Self-regulated reionization
Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M≳ 109 M⊙, in a comoving volume (100 h−1 Mpc)3. This is large enough to sample the global mean...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 376; no. 2; pp. 534 - 548 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2007
Blackwell Science Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M≳ 109 M⊙, in a comoving volume (100 h−1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 M⊙, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 M⊙, however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is ‘self-regulating’, as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, zov, they serve to boost the electron-scattering optical depth of the universe, τes. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (zov < 7), while cosmic microwave background polarization measurements report a large enough τes that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on zov and τes are shown to be achievable with standard stellar sources in haloes above 108 M⊙. Neither minihaloes nor exotic sources are required, and the phenomenon of ‘double reionization’ previously suggested does not occur. |
---|---|
AbstractList | Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M≳ 109 M⊙, in a comoving volume (100 h−1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 M⊙, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 M⊙, however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is ‘self-regulating’, as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, zov, they serve to boost the electron-scattering optical depth of the universe, τes. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (zov < 7), while cosmic microwave background polarization measurements report a large enough τes that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on zov and τes are shown to be achievable with standard stellar sources in haloes above 108 M⊙. Neither minihaloes nor exotic sources are required, and the phenomenon of ‘double reionization’ previously suggested does not occur. ABSTRACT Recently, we have presented the first, truly large‐scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M≳ 109 M⊙, in a comoving volume (100 h−1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 M⊙, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 M⊙, however, are subject to Jeans‐mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is ‘self‐regulating’, as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low‐mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans‐mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, zov, they serve to boost the electron‐scattering optical depth of the universe, τes. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (zov < 7), while cosmic microwave background polarization measurements report a large enough τes that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1‐ and 3‐yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on zov and τes are shown to be achievable with standard stellar sources in haloes above 108 M⊙. Neither minihaloes nor exotic sources are required, and the phenomenon of ‘double reionization’ previously suggested does not occur. Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M[gsim] 10 super(9) M sub([odot]), in a comoving volume (100 h super(-1) Mpc) super(3). This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 10 super(8) M sub([odot]), to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 10 super(9) M sub([odot]), however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is 'self-regulating', as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, z sub(ov), they serve to boost the electron-scattering optical depth of the universe, tau sub(es). This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (z sub(ov) < 7), while cosmic microwave background polarization measurements report a large enough tau sub(es) that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on z sub(ov) and tau sub(es) are shown to be achievable with standard stellar sources in haloes above 10 super(8) M sub([odot]). Neither minihaloes nor exotic sources are required, and the phenomenon of 'double reionization' previously suggested does not occur. Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M[> ~] 109 M[middot in circle], in a comoving volume (100 h-1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 M[middot in circle], to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 M[middot in circle], however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is 'self-regulating', as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, z ov, they serve to boost the electron-scattering optical depth of the universe, tau es. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (zov < 7), while cosmic microwave background polarization measurements report a large enough tau es that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on z ov and tau es are shown to be achievable with standard stellar sources in haloes above 108 M[middot in circle]. Neither minihaloes nor exotic sources are required, and the phenomenon of 'double reionization' previously suggested does not occur. [PUBLICATION ABSTRACT] Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible halo sources down to the dwarf galaxy mass range, M≳ 109 M⊙, in a comoving volume (100 h −1 Mpc)3. This is large enough to sample the global mean history, geometry and statistical properties of reionization fairly and accurately for the first time. Here we present new simulations which extend the source halo mass range downward to 108 M⊙, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 109 M⊙, however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller mass haloes but accounting for their suppression, too, we find that reionization is 'self-regulating', as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high efficiency (i.e. high emissivity) achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher mass haloes, independent of the efficiency of the suppressible, lower mass haloes. Hence, while the lower mass haloes do not alter the overlap redshift, z ov, they serve to boost the electron-scattering optical depth of the universe, τes. This may explain why observations of quasar absorption spectra at high redshift find that reionization ended late (z ov < 7), while cosmic microwave background polarization measurements report a large enough τes that reionization must have begun much earlier (z > 11). We present results for the Lambda cold dark matter universe with cosmological parameters from both 1- and 3-yr data releases of Wilkinson Microwave Anisotropy Probe. Reionization histories consistent with current constraints on z ov and τes are shown to be achievable with standard stellar sources in haloes above 108 M⊙. Neither minihaloes nor exotic sources are required, and the phenomenon of 'double reionization' previously suggested does not occur. |
Author | Iliev, Ilian T. Mellema, Garrelt Pen, Ue-Li Shapiro, Paul R. |
Author_xml | – sequence: 1 givenname: Ilian T. surname: Iliev fullname: Iliev, Ilian T. email: iliev@cita.utoronto.ca, * iliev@cita.utoronto.ca organization: Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Canada ON M5S 3H8 – sequence: 2 givenname: Garrelt surname: Mellema fullname: Mellema, Garrelt organization: Stockholm Observatory, AlbaNova University Centre, Stockholm University, SE-106 91 Stockholm, Sweden – sequence: 3 givenname: Paul R. surname: Shapiro fullname: Shapiro, Paul R. organization: Department of Astronomy, University of Texas, Austin, TX 78712-1083, USA – sequence: 4 givenname: Ue-Li surname: Pen fullname: Pen, Ue-Li organization: Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Canada ON M5S 3H8 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18619099$$DView record in Pascal Francis |
BookMark | eNqNkFtrGzEQhUVIIbabX9CXEGjf1tFttdqXQjG1HXBSyLXkZRhrtUXuZteVdonTXx_5gh9CQ6OXEaPvnBmdPjmsm9oScsLokMVzthgyodKE50oNOaVZ7ErNh6sD0ts_HJIepSJNdMbYEemHsKCUSsFVj3y6tlWZePurq7C1xYm3rqndX2xj-Ug-lFgFe7yrA3I7_n4zmiazH5Pz0bdZYqSWPJEpWlRaUClFrnJbSGWieVxOKSvkXGstilTPOeYU1bxAXlCqLceSl4aiEQPyZeu79M2fzoYWHl0wtqqwtk0XgEdnTjmP4OkrcNF0vo67RSYTKks5i9DnHYTBYFV6rI0LsPTuEf0zMK1YTvM8cl-3nPFNCN6WYFy7-Xfr0VXAKKwDhgWsc4R1jrAOGDYBwyoa6FcG-xn_l-5mP7nKPr9bBxeXV5trNBBbg6ZbviFP_jU22apcaO1qr0P_G1QmshSmPx9gMkvHk_u7MdyIF9_IsCk |
CODEN | MNRAA4 |
CitedBy_id | crossref_primary_10_1093_mnras_stz1220 crossref_primary_10_1051_0004_6361_200810757 crossref_primary_10_1111_j_1365_2966_2011_18399_x crossref_primary_10_1093_mnras_stt926 crossref_primary_10_1093_mnras_stv2812 crossref_primary_10_1111_j_1365_2966_2012_22114_x crossref_primary_10_3847_2041_8213_aab14d crossref_primary_10_1093_mnras_stu1365 crossref_primary_10_5303_JKAS_2014_47_2_49 crossref_primary_10_1088_0004_637X_785_1_65 crossref_primary_10_1093_mnras_stt2366 crossref_primary_10_1103_PhysRevD_76_043002 crossref_primary_10_1093_mnras_sty1945 crossref_primary_10_1088_2041_8205_759_2_L38 crossref_primary_10_1093_mnras_stu299 crossref_primary_10_1111_j_1365_2966_2009_15558_x crossref_primary_10_1093_mnras_stab3801 crossref_primary_10_1088_0004_637X_785_2_134 crossref_primary_10_1111_j_1365_2966_2009_14449_x crossref_primary_10_3847_1538_4357_aa6031 crossref_primary_10_3847_1538_4357_ab1ea8 crossref_primary_10_1103_PhysRevD_88_081303 crossref_primary_10_1093_mnras_sts021 crossref_primary_10_1093_mnras_stt918 crossref_primary_10_1088_0004_637X_710_2_1089 crossref_primary_10_1111_j_1365_2966_2007_12629_x crossref_primary_10_1088_0004_637X_794_1_20 crossref_primary_10_1111_j_1365_2966_2012_21228_x crossref_primary_10_1111_j_1365_2966_2011_19752_x crossref_primary_10_1088_0004_637X_750_1_20 crossref_primary_10_1093_mnras_stt2497 crossref_primary_10_1088_0004_637X_756_1_65 crossref_primary_10_3847_1538_4357_abd7f4 crossref_primary_10_1088_0004_637X_786_2_111 crossref_primary_10_1093_mnras_staa1026 crossref_primary_10_1093_mnras_stv2887 crossref_primary_10_1111_j_1365_2966_2008_14190_x crossref_primary_10_3847_1538_4357_abf3bf crossref_primary_10_1093_mnras_stt2099 crossref_primary_10_3847_1538_4357_ab2adc crossref_primary_10_1111_j_1365_2966_2011_18292_x crossref_primary_10_1007_s10509_008_9865_9 crossref_primary_10_1103_PhysRevD_95_063504 crossref_primary_10_3847_1538_4357_abf55c crossref_primary_10_1111_j_1365_2966_2007_11489_x crossref_primary_10_1111_j_1365_2966_2009_15012_x crossref_primary_10_3847_1538_4357_ac815c crossref_primary_10_1111_j_1745_3933_2010_00993_x crossref_primary_10_1086_591047 crossref_primary_10_1093_mnras_stad2228 crossref_primary_10_1093_mnras_stv1064 crossref_primary_10_1007_s12036_022_09882_z crossref_primary_10_1111_j_1365_2966_2012_20760_x crossref_primary_10_1111_j_1365_2966_2008_13879_x crossref_primary_10_1111_j_1365_2966_2010_17100_x crossref_primary_10_1093_mnras_stae114 crossref_primary_10_1146_annurev_astro_081309_130936 crossref_primary_10_1093_mnras_sts242 crossref_primary_10_1093_mnras_stw3026 crossref_primary_10_1051_0004_6361_201116811 crossref_primary_10_1111_j_1365_2966_2012_21032_x crossref_primary_10_1111_j_1365_2966_2007_12279_x crossref_primary_10_1088_1475_7516_2014_08_010 crossref_primary_10_1088_0004_637X_803_2_103 crossref_primary_10_1088_0004_637X_724_1_244 crossref_primary_10_1093_mnras_stu261 crossref_primary_10_1111_j_1365_2966_2012_21293_x crossref_primary_10_1093_mnras_stt693 crossref_primary_10_1093_mnras_stac182 crossref_primary_10_1093_mnras_stac2320 crossref_primary_10_1093_mnras_stt1341 crossref_primary_10_1093_mnrasl_sly122 crossref_primary_10_1093_mnras_sts116 crossref_primary_10_1093_mnras_stx805 crossref_primary_10_1093_mnras_stu1600 crossref_primary_10_1103_PhysRevD_91_083015 crossref_primary_10_3847_1538_4357_ac497b crossref_primary_10_1093_mnras_stw2145 crossref_primary_10_1111_j_1365_2966_2008_13776_x crossref_primary_10_3847_1538_4357_aab6af crossref_primary_10_1086_519310 crossref_primary_10_3847_0004_637X_832_2_134 crossref_primary_10_1086_522566 crossref_primary_10_1093_mnras_stw674 crossref_primary_10_1111_j_1365_2966_2009_14771_x crossref_primary_10_1093_mnras_stx649 crossref_primary_10_1093_mnras_stz1663 crossref_primary_10_1088_1475_7516_2013_07_025 crossref_primary_10_1111_j_1745_3933_2008_00433_x crossref_primary_10_1093_mnras_stu927 crossref_primary_10_1088_0067_0049_216_1_13 crossref_primary_10_1051_0004_6361_200911663 crossref_primary_10_1093_mnras_stw2036 crossref_primary_10_1111_j_1365_2966_2010_17920_x crossref_primary_10_1017_S174392131601019X crossref_primary_10_1093_mnras_stw2433 crossref_primary_10_1111_j_1365_2966_2012_21268_x crossref_primary_10_5303_JKAS_2015_48_1_67 crossref_primary_10_1093_mnras_staa853 crossref_primary_10_1103_PhysRevD_96_103515 crossref_primary_10_1088_0004_637X_704_2_1396 crossref_primary_10_1103_RevModPhys_81_1405 crossref_primary_10_1086_513687 crossref_primary_10_1088_0004_637X_777_1_51 crossref_primary_10_3847_1538_4357_aae30b crossref_primary_10_1088_0067_0049_180_2_306 crossref_primary_10_1017_pasa_2017_25 crossref_primary_10_1111_j_1365_2966_2009_15521_x crossref_primary_10_1093_mnras_stz2986 crossref_primary_10_1088_1538_3873_129_974_045001 crossref_primary_10_1093_mnras_stv976 crossref_primary_10_1093_mnras_stad237 crossref_primary_10_3847_1538_4357_ab9812 crossref_primary_10_1111_j_1365_2966_2008_14383_x crossref_primary_10_1093_mnras_staa487 crossref_primary_10_1088_0004_637X_695_2_1430 crossref_primary_10_1111_j_1365_2966_2008_13104_x crossref_primary_10_1111_j_1365_2966_2011_18646_x crossref_primary_10_1093_mnras_stac1847 crossref_primary_10_1088_0004_637X_702_2_1575 crossref_primary_10_1111_j_1745_3933_2007_00342_x crossref_primary_10_1088_1475_7516_2024_09_008 crossref_primary_10_1103_PhysRevD_93_043013 crossref_primary_10_1111_j_1365_2966_2009_14486_x crossref_primary_10_1093_mnras_stw1316 crossref_primary_10_3389_fspas_2018_00034 crossref_primary_10_1093_mnras_stz1529 crossref_primary_10_1093_mnras_stx3017 crossref_primary_10_3847_1538_4357_836_2_176 crossref_primary_10_1051_0004_6361_201014347 crossref_primary_10_1093_mnras_stv2993 crossref_primary_10_1093_mnras_stx2324 crossref_primary_10_1093_mnras_stu635 crossref_primary_10_1051_0004_6361_201629661 crossref_primary_10_1088_0004_637X_696_1_254 crossref_primary_10_1111_j_1365_2966_2012_20449_x crossref_primary_10_1088_0004_637X_769_2_93 crossref_primary_10_1111_j_1365_2966_2011_18219_x crossref_primary_10_1016_j_physrep_2018_10_002 crossref_primary_10_1093_mnras_stab602 crossref_primary_10_1111_j_1365_2966_2010_16828_x crossref_primary_10_1093_mnras_staa639 crossref_primary_10_1111_j_1365_2966_2008_13029_x crossref_primary_10_1111_j_1365_2966_2008_14325_x crossref_primary_10_1051_0004_6361_201322355 crossref_primary_10_1111_j_1365_2966_2008_12894_x crossref_primary_10_1111_j_1365_2966_2010_16351_x crossref_primary_10_1088_0004_637X_772_1_42 crossref_primary_10_1093_mnras_stv2623 crossref_primary_10_1111_j_1365_2966_2012_20902_x crossref_primary_10_1093_mnras_stw249 crossref_primary_10_1093_mnras_sts206 crossref_primary_10_1086_588247 |
Cites_doi | 10.1093/mnras/256.1.43P 10.1046/j.1365-8711.2001.04422.x 10.1111/j.1365-2966.2006.10775.x 10.1016/j.newast.2005.02.001 10.1051/0004-6361:20011619 10.1086/309295 10.1086/377226 10.1086/427182 10.1086/308780 10.1046/j.1365-8711.2003.06976.x 10.1111/j.1365-2966.2005.09908.x 10.1086/320549 10.1111/j.1365-2966.2005.09155.x 10.1086/378399 10.1086/174120 10.1111/j.1365-2966.2004.07364.x 10.1046/j.1365-8711.2003.06311.x 10.1086/421548 10.1086/375217 10.1046/j.1365-8711.2000.03365.x 10.1111/j.1365-2966.2006.10919.x 10.1086/185015 10.1086/317042 10.1086/380603 10.1086/505644 10.1016/j.newast.2005.09.004 10.1046/j.1365-8711.2001.04008.x 10.1046/j.1365-8711.1998.01249.x 10.1086/323947 10.1086/377337 10.1086/506906 10.1086/303763 10.1126/science.1063991 10.1086/303908 10.1086/367721 10.1086/509597 10.1111/j.1365-2966.2006.10502.x 10.1046/j.1365-8711.2003.06847.x 10.1086/340451 10.1086/341256 10.1086/339030 10.1086/308723 10.1086/341869 10.1086/313233 10.1046/j.1365-8711.2003.06797.x 10.1086/429083 10.1086/423313 10.1086/429080 10.1086/421378 10.1086/177446 10.1093/mnras/214.2.137 10.1086/499578 10.1086/375547 |
ContentType | Journal Article |
Copyright | 2007 The Authors. Journal compilation © 2007 RAS 2007 2007 INIST-CNRS 2007 The Authors. Journal compilation © 2007 RAS |
Copyright_xml | – notice: 2007 The Authors. Journal compilation © 2007 RAS 2007 – notice: 2007 INIST-CNRS – notice: 2007 The Authors. Journal compilation © 2007 RAS |
DBID | BSCLL AAYXX CITATION IQODW 8FD H8D L7M 7TG KL. |
DOI | 10.1111/j.1365-2966.2007.11482.x |
DatabaseName | Istex CrossRef Pascal-Francis Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 548 |
ExternalDocumentID | 1255156711 18619099 10_1111_j_1365_2966_2007_11482_x MNR11482 10.1111/j.1365-2966.2007.11482.x ark_67375_HXZ_GL5FGWVF_T |
Genre | article |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHTB AAIJN AAJKP AAJQQ AAKDD AAMMB AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABVLG ABXVV ABZBJ ACBWZ ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEFGJ AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFZJQ AGINJ AGQPQ AGSYK AGXDD AHXPO AIDQK AIDYY AJAOE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT ASPBG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BSCLL BTQHN BY8 CAG CDBKE CO8 COF D-E D-F DAKXR DCZOG DILTD DR2 DU5 D~K E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MK4 NGC NMDNZ NOMLY O9- OCL ODMLO OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 V8K W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX 2WC AAHHS AASNB ABFSI ABJNI ABSAR ABSMQ ABTAH ACBNA ACCFJ ACFRR ACUTJ ADRIX AEEZP AEQDE AETEA AFXEN AGMDO AIWBW AJBDE ASAOO ATDFG BCRHZ CXTWN DFGAJ E.L EAD EAP ESX H13 MBTAY O0~ OHT RHF RNP ROX UQL VOH WRC ZY4 AAYXX CITATION AHGBF APJGH IQODW 8FD H8D L7M 7TG KL. |
ID | FETCH-LOGICAL-c4842-45aea6830443969ed46c43211166e34b8883d58b2a90a6bda2d008e2af2fc0ac3 |
IEDL.DBID | DR2 |
ISSN | 0035-8711 |
IngestDate | Fri Jul 11 15:25:45 EDT 2025 Fri Jul 25 05:03:31 EDT 2025 Mon Jul 21 09:16:04 EDT 2025 Tue Jul 01 02:45:37 EDT 2025 Thu Apr 24 22:58:37 EDT 2025 Wed Jan 22 16:24:26 EST 2025 Wed Aug 28 03:26:46 EDT 2024 Tue Aug 05 16:49:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | galaxies: formation radio lines: galaxies intergalactic medium radiative transfer large-scale structure of Universe cosmology: theory Intergalactic matter Polarization Red shift Ionizing radiations Cosmic background radiation WMAP satellite Large-scale structure Extended source Star formation Galaxy formation Cold dark matter Cosmic radio sources Radiative transfer Optical thickness Absorption spectra Optical scattering Quasars Electron scattering Radio galaxies Cosmological parameter Dwarf galaxies Gravitational collapse Cosmology |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4842-45aea6830443969ed46c43211166e34b8883d58b2a90a6bda2d008e2af2fc0ac3 |
Notes | ark:/67375/HXZ-GL5FGWVF-T istex:AF01FA5C8710FADCC04F757303F0318C7DE1BFB9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 207367521 |
PQPubID | 42411 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_20442022 proquest_journals_207367521 pascalfrancis_primary_18619099 crossref_citationtrail_10_1111_j_1365_2966_2007_11482_x crossref_primary_10_1111_j_1365_2966_2007_11482_x wiley_primary_10_1111_j_1365_2966_2007_11482_x_MNR11482 oup_primary_10_1111_j_1365-2966_2007_11482_x istex_primary_ark_67375_HXZ_GL5FGWVF_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2007 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: April 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationTitleAbbrev | Monthly Notices of the Royal Astronomical Society |
PublicationTitleAlternate | Monthly Notices of the Royal Astronomical Society |
PublicationYear | 2007 |
Publisher | Blackwell Publishing Ltd Blackwell Science Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Science – name: Oxford University Press |
References | 1997; 478 1997; 479 2000; 534 2006b; 644 2006b; 369 2003; 591 1999; 123 1996; 465 2004; 601 2006a; 11 2003; 595 2003; 594 2003b; 343 2006a; 371 2007; 654 2004; 610 2006; 649 2002; 382 2005a; 624 1985; 214 2005b; 361 2003; 126 2004; 613 1994; 427 2004; 617 2006; 366 2001; 321 1987; 321 2002; 572 2002; 295 2000; 314 2002; 575 2005; 634 2006 1995 2005 2003a; 344 2004; 348 1998; 296 2001; 325 2001; 552 2000; 542 2002; 564 1992; 256 2002; 123 2006a; 639 2005; 10 2006b; 372 2000; 540 2003; 148 2003; 344 2003; 586 2003; 340 Schaerer ( key 20170715054608_b44) 2002; 382 Iliev ( key 20170715054608_b24) 2001; 325 Spergel ( key 20170715054608_b50) 2003; 148 Ciardi ( key 20170715054608_b10) 2000; 314 Alvarez ( key 20170715054608_b3) 2006; 639 Ciardi ( key 20170715054608_b12) 2003; 343 Couchman ( key 20170715054608_b14) 1985; 214 Popa ( key 20170715054608_b41) 2006 Whalen ( key 20170715054608_b54) 2004; 610 Bromm ( key 20170715054608_b6) 2002; 564 Malhotra ( key 20170715054608_b34) 2004; 617 White ( key 20170715054608_b55) 2003; 126 Thoul ( key 20170715054608_b52) 1996; 465 Iliev ( key 20170715054608_b29) 2006; 369 Bi ( key 20170715054608_b5) 1997; 479 Navarro ( key 20170715054608_b39) 1997; 478 Sokasian ( key 20170715054608_b49) 2003; 344 Chiu ( key 20170715054608_b9) 2000; 534 Dijkstra ( key 20170715054608_b15) 2004; 601 Haiman ( key 20170715054608_b23) 2000; 534 Abel ( key 20170715054608_b1) 2000; 540 Kohler ( key 20170715054608_b31) 2005 Cen ( key 20170715054608_b8) 2003; 591 Shapiro ( key 20170715054608_b46) 1987; 321 Efstathiou ( key 20170715054608_b16) 1992; 256 Bromm ( key 20170715054608_b7) 2001; 552 Ciardi ( key 20170715054608_b13) 2006; 366 Spergel ( key 20170715054608_b51) 2006 Venkatesan ( key 20170715054608_b53) 2003; 594 Zahn ( key 20170715054608_b57) 2007; 654 Shapiro ( key 20170715054608_b47) 1994; 427 Onken ( key 20170715054608_b40) 2004; 610 Kramer ( key 20170715054608_b32) 2006; 649 Alvarez ( key 20170715054608_b4) 2006; 644 Merz ( key 20170715054608_b37) 2005; 10 Fan ( key 20170715054608_b17) 2002; 123 Kitayama ( key 20170715054608_b30) 2004; 613 Shapiro ( key 20170715054608_b48) 2004; 348 Shapiro ( key 20170715054608_b45) 1995 Wyithe ( key 20170715054608_b56) 2003; 586 Ciardi ( key 20170715054608_b11) 2003; 344 Furlanetto ( key 20170715054608_b18) 2005; 634 Iliev ( key 20170715054608_b25) 2002; 572 Iliev ( key 20170715054608_b27) 2005; 361 Gnedin ( key 20170715054608_b20) 2000; 542 Haiman ( key 20170715054608_b22) 2003; 595 Abel ( key 20170715054608_b2) 2002; 295 Iliev ( key 20170715054608_b26) 2005; 624 Razoumov ( key 20170715054608_b42) 2002; 572 Iliev ( key 20170715054608_b28) 2006; 371 Mellema ( key 20170715054608_b35) 2006; 11 Nakamoto ( key 20170715054608_b38) 2001; 321 Gnedin ( key 20170715054608_b21) 1998; 296 Glover ( key 20170715054608_b19) 2003; 340 Leitherer ( key 20170715054608_b33) 1999; 123 Ricotti ( key 20170715054608_b43) 2002; 575 Mellema ( key 20170715054608_b36) 2006; 372 |
References_xml | – volume: 534 start-page: 11 year: 2000 publication-title: ApJ – start-page: 55 year: 1995 – year: 2005 – volume: 296 start-page: 44 year: 1998 publication-title: MNRAS – volume: 540 start-page: 39 year: 2000 publication-title: ApJ – volume: 591 start-page: 12 year: 2003 publication-title: ApJ – volume: 366 start-page: 689 year: 2006 publication-title: MNRAS – volume: 126 start-page: 1 year: 2003 publication-title: AJ – volume: 634 start-page: 1 year: 2005 publication-title: ApJ – volume: 321 start-page: 593 year: 2001 publication-title: MNRAS – volume: 595 start-page: 1 year: 2003 publication-title: ApJ – volume: 348 start-page: 753 year: 2004 publication-title: MNRAS – volume: 552 start-page: 464 year: 2001 publication-title: ApJ – volume: 613 start-page: 631 year: 2004 publication-title: ApJ – volume: 344 start-page: L7 year: 2003a publication-title: MNRAS – volume: 624 start-page: 491 year: 2005a publication-title: ApJ – volume: 564 start-page: 23 year: 2002 publication-title: ApJ – volume: 465 start-page: 608 year: 1996 publication-title: ApJ – volume: 572 start-page: L123 year: 2002 publication-title: ApJ – volume: 639 start-page: 621 year: 2006a publication-title: ApJ – volume: 321 start-page: L107 year: 1987 publication-title: ApJ – volume: 344 start-page: 607 year: 2003 publication-title: MNRAS – volume: 572 start-page: 695 year: 2002 publication-title: ApJ – volume: 644 start-page: L101 year: 2006b publication-title: ApJ – volume: 343 start-page: 1101 year: 2003b publication-title: MNRAS – volume: 10 start-page: 393 year: 2005 publication-title: New Astron. – volume: 369 start-page: 1625 year: 2006b publication-title: MNRAS – volume: 649 start-page: 570 year: 2006 publication-title: ApJ – volume: 542 start-page: 535 year: 2000 publication-title: ApJ – volume: 654 start-page: 12 year: 2007 publication-title: ApJ – volume: 534 start-page: 507 year: 2000 publication-title: ApJ – volume: 214 start-page: 137 year: 1985 publication-title: MNRAS – year: 2006 publication-title: ApJ – volume: 11 start-page: 374 year: 2006a publication-title: New Astron. – volume: 123 start-page: 1247 year: 2002 publication-title: AJ – volume: 586 start-page: 693 year: 2003 publication-title: ApJ – volume: 382 start-page: 28 year: 2002 publication-title: A&A – volume: 361 start-page: 405 year: 2005b publication-title: MNRAS – volume: 610 start-page: 1 year: 2004 publication-title: ApJ – volume: 372 start-page: 679 year: 2006b publication-title: MNRAS – volume: 479 start-page: 523 year: 1997 publication-title: ApJ – volume: 427 start-page: 25 year: 1994 publication-title: ApJ – volume: 314 start-page: 611 year: 2000 publication-title: MNRAS – volume: 325 start-page: 468 year: 2001 publication-title: MNRAS – volume: 295 start-page: 93 year: 2002 publication-title: Sci – year: 2006 – volume: 371 start-page: 1057 year: 2006a publication-title: MNRAS – volume: 601 start-page: 666 year: 2004 publication-title: ApJ – volume: 610 start-page: 14 year: 2004 publication-title: ApJ – volume: 617 start-page: L5 year: 2004 publication-title: ApJ – volume: 340 start-page: 210 year: 2003 publication-title: MNRAS – volume: 256 start-page: 43 year: 1992 publication-title: MNRAS – volume: 478 start-page: 13 year: 1997 publication-title: ApJ – volume: 594 start-page: L1 year: 2003 publication-title: ApJ – volume: 148 start-page: 175 year: 2003 publication-title: ApJS – volume: 575 start-page: 49 year: 2002 publication-title: ApJ – volume: 123 start-page: 3 year: 1999 publication-title: ApJS – volume: 256 start-page: 43 year: 1992 ident: key 20170715054608_b16 publication-title: MNRAS doi: 10.1093/mnras/256.1.43P – volume: 325 start-page: 468 year: 2001 ident: key 20170715054608_b24 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04422.x – volume: 371 start-page: 1057 year: 2006 ident: key 20170715054608_b28 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10775.x – volume: 10 start-page: 393 year: 2005 ident: key 20170715054608_b37 publication-title: New Astron. doi: 10.1016/j.newast.2005.02.001 – volume: 382 start-page: 28 year: 2002 ident: key 20170715054608_b44 publication-title: A&A doi: 10.1051/0004-6361:20011619 – volume: 540 start-page: 39 year: 2000 ident: key 20170715054608_b1 publication-title: ApJ doi: 10.1086/309295 – volume: 148 start-page: 175 year: 2003 ident: key 20170715054608_b50 publication-title: ApJS doi: 10.1086/377226 – volume: 617 start-page: L5 year: 2004 ident: key 20170715054608_b34 publication-title: ApJ doi: 10.1086/427182 – volume: 534 start-page: 507 year: 2000 ident: key 20170715054608_b9 publication-title: ApJ doi: 10.1086/308780 – volume: 344 start-page: L7 year: 2003 ident: key 20170715054608_b11 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06976.x – volume: 366 start-page: 689 year: 2006 ident: key 20170715054608_b13 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09908.x – volume: 552 start-page: 464 year: 2001 ident: key 20170715054608_b7 publication-title: ApJ doi: 10.1086/320549 – volume: 361 start-page: 405 year: 2005 ident: key 20170715054608_b27 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09155.x – start-page: 55 volume-title: The Physics of the Interstellar Medium and Intergalactic Medium year: 1995 ident: key 20170715054608_b45 – volume: 594 start-page: L1 year: 2003 ident: key 20170715054608_b53 publication-title: ApJ doi: 10.1086/378399 – volume: 427 start-page: 25 year: 1994 ident: key 20170715054608_b47 publication-title: ApJ doi: 10.1086/174120 – volume: 348 start-page: 753 year: 2004 ident: key 20170715054608_b48 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07364.x – volume: 340 start-page: 210 year: 2003 ident: key 20170715054608_b19 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06311.x – volume: 610 start-page: 14 year: 2004 ident: key 20170715054608_b54 publication-title: ApJ doi: 10.1086/421548 – volume: 591 start-page: 12 year: 2003 ident: key 20170715054608_b8 publication-title: ApJ doi: 10.1086/375217 – volume: 314 start-page: 611 year: 2000 ident: key 20170715054608_b10 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03365.x – volume: 372 start-page: 679 year: 2006 ident: key 20170715054608_b36 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10919.x – volume: 321 start-page: L107 year: 1987 ident: key 20170715054608_b46 publication-title: ApJ doi: 10.1086/185015 – volume: 542 start-page: 535 year: 2000 ident: key 20170715054608_b20 publication-title: ApJ doi: 10.1086/317042 – volume: 601 start-page: 666 year: 2004 ident: key 20170715054608_b15 publication-title: ApJ doi: 10.1086/380603 – volume: 644 start-page: L101 year: 2006 ident: key 20170715054608_b4 publication-title: ApJ doi: 10.1086/505644 – year: 2006 ident: key 20170715054608_b51 publication-title: ApJ – volume: 11 start-page: 374 year: 2006 ident: key 20170715054608_b35 publication-title: New Astron. doi: 10.1016/j.newast.2005.09.004 – volume: 321 start-page: 593 year: 2001 ident: key 20170715054608_b38 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04008.x – volume: 296 start-page: 44 year: 1998 ident: key 20170715054608_b21 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.01249.x – volume: 564 start-page: 23 year: 2002 ident: key 20170715054608_b6 publication-title: ApJ doi: 10.1086/323947 – volume: 595 start-page: 1 year: 2003 ident: key 20170715054608_b22 publication-title: ApJ doi: 10.1086/377337 – volume: 649 start-page: 570 year: 2006 ident: key 20170715054608_b32 publication-title: ApJ doi: 10.1086/506906 – volume: 478 start-page: 13 year: 1997 ident: key 20170715054608_b39 publication-title: ApJ doi: 10.1086/303763 – year: 2006 ident: key 20170715054608_b41 – volume: 295 start-page: 93 year: 2002 ident: key 20170715054608_b2 publication-title: Sci doi: 10.1126/science.1063991 – volume: 479 start-page: 523 year: 1997 ident: key 20170715054608_b5 publication-title: ApJ doi: 10.1086/303908 – volume: 586 start-page: 693 year: 2003 ident: key 20170715054608_b56 publication-title: ApJ doi: 10.1086/367721 – volume: 654 start-page: 12 year: 2007 ident: key 20170715054608_b57 publication-title: ApJ doi: 10.1086/509597 – volume: 369 start-page: 1625 year: 2006 ident: key 20170715054608_b29 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10502.x – volume: 344 start-page: 607 year: 2003 ident: key 20170715054608_b49 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06847.x – year: 2005 ident: key 20170715054608_b31 – volume: 572 start-page: 695 year: 2002 ident: key 20170715054608_b42 publication-title: ApJ doi: 10.1086/340451 – volume: 575 start-page: 49 year: 2002 ident: key 20170715054608_b43 publication-title: ApJ doi: 10.1086/341256 – volume: 123 start-page: 1247 year: 2002 ident: key 20170715054608_b17 publication-title: AJ doi: 10.1086/339030 – volume: 534 start-page: 11 year: 2000 ident: key 20170715054608_b23 publication-title: ApJ doi: 10.1086/308723 – volume: 572 start-page: L123 year: 2002 ident: key 20170715054608_b25 publication-title: ApJ doi: 10.1086/341869 – volume: 123 start-page: 3 year: 1999 ident: key 20170715054608_b33 publication-title: ApJS doi: 10.1086/313233 – volume: 343 start-page: 1101 year: 2003 ident: key 20170715054608_b12 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06797.x – volume: 624 start-page: 491 year: 2005 ident: key 20170715054608_b26 publication-title: ApJ doi: 10.1086/429083 – volume: 613 start-page: 631 year: 2004 ident: key 20170715054608_b30 publication-title: ApJ doi: 10.1086/423313 – volume: 634 start-page: 1 year: 2005 ident: key 20170715054608_b18 publication-title: ApJ doi: 10.1086/429080 – volume: 610 start-page: 1 year: 2004 ident: key 20170715054608_b40 publication-title: ApJ doi: 10.1086/421378 – volume: 465 start-page: 608 year: 1996 ident: key 20170715054608_b52 publication-title: ApJ doi: 10.1086/177446 – volume: 214 start-page: 137 year: 1985 ident: key 20170715054608_b14 publication-title: MNRAS doi: 10.1093/mnras/214.2.137 – volume: 639 start-page: 621 year: 2006 ident: key 20170715054608_b3 publication-title: ApJ doi: 10.1086/499578 – volume: 126 start-page: 1 year: 2003 ident: key 20170715054608_b55 publication-title: AJ doi: 10.1086/375547 |
SSID | ssj0004326 |
Score | 2.3426027 |
Snippet | Recently, we have presented the first, truly large-scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the possible... ABSTRACT Recently, we have presented the first, truly large‐scale radiative transfer simulations of inhomogeneous cosmic reionization which resolve all the... |
SourceID | proquest pascalfrancis crossref wiley oup istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 534 |
SubjectTerms | Astronomy Astrophysics cosmology: theory Earth, ocean, space Exact sciences and technology galaxies: formation intergalactic medium Ions large-scale structure of Universe radiative transfer radio lines: galaxies Simulation Stars & galaxies |
Title | Self-regulated reionization |
URI | https://api.istex.fr/ark:/67375/HXZ-GL5FGWVF-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2007.11482.x https://www.proquest.com/docview/207367521 https://www.proquest.com/docview/20442022 |
Volume | 376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB4hekGq2kJbkVIgh4pTs8qPkzhHhFhWqMuBQrvqxbIdp6p2u4uSXYn21EfoM_ZJOmNnF1KBhFBvjpyx4vHY_mYyPwDvCiWjMlMqKFSUBIybMJBchoGRnLKLVXgFUXDy8CwbXLLTUTpq_Z8oFsblh1gZ3Ghn2POaNrhUTXeTWw8txOsuEyEh-7hHeJI6CB-d32SSYomtvGYzNKKOEHWdeu4cqHNTPSGmXy-j4J5eyQZZWLnaFx1wehvi2juq_xzGy9k515RxbzFXPf3zn8SP_2f6L-BZC2X9Qyd7m7BmpluwfdiQcX32_Yd_4Nu2s500W-ANEaDPamvHx86jyTdEy_bpJex-NJPqz6_ftflK9cRM6deGLMUuSPQVXPaPL44GQVu5IdCMszhgqTQy40nIEO9khSlZpnEF8MuzzCRModqdlClXsSxCmalSxiViERPLKq50KHXyGtans6nZBl8xzTQ3XFUVXrhpopTWYZ4rLou0MKz0IF-uktBtWnOqrjERt9Qb5JQgTlHRzVxYTolrD6IV5ZVL7fEAmgMrCCsCWY_JNS5PxWD0RZx8SPsnnz_1xYUH71FS7hk3uGPcvY5I3RBy1HARxXuws5Qx0Z4yDY6QJ6jwxZEH-6tePB7on4-cmtmCXmEsRpyGbLLS9OCZiuHZuW2-eTTlDmw4Szj5Ob2F9Xm9MLsI4eZqz27OvxUTMxI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-h7QEkxJ8BWhjb8oD2RKr8cRLncRp0Bdo-jA4qXizbcSa00k5pKw2e-Ah8Rj4Jd3baLWhIE-LNkXNWcjnbv7ucfwfwslAyKjOlgkJFScC4CQPJZRgYyYldrMItiA4nD4ZZ75S9G6fjphwQnYVx_BDrgBvNDLte0wSngHR7ltsULQTsjoqQoH3cQUC5SQW-iUj_9ckVlxRLbO01y9GIXkLUTuu5caTWXrVJar9cnYO7fyHnqMTKVb9owdPrINfuUt2HMFm9n0tOOe8sF6qjv_9B_fifFPAIHjRo1j905vcY7pjpFmwfzim-Pvv6zT_wbduFT-Zb4A0Qo89qG8rHzqPJFwTM9uoJ7H4wk-rXj5-1OaOSYqb0a0PBYndO9Cmcdt-MjnpBU7wh0IyzOGCpNDLjScgQ8mSFKVmm8RPgk2eZSZhCzzspU65iWYQyU6WMS4QjJpZVXOlQ6uQZbExnU7MNvmKaaW64qircc9NEKa3DPFdcFmlhWOlBvvpMQjfM5lRgYyKueTioKUGaorqbubCaEpceRGvJC8fucQuZA2sJawFZn1N2XJ6K3vizOO6n3eNPH7ti5MErNJW_jBvcMO5ey6auBDk6uQjkPdhZGZloFpo5jpAn6PPFkQf7615cIei3j5ya2ZJuYSxGqIZqsuZ06zcVg-GJbT7_Z8l9uNsbDfqi_3b4fgfuucA4pT29gI1FvTS7iOgWas_O1N9RGTcu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hTUJIiI8BWja25QHtiVT5cBzncdrICqwVGhtUvFi240yoXVulrTR44k_gb-Qv4Wyn3YKGNCHeHDlnxeez_bvLfQC8yqWISiplkMsoCQjTYSCYCAMtmMkuVuEVZIKTe33aPSfvBumg8X8ysTAuP8TK4GZ2hj2vzQafllV7k1sPLcTrLhOhQfZxB_HkOqFhbso4HJ1ep5IiiS29ZlM0opIQtb16bh2pdVWtG65fLcPgHk7FDHlYueIXLXR6E-PaS6p4DMPl9JxvyrCzmMuO-v5H5sf_M_8n8KjBsv6BE76ncE-PN2DzYGas65PLb_6-b9vOeDLbAK-HCH1SW0M-dh6OviJctk_PYOejHlW_fvys9YUpKKZLv9bGVOyiRJ_DefHm7LAbNKUbAkUYiQOSCi0oS0KCgIfmuiRU4Qrgl1OqEyJR707KlMlY5KGgshRxiWBEx6KKKxUKlbyAtfFkrDfBl0QRxTSTVYU3bppIqVSYZZKJPM01KT3IlqvEVZPX3JTXGPEb-g1yihtOmaqbGbec4lceRCvKqcvtcQeafSsIKwJRD41vXJby7uALPz5Ji-PPnwp-5sFrlJS_jBvcMu5uS6SuCRmquAjjPdheyhhvjpkZjpAlqPHFkQd7q148H8xPHzHWk4V5hZAYgRqyyUrTnWfKe_1T29z6Z8o9uP_hqOAnb_vvt-GBs4obn6eXsDavF3oH4dxc7tp9-htirzXd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-regulated+reionization&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Iliev%2C+Ilian+T.&rft.au=Mellema%2C+Garrelt&rft.au=Shapiro%2C+Paul+R.&rft.au=Pen%2C+Ue-Li&rft.date=2007-04-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=376&rft.issue=2&rft.spage=534&rft.epage=548&rft_id=info:doi/10.1111%2Fj.1365-2966.2007.11482.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2966_2007_11482_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |