD_93_043013
crossref_primary_10_1111_j_1365_2966_2009_14486_x
crossref_primary_10_1093_mnras_stw1316
crossref_primary_10_3389_fspas_2018_00034
crossref_primary_10_1093_mnras_stz1529
crossref_primary_10_1093_mnras_stx3017
crossref_primary_10_3847_1538_4357_836_2_176
crossref_primary_10_1051_0004_6361_201014347
crossref_primary_10_1093_mnras_stv2993
crossref_primary_10_1093_mnras_stx2324
crossref_primary_10_1093_mnras_stu635
crossref_primary_10_1051_0004_6361_201629661
crossref_primary_10_1088_0004_637X_696_1_254
crossref_primary_10_1111_j_1365_2966_2012_20449_x
crossref_primary_10_1088_0004_637X_769_2_93
crossref_primary_10_1111_j_1365_2966_2011_18219_x
crossref_primary_10_1016_j_physrep_2018_10_002
crossref_primary_10_1093_mnras_stab602
crossref_primary_10_1111_j_1365_2966_2010_16828_x
crossref_primary_10_1093_mnras_staa639
crossref_primary_10_1111_j_1365_2966_2008_13029_x
crossref_primary_10_1111_j_1365_2966_2008_14325_x
crossref_primary_10_1051_0004_6361_201322355
crossref_primary_10_1111_j_1365_2966_2008_12894_x
crossref_primary_10_1111_j_1365_2966_2010_16351_x
crossref_primary_10_1088_0004_637X_772_1_42
crossref_primary_10_1093_mnras_stv2623
crossref_primary_10_1111_j_1365_2966_2012_20902_x
crossref_primary_10_1093_mnras_stw249
crossref_primary_10_1093_mnras_sts206
crossref_primary_10_1086_588247
Cites_doi 10.1093/mnras/256.1.43P
10.1046/j.1365-8711.2001.04422.x
10.1111/j.1365-2966.2006.10775.x
10.1016/j.newast.2005.02.001
10.1051/0004-6361:20011619
10.1086/309295
10.1086/377226
10.1086/427182
10.1086/308780
10.1046/j.1365-8711.2003.06976.x
10.1111/j.1365-2966.2005.09908.x
10.1086/320549
10.1111/j.1365-2966.2005.09155.x
10.1086/378399
10.1086/174120
10.1111/j.1365-2966.2004.07364.x
10.1046/j.1365-8711.2003.06311.x
10.1086/421548
10.1086/375217
10.1046/j.1365-8711.2000.03365.x
10.1111/j.1365-2966.2006.10919.x
10.1086/185015
10.1086/317042
10.1086/380603
10.1086/505644
10.1016/j.newast.2005.09.004
10.1046/j.1365-8711.2001.04008.x
10.1046/j.1365-8711.1998.01249.x
10.1086/323947
10.1086/377337
10.1086/506906
10.1086/303763
10.1126/science.1063991
10.1086/303908
10.1086/367721
10.1086/509597
10.1111/j.1365-2966.2006.10502.x
10.1046/j.1365-8711.2003.06847.x
10.1086/340451
10.1086/341256
10.1086/339030
10.1086/308723
10.1086/341869
10.1086/313233
10.1046/j.1365-8711.2003.06797.x
10.1086/429083
10.1086/423313
10.1086/429080
10.1086/421378
10.1086/177446
10.1093/mnras/214.2.137
10.1086/499578
10.1086/375547
ContentType Journal Article
Copyright 2007 The Authors. Journal compilation © 2007 RAS 2007
2007 INIST-CNRS
2007 The Authors. Journal compilation © 2007 RAS
Copyright_xml – notice: 2007 The Authors. Journal compilation © 2007 RAS 2007
– notice: 2007 INIST-CNRS
– notice: 2007 The Authors. Journal compilation © 2007 RAS
DBID BSCLL
AAYXX
CITATION
IQODW
8FD
H8D
L7M
7TG
KL.
DOI 10.1111/j.1365-2966.2007.11482.x
DatabaseName Istex
CrossRef
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList

Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 548
ExternalDocumentID 1255156711
18619099
10_1111_j_1365_2966_2007_11482_x
MNR11482
10.1111/j.1365-2966.2007.11482.x
ark_67375_HXZ_GL5FGWVF_T
Genre article
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMMB
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABVLG
ABXVV
ABZBJ
ACBWZ
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEFGJ
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGQPQ
AGSYK
AGXDD
AHXPO
AIDQK
AIDYY
AJAOE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
ASPBG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
CO8
COF
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
D~K
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
V8K
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
2WC
AAHHS
AASNB
ABFSI
ABJNI
ABSAR
ABSMQ
ABTAH
ACBNA
ACCFJ
ACFRR
ACUTJ
ADRIX
AEEZP
AEQDE
AETEA
AFXEN
AGMDO
AIWBW
AJBDE
ASAOO
ATDFG
BCRHZ
CXTWN
DFGAJ
E.L
EAD
EAP
ESX
H13
MBTAY
O0~
OHT
RHF
RNP
ROX
UQL
VOH
WRC
ZY4
AAYXX
CITATION
AHGBF
APJGH
IQODW
8FD
H8D
L7M
7TG
KL.
ID FETCH-LOGICAL-c4842-45aea6830443969ed46c43211166e34b8883d58b2a90a6bda2d008e2af2fc0ac3
IEDL.DBID DR2
ISSN 0035-8711
IngestDate Fri Jul 11 15:25:45 EDT 2025
Fri Jul 25 05:03:31 EDT 2025
Mon Jul 21 09:16:04 EDT 2025
Tue Jul 01 02:45:37 EDT 2025
Thu Apr 24 22:58:37 EDT 2025
Wed Jan 22 16:24:26 EST 2025
Wed Aug 28 03:26:46 EDT 2024
Tue Aug 05 16:49:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords galaxies: formation
radio lines: galaxies
intergalactic medium
radiative transfer
large-scale structure of Universe
cosmology: theory
Intergalactic matter
Polarization
Red shift
Ionizing radiations
Cosmic background radiation
WMAP satellite
Large-scale structure
Extended source
Star formation
Galaxy formation
Cold dark matter
Cosmic radio sources
Radiative transfer
Optical thickness
Absorption spectra
Optical scattering
Quasars
Electron scattering
Radio galaxies
Cosmological parameter
Dwarf galaxies
Gravitational collapse
Cosmology
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4842-45aea6830443969ed46c43211166e34b8883d58b2a90a6bda2d008e2af2fc0ac3
Notes ark:/67375/HXZ-GL5FGWVF-T
istex:AF01FA5C8710FADCC04F757303F0318C7DE1BFB9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 207367521
PQPubID 42411
PageCount 15
ParticipantIDs proquest_miscellaneous_20442022
proquest_journals_207367521
pascalfrancis_primary_18619099
crossref_citationtrail_10_1111_j_1365_2966_2007_11482_x
crossref_primary_10_1111_j_1365_2966_2007_11482_x
wiley_primary_10_1111_j_1365_2966_2007_11482_x_MNR11482
oup_primary_10_1111_j_1365-2966_2007_11482_x
istex_primary_ark_67375_HXZ_GL5FGWVF_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2007
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: April 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Monthly Notices of the Royal Astronomical Society
PublicationTitleAlternate Monthly Notices of the Royal Astronomical Society
PublicationYear 2007
Publisher Blackwell Publishing Ltd
Blackwell Science
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Science
– name: Oxford University Press
References 1997; 478
1997; 479
2000; 534
2006b; 644
2006b; 369
2003; 591
1999; 123
1996; 465
2004; 601
2006a; 11
2003; 595
2003; 594
2003b; 343
2006a; 371
2007; 654
2004; 610
2006; 649
2002; 382
2005a; 624
1985; 214
2005b; 361
2003; 126
2004; 613
1994; 427
2004; 617
2006; 366
2001; 321
1987; 321
2002; 572
2002; 295
2000; 314
2002; 575
2005; 634
2006
1995
2005
2003a; 344
2004; 348
1998; 296
2001; 325
2001; 552
2000; 542
2002; 564
1992; 256
2002; 123
2006a; 639
2005; 10
2006b; 372
2000; 540
2003; 148
2003; 344
2003; 586
2003; 340
Schaerer ( key 20170715054608_b44) 2002; 382
Iliev ( key 20170715054608_b24) 2001; 325
Spergel ( key 20170715054608_b50) 2003; 148
Ciardi ( key 20170715054608_b10) 2000; 314
Alvarez ( key 20170715054608_b3) 2006; 639
Ciardi ( key 20170715054608_b12) 2003; 343
Couchman ( key 20170715054608_b14) 1985; 214
Popa ( key 20170715054608_b41) 2006
Whalen ( key 20170715054608_b54) 2004; 610
Bromm ( key 20170715054608_b6) 2002; 564
Malhotra ( key 20170715054608_b34) 2004; 617
White ( key 20170715054608_b55) 2003; 126
Thoul ( key 20170715054608_b52) 1996; 465
Iliev ( key 20170715054608_b29) 2006; 369
Bi ( key 20170715054608_b5) 1997; 479
Navarro ( key 20170715054608_b39) 1997; 478
Sokasian ( key 20170715054608_b49) 2003; 344
Chiu ( key 20170715054608_b9) 2000; 534
Dijkstra ( key 20170715054608_b15) 2004; 601
Haiman ( key 20170715054608_b23) 2000; 534
Abel ( key 20170715054608_b1) 2000; 540
Kohler ( key 20170715054608_b31) 2005
Cen ( key 20170715054608_b8) 2003; 591
Shapiro ( key 20170715054608_b46) 1987; 321
Efstathiou ( key 20170715054608_b16) 1992; 256
Bromm ( key 20170715054608_b7) 2001; 552
Ciardi ( key 20170715054608_b13) 2006; 366
Spergel ( key 20170715054608_b51) 2006
Venkatesan ( key 20170715054608_b53) 2003; 594
Zahn ( key 20170715054608_b57) 2007; 654
Shapiro ( key 20170715054608_b47) 1994; 427
Onken ( key 20170715054608_b40) 2004; 610
Kramer ( key 20170715054608_b32) 2006; 649
Alvarez ( key 20170715054608_b4) 2006; 644
Merz ( key 20170715054608_b37) 2005; 10
Fan ( key 20170715054608_b17) 2002; 123
Kitayama ( key 20170715054608_b30) 2004; 613
Shapiro ( key 20170715054608_b48) 2004; 348
Shapiro ( key 20170715054608_b45) 1995
Wyithe ( key 20170715054608_b56) 2003; 586
Ciardi ( key 20170715054608_b11) 2003; 344
Furlanetto ( key 20170715054608_b18) 2005; 634
Iliev ( key 20170715054608_b25) 2002; 572
Iliev ( key 20170715054608_b27) 2005; 361
Gnedin ( key 20170715054608_b20) 2000; 542
Haiman ( key 20170715054608_b22) 2003; 595
Abel ( key 20170715054608_b2) 2002; 295
Iliev ( key 20170715054608_b26) 2005; 624
Razoumov ( key 20170715054608_b42) 2002; 572
Iliev ( key 20170715054608_b28) 2006; 371
Mellema ( key 20170715054608_b35) 2006; 11
Nakamoto ( key 20170715054608_b38) 2001; 321
Gnedin ( key 20170715054608_b21) 1998; 296
Glover ( key 20170715054608_b19) 2003; 340
Leitherer ( key 20170715054608_b33) 1999; 123
Ricotti ( key 20170715054608_b43) 2002; 575
Mellema ( key 20170715054608_b36) 2006; 372
References_xml – volume: 534
  start-page: 11
  year: 2000
  publication-title: ApJ
– start-page: 55
  year: 1995
– year: 2005
– volume: 296
  start-page: 44
  year: 1998
  publication-title: MNRAS
– volume: 540
  start-page: 39
  year: 2000
  publication-title: ApJ
– volume: 591
  start-page: 12
  year: 2003
  publication-title: ApJ
– volume: 366
  start-page: 689
  year: 2006
  publication-title: MNRAS
– volume: 126
  start-page: 1
  year: 2003
  publication-title: AJ
– volume: 634
  start-page: 1
  year: 2005
  publication-title: ApJ
– volume: 321
  start-page: 593
  year: 2001
  publication-title: MNRAS
– volume: 595
  start-page: 1
  year: 2003
  publication-title: ApJ
– volume: 348
  start-page: 753
  year: 2004
  publication-title: MNRAS
– volume: 552
  start-page: 464
  year: 2001
  publication-title: ApJ
– volume: 613
  start-page: 631
  year: 2004
  publication-title: ApJ
– volume: 344
  start-page: L7
  year: 2003a
  publication-title: MNRAS
– volume: 624
  start-page: 491
  year: 2005a
  publication-title: ApJ
– volume: 564
  start-page: 23
  year: 2002
  publication-title: ApJ
– volume: 465
  start-page: 608
  year: 1996
  publication-title: ApJ
– volume: 572
  start-page: L123
  year: 2002
  publication-title: ApJ
– volume: 639
  start-page: 621
  year: 2006a
  publication-title: ApJ
– volume: 321
  start-page: L107
  year: 1987
  publication-title: ApJ
– volume: 344
  start-page: 607
  year: 2003
  publication-title: MNRAS
– volume: 572
  start-page: 695
  year: 2002
  publication-title: ApJ
– volume: 644
  start-page: L101
  year: 2006b
  publication-title: ApJ
– volume: 343
  start-page: 1101
  year: 2003b
  publication-title: MNRAS
– volume: 10
  start-page: 393
  year: 2005
  publication-title: New Astron.
– volume: 369
  start-page: 1625
  year: 2006b
  publication-title: MNRAS
– volume: 649
  start-page: 570
  year: 2006
  publication-title: ApJ
– volume: 542
  start-page: 535
  year: 2000
  publication-title: ApJ
– volume: 654
  start-page: 12
  year: 2007
  publication-title: ApJ
– volume: 534
  start-page: 507
  year: 2000
  publication-title: ApJ
– volume: 214
  start-page: 137
  year: 1985
  publication-title: MNRAS
– year: 2006
  publication-title: ApJ
– volume: 11
  start-page: 374
  year: 2006a
  publication-title: New Astron.
– volume: 123
  start-page: 1247
  year: 2002
  publication-title: AJ
– volume: 586
  start-page: 693
  year: 2003
  publication-title: ApJ
– volume: 382
  start-page: 28
  year: 2002
  publication-title: A&A
– volume: 361
  start-page: 405
  year: 2005b
  publication-title: MNRAS
– volume: 610
  start-page: 1
  year: 2004
  publication-title: ApJ
– volume: 372
  start-page: 679
  year: 2006b
  publication-title: MNRAS
– volume: 479
  start-page: 523
  year: 1997
  publication-title: ApJ
– volume: 427
  start-page: 25
  year: 1994
  publication-title: ApJ
– volume: 314
  start-page: 611
  year: 2000
  publication-title: MNRAS
– volume: 325
  start-page: 468
  year: 2001
  publication-title: MNRAS
– volume: 295
  start-page: 93
  year: 2002
  publication-title: Sci
– year: 2006
– volume: 371
  start-page: 1057
  year: 2006a
  publication-title: MNRAS
– volume: 601
  start-page: 666
  year: 2004
  publication-title: ApJ
– volume: 610
  start-page: 14
  year: 2004
  publication-title: ApJ
– volume: 617
  start-page: L5
  year: 2004
  publication-title: ApJ
– volume: 340
  start-page: 210
  year: 2003
  publication-title: MNRAS
– volume: 256
  start-page: 43
  year: 1992
  publication-title: MNRAS
– volume: 478
  start-page: 13
  year: 1997
  publication-title: ApJ
– volume: 594
  start-page: L1
  year: 2003
  publication-title: ApJ
– volume: 148
  start-page: 175
  year: 2003
  publication-title: ApJS
– volume: 575
  start-page: 49
  year: 2002
  publication-title: ApJ
– volume: 123
  start-page: 3
  year: 1999
  publication-title: ApJS
– volume: 256
  start-page: 43
  year: 1992
  ident: key 20170715054608_b16
  publication-title: MNRAS
  doi: 10.1093/mnras/256.1.43P
– volume: 325
  start-page: 468
  year: 2001
  ident: key 20170715054608_b24
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04422.x
– volume: 371
  start-page: 1057
  year: 2006
  ident: key 20170715054608_b28
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10775.x
– volume: 10
  start-page: 393
  year: 2005
  ident: key 20170715054608_b37
  publication-title: New Astron.
  doi: 10.1016/j.newast.2005.02.001
– volume: 382
  start-page: 28
  year: 2002
  ident: key 20170715054608_b44
  publication-title: A&A
  doi: 10.1051/0004-6361:20011619
– volume: 540
  start-page: 39
  year: 2000
  ident: key 20170715054608_b1
  publication-title: ApJ
  doi: 10.1086/309295
– volume: 148
  start-page: 175
  year: 2003
  ident: key 20170715054608_b50
  publication-title: ApJS
  doi: 10.1086/377226
– volume: 617
  start-page: L5
  year: 2004
  ident: key 20170715054608_b34
  publication-title: ApJ
  doi: 10.1086/427182
– volume: 534
  start-page: 507
  year: 2000
  ident: key 20170715054608_b9
  publication-title: ApJ
  doi: 10.1086/308780
– volume: 344
  start-page: L7
  year: 2003
  ident: key 20170715054608_b11
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06976.x
– volume: 366
  start-page: 689
  year: 2006
  ident: key 20170715054608_b13
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09908.x
– volume: 552
  start-page: 464
  year: 2001
  ident: key 20170715054608_b7
  publication-title: ApJ
  doi: 10.1086/320549
– volume: 361
  start-page: 405
  year: 2005
  ident: key 20170715054608_b27
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09155.x
– start-page: 55
  volume-title: The Physics of the Interstellar Medium and Intergalactic Medium
  year: 1995
  ident: key 20170715054608_b45
– volume: 594
  start-page: L1
  year: 2003
  ident: key 20170715054608_b53
  publication-title: ApJ
  doi: 10.1086/378399
– volume: 427
  start-page: 25
  year: 1994
  ident: key 20170715054608_b47
  publication-title: ApJ
  doi: 10.1086/174120
– volume: 348
  start-page: 753
  year: 2004
  ident: key 20170715054608_b48
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07364.x
– volume: 340
  start-page: 210
  year: 2003
  ident: key 20170715054608_b19
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06311.x
– volume: 610
  start-page: 14
  year: 2004
  ident: key 20170715054608_b54
  publication-title: ApJ
  doi: 10.1086/421548
– volume: 591
  start-page: 12
  year: 2003
  ident: key 20170715054608_b8
  publication-title: ApJ
  doi: 10.1086/375217
– volume: 314
  start-page: 611
  year: 2000
  ident: key 20170715054608_b10
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03365.x
– volume: 372
  start-page: 679
  year: 2006
  ident: key 20170715054608_b36
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10919.x
– volume: 321
  start-page: L107
  year: 1987
  ident: key 20170715054608_b46
  publication-title: ApJ
  doi: 10.1086/185015
– volume: 542
  start-page: 535
  year: 2000
  ident: key 20170715054608_b20
  publication-title: ApJ
  doi: 10.1086/317042
– volume: 601
  start-page: 666
  year: 2004
  ident: key 20170715054608_b15
  publication-title: ApJ
  doi: 10.1086/380603
– volume: 644
  start-page: L101
  year: 2006
  ident: key 20170715054608_b4
  publication-title: ApJ
  doi: 10.1086/505644
– year: 2006
  ident: key 20170715054608_b51
  publication-title: ApJ
– volume: 11
  start-page: 374
  year: 2006
  ident: key 20170715054608_b35
  publication-title: New Astron.
  doi: 10.1016/j.newast.2005.09.004
– volume: 321
  start-page: 593
  year: 2001
  ident: key 20170715054608_b38
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04008.x
– volume: 296
  start-page: 44
  year: 1998
  ident: key 20170715054608_b21
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01249.x
– volume: 564
  start-page: 23
  year: 2002
  ident: key 20170715054608_b6
  publication-title: ApJ
  doi: 10.1086/323947
– volume: 595
  start-page: 1
  year: 2003
  ident: key 20170715054608_b22
  publication-title: ApJ
  doi: 10.1086/377337
– volume: 649
  start-page: 570
  year: 2006
  ident: key 20170715054608_b32
  publication-title: ApJ
  doi: 10.1086/506906
– volume: 478
  start-page: 13
  year: 1997
  ident: key 20170715054608_b39
  publication-title: ApJ
  doi: 10.1086/303763
– year: 2006
  ident: key 20170715054608_b41
– volume: 295
  start-page: 93
  year: 2002
  ident: key 20170715054608_b2
  publication-title: Sci
  doi: 10.1126/science.1063991
– volume: 479
  start-page: 523
  year: 1997
  ident: key 20170715054608_b5
  publication-title: ApJ
  doi: 10.1086/303908
– volume: 586
  start-page: 693
  year: 2003
  ident: key 20170715054608_b56
  publication-title: ApJ
  doi: 10.1086/367721
– volume: 654
  start-page: 12
  year: 2007
  ident: key 20170715054608_b57
  publication-title: ApJ
  doi: 10.1086/509597
– volume: 369
  start-page: 1625
  year: 2006
  ident: key 20170715054608_b29
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10502.x
– volume: 344
  start-page: 607
  year: 2003
  ident: key 20170715054608_b49
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06847.x
– year: 2005
  ident: key 20170715054608_b31
– volume: 572
  start-page: 695
  year: 2002
  ident: key 20170715054608_b42
  publication-title: ApJ
  doi: 10.1086/340451
– volume: 575
  start-page: 49
  year: 2002
  ident: key 20170715054608_b43
  publication-title: ApJ
  doi: 10.1086/341256
– volume: 123
  start-page: 1247
  year: 2002
  ident: key 20170715054608_b17
  publication-title: AJ
  doi: 10.1086/339030
– volume: 534
  start-page: 11
  year: 2000
  ident: key 20170715054608_b23
  publication-title: ApJ
  doi: 10.1086/308723
– volume: 572
  start-page: L123
  year: 2002
  ident: key 20170715054608_b25
  publication-title: ApJ
  doi: 10.1086/341869
– volume: 123
  start-page: 3
  year: 1999
  ident: key 20170715054608_b33
  publication-title: ApJS
  doi: 10.1086/313233
– volume: 343
  start-page: 1101
  year: 2003
  ident: key 20170715054608_b12
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06797.x
– volume: 624
  start-page: 491
  year: 2005
  ident: key 20170715054608_b26
  publication-title: ApJ
  doi: 10.1086/429083
– volume: 613
  start-page: 631
  year: 2004
  ident: key 20170715054608_b30
  publication-title: ApJ
  doi: 10.1086/423313
– volume: 634
  start-page: 1
  year: 2005
  ident: key 20170715054608_b18
  publication-title: ApJ
  doi: 10.1086/429080
– volume: 610
  start-page: 1
  year: 2004
  ident: key 20170715054608_b40
  publication-title: ApJ
  doi: 10.1086/421378
– volume: 465
  start-page: 608
  year: 1996
  ident: key 20170715054608_b52
  publication-title: ApJ
  doi: 10.1086/177446
– volume: 214
  start-page: 137
  year: 1985
  ident: key 20170715054608_b14
  publication-title: MNRAS
  doi: 10.1093/mnras/214.2.137
– volume: 639
  start-page: 621
  year: 2006
  ident: key 20170715054608_b3
  publication-title: ApJ
  doi: 10.1086/499578
– volume: 126
  start-page: 1
  year: 2003
  ident: key 20170715054608_b55
  publication-title: AJ
  doi: 10.1086/375547
SSID ssj0004326
Score 2.3426027
Snippet Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible...
ABSTRACT Recently, we have presented the first, truly large‐scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the...
SourceID proquest
pascalfrancis
crossref
wiley
oup
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 534
SubjectTerms Astronomy
Astrophysics
cosmology: theory
Earth, ocean, space
Exact sciences and technology
galaxies: formation
intergalactic medium
Ions
large-scale structure of Universe
radiative transfer
radio lines: galaxies
Simulation
Stars & galaxies
Title Self-regulated reionization
URI https://api.istex.fr/ark:/67375/HXZ-GL5FGWVF-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2007.11482.x
https://www.proquest.com/docview/207367521
https://www.proquest.com/docview/20442022
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB4hekGq2kJbkVIgh4pTs8qPkzhHhFhWqMuBQrvqxbIdp6p2u4uSXYn21EfoM_ZJOmNnF1KBhFBvjpyx4vHY_mYyPwDvCiWjMlMqKFSUBIybMJBchoGRnLKLVXgFUXDy8CwbXLLTUTpq_Z8oFsblh1gZ3Ghn2POaNrhUTXeTWw8txOsuEyEh-7hHeJI6CB-d32SSYomtvGYzNKKOEHWdeu4cqHNTPSGmXy-j4J5eyQZZWLnaFx1wehvi2juq_xzGy9k515RxbzFXPf3zn8SP_2f6L-BZC2X9Qyd7m7BmpluwfdiQcX32_Yd_4Nu2s500W-ANEaDPamvHx86jyTdEy_bpJex-NJPqz6_ftflK9cRM6deGLMUuSPQVXPaPL44GQVu5IdCMszhgqTQy40nIEO9khSlZpnEF8MuzzCRModqdlClXsSxCmalSxiViERPLKq50KHXyGtans6nZBl8xzTQ3XFUVXrhpopTWYZ4rLou0MKz0IF-uktBtWnOqrjERt9Qb5JQgTlHRzVxYTolrD6IV5ZVL7fEAmgMrCCsCWY_JNS5PxWD0RZx8SPsnnz_1xYUH71FS7hk3uGPcvY5I3RBy1HARxXuws5Qx0Z4yDY6QJ6jwxZEH-6tePB7on4-cmtmCXmEsRpyGbLLS9OCZiuHZuW2-eTTlDmw4Szj5Ob2F9Xm9MLsI4eZqz27OvxUTMxI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-h7QEkxJ8BWhjb8oD2RKr8cRLncRp0Bdo-jA4qXizbcSa00k5pKw2e-Ah8Rj4Jd3baLWhIE-LNkXNWcjnbv7ucfwfwslAyKjOlgkJFScC4CQPJZRgYyYldrMItiA4nD4ZZ75S9G6fjphwQnYVx_BDrgBvNDLte0wSngHR7ltsULQTsjoqQoH3cQUC5SQW-iUj_9ckVlxRLbO01y9GIXkLUTuu5caTWXrVJar9cnYO7fyHnqMTKVb9owdPrINfuUt2HMFm9n0tOOe8sF6qjv_9B_fifFPAIHjRo1j905vcY7pjpFmwfzim-Pvv6zT_wbduFT-Zb4A0Qo89qG8rHzqPJFwTM9uoJ7H4wk-rXj5-1OaOSYqb0a0PBYndO9Cmcdt-MjnpBU7wh0IyzOGCpNDLjScgQ8mSFKVmm8RPgk2eZSZhCzzspU65iWYQyU6WMS4QjJpZVXOlQ6uQZbExnU7MNvmKaaW64qircc9NEKa3DPFdcFmlhWOlBvvpMQjfM5lRgYyKueTioKUGaorqbubCaEpceRGvJC8fucQuZA2sJawFZn1N2XJ6K3vizOO6n3eNPH7ti5MErNJW_jBvcMO5ey6auBDk6uQjkPdhZGZloFpo5jpAn6PPFkQf7615cIei3j5ya2ZJuYSxGqIZqsuZ06zcVg-GJbT7_Z8l9uNsbDfqi_3b4fgfuucA4pT29gI1FvTS7iOgWas_O1N9RGTcu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hTUJIiI8BWja25QHtiVT5cBzncdrICqwVGhtUvFi240yoXVulrTR44k_gb-Qv4Wyn3YKGNCHeHDlnxeez_bvLfQC8yqWISiplkMsoCQjTYSCYCAMtmMkuVuEVZIKTe33aPSfvBumg8X8ysTAuP8TK4GZ2hj2vzQafllV7k1sPLcTrLhOhQfZxB_HkOqFhbso4HJ1ep5IiiS29ZlM0opIQtb16bh2pdVWtG65fLcPgHk7FDHlYueIXLXR6E-PaS6p4DMPl9JxvyrCzmMuO-v5H5sf_M_8n8KjBsv6BE76ncE-PN2DzYGas65PLb_6-b9vOeDLbAK-HCH1SW0M-dh6OviJctk_PYOejHlW_fvys9YUpKKZLv9bGVOyiRJ_DefHm7LAbNKUbAkUYiQOSCi0oS0KCgIfmuiRU4Qrgl1OqEyJR707KlMlY5KGgshRxiWBEx6KKKxUKlbyAtfFkrDfBl0QRxTSTVYU3bppIqVSYZZKJPM01KT3IlqvEVZPX3JTXGPEb-g1yihtOmaqbGbec4lceRCvKqcvtcQeafSsIKwJRD41vXJby7uALPz5Ji-PPnwp-5sFrlJS_jBvcMu5uS6SuCRmquAjjPdheyhhvjpkZjpAlqPHFkQd7q148H8xPHzHWk4V5hZAYgRqyyUrTnWfKe_1T29z6Z8o9uP_hqOAnb_vvt-GBs4obn6eXsDavF3oH4dxc7tp9-htirzXd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-regulated+reionization&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Iliev%2C+Ilian+T.&rft.au=Mellema%2C+Garrelt&rft.au=Shapiro%2C+Paul+R.&rft.au=Pen%2C+Ue-Li&rft.date=2007-04-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=376&rft.issue=2&rft.spage=534&rft.epage=548&rft_id=info:doi/10.1111%2Fj.1365-2966.2007.11482.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2966_2007_11482_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon