Unprecedented Reverse Volume Expansion in Spin‐Transition Crystals

The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM‐pBrA)2(...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 26; no. 57; pp. 12927 - 12930
Main Authors Guo, Wenbin, Daro, Nathalie, Pillet, Sébastien, Marchivie, Mathieu, Bendeif, El‐Eulmi, Tailleur, Elodie, Chainok, Kittipong, Denux, Dominique, Chastanet, Guillaume, Guionneau, Philippe
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.10.2020
Wiley-VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM‐pBrA)2(NCS)2] exhibits, on the contrary, an increase of the unit‐cell volume from HS to LS. This counter‐intuitive and unprecedented behavior that concerns both the thermal and the photoexcited spin conversions is revealed by a combination of single‐crystal and powder X‐ray diffraction complemented by magnetic measurements. Interestingly, this abnormal volume change appears concomitant with the wide rotation of a phenyl ring which induces a drastic modification, though reversible, of the structural packing within the crystal. In addition, the light‐induced HS state obtained through the Light‐Induced Excited Spin‐State Trapping shows a remarkably high relaxation temperature, namely T(LIESST), of 109 K, one of the highest so far reported. The above set of quite unusual characteristics opens up new fields of possibilities within the development of spin crossover materials. Molecular crystals: An unprecedented reverse and reversible volume modification in crystals of the molecular complex [Fe(PM‐pBrA)2(NCS)2] is observed both for the thermal and the photoinduced spin‐crossover processes. Probably linked here to a structural singularity, that is, an impressive phenyl ring rotation into the crystal, the increase in volume from HS to LS nevertheless opens up new prospects for spin‐transition‐based materials (see figure).
AbstractList Abstract The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM‐ p BrA) 2 (NCS) 2 ] exhibits, on the contrary, an increase of the unit‐cell volume from HS to LS. This counter‐intuitive and unprecedented behavior that concerns both the thermal and the photoexcited spin conversions is revealed by a combination of single‐crystal and powder X‐ray diffraction complemented by magnetic measurements. Interestingly, this abnormal volume change appears concomitant with the wide rotation of a phenyl ring which induces a drastic modification, though reversible, of the structural packing within the crystal. In addition, the light‐induced HS state obtained through the Light‐Induced Excited Spin‐State Trapping shows a remarkably high relaxation temperature, namely T( LIESST ), of 109 K, one of the highest so far reported. The above set of quite unusual characteristics opens up new fields of possibilities within the development of spin crossover materials.
This paper gives an overview of the research carried out on lithium and sodium layered materials as positive electrodes of lithium (sodium)‐ion batteries. It focuses on the solid‐state chemistry contribution to discover new materials and to optimize the properties versus the requirements imposed by the applications. Among, all material structures, which are considered, the layered ones (lithium based), are the best candidates for high energy density batteries for mobile applications. Recently, the homologous Na materials, which have lower energy, are considered for stationary applications due to their low price. Starting for LiMO2 materials or NaxMO2 (0.5 < x < 1), many substituted phases, obtained by high‐temperature solid‐state chemistry, have allowed stabilizing the layered structure in large composition domains to increase the specific capacity, which is directly related to the number of exchanged electrons during the cycling process.
The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM‐pBrA)2(NCS)2] exhibits, on the contrary, an increase of the unit‐cell volume from HS to LS. This counter‐intuitive and unprecedented behavior that concerns both the thermal and the photoexcited spin conversions is revealed by a combination of single‐crystal and powder X‐ray diffraction complemented by magnetic measurements. Interestingly, this abnormal volume change appears concomitant with the wide rotation of a phenyl ring which induces a drastic modification, though reversible, of the structural packing within the crystal. In addition, the light‐induced HS state obtained through the Light‐Induced Excited Spin‐State Trapping shows a remarkably high relaxation temperature, namely T(LIESST), of 109 K, one of the highest so far reported. The above set of quite unusual characteristics opens up new fields of possibilities within the development of spin crossover materials.
The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM- p BrA) 2 (NCS) 2 ] exhibits, on the contrary, an increase of the unit-cell volume from HS to LS. This counter-intuitive and unprecedented behavior that concerns both the thermal and the photo-excited spin conversions is revealed by a combination of single-crystal and powder X-ray diffraction complemented by magnetic measurements. Interestingly, this abnormal volume change appears concomitant with the wide rotation of a phenyl ring which induces a drastic modification, though reversible, of the structural packing within the crystal. In addition, the light-induced HS state obtained through the Light-Induced Excited Spin-State Trapping shows a remarkably high relaxation temperature, namely T( LIESST ), of 109 K, one of the highest so far reported. The above set of quite unusual characteristics opens up new fields of possibilities within the development of spin crossover materials.
The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM‐pBrA)2(NCS)2] exhibits, on the contrary, an increase of the unit‐cell volume from HS to LS. This counter‐intuitive and unprecedented behavior that concerns both the thermal and the photoexcited spin conversions is revealed by a combination of single‐crystal and powder X‐ray diffraction complemented by magnetic measurements. Interestingly, this abnormal volume change appears concomitant with the wide rotation of a phenyl ring which induces a drastic modification, though reversible, of the structural packing within the crystal. In addition, the light‐induced HS state obtained through the Light‐Induced Excited Spin‐State Trapping shows a remarkably high relaxation temperature, namely T(LIESST), of 109 K, one of the highest so far reported. The above set of quite unusual characteristics opens up new fields of possibilities within the development of spin crossover materials. Molecular crystals: An unprecedented reverse and reversible volume modification in crystals of the molecular complex [Fe(PM‐pBrA)2(NCS)2] is observed both for the thermal and the photoinduced spin‐crossover processes. Probably linked here to a structural singularity, that is, an impressive phenyl ring rotation into the crystal, the increase in volume from HS to LS nevertheless opens up new prospects for spin‐transition‐based materials (see figure).
Author Guo, Wenbin
Chastanet, Guillaume
Chainok, Kittipong
Tailleur, Elodie
Guionneau, Philippe
Pillet, Sébastien
Marchivie, Mathieu
Daro, Nathalie
Bendeif, El‐Eulmi
Denux, Dominique
Author_xml – sequence: 1
  givenname: Wenbin
  surname: Guo
  fullname: Guo, Wenbin
  organization: CNRS
– sequence: 2
  givenname: Nathalie
  surname: Daro
  fullname: Daro, Nathalie
  organization: CNRS
– sequence: 3
  givenname: Sébastien
  surname: Pillet
  fullname: Pillet, Sébastien
  organization: Université de Lorraine
– sequence: 4
  givenname: Mathieu
  surname: Marchivie
  fullname: Marchivie, Mathieu
  organization: CNRS
– sequence: 5
  givenname: El‐Eulmi
  surname: Bendeif
  fullname: Bendeif, El‐Eulmi
  organization: Université de Lorraine
– sequence: 6
  givenname: Elodie
  surname: Tailleur
  fullname: Tailleur, Elodie
  organization: CNRS
– sequence: 7
  givenname: Kittipong
  surname: Chainok
  fullname: Chainok, Kittipong
  organization: Thammasat University
– sequence: 8
  givenname: Dominique
  surname: Denux
  fullname: Denux, Dominique
  organization: CNRS
– sequence: 9
  givenname: Guillaume
  surname: Chastanet
  fullname: Chastanet, Guillaume
  email: guillaume.chastanet@icmcb.cnrs.fr
  organization: CNRS
– sequence: 10
  givenname: Philippe
  orcidid: 0000-0003-4693-7715
  surname: Guionneau
  fullname: Guionneau, Philippe
  email: philippe.guionneau@icmcb.cnrs.fr
  organization: CNRS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32428382$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02945219$$DView record in HAL
BookMark eNqFkU9v1DAQxS1URLeFK0cUiQs9ZBn_iWMfq-2WRVqEBC1Xy04maqrECfamsDc-Ap-RT4KjLYvEhdOTnn7zNDPvjJz4wSMhLyksKQB7W91hv2TAAKhi9AlZ0ILRnJeyOCEL0KLMZcH1KTmL8R4AtOT8GTnlTDDFFVuQq1s_BqywRr_DOvuEDxgiZl-GbuoxW38frY_t4LPWZ5_H1v_68fMmzNZuNldhH3e2i8_J0yYJvnjUc3J7vb5ZbfLtx3fvV5fbvBJK0LwoQNcWnHMNuoY22kkmoSyVYJpqCqgKBpXlrpKlk2lVWXPtFFW1dLS0FT8nF4fcO9uZMbS9DXsz2NZsLrdm9oBpke7XDzSxbw7sGIavE8ad6dtYYddZj8MUDRNQcKBaQkJf_4PeD1Pw6ZJECS2oKLhK1PJAVWGIMWBz3ICCmbswcxfm2EUaePUYO7ke6yP-5_kJ0AfgW9vh_j9xZrVZf_gb_hvL3JYF
CitedBy_id crossref_primary_10_1134_S0036023623600764
crossref_primary_10_1039_D3DT02067C
crossref_primary_10_1007_s11237_022_09725_6
crossref_primary_10_1039_D2DT00416J
crossref_primary_10_1002_chem_202002699
crossref_primary_10_1039_D1DT00146A
crossref_primary_10_31857_S0044457X2360010X
Cites_doi 10.1002/chem.201003197
10.28954/2018.csq.07.001
10.1021/ic034450e
10.1002/anie.200904190
10.1039/C9CC05988A
10.1515/ncrs-2019-0264
10.1039/C6CP04987G
10.1021/acs.inorgchem.8b02763
10.1021/jacs.8b06042
10.1016/S0010-8545(01)00381-2
10.1021/acs.inorgchem.5b00614
10.1107/S0021889807040149
10.1002/ange.200904190
10.1002/anie.201911256
10.1103/PhysRevLett.113.227402
10.1039/c1cs15046d
10.1002/ange.200351834
10.1107/S0108768104029751
10.1021/ja972441x
10.1039/C4DT01837K
10.1021/acs.jpcc.5b03680
10.1038/nmat4606
10.1016/j.crci.2018.02.011
10.1002/ange.201911256
10.1002/ejic.201201121
10.1107/S0108768104020300
10.1002/anie.200351834
10.1002/9781118519301
10.1016/j.ccr.2014.09.018
10.1021/ic980107b
10.1016/j.jpcs.2003.09.002
10.1007/b95429
10.1007/BF00549096
10.1021/ja016980k
10.1039/B818330A
10.1021/ja411595y
10.1016/j.crci.2018.02.003
10.1039/C3DT52520A
10.1039/C7CC07990G
10.1039/C7CC04112H
10.1007/b95410
10.1039/C7CC01806A
10.1021/acs.inorgchem.8b01625
10.1039/C8DT02517G
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
1XC
VOOES
DOI 10.1002/chem.202001821
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 12930
ExternalDocumentID oai_HAL_hal_02945219v1
10_1002_chem_202001821
32428382
CHEM202001821
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Fondation Aix-Marseille Universite
  funderid: Labex Amadeus
– fundername: China Scholarship Council
  funderid: PhD W.Guo
– fundername: Centre National de la Recherche Scientifique
– fundername: Université de Lorraine
  funderid: ANR-15-IDEX-04-LUE
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
.GJ
.Y3
186
1XC
31~
6TJ
9M8
ABEML
ACBWZ
ACSCC
AETEA
AGCDD
AI.
ASPBG
AVWKF
AZFZN
BZBRT
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
PALCI
RIWAO
RJQFR
SAMSI
UQL
VH1
VOOES
WSR
Y6R
ZGI
ID FETCH-LOGICAL-c4841-5509da0bbbfebf1f9b62607784291910e8520ca3bc67b69636d39b818d6b17ac3
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Fri Sep 06 12:42:12 EDT 2024
Fri Aug 16 23:59:48 EDT 2024
Thu Oct 10 16:43:19 EDT 2024
Fri Aug 23 02:25:04 EDT 2024
Sat Sep 28 08:46:56 EDT 2024
Sat Aug 24 01:04:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 57
Keywords iron
photomagnetism
negative expansion
phase transition
spin-crossover
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4841-5509da0bbbfebf1f9b62607784291910e8520ca3bc67b69636d39b818d6b17ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4693-7715
0000-0002-3707-9686
0000-0003-0530-5244
0000-0001-6829-4066
0000-0001-6187-9889
0000-0002-9740-5594
0000-0003-1362-0797
OpenAccessLink https://hal.science/hal-02945219
PMID 32428382
PQID 2449414538
PQPubID 986340
PageCount 4
ParticipantIDs hal_primary_oai_HAL_hal_02945219v1
proquest_miscellaneous_2405301960
proquest_journals_2449414538
crossref_primary_10_1002_chem_202001821
pubmed_primary_32428382
wiley_primary_10_1002_chem_202001821_CHEM202001821
PublicationCentury 2000
PublicationDate October 9, 2020
PublicationDateYYYYMMDD 2020-10-09
PublicationDate_xml – month: 10
  year: 2020
  text: October 9, 2020
  day: 09
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2004; 65
2004; 43
1997; 119
2018; 140
2004; 60
2009 2009; 48 121
2019; 55
2015; 289
2011; 40
2015; 54
2019; 58
1977; 44
2004
2003 2003; 42 115
2005; 61
2016; 18
2011; 17
2018; 21
2016; 15
2014; 136
2014; 43
2018; 47
2014; 113
1998; 37
2009; 11
2017; 53
2018; 2
J. Am. Chem. Soc.
2002; 124
2019; 234
2015; 119
2007; 40
2013
2001; 219
2018; 57
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_49_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_28_2
e_1_2_2_8_1
e_1_2_2_45_2
e_1_2_2_47_1
Gómez V. (e_1_2_2_26_2)
Létard J.-F (e_1_2_2_6_2) 2004
e_1_2_2_13_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_32_1
e_1_2_2_17_1
e_1_2_2_55_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_36_1
e_1_2_2_3_2
e_1_2_2_46_3
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_42_3
e_1_2_2_7_3
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_54_1
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_33_2
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_14_2
e_1_2_2_50_1
References_xml – volume: 40
  start-page: 4119
  year: 2011
  end-page: 4142
  publication-title: Chem. Soc. Rev.
– volume: 18
  start-page: 28307
  year: 2016
  end-page: 28315
  publication-title: Phys. Chem. Chem. Phys.
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 53
  start-page: 4763
  year: 2017
  end-page: 4766
  publication-title: Chem. Commun.
– volume: 219
  start-page: 839
  year: 2001
  end-page: 879
  publication-title: Coord. Chem. Rev.
– start-page: 1
  year: 2004
  end-page: 47
– volume: 37
  start-page: 4432
  year: 1998
  end-page: 4441
  publication-title: Inorg. Chem.
– volume: 54
  start-page: 6319
  year: 2015
  end-page: 6330
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 19
  year: 2009
  end-page: 32
  publication-title: CrystEngComm
– volume: 124
  start-page: 194
  year: 2002
  end-page: 195
  publication-title: J. Am. Chem. Soc.
– volume: 42 115
  start-page: 3825 3955
  year: 2003 2003
  end-page: 3830 3960
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 606
  year: 2016
  end-page: 610
  publication-title: Nat. Mater.
– volume: 2
  start-page: 2
  year: 2018
  publication-title: Chem. Sq.
– volume: 60
  start-page: 627
  year: 2004
  end-page: 668
  publication-title: Acta Crystallogr. Sect. B
– volume: 58
  start-page: 1278
  year: 2019
  end-page: 1289
  publication-title: Inorg. Chem.
– volume: 140
  start-page: 12870
  year: 2018
  end-page: 12876
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 3869
  year: 2014
  end-page: 3874
  publication-title: J. Am. Chem. Soc.
– publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: J. Am. Chem. Soc.
  start-page: 137
  end-page: 11927
  publication-title: t
– volume: 65
  start-page: 17
  year: 2004
  end-page: 23
  publication-title: J. Phys. Chem. Solids
– volume: 40
  start-page: 1076
  year: 2007
  end-page: 1088
  publication-title: J. Appl. Crystallogr.
– volume: 43
  start-page: 15346
  year: 2014
  end-page: 15350
  publication-title: Dalton Trans.
– volume: 53
  start-page: 8356
  year: 2017
  end-page: 8359
  publication-title: Chem. Commun.
– volume: 48 121
  start-page: 9304 9468
  year: 2009 2009
  end-page: 9307 9471
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 129
  year: 1977
  end-page: 138
  publication-title: Theoret. Chim. Acta
– volume: 55
  start-page: 12227
  year: 2019
  end-page: 12230
  publication-title: Chem. Commun.
– volume: 289
  start-page: 62
  year: 2015
  end-page: 73
  publication-title: Coord. Chem. Rev.
– volume: 119
  start-page: 10861
  year: 1997
  end-page: 10862
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 3120
  year: 2011
  end-page: 3127
  publication-title: Chem-Eur J
– volume: 61
  start-page: 25
  year: 2005
  end-page: 28
  publication-title: Acta Crystallogr. Sect. B
– volume: 234
  start-page: 1069
  year: 2019
  end-page: 1070
  publication-title: Z. Kristallogr. New Cryst. Struct.
– start-page: 796
  year: 2013
  end-page: 802
  publication-title: Eur. J. Inorg. Chem.
– volume: 21
  start-page: 1075
  year: 2018
  end-page: 1094
  publication-title: C. R. Chim.
– volume: 43
  start-page: 382
  year: 2014
  end-page: 393
  publication-title: Dalton Trans.
– volume: 21
  start-page: 1133
  year: 2018
  end-page: 1151
  publication-title: C. R. Chim.
– volume: 119
  start-page: 20039
  year: 2015
  end-page: 20050
  publication-title: J. Phys. Chem. C
– volume: 53
  start-page: 13268
  year: 2017
  end-page: 13271
  publication-title: Chem. Commun.
– volume: 47
  start-page: 14741
  year: 2018
  end-page: 14750
  publication-title: Dalton Trans.
– volume: 43
  start-page: 227
  year: 2004
  end-page: 236
  publication-title: Inorg. Chem.
– year: 2013
– start-page: 221
  year: 2004
  end-page: 249
– volume: 57
  start-page: 11019
  year: 2018
  end-page: 11026
  publication-title: Inorg. Chem.
– ident: e_1_2_2_45_2
  doi: 10.1002/chem.201003197
– ident: e_1_2_2_40_1
– ident: e_1_2_2_32_1
– ident: e_1_2_2_33_2
  doi: 10.28954/2018.csq.07.001
– ident: e_1_2_2_44_2
  doi: 10.1021/ic034450e
– ident: e_1_2_2_42_2
  doi: 10.1002/anie.200904190
– ident: e_1_2_2_28_2
  doi: 10.1039/C9CC05988A
– ident: e_1_2_2_37_1
– ident: e_1_2_2_54_1
  doi: 10.1515/ncrs-2019-0264
– ident: e_1_2_2_21_1
  doi: 10.1039/C6CP04987G
– ident: e_1_2_2_31_2
  doi: 10.1021/acs.inorgchem.8b02763
– ident: e_1_2_2_38_2
  doi: 10.1021/jacs.8b06042
– ident: e_1_2_2_4_2
  doi: 10.1016/S0010-8545(01)00381-2
– ident: e_1_2_2_25_2
  doi: 10.1021/acs.inorgchem.5b00614
– ident: e_1_2_2_10_2
  doi: 10.1107/S0021889807040149
– ident: e_1_2_2_42_3
  doi: 10.1002/ange.200904190
– ident: e_1_2_2_7_2
  doi: 10.1002/anie.201911256
– ident: e_1_2_2_15_2
  doi: 10.1103/PhysRevLett.113.227402
– ident: e_1_2_2_39_2
  doi: 10.1039/c1cs15046d
– ident: e_1_2_2_17_1
– ident: e_1_2_2_22_1
– ident: e_1_2_2_46_3
  doi: 10.1002/ange.200351834
– ident: e_1_2_2_13_2
  doi: 10.1107/S0108768104029751
– ident: e_1_2_2_18_2
  doi: 10.1021/ja972441x
– ident: e_1_2_2_24_2
  doi: 10.1039/C4DT01837K
– ident: e_1_2_2_27_2
  doi: 10.1021/acs.jpcc.5b03680
– ident: e_1_2_2_9_1
– ident: e_1_2_2_47_1
– start-page: 137
  ident: e_1_2_2_26_2
  publication-title: t
  contributor:
    fullname: Gómez V.
– ident: e_1_2_2_43_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_16_1
  doi: 10.1038/nmat4606
– ident: e_1_2_2_30_2
  doi: 10.1021/jacs.8b06042
– ident: e_1_2_2_34_2
  doi: 10.1016/j.crci.2018.02.011
– ident: e_1_2_2_12_1
– ident: e_1_2_2_7_3
  doi: 10.1002/ange.201911256
– ident: e_1_2_2_11_2
  doi: 10.1002/ejic.201201121
– ident: e_1_2_2_52_2
  doi: 10.1107/S0108768104020300
– ident: e_1_2_2_46_2
  doi: 10.1002/anie.200351834
– ident: e_1_2_2_2_2
  doi: 10.1002/9781118519301
– ident: e_1_2_2_41_2
  doi: 10.1016/j.ccr.2014.09.018
– ident: e_1_2_2_19_2
  doi: 10.1021/ic980107b
– ident: e_1_2_2_23_2
  doi: 10.1016/j.jpcs.2003.09.002
– ident: e_1_2_2_50_1
– start-page: 221
  volume-title: Spin Crossover Transition Metal Compounds III
  year: 2004
  ident: e_1_2_2_6_2
  doi: 10.1007/b95429
  contributor:
    fullname: Létard J.-F
– ident: e_1_2_2_51_2
  doi: 10.1007/BF00549096
– ident: e_1_2_2_14_2
  doi: 10.1021/ja016980k
– ident: e_1_2_2_53_2
  doi: 10.1039/B818330A
– ident: e_1_2_2_49_2
  doi: 10.1021/ja411595y
– ident: e_1_2_2_36_1
  doi: 10.1016/j.crci.2018.02.003
– ident: e_1_2_2_5_1
– ident: e_1_2_2_8_1
  doi: 10.1039/C3DT52520A
– ident: e_1_2_2_35_1
  doi: 10.1039/C7CC07990G
– ident: e_1_2_2_55_1
  doi: 10.1039/C7CC04112H
– ident: e_1_2_2_3_2
  doi: 10.1007/b95410
– ident: e_1_2_2_20_2
  doi: 10.1039/C7CC01806A
– ident: e_1_2_2_48_2
  doi: 10.1021/acs.inorgchem.8b01625
– ident: e_1_2_2_29_2
  doi: 10.1039/C8DT02517G
SSID ssj0009633
Score 2.4289074
Snippet The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume...
Abstract The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease...
This paper gives an overview of the research carried out on lithium and sodium layered materials as positive electrodes of lithium (sodium)‐ion batteries. It...
SourceID hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 12927
SubjectTerms Cell size
Chemical Sciences
Chemistry
Crossovers
Crystal structure
Crystals
Magnetic measurement
Material chemistry
Mechanical properties
Metal ions
molecular crystals
phase transition
photoexcited states
rotation of phenyl ring
Spin transition
spin-crossover
Title Unprecedented Reverse Volume Expansion in Spin‐Transition Crystals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202001821
https://www.ncbi.nlm.nih.gov/pubmed/32428382
https://www.proquest.com/docview/2449414538
https://search.proquest.com/docview/2405301960
https://hal.science/hal-02945219
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RvdBLC_QVWFBaVeopkIfXiY-rLasVgh623Ypb5EkcsQJlV_tALSd-Ar-RX9IZZxNYekBqb05iK_bMePzZHn8G-IxKS5UhdSTTKTwhhKJUJLwCCfsHUS5lzhPFs29yMBIn553zR6f4K36IZsGNe4b119zBNc6PHkhDqU18kpxjghJ7kpzZ9BgVDR_4o8i6qrvkRewxB2vN2uiHR-vF10alFxccE_k34FzHr3YA6r8GXVe9iju5PFwu8DC7ecLq-D9t24JXK3Tqditz2oYNU-7AZq--FO4NfB2VU_KRho_3mtwdGo7qMO5P6-Pc41_kW3j5zR2X7vfpuLy_vbODoY0Lc3uz34RFr-ZvYdQ__tEbeKuLGLxMJCLwaBajcu0jYmGwCAqFPA2K44QGM5rv-SbphH6mI8xkjJKELvNIIUGBXGIQ6yx6B61yUpoP4Oax1iF2dBYXhZCJz5SMQoc58oYylXLgS62IdFrxbaQVs3KYslTSRioOfCI9NZmYJnvQPU35nR8qQbBEXVOmdq3GdNU55ykhGiUCQa7egY_NZxIk75Xo0kyWnIe8E3MH-Q68r9Tf_IoxaELG5kBolfhMRVMmt2iedv-l0B685LQNIlRtaC1mS7NPYGiBB9bg_wAyWv7G
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOMCFFig0LaVpVamnsHk4TnxEC2gpCwdgq94sT-IIRBVW-0BtT_0J_Y39JZ1JNkFbDkhwSxxbsT2e8Wd75jPAJ1RGqgxJkWxceEIIRU-R8Aok7B9EuZQ5LxRPz2RvIL58ixtvQo6Fqfkh2g031ozKXrOC84Z05541lBrFoeTsFJRyKPky6XzMunlwfs8gReOrvk1eJB6zsDa8jX7YmS8_Ny8tXrFX5EPIOY9gqyno6AVgU_na8-RmbzrBvezXf7yOz2rdS1ibAVR3vx5R67Bgyw1Y6Tb3wm3CwaAckpm0HOFrc_fcsmOHdb9WZs49_EHmhXfg3OvSvRhel39__6nmw8o1zO2OfhIc_T5-BYOjw8tuz5vdxeBlIhWBRwsZlRsfEQuLRVAo5JVQkqQ0n9GSz7dpHPqZiTCTCUrqdZlHCgkN5BKDxGTRFiyVt6V9DW6eGBNibLKkKIRMfWZlFCbMkc-UqZQDnxtJ6GFNuaFrcuVQc6_otlcc-EiCajMxU3Zvv685zQ-VIGSi7ijTTiNHPdPPsSZQo0QgyNo78KH9TB3JxyWmtLdTzkMGiumDfAe2a_m3v2IYmkZp6EBYSfGRimrmt2jf3jyl0HtY6V2e9nX_-OzkLaxyeuVTqHZgaTKa2neEjSa4W43-fzYKAvU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkIBLgT5oeJS0qtRTIHG8TnxEu6wWShGi3YqbZceOilqFFewi4MRP4DfyS5hJNoFtD5Xglji2Ynvs8Tf2zGeAz0ZqITODE8m18oBzLvEp5kFuEPtHsRXCkqH47VD0-nz_pHXyJIq_4odoNtxoZpT6mib4wObbj6Sh2CaKJCefoJQiyWe5iBmZX53jRwIpHF7VZfI8CYiEtaZtDNn2ZPmJZWn6FzlF_os4JwFsuQJ1F0HXda8cT35vjYZmK7v5i9bxJY1bgldjeOrvVONpGaZc8Rrm2_WtcG-g0y8GqCQdxfc66x87cutw_s9Syfm7V6hcaP_NPy3874PT4v72rlwNS8cwv31-jWD0z8Vb6Hd3f7R7wfgmhiDjKY8CNGOk1aExJncmj3JpyA5KkhRXMzT4Qpe2WJjp2GQiMQI7XdhYGsQCVpgo0Vn8DmaKs8K9B98mWjPT0lmS51ykIXEycs2soRNlLOXBl1oQalARbqiKWpkp6hXV9IoHn1BOTSbiye7tHChKC5nkiEvkJWZar8WoxrPzQiGkkTziqOs9-Nh8xo6kwxJduLMR5UH1RORBoQcrlfibXxEITeOUecBKIf6noorYLZq31ecU2oS5o05XHewdfl2DBUouHQrlOswMz0duA4HR0Hwox_4DIoYBpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unprecedented+Reverse+Volume+Expansion+in+Spin%E2%80%90Transition+Crystals&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Guo%2C+Wenbin&rft.au=Daro%2C+Nathalie&rft.au=Pillet%2C+S%C3%A9bastien&rft.au=Marchivie%2C+Mathieu&rft.date=2020-10-09&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=26&rft.issue=57&rft.spage=12927&rft.epage=12930&rft_id=info:doi/10.1002%2Fchem.202001821&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_202001821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon